
Tell us about your PDF experience.

How to use the PowerShell
documentation
Article • 01/17/2025

Welcome to the PowerShell online documentation. This site contains cmdlet reference
for the following versions of PowerShell:

PowerShell 7.6 (preview)
PowerShell 7.5 (RC)
PowerShell 7.4 (LTS)
PowerShell 5.1

The web page contains multiple elements that help you navigate the documentation.

Site level navigation - The site level navigation appears at the top of the page. It
contains links to other content on the Microsoft Learn platform.

Navigating the documentation

https://aka.ms/learn-pdf-feedback


Related content navigation - The related content bar is immediately below the site
level navigation. It contains links to content related to the current documentation
set, which is PowerShell in this case.
Version selector - The version selector appears above the Table of Contents (TOC)
and controls which version of the cmdlet reference appears in the TOC.
Table of Contents - The TOC on the left side of the page is divided into two
sections: conceptual and reference. Notice the line between the Reference node of
the TOC. The conceptual documents appear above the line. Reference content is
listed in Reference node below the line.
Action buttons - The action buttons provide a way to add content to a collection,
provide feedback, edit the content, or share the content with others.

Use the version selector located above the TOC to select the version of PowerShell you
want. By default, the page loads with the most current stable release version selected.
The version selector controls which version of the cmdlet reference appears in the TOC
under the Reference node. Some cmdlets work differently in different versions of
PowerShell you are using. Be sure you are viewing the documentation for the correct
version of PowerShell.

The version selector doesn't affect conceptual documentation. The conceptual
documents appear above the Reference node in the TOC. The same conceptual articles
appear for every version selected. If there are version-specific differences, the
documentation makes note of those differences.

Selecting the version of PowerShell



You can verify the version of PowerShell you are using by inspecting the
$PSVersionTable.PSVersion  value. The following example shows the output for Windows
PowerShell 5.1.

PowerShell

Output

There are two ways to search for content in Docs.

The search box in the site-level navigation bar searches the entire site. It returns a
list of matching articles from all documentation sets.
The TOC filter box under the version selector allows filtering by words that appear
in the title of an article. The filter displays a list of matching articles as you type.
You can also select the option to search for the words in an article. When you
search from here, the search is limited to the PowerShell documentation.

In the following example, the search in the site-level navigation bar returns 840 results
for the word idempotent . Entering the word invoke  in the TOC filter box shows a list of
articles that contain the word invoke  in the title. Entering the word idempotent  in the
TOC filter shows no articles. Clicking the search link searches for idempotent  in the
PowerShell documentation. This search only returns 9 results.

$PSVersionTable.PSVersion

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      22621  963

Finding articles



To download the documentation as a PDF, click the Download PDF button at the
bottom of the TOC.

Downloading the documentation as a PDF



If you are viewing a conceptual article, the Learn platform creates a PDF containing
all the conceptual content for the selected version.
If you are viewing a reference article, the Learn platform creates a PDF containing
all the reference content for the selected version.

Documentation for older versions of PowerShell is archived in our Previous Versions
site. You can choose Previous Versions from the version selector.

Finding articles for previous versions

https://aka.ms/PSLegacyDocs
https://aka.ms/PSLegacyDocs


The previous versions site contains documentation for the following topics:

PowerShell 7.3
PowerShell 7.2
PowerShell 7.1
PowerShell 7.0
PowerShell 6
PowerShell 5.0

PowerShell Workflows
PowerShell Web Access

PowerShell 4.0
PowerShell 3.0



What is PowerShell?
Article • 10/30/2024

PowerShell is a cross-platform task automation solution made up of a command-line
shell, a scripting language, and a configuration management framework. PowerShell
runs on Windows, Linux, and macOS.

PowerShell is a modern command shell that includes the best features of other popular
shells. Unlike most shells that only accept and return text, PowerShell accepts and
returns .NET objects. The shell includes the following features:

Robust command-line history
Tab completion and command prediction (See about_PSReadLine)
Supports command and parameter aliases
Pipeline for chaining commands
In-console help system, similar to Unix man  pages

As a scripting language, PowerShell is commonly used for automating the management
of systems. It's also used to build, test, and deploy solutions, often in CI/CD
environments. PowerShell is built on the .NET Common Language Runtime (CLR). All
inputs and outputs are .NET objects. No need to parse text output to extract information
from output. The PowerShell scripting language includes the following features:

Extensible through functions, classes, scripts, and modules
Extensible formatting system for easy output
Extensible type system for creating dynamic types
Built-in support for common data formats like CSV, JSON, and XML

The extensible nature of PowerShell has enabled an ecosystem of PowerShell modules
to deploy and manage almost any technology you work with. For example:

Microsoft

Azure

Command-line Shell

Scripting language

Automation platform

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_scripts
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_modules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_format.ps1xml
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-csv
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-json
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertto-xml
https://learn.microsoft.com/en-us/powershell/azure


Windows
Exchange
SQL

Third-party

AWS
VMware
Google Cloud

PowerShell Desired State Configuration (DSC) is a management framework in PowerShell
that enables you to manage your enterprise infrastructure with configuration as code.
With DSC, you can:

Create declarative configurations and custom scripts for repeatable deployments
Enforce configuration settings and report on configuration drift
Deploy configuration using push or pull models

Are you new to PowerShell and don't know where to start? Take a look at these
resources.

Installing PowerShell
Discover PowerShell
PowerShell 101
Microsoft Virtual Academy videos
PowerShell Learn modules

Take a look at how PowerShell is being used in different scenarios and on different
platforms.

PowerShell remoting over SSH
Getting started with Azure PowerShell
Building a CI/CD pipeline with DSC

Configuration management

Next steps

Getting started

PowerShell in action

https://learn.microsoft.com/en-us/powershell/windows/get-started
https://learn.microsoft.com/en-us/powershell/exchange/exchange-management-shell
https://learn.microsoft.com/en-us/sql/powershell/sql-server-powershell
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://developer.broadcom.com/powercli
https://developer.broadcom.com/powercli
https://cloud.google.com/powershell/
https://cloud.google.com/powershell/
https://learn.microsoft.com/en-us/powershell/scripting/dsc/overview/dscforengineers
https://learn.microsoft.com/en-us/powershell/scripting/dsc/configurations/configurations
https://learn.microsoft.com/en-us/powershell/scripting/dsc/pull-server/enactingconfigurations
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://learn.microsoft.com/en-us/powershell/scripting/learn/ps101/00-introduction
https://learn.microsoft.com/en-us/shows/browse?terms=powershell
https://learn.microsoft.com/en-us/training/browse/?terms=PowerShell
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core
https://learn.microsoft.com/en-us/powershell/azure/get-started-azureps
https://learn.microsoft.com/en-us/azure/devops/pipelines/release/dsc-cicd


Managing Microsoft Exchange

https://learn.microsoft.com/en-us/powershell/exchange/exchange-management-shell


What is Windows PowerShell?
Article • 03/07/2024

Windows PowerShell and PowerShell are two separate products.

Windows PowerShell is the version of PowerShell that ships in Windows. This
version of PowerShell uses the full .NET Framework, which only runs on Windows.
The latest version is Windows PowerShell 5.1. Microsoft is no longer updating
Windows PowerShell with new features. Support for Windows PowerShell is tied to
the version of Windows you are using.

PowerShell is built on the new versions of .NET instead of the .NET Framework and
runs on Windows, Linux, and macOS. Support for PowerShell is based on the
version of .NET that it was built on. For more information about the support
lifecycle for PowerShell, see the PowerShell support lifecycle documentation.

For a more detailed explanation of the differences between Windows PowerShell
and PowerShell, see Differences between Windows PowerShell 5.1 and PowerShell
7.x.
For information about migrating from Windows PowerShell to PowerShell, see
Migrating from Windows PowerShell 5.1 to PowerShell 7.
For more information about previous versions of Windows PowerShell, see
Previous versions of PowerShell.
For more information about the terminology used in PowerShell documentation,
see Product terminology and branding guidelines.

Further reading

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/overview
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fwhat-is-windows-powershell%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fwhat-is-windows-powershell.md&documentVersionIndependentId=7d1bfc9f-f36e-c002-06a1-e3ea04e42dee&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e714ee54-c93b-33c3-2327-02ef31fd4e8d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


What is a command shell?
Article • 02/13/2025

Many people use the terms command shell, command-line tool, and terminal
interchangeably, which can be confusing. This article explains the difference between
these concepts and provides examples of each.

A command shell is an interactive command-line interface for managing a computer,
also known as a Read-Eval-Print Loop (REPL ).

A shell takes input from the keyboard, evaluates that input, and executes the input as a
shell command or forwards the input to the operating system to be executed. Most
shells can also read commands from a script file, and can include programming features
like variables, flow control, and functions.

There are two main types of command shells:

General purpose command shells

General purpose command shells provide are designed to work with the operating
system and allow you to run any command that the operating system supports.
They also include shell-specific commands and programming features. The
following list contains some examples of general purpose command shells:

PowerShell
Windows Command Shell
bash  - popular on Linux
zsh  - popular on macOS

Utility command shells

Utility command shells are designed to work with specific applications or services.
These shells can only run commands that are specific to the application or service.
Some utility shells support running commands from a batch script, but don't
include programming features. Usually, these shells can only be used interactively.

AI Shell - An interactive-only shell used to communicate with AI services such as
Azure OpenAI.
netsh - Network shell (netsh) is a command-line utility that allows you to
configure and display the status of various network components on Windows.

Types of command shells

https://wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/cmd
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://support.apple.com/102360
https://support.apple.com/102360
https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/netsh


It's both a command-line tool and a command shell. It also supports running
commands from a script file.

A command-line tool is a standalone program that you run from a command shell.
Command-line tools are typically designed to perform a specific task, such as managing
files, configuring settings, or querying for information. Command-line tools can be used
in any shell that supports running external programs.

Azure CLI - a collection of command-line tools for managing Azure resources that
can be run in any supported shell.
Azure PowerShell - a collection of PowerShell modules for managing Azure
resources that can be run in any supported version of PowerShell.
OpenSSH for Windows - includes a command-line client and a server that provides
secure communication over a network.
Windows Commands - a collection of command-line tools that are built into
Windows.

In general, command-line tools don't provide a command shell (REPL) interface. The
netsh  command in Windows is an exception, as it's both a command-line tool and an
interactive command shell.

A terminal is an application that provides a text-based window for hosting command
shells. Some terminals are designed to work with a specific shell, while others can host
multiple shells. They can also include advanced features such as:

Ability to create multiple panes within a single window
Ability to create multiple tabs to host multiple shells
Ability to change color schemes and fonts
Support for copy and paste operations

The following list contains some examples of terminal applications:

Windows Terminal - a modern terminal application for Windows that can host
multiple shells.
Windows Console Host - the default host application on Windows for text-based
applications. It can also host the Windows Command Shell or PowerShell.
Terminal for macOS  - the default terminal application on macOS that can host
the bash or zsh shell.

Command-line tools

Terminals

https://learn.microsoft.com/en-us/cli/azure
https://learn.microsoft.com/en-us/powershell/azure
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh-overview
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://learn.microsoft.com/en-us/windows/terminal
https://learn.microsoft.com/en-us/windows/console/consoles
https://support.apple.com/guide/terminal/welcome/mac
https://support.apple.com/guide/terminal/welcome/mac


iTerm2 for macOS  - a popular 3rd-party terminal application for macOS.
Azure Cloud Shell - a browser-based terminal application hosted in Microsoft
Azure. Azure Cloud shell gives you the choice of using bash or PowerShell. Each
shell comes preconfigured with many command-line tools for managing Azure
resources.

https://iterm2.com/
https://iterm2.com/
https://learn.microsoft.com/en-us/azure/cloud-shell/overview


What is a PowerShell command
(cmdlet)?
Article • 03/07/2024

Commands for PowerShell are known as cmdlets (pronounced command-lets). In
addition to cmdlets, PowerShell allows you to run any command available on your
system.

Cmdlets are native PowerShell commands, not stand-alone executables. Cmdlets are
collected into PowerShell modules that can be loaded on demand. Cmdlets can be
written in any compiled .NET language or in the PowerShell scripting language itself.

PowerShell uses a Verb-Noun name pair to name cmdlets. For example, the Get-Command
cmdlet included in PowerShell is used to get all the cmdlets that are registered in the
command shell. The verb identifies the action that the cmdlet performs, and the noun
identifies the resource on which the cmdlet performs its action.

To learn more about PowerShell and how to find other cmdlets, see the PowerShell Bits
tutorial Discover PowerShell.

For more information about creating your own cmdlets, see the following resources:

Script-based cmdlets

about_Functions_Advanced
about_Functions_CmdletBindingAttribute
about_Functions_Advanced_Methods

Compiled cmdlets (PowerShell SDK docs)

Cmdlet overview

What is a cmdlet?

Cmdlet names

Next steps

https://learn.microsoft.com/en-us/powershell/scripting/learn/tutorials/01-discover-powershell?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_methods


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fpowershell-commands%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fpowershell-commands.md&documentVersionIndependentId=ca403082-6de4-5675-35e3-88065af5cd42&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bd1ab85f-86de-eec2-ee50-6932012f09bf+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Discover PowerShell
Article • 03/07/2024

PowerShell is a command-line shell and a scripting language in one. PowerShell started
out on Windows to help automate administrative tasks. Now, it runs cross platform and
can be used for various tasks.

The thing that makes PowerShell unique is that it accepts and returns .NET objects,
rather than text. This feature makes it easier to connect different commands in a
pipeline.

Usage of PowerShell has grown since the days when it was Windows-only. It's still used
for Windows task automation, but today, you can use it for tasks like:

Cloud management. PowerShell can be used to manage cloud resources. For
example, you can retrieve information about cloud resources, as well as update or
deploy new resources.
CI/CD. It can also be used as part of a Continuous Integration/Continuous
Deployment pipeline.
Automate tasks for Active Directory and Exchange. You can use it to automate
almost any task on Windows like creating users in Active Directory and mailboxes
in Exchange.

There are many more areas of usage but the preceding list gives you a hint that
PowerShell has come a long way.

PowerShell is a powerful tool that can help people working in a multitude of roles.
Traditionally, PowerShell has been used by the System Administrator role but is now
being used by people calling themselves DevOps, Cloud Ops, and even Developers.

PowerShell comes with hundreds of preinstalled commands. PowerShell commands are
called cmdlets (pronounced command-lets).

What can PowerShell be used for?

Who uses PowerShell?

PowerShell cmdlets



The name of each cmdlet consists of a Verb-Noun pair. For example, Get-Process . This
naming convention makes it easier to understand what the cmdlet does. It also makes it
easier to find the command you're looking for. When looking for a cmdlet to use, you
can filter on the verb or noun.

When you first pick up PowerShell, it might feel intimidating as there seems to be so
much to learn. PowerShell is designed to help you learn a little at a time, as you need it.

PowerShell includes cmdlets that help you discover PowerShell. Using these three
cmdlets, you can discover what commands are available, what they do, and what types
they operate on.

Get-Verb . Running this command returns a list of verbs that most commands
adhere to. The response includes a description of what these verbs do. Since most
commands follow this naming convention, it sets expectations on what a
command does. This helps you select the appropriate command and what to name
a command, should you be creating one.
Get-Command . This command retrieves a list of all commands installed on your
machine.
Get-Member . It operates on object based output and is able to discover what object,
properties and methods are available for a command.
Get-Help . Invoking this command with the name of a command as an argument
displays a help page describing various parts of a command.

Using these commands, you can discover almost anything you need to know about
PowerShell.

Verb is an important concept in PowerShell. It's a naming standard that most cmdlets
follow. It's also a naming standard you're expected to follow when you write your own
commands. The idea is that the Verb says what you're trying to do, like read or maybe
change data. PowerShell has a standardized list of verbs. To get a full list of all possible
verbs, use the Get-Verb  cmdlet:

PowerShell

Using cmdlets to explore PowerShell

Verb

Get-Verb



The cmdlet returns a long list of verbs. The Description provides context for what the
verb is meant to do. Here's the first few rows of output:

Output

The Get-Command  cmdlet returns a list of all available commands installed on your
system. The list you get back is quite large. You can limit the amount of information that
comes back by filtering the response using parameters or helper cmdlets.

You can filter the output of Get-Command  using different parameters. Filtering allows you
to find commands that have certain properties. The Name parameter allows you to find
a specific command by name.

PowerShell

Output

Verb    AliasPrefix   Group     Description
----    -----------   -----     -----------
Add     a             Common    Adds a resource to a container, or attaches 
an item to another item
Clear   cl            Common    Removes all the resources from a container 
but does not delete the container
Close   cs            Common    Changes the state of a resource to make it 
inaccessible, unavailable, or unusab…
Copy    cp            Common    Copies a resource to another name or to 
another container
Enter   et            Common    Specifies an action that allows the user to 
move into a resource
Exit    ex            Common    Sets the current environment or context to 
the most recently used context
...

Find commands with Get-Command

Filter on name

Get-Command -Name Get-Process

CommandType     Name              Version    Source
-----------     ----              -------    ------
Cmdlet          Get-Process       7.0.0.0    Microsoft.PowerShell.Management



What if you want to find all the commands that work with processes? You can use a
wildcard *  to match other forms of the string. For example:

PowerShell

Output

There are other parameters that filter on verb and noun values. The verb part of a
command's name is the leftmost part. The verb should be one of the values returned by
the Get-Verb  cmdlet. The rightmost part of a command is the noun part. A noun can be
anything.

Filter on verb. In the command Get-Process , the verb part is Get . To filter on the
verb part, use the Verb parameter.

PowerShell

This example lists all commands that use the verb Get .

Filter on noun. In the command Get-Process , the noun part is Process . To filter on
the noun, use the Noun parameter. The following example returns all cmdlets that
have nouns starting with the letter U .

PowerShell

Also, you can combine parameters to narrow down your search, for example:

Get-Command -Name *-Process

CommandType     Name              Version    Source
-----------     ----              -------    ------
Cmdlet          Debug-Process     7.0.0.0    Microsoft.PowerShell.Management
Cmdlet          Get-Process       7.0.0.0    Microsoft.PowerShell.Management
Cmdlet          Start-Process     7.0.0.0    Microsoft.PowerShell.Management
Cmdlet          Stop-Process      7.0.0.0    Microsoft.PowerShell.Management
Cmdlet          Wait-Process      7.0.0.0    Microsoft.PowerShell.Management

Filtering on Noun and Verb

Get-Command -Verb 'Get'

Get-Command -Noun U*



PowerShell

Output

You can also use other cmdlets to filter results.

Select-Object . This versatile command helps you pick out specific properties from
one or more objects. You can also limit the number of items you get back. The
following example returns the Name and Source property values for the first 5
commands available in the current session.

PowerShell

Output

For more information, see Select-Object.

Where-Object . This cmdlet lets you filter the objects returned based on the values
of properties. The command takes an expression that can test the value of a
property. The following example returns all processes where the ProcessName  starts
with p .

Get-Command -Verb Get -Noun U*

CommandType     Name                         Version    Source
-----------     ----                         -------    ------
Cmdlet          Get-UICulture                7.0.0.0    
Microsoft.PowerShell.Utility
Cmdlet          Get-Unique                   7.0.0.0    
Microsoft.PowerShell.Utility
Cmdlet          Get-Uptime                   7.0.0.0    
Microsoft.PowerShell.Utility

Use helper cmdlets to filter results

Get-Command | Select-Object -First 5 -Property Name, Source

Name                      Source
----                      ------
Add-AppPackage            Appx
Add-AppPackageVolume      Appx
Add-AppProvisionedPackage Dism
Add-AssertionOperator     Pester
Add-ProvisionedAppPackage Dism

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-object?view=powershell-7.5


PowerShell

The Get-Process  cmdlet returns a collection of process objects. To filter the
response, pipe the output to Where-Object . Piping means that two or more
commands are connected via a pipe |  character. The output from one command
is sent as the input for the next command. The filter expression for Where-Object
uses the -like  operator to match processes that start with the letter p .

Once you've been able to locate the cmdlet you want, you want to know more about
what output it produces. The Get-Member  cmdlet displays the type, properties, and
methods of an object. Pipe the output you want to inspect to Get-Member .

PowerShell

The result displays the returned type as TypeName  and all the properties and methods of
the object. Here's an excerpt of such a result:

Output

Using the MemberType parameter you can limit the information returned.

PowerShell

By default PowerShell only displays a few properties. The previous example displayed
the Name , MemberType  and Definition  members. You can use Select-Object  to specify

Get-Process | Where-Object {$_.ProcessName -like "p*"}

Explore objects with Get-Member

Get-Process | Get-Member

TypeName: System.Diagnostics.Process

Name        MemberType     Definition
----        ----------     ----------
Handles     AliasProperty  Handles = Handlecount
Name        AliasProperty  Name = ProcessName
...

Get-Process | Get-Member -MemberType Method



properties you want to see. For example, you want to display only the Name  and
Definition  properties:

PowerShell

Get-Member  showed us that Get-Process  returns Process type objects. The
ParameterType parameter of Get-Command  can be used to find other commands that
take Process objects as input.

PowerShell

Output

Knowing the output type of a command can help narrow down your search for related
commands.

Get-Command
Get-Member
Select-Object

Get-Process | Get-Member | Select-Object Name, Definition

Search by parameter type

Get-Command -ParameterType Process

CommandType     Name                         Version    Source
-----------     ----                         -------    ------
Cmdlet          Debug-Process                7.0.0.0    
Microsoft.PowerShell.Managem…
Cmdlet          Enter-PSHostProcess          7.1.0.0    
Microsoft.PowerShell.Core
Cmdlet          Get-Process                  7.0.0.0    
Microsoft.PowerShell.Managem…
Cmdlet          Get-PSHostProcessInfo        7.1.0.0    
Microsoft.PowerShell.Core
Cmdlet          Stop-Process                 7.0.0.0    
Microsoft.PowerShell.Managem…
Cmdlet          Wait-Process                 7.0.0.0    
Microsoft.PowerShell.Managem…

Additional resources

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-object?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdiscover-powershell%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdiscover-powershell.md&documentVersionIndependentId=e8b0ae77-9ffa-9af0-1a39-5ae10c4a3fe2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ba0fcf17-052b-c40d-df55-19910202071f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Install PowerShell on Windows, Linux,
and macOS
Learn about installing PowerShell on Windows, Linux, and macOS.

Windows

ｅ OVERVIEW

Install PowerShell on Windows

Supported Windows releases

macOS

ｅ OVERVIEW

Install on macOS

Supported macOS releases

Linux

ｅ OVERVIEW

Linux overview

Alpine

Debian

Red Hat Enterprise Linux

Ubuntu

Q&A

ｂ GET STARTED



Alternate install methods

Community supported Linux

Using PowerShell in Docker

Arm Processor support

Microsoft Update FAQ for PowerShell

PowerShell Support Lifecycle



Installing PowerShell on Windows
Article • 03/13/2025

There are multiple ways to install PowerShell in Windows. Each install method is
designed to support different scenarios and workflows. Choose the method that best
suits your needs.

WinGet - Recommended way to install PowerShell on Windows clients
MSI package - Best choice for Windows Servers and enterprise deployment
scenarios
ZIP package - Easiest way to "side load" or install multiple versions

Use this method for Windows Nano Server, Windows IoT, and Arm-based
systems

.NET Global tool - A good choice for .NET developers that install and use other
global tools
Microsoft Store package - An easy way to install for casual users of PowerShell but
has limitations

WinGet, the Windows Package Manager, is a command-line tool enables users to
discover, install, upgrade, remove, and configure applications on Windows client
computers. This tool is the client interface to the Windows Package Manager service.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?

tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Install PowerShell using WinGet
(recommended)

https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


The winget  command-line tool is bundled with Windows 11 and modern versions of
Windows 10 by default as the App Installer.

The following commands can be used to install PowerShell using the published winget
packages:

Search for the latest version of PowerShell

PowerShell

Output

Install PowerShell or PowerShell Preview using the id  parameter

PowerShell

PowerShell

７ Note

See the winget documentation for a list of system requirements and install
instructions. winget  isn't available on Windows Server 2022 or earlier versions.
Windows Server 2025 Preview Build 26085 and later includes winget  for Windows
Server with Desktop Experience only.

winget search Microsoft.PowerShell

Name               Id                           Version Source
---------------------------------------------------------------
PowerShell         Microsoft.PowerShell         7.5.0.0 winget
PowerShell Preview Microsoft.PowerShell.Preview 7.6.0.2 winget

winget install --id Microsoft.PowerShell --source winget

winget install --id Microsoft.PowerShell.Preview --source winget

７ Note

On Windows systems using X86 or X64 processor, winget  installs the MSI package.
On systems using the Arm64 processor, winget  installs the Microsoft Store (MSIX)
package. For more information, see Installing from the Microsoft Store.

https://learn.microsoft.com/en-us/windows/package-manager/winget


To install PowerShell on Windows, use the following links to download the install
package from GitHub.

PowerShell-7.5.0-win-x64.msi
PowerShell-7.5.0-win-x86.msi
PowerShell-7.5.0-win-arm64.msi

Once downloaded, double-click the installer file and follow the prompts.

The installer creates a shortcut in the Windows Start Menu.

By default the package is installed to $Env:ProgramFiles\PowerShell\<version>
You can launch PowerShell via the Start Menu or $Env:ProgramFiles\PowerShell\
<version>\pwsh.exe

PowerShell 7.2 and newer has support for Microsoft Update. When you enable this
feature, you'll get the latest PowerShell 7 updates in your traditional Microsoft Update
(MU) management flow, whether that's with Windows Update for Business, WSUS,
Microsoft Endpoint Configuration Manager, or the interactive MU dialog in Settings.

The PowerShell MSI package includes following command-line options:

USE_MU  - This property has two possible values:

Installing the MSI package

７ Note

PowerShell 7.4 installs to a new directory and runs side-by-side with Windows
PowerShell 5.1. PowerShell 7.4 is an in-place upgrade that removes previous
versions of PowerShell 7. Preview versions of PowerShell can be installed side-by-
side with other versions of PowerShell.

PowerShell 7.4 is installed to $Env:ProgramFiles\PowerShell\7

The $Env:ProgramFiles\PowerShell\7  folder is added to $Env:PATH

If you need to run PowerShell 7.4 side-by-side with other versions, use the ZIP
install method to install the other version to a different folder.

Support for Microsoft Update in PowerShell 7.2 and
newer

https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.msi
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.msi
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x86.msi
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x86.msi
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-arm64.msi
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-arm64.msi


1  (default) - Opts into updating through Microsoft Update, WSUS, or
Configuration Manager
0  - Don't opt into updating through Microsoft Update, WSUS, or Configuration
Manager

ENABLE_MU

1  (default) - Opts into using Microsoft Update for Automatic Updates
0  - Don't opt into using Microsoft Update

For more information, see the PowerShell Microsoft Update FAQ.

MSI packages can be installed from the command line allowing administrators to deploy
packages without user interaction. The MSI package includes the following properties to
control the installation options:

ADD_EXPLORER_CONTEXT_MENU_OPENPOWERSHELL  - This property controls the option for
adding the Open PowerShell  item to the context menu in Windows Explorer.

ADD_FILE_CONTEXT_MENU_RUNPOWERSHELL  - This property controls the option for
adding the Run with PowerShell  item to the context menu in Windows Explorer.
ENABLE_PSREMOTING  - This property controls the option for enabling PowerShell
remoting during installation.
REGISTER_MANIFEST  - This property controls the option for registering the Windows
Event Logging manifest.
ADD_PATH  - This property controls the option for adding PowerShell to the
Windows PATH environment variable.
DISABLE_TELEMETRY  - This property controls the option for disabling PowerShell's
telemetry by setting the POWERSHELL_TELEMETRY_OPTOUT  environment variable.

INSTALLFOLDER  - This property controls the installation directory. The default is
$Env:ProgramFiles\PowerShell\ . This is the location where the installer creates the
versioned subfolder. You can't change the name of the versioned subfolder.

For current releases, the versioned subfolder is 7
For preview releases, the versioned subfolder is 7-preview

７ Note

Enabling updates may have been set in a previous installation or manual
configuration. Using ENABLE_MU=0  doesn't remove the existing settings. Also, this
setting can be overruled by Group Policy settings controlled by your administrator.

Install the MSI package from the command line



The following example shows how to silently install PowerShell with all the install
options enabled.

PowerShell

For a full list of command-line options for Msiexec.exe , see Command line options.

PowerShell binary ZIP archives are provided to enable advanced deployment scenarios.
Download one of the following ZIP archives from the current release  page.

PowerShell-7.5.0-win-x64.zip
PowerShell-7.5.0-win-x86.zip
PowerShell-7.5.0-win-arm64.zip

Depending on how you download the file you may need to unblock the file using the
Unblock-File  cmdlet. Unzip the contents to the location of your choice and run
pwsh.exe  from there. Unlike installing the MSI packages, installing the ZIP archive
doesn't check for prerequisites. For remoting over WSMan to work properly, ensure that
you've met the prerequisites.

Use this method to install the ARM-based version of PowerShell on computers like the
Microsoft Surface Pro X. For best results, install PowerShell to the to
$Env:ProgramFiles\PowerShell\7  folder.

If you already have the .NET Core SDK installed, you can install PowerShell as a .NET
Global tool.

The dotnet tool installer adds $HOME\.dotnet\tools  to your $Env:PATH  environment
variable. However, the currently running shell doesn't have the updated $Env:PATH . You

msiexec.exe /package PowerShell-7.5.0-win-x64.msi /quiet 
ADD_EXPLORER_CONTEXT_MENU_OPENPOWERSHELL=1 
ADD_FILE_CONTEXT_MENU_RUNPOWERSHELL=1 ENABLE_PSREMOTING=1 
REGISTER_MANIFEST=1 USE_MU=1 ENABLE_MU=1 ADD_PATH=1

Installing the ZIP package

Install as a .NET Global tool

dotnet tool install --global PowerShell

https://learn.microsoft.com/en-us/windows/desktop/Msi/command-line-options
https://github.com/PowerShell/PowerShell/releases/latest
https://github.com/PowerShell/PowerShell/releases/latest
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x86.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x86.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-arm64.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-arm64.zip
https://learn.microsoft.com/en-us/dotnet/core/sdk
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools


can start PowerShell from a new shell by typing pwsh .

PowerShell can be installed from the Microsoft Store. You can find the PowerShell
release in the Microsoft Store  site or in the Store application in Windows.

Benefits of the Microsoft Store package:

Automatic updates built right into Windows
Integrates with other software distribution mechanisms like Intune and
Configuration Manager
Can install on Windows systems using x86, x64, or Arm64 processors

By default, Windows Store packages run in an application sandbox that virtualizes access
to some filesystem and registry locations. Changes to virtualized file and registry
locations don't persist outside of the application sandbox.

This sandbox blocks all changes to the application's root folder. Any system-level
configuration settings stored in $PSHOME  can't be modified. This includes the WSMAN
configuration. This prevents remote sessions from connecting to Store-based installs of
PowerShell. User-level configurations and SSH remoting are supported.

The following commands need write to $PSHOME . These commands aren't supported in a
Microsoft Store instance of PowerShell.

Register-PSSessionConfiguration

Update-Help -Scope AllUsers

Enable-ExperimentalFeature -Scope AllUsers

Set-ExecutionPolicy -Scope LocalMachine

For more information, see Understanding how packaged desktop apps run on Windows.

Beginning in PowerShell 7.2, the PowerShell package is now exempt from file and
registry virtualization. Changes to virtualized file and registry locations now persist
outside of the application sandbox. However, changes to the application's root folder
are still blocked.

Installing from the Microsoft Store

Known limitations

） Important

https://www.microsoft.com/store/apps/9MZ1SNWT0N5D
https://www.microsoft.com/store/apps/9MZ1SNWT0N5D
https://learn.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes


Preview releases of PowerShell 7 install to $Env:ProgramFiles\PowerShell\7-preview  so
they can be run side-by-side with non-preview releases of PowerShell. PowerShell 7.4 is
the next preview release.

For best results when upgrading, you should use the same install method you used
when you first installed PowerShell. If you aren't sure how PowerShell was installed, you
can check the value of the $PSHOME  variable, which always points to the directory
containing PowerShell that the current session is running.

If the value is $HOME\.dotnet\tools , PowerShell was installed with the .NET Global
tool.
If the value is $Env:ProgramFiles\PowerShell\7 , PowerShell was installed as an MSI
package or with WinGet on a computer with an X86 or x64 processor.
If the value starts with $Env:ProgramFiles\WindowsApps\ , PowerShell was installed
as a Microsoft Store package or with WinGet on computer with an ARM processor.
If the value is anything else, it's likely that PowerShell was installed as a ZIP
package.

If you installed via the MSI package, that information also appears in the Programs and
Features Control Panel.

To determine whether PowerShell may be upgraded with WinGet, run the following
command:

PowerShell

If there is an available upgrade, the output indicates the latest available version. Use the
following command to upgrade PowerShell using WinGet:

PowerShell

You must be running on Windows build 1903 or higher for this exemption to work.

Installing a preview version

Upgrading an existing installation

winget list --id Microsoft.PowerShell --upgrade-available

winget upgrade --id Microsoft.PowerShell



Windows 10 IoT Enterprise comes with Windows PowerShell, which we can use to
deploy PowerShell 7.

PowerShell

When you set up PowerShell Remoting you get an error message and are disconnected
from the device. PowerShell has to restart WinRM. Now you can connect to PowerShell 7
endpoint on device.

PowerShell

Deploying on Windows 10 IoT Enterprise

# Replace the placeholder information for the following variables:
$deviceip = '<device ip address'
$zipfile = 'PowerShell-7.5.0-win-arm64.zip'
$downloadfolder = 'U:\Users\Administrator\Downloads'  # The download 
location is local to the device.
    # There should be enough  space for the zip file and the unzipped 
contents.

# Create PowerShell session to target device
Set-Item -Path WSMan:\localhost\Client\TrustedHosts $deviceip
$S = New-PSSession -ComputerName $deviceIp -Credential Administrator
# Copy the ZIP package to the device
Copy-Item $zipfile -Destination $downloadfolder -ToSession $S

#Connect to the device and expand the archive
Enter-PSSession $S
Set-Location U:\Users\Administrator\Downloads
Expand-Archive .\PowerShell-7.5.0-win-arm64.zip

# Set up remoting to PowerShell 7
Set-Location .\PowerShell-7.5.0-win-arm64
# Be sure to use the -PowerShellHome parameter otherwise it tries to create 
a new
# endpoint with Windows PowerShell 5.1
.\Install-PowerShellRemoting.ps1 -PowerShellHome .

# Be sure to use the -Configuration parameter. If you omit it, you connect 
to Windows PowerShell 5.1
Enter-PSSession -ComputerName $deviceIp -Credential Administrator -
Configuration PowerShell.7.5.0

Deploying on Windows 10 IoT Core



Windows 10 IoT Core adds Windows PowerShell when you include IOT_POWERSHELL
feature, which we can use to deploy PowerShell 7. The steps defined above for Windows
10 IoT Enterprise can be followed for IoT Core as well.

For adding the latest PowerShell in the shipping image, use Import-PSCoreRelease
command to include the package in the workarea and add OPENSRC_POWERSHELL
feature to your image.

These instructions assume that the Nano Server is a "headless" OS that has a version of
PowerShell already running on it. For more information, see the Nano Server Image
Builder documentation.

PowerShell binaries can be deployed using two different methods.

1. Offline - Mount the Nano Server VHD and unzip the contents of the zip file to your
chosen location within the mounted image.

2. Online - Transfer the zip file over a PowerShell Session and unzip it in your chosen
location.

In both cases, you need the Windows x64 ZIP release package . Run the commands
within an "Administrator" instance of PowerShell.

1. Use your favorite zip utility to unzip the package to a directory within the mounted
Nano Server image.

2. Unmount the image and boot it.
3. Connect to the built-in instance of Windows PowerShell.

Deploy PowerShell to Nano Server using the following steps.

７ Note

For ARM64 architecture, Windows PowerShell isn't added when you include
IOT_POWERSHELL. So the zip based install doesn't work. You need to use Import-
PSCoreRelease  command to add it in the image.

Deploying on Nano Server

Offline Deployment of PowerShell

Online Deployment of PowerShell

https://github.com/ms-iot/iot-adk-addonkit/blob/master/Tools/IoTCoreImaging/Docs/Import-PSCoreRelease.md#Import-PSCoreRelease
https://github.com/ms-iot/iot-adk-addonkit/blob/master/Tools/IoTCoreImaging/Docs/Import-PSCoreRelease.md#Import-PSCoreRelease
https://learn.microsoft.com/en-us/windows-server/get-started/deploy-nano-server
https://learn.microsoft.com/en-us/windows-server/get-started/deploy-nano-server
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.zip
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/PowerShell-7.5.0-win-x64.zip


PowerShell

PowerShell supports the PowerShell Remoting Protocol (PSRP) over both WSMan and
SSH. For more information, see:

SSH Remoting in PowerShell
WSMan Remoting in PowerShell

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Windows reaches end-of-support.

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 for
Windows Server 2022, Windows Server Core 2022, and Windows Server Nano build
1809 are available from the Microsoft Artifact Registry .
PowerShell 7.4 and higher can be installed on Windows 10 build 1607 and higher,
Windows 11, Windows Server 2016 and higher.

# Replace the placeholder information for the following variables:
$ipaddr = '<Nano Server IP address>'
$credential = Get-Credential # <An Administrator account on the system>
$zipfile = 'PowerShell-7.5.0-win-x64.zip'
# Connect to the built-in instance of Windows PowerShell
$session = New-PSSession -ComputerName $ipaddr -Credential $credential
# Copy the file to the Nano Server instance
Copy-Item $zipfile C:\ -ToSession $session
# Enter the interactive remote session
Enter-PSSession $session
# Extract the ZIP file
Expand-Archive -Path C:\PowerShell-7.5.0-win-x64.zip -DestinationPath 
'C:\Program Files\PowerShell 7'

PowerShell remoting

Supported versions of Windows

７ Note

Support for a specific version of Windows is determined by the Microsoft Support
Lifecycle policies. For more information, see:

Windows client lifecycle FAQ

Modern Lifecycle Policy FAQ

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://learn.microsoft.com/en-us/lifecycle/products/?terms=Windows%20Server&products=windows
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags
https://learn.microsoft.com/en-us/lifecycle/faq/windows
https://learn.microsoft.com/en-us/lifecycle/policies/modern


You can check the version that you are using by running winver.exe .

Microsoft supports the installation methods in this document. There may be other third-
party methods of installation available from other sources. While those tools and
methods may work, Microsoft can't support those methods.

Installation support



Install PowerShell on Linux
Article • 09/05/2023

PowerShell can be installed on several different Linux distributions. Most Linux platforms
and distributions have a major release each year, and provide a package manager that's
used to install PowerShell. PowerShell can be installed on some distributions of Linux
that aren't supported by Microsoft. In those cases, you may find support from the
community for PowerShell on those platforms.

For more information, see the PowerShell Support Lifecycle documentation.

This article lists the supported Linux distributions and package managers. All PowerShell
releases remain supported until either the version of PowerShell or the version of the
Linux distribution reaches end-of-support.

For the best compatibility, choose a long-term release (LTS) version.

The following table lists the supported PowerShell releases and the versions of Alpine
they're supported on. These versions are supported until either the version of
PowerShell reaches end-of-support or the version of Alpine reaches end-of-life .

The  icon indicates that the version of the OS or PowerShell is still supported
The  icon indicates the version of PowerShell is no longer supported on that
version of the OS
The  icon indicates that we haven't finished testing PowerShell on that OS
The  icon indicates that the version of the OS or PowerShell isn't supported
When both the version of the OS and the version of PowerShell have a  icon,
that combination is supported

Alpine 7.2 (LTS-previous) 7.3 7.4 (LTS-current)

 3.18

 3.17

 3.16

 3.15

Alpine

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/powershell-support-lifecycle?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://alpinelinux.org/releases/


Alpine 7.2 (LTS-previous) 7.3 7.4 (LTS-current)

 3.14

PowerShell is supported on Alpine for the following processor architectures.

Alpine 7.2 (LTS-current) 7.3 7.4 (LTS-current)

All supported versions x64 x64 x64

PowerShell hasn't been tested on Alpine using Arm processors.

For more information, see Install PowerShell on Alpine.

Debian uses APT (Advanced Package Tool) as a package manager.

The following table is a list of currently supported PowerShell releases and the versions
of Debian they're supported on. These versions remain supported until either the
version of PowerShell reaches end-of-support or the version of Debian reaches end-of-
life .

The  icon indicates that the version of the OS or PowerShell is still supported
The  icon indicates the version of PowerShell is no longer supported on that
version of the OS
The  icon indicates that we haven't finished testing PowerShell on that OS
The  icon indicates that the version of the OS or PowerShell isn't supported
When both the version of the OS and the version of PowerShell have a  icon,
that combination is supported

Debian 7.2 (LTS-previous) 7.3 7.4 (LTS-current)

 12 (Bookworm)

 11 (Bullseye)

 10 (Buster)

PowerShell is supported on Debian for the following processor architectures.

ﾉ Expand table

Debian

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://wiki.debian.org/DebianReleases


Debian 7.2 (LTS-current) 7.3 7.4 (LTS-current)

Version 9+ x64 x64 x64

For more information, see Install PowerShell on Debian.

RHEL 7 uses yum and RHEL 8 uses the dnf package manager.

The following table is a list of currently supported versions of PowerShell and the
versions of RHEL they're supported on. These versions remain supported until either the
version of PowerShell reaches end-of-support or the version of RHEL reaches end-of-
support .

The  icon indicates that the version of the OS or PowerShell is still supported
The  icon indicates the version of PowerShell is no longer supported on that
version of the OS
The  icon indicates that we haven't finished testing PowerShell on that OS
The  icon indicates that the version of the OS or PowerShell isn't supported
When both the version of the OS and the version of PowerShell have a  icon,
that combination is supported

RHEL 7.2 (LTS-previous) 7.3 7.4 (LTS-current)

 9

 8

 7

PowerShell is tested on Red Hat Universal Base Images (UBI). For more information, see
the UBI information page .

PowerShell is supported on RHEL for the following processor architectures.

RHEL 7.2 (LTS-current) 7.3 7.4 (LTS-current)

All supported versions x64 x64 x64

ﾉ Expand table

Red Hat Enterprise Linux (RHEL)

ﾉ Expand table

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://access.redhat.com/support/policy/updates/errata/
https://developers.redhat.com/products/rhel/ubi


For more information, see Install PowerShell on RHEL.

Ubuntu uses APT (Advanced Package Tool) as a package manager.

The following table is a list of currently supported PowerShell releases and the versions
of Ubuntu they're supported on. These versions remain supported until either the
version of PowerShell reaches end-of-support or the version of Ubuntu reaches end-of-
support .

The  icon indicates that the version of the OS or PowerShell is still supported
The  icon indicates the version of PowerShell is no longer supported on that
version of the OS
The  icon indicates that we haven't finished testing PowerShell on that OS
The  icon indicates that the version of the OS or PowerShell isn't supported
When both the version of the OS and the version of PowerShell have a  icon,
that combination is supported

Ubuntu 7.2 (LTS-previous) 7.3 7.4 (LTS-current)

 22.04 LTS (Jammy)

 20.04 LTS (Focal)

 18.04 LTS (Bionic)

Only the LTS releases of Ubuntu are officially supported. Microsoft doesn't support
interim releases  or their equivalent. Interim releases are community supported. For
more information, see Community supported distributions.

PowerShell is supported on Ubuntu for the following processor architectures.

Ubuntu 7.2 (LTS-current) 7.3 7.4 (LTS-current)

All supported versions x64, Arm32 x64, Arm32 x64, Arm32

For more information, see Install PowerShell on Ubuntu.

Ubuntu

ﾉ Expand table

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://endoflife.date/ubuntu
https://ubuntu.com/about/release-cycle
https://learn.microsoft.com/en-us/powershell/scripting/install/community-support


PowerShell can be installed on many distributions of Linux that aren't supported by
Microsoft. In those cases, you may find support from the community for PowerShell on
those platforms

To be supported by Microsoft, the Linux distribution must meet the following criteria:

The version and architecture of the distribution is supported by .NET Core.
The version of the distribution is supported for at least one year.
The version of the distribution isn't an interim release or equivalent.
The PowerShell team has tested the version of the distribution.

For more information, see Community support for PowerShell on Linux.

There are three other ways to install PowerShell on Linux, including Linux distributions
that aren't officially supported. You can try to install PowerShell using the PowerShell
Snap Package. You can also try deploying PowerShell binaries directly using the Linux
tar.gz  package. For more information, see Alternate ways to install PowerShell on
Linux.

Community supported distributions

Alternate installation methods

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Finstall%2Finstalling-powershell-on-linux%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Finstall%2FInstalling-PowerShell-on-Linux.md&documentVersionIndependentId=a6f4b56d-aa6c-b557-c0d2-1ff6888c24bd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+37f30869-1dcc-9b77-ecf3-e0ce88bce104+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Installing PowerShell on Alpine Linux
Article • 01/27/2025

All packages are available on our GitHub releases  page. After the package is installed,
run pwsh  from a terminal. Run pwsh-preview  if you installed a preview release. Before
installing, check the list of Supported versions below.

Installation on Alpine is based on downloading tar.gz package from the releases  page.
The URL to the package depends on the version of PowerShell you want to install.

PowerShell 7.4 -
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-

7.4.7-linux-musl-x64.tar.gz

７ Note

PowerShell 7.4 is an in-place upgrade that removes previous versions of PowerShell
7. Preview versions of PowerShell can be installed side-by-side with other versions
of PowerShell. If you need to run PowerShell 7.4 side-by-side with a previous
version, reinstall the previous version using the binary archive method.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?

tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Installation steps

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


PowerShell 7.5 -
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-

7.5.0-linux-musl-x64.tar.gz

Then, in the terminal, execute the following shell commands to install PowerShell 7.4:

sh

# install the requirements
sudo apk add --no-cache \
    ca-certificates \
    less \
    ncurses-terminfo-base \
    krb5-libs \
    libgcc \
    libintl \
    libssl3 \
    libstdc++ \
    tzdata \
    userspace-rcu \
    zlib \
    icu-libs \
    curl

apk -X https://dl-cdn.alpinelinux.org/alpine/edge/main add --no-cache \
    lttng-ust \
    openssh-client \

# Download the powershell '.tar.gz' archive
curl -L 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
-7.5.0-linux-musl-x64.tar.gz -o /tmp/powershell.tar.gz

# Create the target folder where powershell will be placed
sudo mkdir -p /opt/microsoft/powershell/7

# Expand powershell to the target folder
sudo tar zxf /tmp/powershell.tar.gz -C /opt/microsoft/powershell/7

# Set execute permissions
sudo chmod +x /opt/microsoft/powershell/7/pwsh

# Create the symbolic link that points to pwsh
sudo ln -s /opt/microsoft/powershell/7/pwsh /usr/bin/pwsh

# Start PowerShell
pwsh

Uninstall PowerShell



sh

$PSHOME  is /opt/microsoft/powershell/7/
The profiles scripts are stored in the following locations:

AllUsersAllHosts - $PSHOME/profile.ps1
AllUsersCurrentHost - $PSHOME/Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts - ~/.config/powershell/profile.ps1
CurrentUserCurrentHost -
~/.config/powershell/Microsoft.PowerShell_profile.ps1

Modules are stored in the following locations:
User modules - ~/.local/share/powershell/Modules
Shared modules - /usr/local/share/powershell/Modules
Default modules - $PSHOME/Modules

PSReadLine history is recorded in
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

The profiles respect PowerShell's per-host configuration, so the default host-specific
profiles exists at Microsoft.PowerShell_profile.ps1  in the same locations.

PowerShell respects the XDG Base Directory Specification  on Linux.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Alpine reaches end-of-life .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of Alpine:

Alpine 3.20 - OS support ends on 2026-04-01

Docker images of PowerShell aren't available for Alpine 3.21.

sudo rm -rf /usr/bin/pwsh /opt/microsoft/powershell

PowerShell paths

Supported versions

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://alpinelinux.org/releases/
https://alpinelinux.org/releases/
https://mcr.microsoft.com/en-us/product/powershell/tags
https://mcr.microsoft.com/en-us/product/powershell/tags


Microsoft supports the installation methods in this document. There may be other
methods of installation available from other third-party sources. While those tools and
methods may work, Microsoft can't support those methods.

Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Installation support



Installing PowerShell on Debian
Article • 01/29/2025

All packages are available on our GitHub releases  page. Before installing, check the list
of Supported versions below. After the package is installed, run pwsh  from a terminal.
Run pwsh-lts  if you installed a preview release.

Debian uses APT (Advanced Package Tool) as a package manager.

Microsoft builds and supports a variety of software products for Linux systems and
makes them available via Linux packaging clients (apt, dnf, yum, etc). These Linux
software packages are hosted on the Linux package repository for Microsoft products,
https://packages.microsoft.com , also known as PMC.

７ Note

PowerShell 7.4 is an in-place upgrade that removes previous versions of PowerShell
7. Preview versions of PowerShell can be installed side-by-side with other versions
of PowerShell. If you need to run PowerShell 7.4 side-by-side with a previous
version, reinstall the previous version using the binary archive method.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?
tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Installation on Debian 11 or 12 via the Package
Repository

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://packages.microsoft.com/
https://packages.microsoft.com/
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


Installing PowerShell from PMC is the preferred method of installation.

sh

PowerShell 7.2 introduced a universal package that makes installation easier. Download
the universal package from the releases  page onto your Debian machine.

The link to the current version is:

PowerShell 7.4 (LTS) universal package for supported versions of Debian

７ Note

This script only works for supported versions of Debian.

###################################
# Prerequisites

# Update the list of packages
sudo apt-get update

# Install pre-requisite packages.
sudo apt-get install -y wget

# Get the version of Debian
source /etc/os-release

# Download the Microsoft repository GPG keys
wget -q https://packages.microsoft.com/config/debian/$VERSION_ID/packages-
microsoft-prod.deb

# Register the Microsoft repository GPG keys
sudo dpkg -i packages-microsoft-prod.deb

# Delete the Microsoft repository GPG keys file
rm packages-microsoft-prod.deb

# Update the list of packages after we added packages.microsoft.com
sudo apt-get update

###################################
# Install PowerShell
sudo apt-get install -y powershell

# Start PowerShell
pwsh

Installation via direct download

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable


https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershel

l_7.4.7-1.deb_amd64.deb

PowerShell 7.5 universal package for supported versions of Debian
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershel

l_7.5.0-1.deb_amd64.deb

The following shell script downloads and installs the current release of PowerShell. You
can change the URL to download the version of PowerShell that you want to install.

sh

sh

###################################
# Prerequisites

# Update the list of packages
sudo apt-get update

# Install pre-requisite packages.
sudo apt-get install -y wget

# Download the PowerShell package file
wget 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
_7.5.0-1.deb_amd64.deb

###################################
# Install the PowerShell package
sudo dpkg -i powershell_7.5.0-1.deb_amd64.deb

# Resolve missing dependencies and finish the install (if necessary)
sudo apt-get install -f

# Delete the downloaded package file
rm powershell_7.5.0-1.deb_amd64.deb

# Start PowerShell
pwsh

Uninstall PowerShell

sudo apt-get remove powershell

PowerShell paths



$PSHOME  is /opt/microsoft/powershell/7/
The profiles scripts are stored in the following locations:

AllUsersAllHosts - $PSHOME/profile.ps1
AllUsersCurrentHost - $PSHOME/Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts - ~/.config/powershell/profile.ps1
CurrentUserCurrentHost -
~/.config/powershell/Microsoft.PowerShell_profile.ps1

Modules are stored in the following locations:
User modules - ~/.local/share/powershell/Modules
Shared modules - /usr/local/share/powershell/Modules
Default modules - $PSHOME/Modules

PSReadLine history is recorded in
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

PowerShell respects the XDG Base Directory Specification  on Linux.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Debian reaches end-of-life .

Install package files ( .deb ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of Debian:

Debian 12 (Bookworm) - OS support ends on 2026-06-10

Microsoft supports the installation methods in this document. There may be other
methods of installation available from other third-party sources. While those tools and
methods may work, Microsoft can't support those methods.

Supported versions

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Installation support

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://wiki.debian.org/DebianReleases
https://wiki.debian.org/DebianReleases
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags




Installing PowerShell on Red Hat
Enterprise Linux (RHEL)
Article • 01/29/2025

All packages are available on our GitHub releases  page. Before installing, check the list
of Supported versions below. After the package is installed, run pwsh  from a terminal.
Run pwsh-preview  if you installed a preview release.

RHEL 7 uses yum  and RHEL 8 and higher uses the dnf  package manager.

Microsoft builds and supports a variety of software products for Linux systems and
makes them available via Linux packaging clients (apt, dnf, yum, etc). These Linux
software packages are hosted on the Linux package repository for Microsoft products,
https://packages.microsoft.com , also known as PMC.

７ Note

PowerShell 7.4 is an in-place upgrade that removes previous versions of PowerShell
7. Preview versions of PowerShell can be installed side-by-side with other versions
of PowerShell. If you need to run PowerShell 7.4 side-by-side with a previous
version, reinstall the previous version using the binary archive method.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?

tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Installation via the Package Repository

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://packages.microsoft.com/
https://packages.microsoft.com/
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


Installing PowerShell from PMC is the preferred method of installation.

sh

PowerShell 7.2 introduced a universal package that makes installation easier. Download
the universal package from the releases  page onto your RHEL machine.

The link to the current version is:

PowerShell 7.4.7 universal package for supported versions of RHEL
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershel

l-7.4.7-1.rh.x86_64.rpm

PowerShell 7.5.0 universal package for supported versions of RHEL

７ Note

This script only works for supported versions of RHEL.

###################################
# Prerequisites

# Get version of RHEL
source /etc/os-release
if [ ${VERSION_ID%.*} -lt 8 ]
then majorver=7
elif [ ${VERSION_ID%.*} -lt 9 ]
then majorver=8
else majorver=9
fi

# Download the Microsoft RedHat repository package
curl -sSL -O https://packages.microsoft.com/config/rhel/$majorver/packages-
microsoft-prod.rpm

# Register the Microsoft RedHat repository
sudo rpm -i packages-microsoft-prod.rpm

# Delete the downloaded package after installing
rm packages-microsoft-prod.rpm

# Update package index files
sudo dnf update
# Install PowerShell
sudo dnf install powershell -y

Installation via direct download

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable


https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershel

l-7.5.0-1.rh.x86_64.rpm

The following shell script downloads and installs the current preview release of
PowerShell. You can change the URL to download the version of PowerShell that you
want to install.

On RHEL 8 or 9:

sh

On RHEL 8 or 9:

sh

PowerShell 7.2 and newer supports running on RHEL using a 64-bit Arm processor. Use
the binary archive installation method of installing PowerShell that's described in
Alternate ways to install PowerShell on Linux.

$PSHOME  is /opt/microsoft/powershell/7/
The profiles scripts are stored in the following locations:

AllUsersAllHosts - $PSHOME/profile.ps1
AllUsersCurrentHost - $PSHOME/Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts - ~/.config/powershell/profile.ps1
CurrentUserCurrentHost -
~/.config/powershell/Microsoft.PowerShell_profile.ps1

Modules are stored in the following locations:
User modules - ~/.local/share/powershell/Modules

sudo dnf install 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
-7.5.0-1.rh.x86_64.rpm

Uninstall PowerShell

sudo dnf remove powershell

Support for Arm processors

PowerShell paths



Shared modules - /usr/local/share/powershell/Modules
Default modules - $PSHOME/Modules

PSReadLine history is recorded in
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

PowerShell respects the XDG Base Directory Specification  on Linux.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
RHEL reaches end-of-support .

Install package files ( .rpm ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of RHEL:

RHEL 9 - OS support ends on 2032-05-31
RHEL 8 - OS support ends on 2029-05-31

PowerShell is tested on Red Hat Universal Base Images (UBI). For more information, see
the UBI information page .

Microsoft supports the installation methods in this document. There may be other
methods of installation available from other third-party sources. While those tools and
methods may work, Microsoft can't support those methods.

Supported versions

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Installation support

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://access.redhat.com/support/policy/updates/errata/
https://access.redhat.com/support/policy/updates/errata/
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags
https://developers.redhat.com/products/rhel/ubi
https://developers.redhat.com/products/rhel/ubi


Installing PowerShell on Ubuntu
Article • 01/29/2025

All packages are available on our GitHub releases  page. Before installing, check the list
of Supported versions below. After the package is installed, run pwsh  from a terminal.
Run pwsh-lts  if you installed a preview release.

Ubuntu uses APT (Advanced Package Tool) as a package manager.

Microsoft builds and supports a variety of software products for Linux systems and
makes them available via Linux packaging clients (apt, dnf, yum, etc). These Linux
software packages are hosted on the Linux package repository for Microsoft products,
https://packages.microsoft.com , also known as PMC.

７ Note

PowerShell 7.4 is an in-place upgrade that removes previous versions of PowerShell
7. Preview versions of PowerShell can be installed side-by-side with other versions
of PowerShell. If you need to run PowerShell 7.4 side-by-side with a previous
version, reinstall the previous version using the binary archive method.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?
tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Installation via Package Repository the Package
Repository

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://packages.microsoft.com/
https://packages.microsoft.com/
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


Installing PowerShell from PMC is the preferred method of installation.

sh

７ Note

This script only works for supported versions of Ubuntu.

###################################
# Prerequisites

# Update the list of packages
sudo apt-get update

# Install pre-requisite packages.
sudo apt-get install -y wget apt-transport-https software-properties-common

# Get the version of Ubuntu
source /etc/os-release

# Download the Microsoft repository keys
wget -q https://packages.microsoft.com/config/ubuntu/$VERSION_ID/packages-
microsoft-prod.deb

# Register the Microsoft repository keys
sudo dpkg -i packages-microsoft-prod.deb

# Delete the Microsoft repository keys file
rm packages-microsoft-prod.deb

# Update the list of packages after we added packages.microsoft.com
sudo apt-get update

###################################
# Install PowerShell
sudo apt-get install -y powershell

# Start PowerShell
pwsh

） Important

Ubuntu comes preconfigured with a package repository that includes .NET
packages, but not PowerShell. Using these instructions to install PowerShell
registers the Microsoft repository as a package source. You can install PowerShell
and some versions of .NET from this repository. However, the Ubuntu package
repository has different versions of the .NET packages. This can cause problems



PowerShell 7.2 introduced a universal package that makes installation easier. Download
the universal package from the releases  page onto your Ubuntu machine.

The link to the current version is:

PowerShell 7.4 (LTS) universal package for supported versions of Ubuntu
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershel

l_7.4.7-1.deb_amd64.deb

PowerShell 7.5 universal package for supported versions of Ubuntu
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershel

l-preview_7.5.0-1.deb_amd64.deb

The following shell script downloads and installs the current preview release of
PowerShell. You can change the URL to download the version of PowerShell that you
want to install.

sh

when installing .NET for other purposes. For more information about these
problems, see Troubleshoot .NET package mix ups on Linux.

You must choose the feed you want to use to install .NET. You can set the priority of
the package repositories to favor one over the other. For instructions on how to set
the priorities, see My Linux distribution provides .NET packages, and I want to use
them.

Installation via direct download

###################################
# Prerequisites

# Update the list of packages
sudo apt-get update

# Install pre-requisite packages.
sudo apt-get install -y wget

# Download the PowerShell package file
wget 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
_7.5.0-1.deb_amd64.deb

###################################
# Install the PowerShell package
sudo dpkg -i powershell_7.5.0-1.deb_amd64.deb

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://learn.microsoft.com/en-us/dotnet/core/install/linux-package-mixup?pivots=os-linux-ubuntu#whats-going-on
https://learn.microsoft.com/en-us/dotnet/core/install/linux-package-mixup?pivots=os-linux-ubuntu#my-linux-distribution-provides-net-packages-and-i-want-to-use-them
https://learn.microsoft.com/en-us/dotnet/core/install/linux-package-mixup?pivots=os-linux-ubuntu#my-linux-distribution-provides-net-packages-and-i-want-to-use-them


sh

PowerShell 7.2 and newer supports running on Ubuntu using 32-bit Arm processors. Use
the binary archive installation method of installing PowerShell that's described in
Alternate ways to install PowerShell on Linux.

$PSHOME  is /opt/microsoft/powershell/7/
The profiles scripts are stored in the following locations:

AllUsersAllHosts - $PSHOME/profile.ps1
AllUsersCurrentHost - $PSHOME/Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts - ~/.config/powershell/profile.ps1
CurrentUserCurrentHost -
~/.config/powershell/Microsoft.PowerShell_profile.ps1

Modules are stored in the following locations:
User modules - ~/.local/share/powershell/Modules
Shared modules - /usr/local/share/powershell/Modules
Default modules - $PSHOME/Modules

PSReadLine history is recorded in
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

PowerShell respects the XDG Base Directory Specification  on Linux.

# Resolve missing dependencies and finish the install (if necessary)
sudo apt-get install -f

# Delete the downloaded package file
rm powershell_7.5.0-1.deb_amd64.deb

# Start PowerShell Preview
pwsh

Uninstall PowerShell

sudo apt-get remove powershell

Support for Arm processors

PowerShell paths

https://learn.microsoft.com/en-us/powershell/scripting/install/install-other-linux
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html


Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Ubuntu reaches end-of-support .

Install package files ( .deb ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 and
Arm32 are available from the Microsoft Artifact Registry  for the following versions of
Ubuntu:

Ubuntu 24.04 (Noble Numbat) - OS support ends on 2029-04-01
Ubuntu 22.04 (Jammy Jellyfish) - OS support ends on 2027-04-01
Ubuntu 20.04 (Focal Fossa) - OS support ends on 2025-04-02

Ubuntu 24.10 (Oracular Oriole) is an interim release. Microsoft doesn't support interim
releases  of Ubuntu. For more information, see Community supported distributions.

Microsoft supports the installation methods in this document. There may be other
methods of installation available from other third-party sources. While those tools and
methods may work, Microsoft can't support those methods.

Supported versions

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Installation support

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://endoflife.date/ubuntu
https://endoflife.date/ubuntu
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags
https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://learn.microsoft.com/en-us/powershell/scripting/install/community-support


Community support for PowerShell on
Linux
Article • 01/27/2025

You can install PowerShell on some distributions of Linux that aren't supported by
Microsoft. In those cases, you might find support from the community for PowerShell on
those platforms.

Supported Linux distributions must meet the following criteria:

The version and architecture of the distribution is supported by .NET Core.
The version of the distribution is supported for at least one year.
The version of the distribution isn't an interim release or equivalent.
The PowerShell team has tested the version of the distribution.

For more information, see the PowerShell Support Lifecycle documentation.

The following distributions are examples of distributions supported by the community.
Each distribution has its own community support mechanisms. Consult the distribution's
website to find their community resources. You can also get help from these PowerShell
Community resources.

The documented steps to install PowerShell on Ubuntu might work on Ubuntu interim
releases. However, Microsoft only supports PowerShell on the Long Term Servicing (LTS)
releases of Ubuntu. Microsoft doesn't support interim releases  of Ubuntu.

PowerShell is available from the Arch Linux  User Repository (AUR). Packages in the
AUR are maintained by the Arch community. To install the latest release binary , see
the Arch Linux wiki  or Using PowerShell in Docker.

sh

Ubuntu interim releases

Arch Linux

Kali

Installation - Kali

https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://www.archlinux.org/download/
https://www.archlinux.org/download/
https://aur.archlinux.org/packages/powershell-bin/
https://aur.archlinux.org/packages/powershell-bin/
https://wiki.archlinux.org/title/Arch_User_Repository#Installing_and_upgrading_packages
https://wiki.archlinux.org/title/Arch_User_Repository#Installing_and_upgrading_packages


sh

You can install PowerShell on Gentoo Linux using packages from the Gentoo package
repository. For information about installing these packages, see the PowerShell  page
in the Gentoo wiki.

You may be able to install PowerShell on SLES and openSUSE using the SNAP package
manager. Also, the following article provides information on how to install PowerShell
on openSUSE:

PowerShell - openSUSE Wiki

Raspberry Pi OS  (formerly Raspbian) is a free operating system based on Debian.

# Install PowerShell package
apt update && apt -y install powershell

# Start PowerShell
pwsh

Uninstallation - Kali

# Uninstall PowerShell package
apt -y remove powershell

Gentoo

SLES and openSUSE

Raspberry Pi OS

） Important

.NET isn't supported on ARMv6 architecture devices, including Raspberry Pi Zero
and Raspberry Pi devices released before Raspberry Pi 2.

Install on Raspberry Pi OS

https://wiki.gentoo.org/wiki/PowerShell
https://wiki.gentoo.org/wiki/PowerShell
https://en.opensuse.org/PowerShell
https://en.opensuse.org/PowerShell
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md


Download the tar.gz package from the releases page onto your Raspberry Pi computer.
The links to the current versions are:

PowerShell 7.4 - latest LTS release
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershel

l-7.4.7-linux-arm32.tar.gz

https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershel

l-7.4.7-linux-arm64.tar.gz

PowerShell 7.5 - latest stable release
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershel

l-7.5.0-linux-arm32.tar.gz

https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershel

l-7.5.0-linux-arm64.tar.gz

Use the following shell commands to download and install the package. This script
detects whether you're running a 32-bit or 64-bit OS and installs the latest stable
version of PowerShell for that processor type.

sh

###################################
# Prerequisites

# Update package lists
sudo apt-get update

# Install dependencies
sudo apt-get install jq libssl1.1 libunwind8 -y

###################################
# Download and extract PowerShell

# Grab the latest tar.gz
bits=$(getconf LONG_BIT)
release=$(curl -sL 
https://api.github.com/repos/PowerShell/PowerShell/releases/latest)
package=$(echo $release | jq -r ".assets[].browser_download_url" | grep 
"linux-arm${bits}.tar.gz")
wget $package

# Make folder to put powershell
mkdir ~/powershell

# Unpack the tar.gz file
tar -xvf "./${package##*/}" -C ~/powershell

# Start PowerShell
~/powershell/pwsh



Optionally, you can create a symbolic link to start PowerShell without specifying the
path to the pwsh  binary.

sh

sh

# Start PowerShell from bash with sudo to create a symbolic link
sudo ~/powershell/pwsh -Command 'New-Item -ItemType SymbolicLink -Path 
"/usr/bin/pwsh" -Target "$PSHOME/pwsh" -Force'

# alternatively you can run following to create a symbolic link
# sudo ln -s ~/powershell/pwsh /usr/bin/pwsh

# Now to start PowerShell you can just run "pwsh"

Uninstallation - Raspberry Pi OS

rm -rf ~/powershell



Alternate ways to install PowerShell on
Linux
Article • 01/27/2025

All packages are available on our GitHub releases  page. After the package is installed,
run pwsh  from a terminal. Run pwsh-preview  if you installed a preview release.

There are three other ways to install PowerShell on a Linux distribution:

Install using a Snap Package
Install using the binary archives
Install as a .NET Global tool

Snaps are application packages that are easy to install, secure, cross-platform and
dependency-free. Snaps are discoverable and installable from the Snap Store. Snap
packages are supported the same as the distribution you're running the package on.

snapd  is required to run snaps. Use these instructions  to make sure you have snapd
installed.

There are two PowerShell for Linux is published to the Snap store : powershell  and
powershell-preview .

Use the following command to install the latest stable version of PowerShell:

sh

Snap Package

） Important

The Snap Store contains PowerShell snap packages for many Linux distributions
that are not officially supported by Microsoft. For support, see the list of available
Community Support options.

Getting snapd

Installation via Snap

https://aka.ms/PowerShell-Release?tag=stable
https://aka.ms/PowerShell-Release?tag=stable
https://docs.snapcraft.io/core/install
https://docs.snapcraft.io/core/install
https://snapcraft.io/store
https://snapcraft.io/store
https://learn.microsoft.com/en-us/powershell/scripting/community/community-support


If you don't specify the --channel  parameter, Snap installs the latest stable version. To
install the latest LTS version, use the following method:

sh

To install a preview version, use the following method:

sh

After installation, Snap will automatically upgrade. You can trigger an upgrade using
sudo snap refresh powershell  or sudo snap refresh powershell-preview .

# Install PowerShell
sudo snap install powershell --classic

# Start PowerShell
pwsh

# Install PowerShell
sudo snap install powershell --channel=lts/stable --classic

# Start PowerShell
pwsh

７ Note

Microsoft only supports the latest/stable  and lts/stable  channels for the
powershell  package. Do not install packages from the other channels.

# Install PowerShell
sudo snap install powershell-preview --classic

# Start PowerShell
pwsh-preview

７ Note

Microsoft only supports the latest/stable  channel for the powershell-preview
package. Do not install packages from the other channels.

Uninstallation



sh

or

sh

PowerShell binary tar.gz  archives are provided for Linux platforms to enable advanced
deployment scenarios.

PowerShell builds portable binaries for all Linux distributions. But, .NET Core runtime
requires different dependencies on different distributions, and PowerShell does too.

It's possible that when you install PowerShell, specific dependencies may not be
installed, such as when manually installing from the binary archives. The following list
details Linux distributions that are supported by Microsoft and have dependencies you
may need to install. Check the distribution page for more information:

Alpine
Debian
RHEL
SLES
Ubuntu

To deploy PowerShell binaries on Linux distributions that aren't officially supported, you
need to install the necessary dependencies for the target OS in separate steps. For

sudo snap remove powershell

sudo snap remove powershell-preview

Binary Archives

７ Note

You can use this method to install any version of PowerShell including the latest:

Stable release: https://aka.ms/powershell-release?tag=stable

LTS release: https://aka.ms/powershell-release?tag=lts

Preview release: https://aka.ms/powershell-release?tag=preview

Dependencies

https://learn.microsoft.com/en-us/dotnet/core/install/linux-alpine#dependencies
https://learn.microsoft.com/en-us/dotnet/core/install/linux-debian#dependencies
https://learn.microsoft.com/en-us/dotnet/core/install/linux-rhel#dependencies
https://learn.microsoft.com/en-us/dotnet/core/install/linux-sles#dependencies
https://learn.microsoft.com/en-us/dotnet/core/install/linux-ubuntu#dependencies
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


example, our Amazon Linux dockerfile  installs dependencies first, and then extracts
the Linux tar.gz  archive.

The following example shows the steps for installing the x64 binary archive. You must
choose the correct binary archive that matches the processor type for your platform.

powershell-7.5.0-linux-arm32.tar.gz

powershell-7.5.0-linux-arm64.tar.gz

powershell-7.5.0-linux-x64.tar.gz

Use the following shell commands to download and install PowerShell from the tar.gz
binary archive. Change the URL to match the version of PowerShell you want to install.

sh

sh

Installation using a binary archive file

） Important

This method can be used to install PowerShell on any version of Linux, including
distributions that are not officially supported by Microsoft. Be sure to install any
necessary dependencies. For support, see the list of available Community Support
options.

# Download the powershell '.tar.gz' archive
curl -L -o /tmp/powershell.tar.gz 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
-7.5.0-linux-x64.tar.gz

# Create the target folder where powershell will be placed
sudo mkdir -p /opt/microsoft/powershell/7

# Expand powershell to the target folder
sudo tar zxf /tmp/powershell.tar.gz -C /opt/microsoft/powershell/7

# Set execute permissions
sudo chmod +x /opt/microsoft/powershell/7/pwsh

# Create the symbolic link that points to pwsh
sudo ln -s /opt/microsoft/powershell/7/pwsh /usr/bin/pwsh

Uninstalling binary archives

https://github.com/PowerShell/PowerShell-Docker/blob/master/release/unstable/amazonlinux/docker/Dockerfile
https://github.com/PowerShell/PowerShell-Docker/blob/master/release/unstable/amazonlinux/docker/Dockerfile
https://learn.microsoft.com/en-us/powershell/scripting/community/community-support


If you already have the .NET Core SDK installed, it's easy to install PowerShell as a .NET
Global tool.

sh

The dotnet tool installer adds ~/.dotnet/tools  to your PATH  environment variable.
However, the currently running shell does not have the updated PATH . You should be
able to start PowerShell from a new shell by typing pwsh .

sudo rm -rf /usr/bin/pwsh /opt/microsoft/powershell

Install as a .NET Global tool

dotnet tool install --global PowerShell

https://learn.microsoft.com/en-us/dotnet/core/sdk
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools


Installing PowerShell on macOS
Article • 01/29/2025

PowerShell 7 or higher requires macOS 11 and higher. All packages are available on our
GitHub releases  page. After the package is installed, run pwsh  from a terminal. Before
installing, check the list of Supported versions below.

There are several ways to install PowerShell on macOS. Choose one of the following
methods:

Install using Homebrew . Homebrew is the preferred package manager for
macOS.
Install PowerShell via Direct Download
Install from binary archives.

７ Note

PowerShell 7.4 is an in-place upgrade that removes previous versions of PowerShell
7. Preview versions of PowerShell can be installed side-by-side with other versions
of PowerShell. If you need to run PowerShell 7.4 side-by-side with a previous
version, reinstall the previous version using the binary archive method.

７ Note

The installation commands in this article are for the latest stable release of
PowerShell. To install a different version of PowerShell, adjust the command to
match the version you need. The following links direct you to the release page for
each version in the PowerShell repository on GitHub.

v7.5.0 - Stable release: https://aka.ms/powershell-release?tag=stable

v7.4.7 - LTS release: https://aka.ms/powershell-release?tag=lts

v7.6.0-preview.2 - Preview release: https://aka.ms/powershell-release?

tag=preview

Download links for every package are found in the Assets section of the Release
page. The Assets section may be collapsed, so you may need to click to expand it.

Install the latest stable release of PowerShell

https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://brew.sh/
https://brew.sh/
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


If the brew  command isn't found, you need to install Homebrew following their
instructions .

Bash

Once brew  is installed you can install PowerShell.

The following command installs the latest stable release of PowerShell:

sh

Finally, verify that your install is working properly:

sh

When new versions of PowerShell are released, update Homebrew's formulae and
upgrade PowerShell:

sh

After you've installed Homebrew, you can install PowerShell.

sh

/bin/bash -c "$(curl -fsSL 
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew install powershell/tap/powershell

pwsh

brew update
brew upgrade powershell

７ Note

The commands above can be called from within a PowerShell (pwsh) host, but then
the PowerShell shell must be exited and restarted to complete the upgrade and
refresh the values shown in $PSVersionTable .

Install the latest preview release of PowerShell

https://brew.sh/
https://brew.sh/
https://brew.sh/


Run the following command to start the preview version of PowerShell:

sh

When new versions of PowerShell are released, update Homebrew's formulae and
upgrade PowerShell:

sh

sh

You can now verify your install

sh

When new versions of PowerShell are released, run the following command.

sh

brew install powershell/tap/powershell-preview

pwsh-preview

brew update
brew upgrade powershell-preview

７ Note

The commands above can be called from within a PowerShell (pwsh) host, but then
the PowerShell shell must be exited and restarted to complete the upgrade. and
refresh the values shown in $PSVersionTable .

Install the latest LTS release of PowerShell

brew install powershell/tap/powershell-lts

pwsh-lts

brew upgrade powershell-lts



Starting with version 7.2, PowerShell supports the Apple M-series Arm-based processors.
Download the install package from the releases  page onto your computer. The links
to the current versions are:

PowerShell 7.4
x64 processors - powershell-7.4.7-osx-x64.pkg
Arm64 processors - powershell-7.4.7-osx-arm64.pkg

PowerShell 7.5
x64 processors - powershell-7.5.0-osx-x64.pkg
Arm64 processors - powershell-7.5.0-arm64.pkg

You can double-click the file and follow the prompts, or install it from the terminal using
the following commands. Change the name of the file to match the file you
downloaded.

sh

If you are running on macOS Big Sur 11.5 or higher you may receive the following error
message when installing the package:

"powershell-7.5.0-osx-x64.pkg" cannot be opened because Apple cannot check it
for malicious software.

There are two ways to work around this issue:

Using the Finder

７ Note

Whether you use the cask or the tap method, when updating to a newer version of
PowerShell, use the same method you used to initially install PowerShell. If you use
a different method, opening a new pwsh session will continue to use the older
version of PowerShell.

If you do decide to use different methods, there are ways to correct the issue using
the Homebrew link method .

Installation via Direct Download

sudo installer -pkg ./Downloads/powershell-7.5.0-osx-x64.pkg -target /

https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-arm64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-arm64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-x64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-arm64.pkg
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-arm64.pkg
https://docs.brew.sh/Manpage#link-ln-options-formula
https://docs.brew.sh/Manpage#link-ln-options-formula


1. Find the package in Finder.
2. Control-click (click while pressing the Ctrl  key) on the package.
3. Select Open from the context menu.

From the command line

1. Run sudo xattr -rd com.apple.quarantine ./Downloads/powershell-7.5.0-osx-
x64.pkg . If you are using PowerShell 7 or higher, you can use the Unblock-File
cmdlet. Include the full path to the .pkg  file.

2. Install the package as you normally would.

If you already have the .NET Core SDK installed, it's easy to install PowerShell as a .NET
Global tool.

The dotnet tool installer adds ~/.dotnet/tools  to your PATH  environment variable.
However, the currently running shell doesn't have the updated PATH . You should be able
to start PowerShell from a new shell by typing pwsh .

PowerShell binary tar.gz  archives are provided for the macOS platform to enable
advanced deployment scenarios. When you install using this method you must also
manually install any dependencies.

７ Note

This is a known issue related to package notarization that will be addressed in the
future.

Install as a .NET Global tool

dotnet tool install --global PowerShell

Binary Archives

７ Note

You can use this method to install any version of PowerShell including the latest:

Stable release: https://aka.ms/powershell-release?tag=stable

https://learn.microsoft.com/en-us/dotnet/core/sdk
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools
https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable


Download the install package from the releases  page onto your computer. The links
to the current versions are:

PowerShell 7.4 (LTS)
x64 processors - powershell-7.4.7-osx-x64.tar.gz
Arm64 processors - powershell-7.4.7-osx-arm64.tar.gz

PowerShell 7.5-preview
x64 processors - powershell-7.5.0-osx-x64.tar.gz
Arm64 processors - powershell-7.5.0-osx-arm64.tar.gz

Use the following commands to install PowerShell from the binary archive. Change the
download URL to match the version you want to install.

sh

If you installed PowerShell with Homebrew, use the following command to uninstall:

sh

LTS release: https://aka.ms/powershell-release?tag=lts

Preview release: https://aka.ms/powershell-release?tag=preview

Installing binary archives on macOS

# Download the powershell '.tar.gz' archive
curl -L -o /tmp/powershell.tar.gz 
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell
-7.5.0-osx-x64.tar.gz

# Create the target folder where powershell is placed
sudo mkdir -p /usr/local/microsoft/powershell/7

# Expand powershell to the target folder
sudo tar zxf /tmp/powershell.tar.gz -C /usr/local/microsoft/powershell/7

# Set execute permissions
sudo chmod +x /usr/local/microsoft/powershell/7/pwsh

# Create the symbolic link that points to pwsh
sudo ln -s /usr/local/microsoft/powershell/7/pwsh /usr/local/bin/pwsh

Uninstalling PowerShell

brew uninstall --cask powershell

https://aka.ms/powershell-release?tag=stable
https://aka.ms/powershell-release?tag=stable
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-x64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-x64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-arm64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.4.7/powershell-7.4.7-osx-arm64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-x64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-x64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-arm64.tar.gz
https://github.com/PowerShell/PowerShell/releases/download/v7.5.0/powershell-7.5.0-osx-arm64.tar.gz
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=lts
https://aka.ms/powershell-release?tag=preview
https://aka.ms/powershell-release?tag=preview


If you installed PowerShell via direct download, PowerShell must be removed manually:

sh

To remove the additional PowerShell paths, refer to the paths section in this document
and remove the paths using sudo rm .

$PSHOME  is /usr/local/microsoft/powershell/7
The macOS install package creates a symbolic link, /usr/local/bin/pwsh  that
points to pwsh  in the $PSHOME  location.

User profiles are read from ~/.config/powershell/profile.ps1
Default profiles are read from $PSHOME/profile.ps1
User modules are read from ~/.local/share/powershell/Modules
Shared modules are read from /usr/local/share/powershell/Modules
Default modules are read from $PSHOME/Modules
PSReadLine history are recorded to
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

PowerShell respects the XDG Base Directory Specification  on macOS.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
macOS reaches end-of-support.

macOS 15 (Sequoia) x64 and Arm64
macOS 14 (Sonoma) x64 and Arm64
macOS 13 (Ventura) x64 and Arm64

Apple determines the support lifecycle of macOS. For more information, see the
following:

sudo rm -rf /usr/local/bin/pwsh /usr/local/microsoft/powershell

７ Note

This isn't necessary if you installed with Homebrew.

Paths

Supported versions

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle


macOS release notes
Apple Security Updates

Microsoft supports the installation methods in this document. There may be other
methods of installation available from other sources. While those tools and methods
may work, Microsoft can't support those methods.

Homebrew Web
Homebrew GitHub Repository
Homebrew-Cask

Installation support

Additional Resources

https://developer.apple.com/documentation/macos-release-notes
https://developer.apple.com/documentation/macos-release-notes
https://support.apple.com/HT201222
https://support.apple.com/HT201222
https://brew.sh/
https://brew.sh/
https://github.com/Homebrew
https://github.com/Homebrew
https://github.com/Homebrew/homebrew-cask
https://github.com/Homebrew/homebrew-cask


PowerShell on Arm processors
Article • 12/12/2024

Support for the Arm processor is based on the support policy of the version of .NET that
PowerShell uses. While .NET supports many more operating systems and versions,
PowerShell support is limited to the versions that have been tested.

It may be possible to use Arm-based versions of PowerShell on other Linux distributions
and versions, but we don't officially support it.

Arm versions of PowerShell 7.4 can be installed on the following platforms:

OS Architectures Lifecycle

Windows 11 Client Version 22000+ Arm64 Windows

Windows 10 Client Version 1607+ Arm64 Windows

macOS Arm64 macOS

Raspberry Pi OS (Debian 12) Arm32 Raspberry Pi OS  and Debian

Ubuntu 22.04, 20.04 Arm32 Ubuntu

Support is based on the .NET 8.0 Supported OS Lifecycle Policy .

For installation instructions, see the following articles:

Windows

Windows 10 on Arm
Windows 10 IoT Enterprise
Windows 10 IoT Core

Linux - install from the binary archives

Alternate ways to install PowerShell on Linux

PowerShell 7.4

ﾉ Expand table

Installing PowerShell on Arm-based systems

https://support.microsoft.com/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/help/13853/windows-lifecycle-fact-sheet
https://support.apple.com/macos
https://support.apple.com/macos
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://wiki.debian.org/DebianReleases
https://wiki.debian.org/DebianReleases
https://wiki.ubuntu.com/Releases
https://wiki.ubuntu.com/Releases
https://github.com/dotnet/core/blob/main/release-notes/8.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/8.0/supported-os.md


macOS

Installing PowerShell on macOS

Raspberry Pi

Raspberry Pi OS



Use PowerShell in Docker
Article • 03/26/2025

The .NET team publishes Docker images with PowerShell preinstalled. This article shows
you how to get started using PowerShell in the Docker container.

These images require Docker 17.05 or newer. Also, you must be able to run Docker
without sudo  or local administrative rights. For install instructions, see Docker's official
documentation .

The .NET team publishes several Docker images designed for different development
scenarios. Only the image for the .NET SDK contains PowerShell. For more information,
see Official .NET Docker images.

The following command downloads the image containing the latest available stable
versions of the .NET SDK and PowerShell.

Console

Use the following command to start an interactive PowerShell session in the container.

Console

To download and run the latest Long Term Support (LTS) version of PowerShell, change
the image name to mcr.microsoft.com/dotnet/sdk:8.0 . When you use these image tags,
Docker downloads the appropriate image for your host operating system. If you want an
image for a specific operating system, you can specify the operating system in the
image tag. See the Microsoft Artifact Registry  for a list of available tags.

For more information about tags, the Supported tag policy
For more information about supported operating systems, see the Supported
platforms policy

Find available images

Use PowerShell in a container

docker pull mcr.microsoft.com/dotnet/sdk:9.0

docker run -it mcr.microsoft.com/dotnet/sdk:9.0 pwsh

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/net-core-net-framework-containers/official-net-docker-images
https://mcr.microsoft.com/en-us/artifact/mar/dotnet/sdk/about
https://mcr.microsoft.com/en-us/artifact/mar/dotnet/sdk/about
https://github.com/dotnet/dotnet-docker/blob/main/documentation/supported-tags.md
https://github.com/dotnet/dotnet-docker/blob/main/documentation/supported-tags.md
https://github.com/dotnet/dotnet-docker/blob/main/documentation/supported-platforms.md
https://github.com/dotnet/dotnet-docker/blob/main/documentation/supported-platforms.md
https://github.com/dotnet/dotnet-docker/blob/main/documentation/supported-platforms.md


The .NET support policy  defines how these images are supported. These images are
provided for development and testing purposes only. If you need a production-ready
image, you should build your own images. For more information about these Docker
images, visit the dotnet-docker  repository on GitHub.

The images previously published by the PowerShell team will be marked as deprecated
in the Microsoft Container Registry (MCR).

By default, PowerShell collects limited telemetry without personal data to help aid
development of future versions of PowerShell. To opt-out of sending telemetry, create
an environment variable called POWERSHELL_TELEMETRY_OPTOUT  set to a value of 1  before
starting PowerShell from the installed location. The telemetry we collect falls under the
Microsoft Privacy Statement .

Support lifecycle

Telemetry

https://github.com/dotnet/core/blob/main/support.md
https://github.com/dotnet/core/blob/main/support.md
https://github.com/dotnet/dotnet-docker
https://github.com/dotnet/dotnet-docker
https://privacy.microsoft.com/privacystatement/
https://privacy.microsoft.com/privacystatement/


Microsoft Update for PowerShell FAQ
FAQ

Beginning with PowerShell 7.2, when you install using the MSI package you have the
option of enabling Microsoft Update support for PowerShell.

The Microsoft Update feature of PowerShell allows you to get the latest PowerShell 7
updates in your traditional Microsoft Update (MU) management flow, whether that's
with Windows Update for Business, WSUS, Microsoft Endpoint Configuration Manager,
or the interactive MU dialog in Settings. Microsoft Update and the related services
enable you to deploy updates:

On your schedule
After testing for your environment
At scale across your enterprise

When a new version of PowerShell is released, it can take up to two weeks for that
version to become available through Microsoft Update. Updates are delivered as
optional software updates, even if the update contains a security fix.

If you need to deploy the update before it becomes available in Microsoft Update,
download the update from the Releases  page on GitHub.

We mark the earliest minor version LTS until it goes out of support. For example, both
PowerShell 7.2 and 7.4 are LTS releases and have a year of overlapping support.
PowerShell 7.2 was marked as the latest LTS in MU until it reached end of support in
November 2024.

General Information

What is the Microsoft Update feature in
PowerShell?

How soon after release are updates advertised
by Microsoft Update?

Why is the latest LTS version not marked as LTS?

https://github.com/PowerShell/PowerShell/releases
https://github.com/PowerShell/PowerShell/releases


You must have Windows Version 1709 or newer installed on an x64-based system.
Version 1709 is the Windows 10 Fall Creators Update or the October update of Windows
Server 2016. Versions prior to 1709 do not support Microsoft Update for PowerShell.

While the two options on the dialog are independent, in most cases, it's best to check
both boxes.

The first checkbox enables updates for PowerShell. These updates can be delivered by
Microsoft Update, a WSUS server, or SCCM. If this checkbox is unchecked, you cannot

Configuration

What version of Windows is required to support
the Microsoft Update feature?

Do I need to check both boxes in the setup
dialog?

What does each checkbox do?



receive updates through any of these channels.

The second checkbox enables Microsoft Update on your system. This allows you to
receive updates for any supported Microsoft software, not just Windows. If the box is
unchecked, you will not receive the update from Microsoft Update, but you can receive
updates from WSUS or SCCM.

If you want to opt-out of updates later, you can run the MSI install package and uncheck
the first checkbox. Unchecking the second checkbox has no effect.

Yes. The MSI package includes two new MSI options for enabling the update features:

USE_MU  - This property has two possible values:
1  (default) - Opts into updating through Microsoft Update, WSUS, or SCCM
0  - Do not opt into updating through Microsoft Update, WSUS, or SCCM

ENABLE_MU

1  (default) - Opts into using Microsoft Update for Automatic Updates

0  - Do not opt into using Microsoft Update

There can be several reasons for not receiving the update:

We may not have published the update yet. Our goal is to make the update
available to Microsoft Update within two weeks of release, but there is no
guarantee for that availability.

What if I want to opt-out later?

Can I enable these update options from the
command line or in a script?

７ Note

Setting ENABLE_MU=0  does not disable Microsoft Update.

Troubleshooting

Why haven't I received an update for the new
release?



There are group policy settings that control Microsoft Update. Your system
administrator may have policies set that prevent you from using Microsoft Update.
The checkbox in the installer cannot override the Group Policy.

Make sure you have checked both checkboxes. When doing a repair installation,
the installer doesn't show the check box options. To enable MU updates run the
following command:

PowerShell

For more information about running msiexec.exe  from the command line, see
msiexec.

The Microsoft Update feature for PowerShell only updates versions in the same release
channel. PowerShell 7.4 is the latest long term supported (LTS) version. PowerShell 7.5 is
the latest stable (non-LTS) version. Microsoft Update provides updates for the next
patch level versions of either version. For example:

If you are running 7.4, you will receive updates for 7.4.
If you are running 7.5, you will receive updates for 7.5.

Microsoft Update will never upgrade an LTS release to a stable non-LTS release.
However, a stable non-LTS release will be upgraded to the higher LTS release when
support for the stable release ends.

Preview releases are never upgraded to the GA release version. However, they will be
upgraded to the next available preview release. For example: Consider the scenario
where you have 7.4 (LTS) installed and the 7.5-rc.1 (preview) release installed. When 7.5.0
(Stable) released, your 7.4 (LTS) installation is not upgraded to 7.5.0. Also, 7.5.0 can't
upgrade 7.5-rc.1. However, 7.6-preview.2 can upgrade 7.5-rc.1.

For more information, see PowerShell Support Lifecycle.

msiexec.exe /fmu .\PowerShell-7.4.7-win-x64.msi USE_MU=1 ENABLE_MU=1

I am on PowerShell 7.x, why have I not been
upgraded to 7.y?

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/msiexec#repair-options
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle


Introduction
Article • 06/25/2024

This content originally appeared in the book PowerShell 101 by Mike F. Robbins. We
thank Mike for granting us permission to reuse the content here. We edited the
content for publication on this platform. You can still get the original book from
Leanpub at PowerShell 101 .

Before PowerShell, I began my career as an IT Pro, pointing and clicking in the GUI. I
wrote this book to save IT Pros from themselves by reducing the learning curve and
helping them avoid being reluctant to learn PowerShell.

Instead of a book that covers topics with fictitious scenarios, this book is a condensed
version targeting the specific topics that an IT Pro needs to know to succeed with
PowerShell in a real-world production environment. It's a collection of what I wish
someone had told me when I started learning PowerShell. I include tips, tricks, and best
practices that I learned while using PowerShell since 2007.

Each chapter includes a curated collection of links to specific help articles that expand
on the information covered. These resources expand on the concepts discussed and
broaden your understanding of PowerShell.

This book is for anyone wanting to learn PowerShell. Whether you're a beginner or an
experienced user, this book helps you improve your PowerShell skills.

This book focuses on Windows PowerShell version 5.1 running on Windows 11 and
Windows Server 2022 in a Microsoft Active Directory domain environment. However, the
basic concepts apply to all versions of PowerShell running on any supported platform.

The examples in this book were created and tested on Windows 11 and Windows Server
2022 operating systems, using Windows PowerShell version 5.1. If you're running a

ﾉ Expand table

About this book

Who is this book for?

Lab environment

https://leanpub.com/powershell101
https://leanpub.com/powershell101
https://leanpub.com/powershell101
https://leanpub.com/powershell101
https://leanpub.com/powershell101


different operating system or version of PowerShell, your results might vary from the
ones presented in this book.

Mike F. Robbins, a former Microsoft MVP, is the lead technical writer for Azure
PowerShell at Microsoft. With extensive experience in PowerShell, he is a scripting,
automation, and efficiency expert. As a lifelong learner, Mike continuously strives to
improve his skills and empower others by sharing his knowledge and experience. He is
also a published author of several books, including:

Author of PowerShell 101: The No-Nonsense Guide to Windows PowerShell
Creator of The PowerShell Conference Book
Coauthor of Windows PowerShell TFM 4th Edition
Contributing author in the PowerShell Deep Dives  book

When Mike's not writing documentation for Microsoft, he shares his thoughts and
insights on his blog at mikefrobbins.com  and interacts with his followers on Twitter
@mikefrobbins .

About the author

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/azure
https://learn.microsoft.com/en-us/powershell/azure
https://leanpub.com/powershell101
https://leanpub.com/powershell101
https://leanpub.com/powershell-conference-book
https://leanpub.com/powershell-conference-book
https://www.sapien.com/books_training/Windows-PowerShell-4
https://www.sapien.com/books_training/Windows-PowerShell-4
https://www.manning.com/books/powershell-deep-dives
https://www.manning.com/books/powershell-deep-dives
https://mikefrobbins.com/
https://mikefrobbins.com/
https://twitter.com/mikefrobbins
https://twitter.com/mikefrobbins
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fps101%2F00-introduction%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fps101%2F00-introduction.md&documentVersionIndependentId=2483a4d2-bfd5-b81a-504c-e46ee26e37fe&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+400a5da9-3e93-cd59-f7df-2e6ce606d90b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Chapter 1 - Getting started with
PowerShell
Article • 08/02/2024

This chapter focuses on finding and launching PowerShell and solving the initial pain
points that new users experience with PowerShell. Follow along and walk through the
examples in this chapter on your lab environment computer.

Windows PowerShell is an easy-to-use command-line shell and scripting environment
for automating administrative tasks of Windows-based systems. Windows PowerShell is
preinstalled on all modern versions of the Windows operating system.

The easiest way to find PowerShell on Windows 11 is to type PowerShell  into the search
bar, as shown in Figure 1-1. Notice that there are four different shortcuts for Windows
PowerShell.

What is PowerShell?

Where to find PowerShell



Windows PowerShell shortcuts on a 64-bit version of Windows:

Windows PowerShell
Windows PowerShell ISE
Windows PowerShell (x86)
Windows PowerShell ISE (x86)

On a 64-bit version of Windows, you have a 64-bit version of the Windows PowerShell
console and the Windows PowerShell Integrated Scripting Environment (ISE) and a 32-
bit version of each one, as indicated by the (x86) suffix on the shortcuts.

７ Note

Windows 11 only ships as a 64-bit operating system. There is no 32-bit version of
Windows 11. However, Windows 11 includes 32-bit versions of Windows
PowerShell and the Windows PowerShell ISE.



You only have two shortcuts if you're running an older 32-bit version of Windows. Those
shortcuts don't have the (x86) suffix but are 32-bit versions.

I recommend using the 64-bit version of Windows PowerShell if you're running a 64-bit
operating system unless you have a specific reason for using the 32-bit version.

Depending on what version of Windows 11 you're running, Windows PowerShell might
open in Windows Terminal.

Microsoft no longer updates the PowerShell ISE. The ISE only works with Windows
PowerShell 5.1. Visual Studio Code  (VS Code) with the PowerShell extension  works
with both versions of PowerShell. VS Code and the PowerShell extension don't ship in
Windows. Install VS Code and the extension on the computer where you create
PowerShell scripts. You don't need to install them on all the computers where you run
PowerShell.

I use three different Active Directory user accounts in the production environments I
support. I mirrored those accounts in the lab environment used in this book. I sign into
my Windows 11 computer as a domain user without domain or local administrator
rights.

Launch the PowerShell console by clicking the Windows PowerShell shortcut, as shown
in Figure 1-1. Notice that the title bar of the console says Windows PowerShell, as
shown in Figure 1-2.

Some commands run fine when you run PowerShell as an ordinary user. However,
PowerShell doesn't participate in User Access Control (UAC). That means it's unable to
prompt for elevation for tasks that require the approval of an administrator.

How to launch PowerShell

７ Note

UAC is a Windows security feature that helps prevent malicious code from running
with elevated privileges.

https://learn.microsoft.com/en-us/windows/terminal/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/powershell
https://code.visualstudio.com/docs/languages/powershell
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/


When signed on as an ordinary user, PowerShell returns an error when you run a
command that requires elevation. For example, stopping a Windows service:

PowerShell

Output

The solution is to run PowerShell elevated as a user who is a local administrator. That's
how I configured my second domain user account. Following the principle of least
privilege, this account shouldn't be a domain administrator or have any elevated
privileges in the domain.

To start PowerShell with elevated rights, right-click the Windows PowerShell shortcut
and select Run as administrator, as shown in Figure 1-3.

Stop-Service -Name W32Time

Stop-Service : Service 'Windows Time (W32Time)' cannot be stopped due to
the following error: Cannot open W32Time service on computer '.'.
At line:1 char:1
+ Stop-Service -Name W32Time
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : CloseError: (System.ServiceProcess.ServiceCon
   troller:ServiceController) [Stop-Service], ServiceCommandException
    + FullyQualifiedErrorId : CouldNotStopService,Microsoft.PowerShell.Comm
   ands.StopServiceCommand



Windows prompts you for credentials because you logged into Windows as an ordinary
user. Enter the credentials of your domain user who is a local administrator, as shown in
Figure 1-4.

Notice that the title bar of the elevated console windows says Administrator: Windows
PowerShell, as shown in Figure 1-5.

Now that you're running PowerShell elevated as an administrator, UAC is no longer a
problem when you run a command that requires elevation.

When you target remote computers, there's no need to run PowerShell elevated.
Running PowerShell elevated only affects commands that run against your local
computer.

You can simplify finding and launching PowerShell. Pin the PowerShell or Windows
Terminal shortcut to your taskbar. Search for PowerShell again, except this time right-
click on it and select Pin to taskbar as shown in Figure 1-6.

） Important

You should only run PowerShell elevated as an administrator when absolutely
necessary.



When you need to run PowerShell with elevated permissions, right-click the PowerShell
shortcut pinned to your taskbar while pressing Shift . Select Run as administrator, as
shown in Figure 1-7.

） Important

The original version of this book, published in 2017, recommended pinning a
shortcut to the taskbar to launch an elevated instance automatically every time you
start PowerShell. However, due to potential security concerns, I no longer
recommend it. Any applications you launch from an elevated instance of
PowerShell also bypass UAC and run elevated. For example, if you launch a web
browser from an elevated instance of PowerShell, any website you visit containing
malicious code also runs elevated.



There are automatic variables in PowerShell that store state information. One of these
variables is $PSVersionTable , which contains version information about your PowerShell
session.

PowerShell

Determine your version of PowerShell



Output

If you're running a version of Windows PowerShell older than 5.1, you should update
your version of Windows. Windows PowerShell 5.1 is preinstalled on the currently
supported versions of Windows.

PowerShell version 7 isn't a replacement for Windows PowerShell 5.1; it installs side-by-
side with Windows PowerShell. Windows PowerShell version 5.1 and PowerShell version
7 are two different products. For more information about the differences between
Windows PowerShell version 5.1 and PowerShell version 7, see Migrating from Windows
PowerShell 5.1 to PowerShell 7.

PowerShell execution policy controls the conditions under which you can run PowerShell
scripts. The execution policy in PowerShell is a safety feature designed to help prevent
the unintentional execution of malicious scripts. However, it's not a security boundary
because it can't stop determined users from deliberately running scripts. A determined
user can bypass the execution policy in PowerShell.

You can set an execution policy for the local computer, current user, or a PowerShell
session. You can also set execution policies for users and computers with Group Policy.

The following table shows the default execution policy for current Windows operating
systems.

$PSVersionTable

Name                           Value
----                           -----
PSVersion                      5.1.22621.2428
PSEdition                      Desktop
PSCompatibleVersions           {1.0, 2.0, 3.0, 4.0...}
BuildVersion                   10.0.22621.2428
CLRVersion                     4.0.30319.42000
WSManStackVersion              3.0
PSRemotingProtocolVersion      2.3
SerializationVersion           1.1.0.1

 Tip

PowerShell version 6, formerly known as PowerShell Core, is no longer supported.

Execution policy

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7


Windows Operating System Version Default Execution Policy

Windows Server 2022 Remote Signed

Windows Server 2019 Remote Signed

Windows Server 2016 Remote Signed

Windows 11 Restricted

Windows 10 Restricted

Regardless of the execution policy setting, you can run any PowerShell command
interactively. The execution policy only affects commands running in a script. Use the
Get-ExecutionPolicy  cmdlet to determine the current execution policy setting.

Check the execution policy setting on your computer.

PowerShell

Output

List the execution policy settings for all scopes.

PowerShell

Output

All Windows client operating systems have the default execution policy setting of
Restricted . You can't run PowerShell scripts using the Restricted  execution policy

ﾉ Expand table

Get-ExecutionPolicy

Restricted

Get-ExecutionPolicy -List

        Scope ExecutionPolicy
        ----- ---------------
MachinePolicy       Undefined
   UserPolicy       Undefined
      Process       Undefined
  CurrentUser       Undefined
 LocalMachine       Undefined



setting. To test the execution policy, save the following code as a .ps1  file named Get-
TimeService.ps1 .

When you run the following command interactively, it completes without error.

PowerShell

However, PowerShell returns an error when you run the same command from a script.

PowerShell

Output

When you run a command in PowerShell that generates an error, read the error
message before retrying the command. Notice the error message tells you why the
command failed:

... running scripts is disabled on this system.

To enable the execution of scripts, change the execution policy with the Set-
ExecutionPolicy  cmdlet. LocalMachine  is the default scope when you don't specify the
Scope parameter. You must run PowerShell elevated as an administrator to change the
execution policy for the local machine. Unless you're signing your scripts, I recommend

 Tip

A PowerShell script is a plaintext file that contains the commands you want to run.
PowerShell script files use the .ps1  file extension. To create a PowerShell script, use
a code editor like Visual Studio Code (VS Code) or any text editor such as Notepad.

Get-Service -Name W32Time

.\Get-TimeService.ps1

.\Get-TimeService.ps1 : File C:\tmp\Get-TimeService.ps1 cannot be loaded
because running scripts is disabled on this system. For more information,
see about_Execution_Policies at
https:/go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ .\Get-TimeService.ps1
+ ~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : SecurityError: (:) [], PSSecurityException
    + FullyQualifiedErrorId : UnauthorizedAccess



using the RemoteSigned  execution policy. RemoteSigned  prevents you from running
downloaded scripts that aren't signed by a trusted publisher.

Before you change the execution policy, read the about_Execution_Policies help article
to understand the security implications.

Change the execution policy setting on your computer to RemoteSigned .

PowerShell

If you have successfully changed the execution policy, PowerShell displays the following
warning:

Output

If you're not running PowerShell elevated as an administrator, PowerShell returns the
following error message:

Output

It's also possible to change the execution policy for the current user without requiring
you to run PowerShell elevated as an administrator. This step is unnecessary if you

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Execution Policy Change
The execution policy helps protect you from scripts that you do not trust.
Changing the execution policy might expose you to the security risks
described in the about_Execution_Policies help topic at
https:/go.microsoft.com/fwlink/?LinkID=135170. Do you want to change the
execution policy?
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "N"):y

Set-ExecutionPolicy : Access to the registry key 'HKEY_LOCAL_MACHINE\SOFTWAR
E\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell' is denied. To
change the execution policy for the default (LocalMachine) scope, start
Windows PowerShell with the "Run as administrator" option. To change the
execution policy for the current user, run "Set-ExecutionPolicy -Scope
CurrentUser".
At line:1 char:1
+ Set-ExecutionPolicy -ExecutionPolicy RemoteSigned
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : PermissionDenied: (:) [Set-ExecutionPolicy],
   UnauthorizedAccessException
    + FullyQualifiedErrorId : System.UnauthorizedAccessException,Microsoft.
   PowerShell.Commands.SetExecutionPolicyCommand

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies


successfully set the execution policy for the local machine to RemoteSigned .

PowerShell

With the execution policy set to RemoteSigned , the Get-TimeService.ps1  script runs
successfully.

PowerShell

Output

In this chapter, you learned where to find and how to launch PowerShell. You also
learned how to determine the version of PowerShell and the purpose of execution
policies.

1. How do you determine what PowerShell version a computer is running?
2. When should you launch PowerShell elevated as an administrator?
3. What's the default execution policy on Windows client computers, and what does

it prevent you from doing?
4. How do you determine the current PowerShell execution policy setting?
5. How do you change the PowerShell execution policy?

To learn more about the concepts covered in this chapter, read the following PowerShell
help articles.

about_Automatic_Variables
about_Execution_Policies

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser

.\Get-TimeService.ps1

Status   Name               DisplayName
------   ----               -----------
Running  W32Time            Windows Time

Summary

Review

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies


In the next chapter, you'll learn about the discoverability of commands in PowerShell.
You'll also learn how to download PowerShell's help files so you can view the help in
your PowerShell session.

Next steps

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fps101%2F01-getting-started%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fps101%2F01-getting-started.md&documentVersionIndependentId=c2a54962-1511-7f87-24c5-f39b61f923bb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fa80cd27-6cd2-2154-7a5f-8e4bc51b222d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Chapter 2 - The Help system
Article • 06/27/2024

In an experiment designed to assess proficiency in PowerShell, two distinct groups of IT
professionals — beginners and experts — were first given a written examination without
access to a computer. Surprisingly, the test scores indicated comparable skills across
both groups. A subsequent test was then administered, mirroring the first but with one
key difference: participants had access to an offline computer equipped with PowerShell.
The results revealed a significant skills gap between the two groups this time.

What factors contributed to the outcomes observed between the two assessments?

Experts don't always know the answers, but they know how to figure out the
answers.

The outcomes observed in the results of the two tests were because experts don't
memorize thousands of PowerShell commands. Instead, they excel at using the Help
system within PowerShell, enabling them to discover and learn how to use commands
when necessary.

Becoming proficient with the Help system is the key to success with PowerShell.

I heard Jeffrey Snover, the creator of PowerShell, share a similar story on multiple
occasions.

Compiled commands in PowerShell are known as cmdlets, pronounced as "command-
let", not "CMD-let". The naming convention for cmdlets follows a singular Verb-Noun
format to make them easily discoverable. For instance, Get-Process  is the cmdlet to
determine what processes are running, and Get-Service  is the cmdlet to retrieve a list of
services. Functions, also known as script cmdlets, and aliases are other types of
PowerShell commands that are discussed later in this book. The term "PowerShell
command" describes any command in PowerShell, regardless of whether it's a cmdlet,
function, or alias.

You can also run operating system native commands from PowerShell, such as
traditional command-line programs like ping.exe  and ipconfig.exe .

Discoverability



Get-Help

Get-Command

Get-Member  (covered in chapter 3)

I'm often asked: "How do you figure out what the commands are in PowerShell?". Both
Get-Help  and Get-Command  are invaluable resources for discovering and understanding
commands in PowerShell.

The first thing you need to know about the Help system in PowerShell is how to use the
Get-Help  cmdlet.

Get-Help  is a multipurpose command that helps you learn how to use commands once
you find them. You can also use Get-Help  to locate commands, but in a different and
more indirect way when compared to Get-Command .

When using Get-Help  to locate commands, it initially performs a wildcard search for
command names based on your input. If that doesn't find any matches, it conducts a
comprehensive full-text search across all PowerShell help articles on your system. If that
also fails to find any results, it returns an error.

Here's how to use Get-Help  to view the help content for the Get-Help  cmdlet.

PowerShell

Beginning with PowerShell version 3.0, the help content doesn't ship preinstalled with
the operating system. When you run Get-Help  for the first time, a message asks if you
want to download the PowerShell help files to your computer.

Answering Yes by pressing Y  executes the Update-Help  cmdlet, downloading the help
content.

Output

The three core cmdlets in PowerShell

Get-Help

Get-Help -Name Get-Help

Do you want to run Update-Help?
The Update-Help cmdlet downloads the most current Help files for Windows
PowerShell modules, and installs them on your computer. For more information
about the Update-Help cmdlet, see



If you don't receive this message, run Update-Help  from an elevated PowerShell session
running as an administrator.

Once the update is complete, the help article is displayed.

Take a moment to run the example on your computer, review the output, and observe
how the help system organizes the information.

NAME
SYNOPSIS
SYNTAX
DESCRIPTION
RELATED LINKS
REMARKS

As you review the output, keep in mind that help articles often contain a vast amount of
information, and what you see by default isn't the entire help article.

When you run a command in PowerShell, you might need to provide additional
information or input to the command. Parameters allow you to specify options and
arguments that change the behavior of a command. The SYNTAX section of each help
article outlines the available parameters for the command.

Get-Help  has several parameters that you can specify to return the entire help article or
a subset for a command. To view all the available parameters for Get-Help , see the
SYNTAX section of its help article, as shown in the following example.

Output

https:/go.microsoft.com/fwlink/?LinkId=210614.
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is "Y"):

Parameters

...
SYNTAX
    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |
    Class | Configuration}] [-Component <System.String[]>] [-Full]
    [-Functionality <System.String[]>] [-Path <System.String>] [-Role
    <System.String[]>] [<CommonParameters>]

    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |



When you review the SYNTAX section for Get-Help , notice that the information appears
to be repeated six times. Each of those blocks is an individual parameter set, indicating
the Get-Help  cmdlet features six distinct sets of parameters. A closer look reveals each
parameter set contains at least one unique parameter, making it different from the
others.

Parameter sets are mutually exclusive. Once you specify a unique parameter that only
exists in one parameter set, PowerShell limits you to using the parameters contained
within that parameter set. For instance, you can't use the Full and Detailed parameters
of Get-Help  together because they belong to different parameter sets.

Each of the following parameters belongs to a different parameter set for the Get-Help
cmdlet.

    Class | Configuration}] [-Component <System.String[]>] -Detailed
    [-Functionality <System.String[]>] [-Path <System.String>] [-Role
    <System.String[]>] [<CommonParameters>]

    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |
    Class | Configuration}] [-Component <System.String[]>] -Examples
    [-Functionality <System.String[]>] [-Path <System.String>] [-Role
    <System.String[]>] [<CommonParameters>]

    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |
    Class | Configuration}] [-Component <System.String[]>] [-Functionality
    <System.String[]>] -Online [-Path <System.String>] [-Role
    <System.String[]>] [<CommonParameters>]

    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |
    Class | Configuration}] [-Component <System.String[]>] [-Functionality
    <System.String[]>] -Parameter <System.String> [-Path <System.String>]
    [-Role <System.String[]>] [<CommonParameters>]

    Get-Help [[-Name] <System.String>] [-Category {Alias | Cmdlet | Provider
    | General | FAQ | Glossary | HelpFile | ScriptCommand | Function |
    Filter | ExternalScript | All | DefaultHelp | Workflow | DscResource |
    Class | Configuration}] [-Component <System.String[]>] [-Functionality
    <System.String[]>] [-Path <System.String>] [-Role <System.String[]>]
    -ShowWindow [<CommonParameters>]
...

Parameter sets



Full
Detailed
Examples
Online
Parameter
ShowWindow

If you're new to PowerShell, comprehending the cryptic information — characterized by
square and angle brackets — in the SYNTAX section might seem overwhelming.
However, learning these syntax elements is essential to becoming proficient with
PowerShell. The more frequently you use the PowerShell Help system, the easier it
becomes to remember all the nuances.

View the syntax of the Get-EventLog  cmdlet.

PowerShell

The following output shows the relevant portion of the help article.

Output

The syntax information includes pairs of square brackets ( [] ). Depending on their
usage, these square brackets serve two different purposes.

Elements enclosed in square brackets are optional.
An empty set of square brackets following a datatype, such as <string[]> ,
indicates that the parameter can accept multiple values passed as an array or a

The command syntax

Get-Help Get-EventLog

...
SYNTAX
    Get-EventLog [-LogName] <System.String> [[-InstanceId]
    <System.Int64[]>] [-After <System.DateTime>] [-AsBaseObject] [-Before
    <System.DateTime>] [-ComputerName <System.String[]>] [-EntryType {Error
    | Information | FailureAudit | SuccessAudit | Warning}] [-Index
    <System.Int32[]>] [-Message <System.String>] [-Newest <System.Int32>]
    [-Source <System.String[]>] [-UserName <System.String[]>]
    [<CommonParameters>]

    Get-EventLog [-AsString] [-ComputerName <System.String[]>] [-List]
    [<CommonParameters>]
...



collection object.

Some cmdlets are designed to accept positional parameters. Positional parameters allow
you to provide a value without specifying the name of the parameter. When using a
parameter positionally, you must specify its value in the correct position on the
command line. You can find the positional information for a parameter in the
PARAMETERS section of a command's help article. When you explicitly specify
parameter names, you can use the parameters in any order.

For the Get-EventLog  cmdlet, the first parameter in the first parameter set is LogName.
LogName is enclosed in square brackets, indicating it's a positional parameter.

Syntax

Since LogName is a positional parameter, you can specify it by either name or position.
According to the angle brackets following the parameter name, the value for LogName
must be a single string. The absence of square brackets enclosing both the parameter
name and datatype indicates that LogName is a required parameter within this
particular parameter set.

The second parameter in that parameter set is InstanceId. Both the parameter name and
datatype are entirely enclosed in square brackets, signifying that InstanceId is an
optional parameter.

Syntax

Furthermore, InstanceId has its own pair of square brackets, indicating that it's a
positional parameter similar to the LogName parameter. Following the datatype, an
empty set of square brackets implies that InstanceId can accept multiple values.

A parameter that doesn't require a value is called a switch parameter. You can easily
identify switch parameters because there's no datatype following the parameter name.
When you specify a switch parameter, its value is true . When you don't specify a switch
parameter, its value is false .

Positional parameters

Get-EventLog [-LogName] <System.String>

[[-InstanceId] <System.Int64[]>]

Switch parameters



The second parameter set includes a List parameter, which is a switch parameter. When
you specify the List parameter, it returns a list of event logs on the local computer.

Syntax

There's a more user-friendly method to obtain the same information as the cryptic
command syntax for some commands, except in plain English. PowerShell returns the
complete help article when using Get-Help  with the Full parameter, making it easier to
understand a command's usage.

PowerShell

Take a moment to run the example on your computer, review the output, and observe
how the help system organizes the information.

NAME
SYNOPSIS
SYNTAX
DESCRIPTION
PARAMETERS
INPUTS
OUTPUTS
NOTES
EXAMPLES
RELATED LINKS

By specifying the Full parameter with the Get-Help  cmdlet, the output includes several
extra sections. Among these sections, PARAMETERS often provides a detailed
explanation for each parameter. However, the extent of this information varies
depending on the specific command you're investigating.

Output

[-List]

A simplified approach to syntax

Get-Help -Name Get-Help -Full

...
    -Detailed <System.Management.Automation.SwitchParameter>
        Adds parameter descriptions and examples to the basic help display.
        This parameter is effective only when the help files are installed



When you ran the previous command to display the help for the Get-Help  command,
you probably noticed the output scrolled by too quickly to read it.

If you're using the PowerShell console, Windows Terminal, or VS Code and need to view
a help article, the help  function can be useful. It pipes the output of Get-Help  to
more.com , displaying one page of help content at a time. I recommend using the help
function instead of the Get-Help  cmdlet because it provides a better user experience
and it's less to type.

        on the computer. It has no effect on displays of conceptual ( About_
        ) help.

        Required?                    true
        Position?                    named
        Default value                False
        Accept pipeline input?       False
        Accept wildcard characters?  false

    -Examples <System.Management.Automation.SwitchParameter>
        Displays only the name, synopsis, and examples. This parameter is
        effective only when the help files are installed on the computer. It
        has no effect on displays of conceptual ( About_ ) help.

        Required?                    true
        Position?                    named
        Default value                False
        Accept pipeline input?       False
        Accept wildcard characters?  false

    -Full <System.Management.Automation.SwitchParameter>
        Displays the entire help article for a cmdlet. Full includes
        parameter descriptions and attributes, examples, input and output
        object types, and additional notes.

        This parameter is effective only when the help files are installed
        on the computer. It has no effect on displays of conceptual ( About_
        ) help.

        Required?                    false
        Position?                    named
        Default value                False
        Accept pipeline input?       False
        Accept wildcard characters?  false
...

７ Note

The ISE doesn't support using more.com , so running help  works the same way as
Get-Help .



Run each of the following commands in PowerShell on your computer.

PowerShell

Did you observe any variations in the output when you ran the previous commands?

In the previous example, the first line uses the Get-Help  cmdlet, the second uses the
help  function, and the third line omits the Name parameter while using the help
function. Since Name is a positional parameter, the third example takes advantage of its
position instead of explicitly stating the parameter's name.

The difference is that the last two commands display their output one page at a time.
When using the help  function, press the Spacebar  to display the next page of content or
Q  to quit. If you need to terminate any command running interactively in PowerShell,

press Ctrl + C .

To quickly find information about a specific parameter, use the Parameter parameter.
This approach returns content containing only the parameter-specific information,
rather than the entire help article. This is the easiest way to find information about a
specific parameter.

The following example uses the help  function with the Parameter parameter to return
information from the help article for the Name parameter of Get-Help .

PowerShell

The help information shows that the Name parameter is positional and must be
specified in the first position (position zero) when used positionally.

Output

Get-Help -Name Get-Help -Full
help -Name Get-Help -Full
help Get-Help -Full

help Get-Help -Parameter Name

-Name <System.String>
    Gets help about the specified command or concept. Enter the name of a
    cmdlet, function, provider, script, or workflow, such as `Get-Member`,
    a conceptual article name, such as `about_Objects`, or an alias, such
    as `ls`. Wildcard characters are permitted in cmdlet and provider
    names, but you can't use wildcard characters to find the names of
    function help and script help articles.

    To get help for a script that isn't located in a path that's listed in



The Name parameter expects a string value as identified by the <String>  datatype next
to the parameter name.

There are several other parameters you can specify with Get-Help  to return a subset of a
help article. To see how they work, run the following commands on your computer.

PowerShell

I typically use help <command name>  with the Full or Online parameter. If you only have
an interest in the examples, use the Examples parameter. If you only have an interest in
a specific parameter, use the Parameter parameter.

When you use the ShowWindow parameter, it displays the help content in a separate
searchable window. You can move that window to a different monitor if you have
multiple monitors. However, the ShowWindow parameter has a known bug that might
prevent it from displaying the entire help article. The ShowWindow parameter also
requires an operating system with a Graphical User Interface (GUI). It returns an error
when you attempt to use it on Windows Server Core.

    the `$env:Path` environment variable, type the script's path and file
    name.

    If you enter the exact name of a help article, `Get-Help` displays the
    article contents.

    If you enter a word or word pattern that appears in several help
    article titles, `Get-Help` displays a list of the matching titles.

    If you enter any text that doesn't match any help article titles,
    `Get-Help` displays a list of articles that include that text in their
    contents.

    The names of conceptual articles, such as `about_Objects`, must be
    entered in English, even in non-English versions of PowerShell.

    Required?                    false
    Position?                    0
    Default value                None
    Accept pipeline input?       True (ByPropertyName)
    Accept wildcard characters?  true

Get-Help -Name Get-Command -Full
Get-Help -Name Get-Command -Detailed
Get-Help -Name Get-Command -Examples
Get-Help -Name Get-Command -Online
Get-Help -Name Get-Command -Parameter Noun
Get-Help -Name Get-Command -ShowWindow



If you have internet access, you can use the Online parameter instead. The Online
parameter opens the help article in your default web browser. The online content is the
most up-to-date content. The browser allows you to search the help content and view
other related help articles.

PowerShell

To find commands with Get-Help , specify a search term surrounded by asterisk ( * )
wildcard characters for the value of the Name parameter. The following example uses
the Name parameter positionally.

PowerShell

Output

In this scenario, you aren't required to add the *  wildcard characters. If Get-Help  can't
find a command matching the value you provided, it does a full-text search for that

７ Note

The Online parameter isn't supported for About articles.

help Get-Command -Online

Finding commands with Get-Help

help *process*

Name                              Category  Module                    Synops
----                              --------  ------                    ------
Enter-PSHostProcess               Cmdlet    Microsoft.PowerShell.Core Con...
Exit-PSHostProcess                Cmdlet    Microsoft.PowerShell.Core Clo...
Get-PSHostProcessInfo             Cmdlet    Microsoft.PowerShell.Core Get...
Debug-Process                     Cmdlet    Microsoft.PowerShell.M... Deb...
Get-Process                       Cmdlet    Microsoft.PowerShell.M... Get...
Start-Process                     Cmdlet    Microsoft.PowerShell.M... Sta...
Stop-Process                      Cmdlet    Microsoft.PowerShell.M... Sto...
Wait-Process                      Cmdlet    Microsoft.PowerShell.M... Wai...
Invoke-LapsPolicyProcessing       Cmdlet    LAPS                      Inv...
ConvertTo-ProcessMitigationPolicy Cmdlet    ProcessMitigations        Con...
Get-ProcessMitigation             Cmdlet    ProcessMitigations        Get...
Set-ProcessMitigation             Cmdlet    ProcessMitigations        Set...



value. The following example produces the same results as specifying the *  wildcard
character on each end of process .

PowerShell

When you specify a wildcard character within the value, Get-Help  only searches for
commands that match the pattern you provided. It doesn't perform a full-text search.
The following command doesn't return any results.

PowerShell

PowerShell generates an error if you specify a value that begins with a dash without
enclosing it in quotes because it interprets it as a parameter name. No such parameter
name exists for the Get-Help  cmdlet.

PowerShell

If you're attempting to search for commands that end with -process , you must add an
*  to the beginning of the value.

PowerShell

When you search for PowerShell commands with Get-Help , it's better to be vague rather
than too specific.

When you searched for process  earlier, the results only returned commands that
included process  in their name. But if you search for processes , it doesn't find any
matches for command names. As previously stated, when help doesn't find any matches,
it performs a comprehensive full-text search of every help article on your system and
returns those results. This type of search often produces more results than expected,
including information not relevant to you.

PowerShell

help process

help pr*cess

help -process

help *-process



Output

help processes

Name                              Category  Module                    Synops
----                              --------  ------                    ------
Disconnect-PSSession              Cmdlet    Microsoft.PowerShell.Core Dis...
Enter-PSHostProcess               Cmdlet    Microsoft.PowerShell.Core Con...
ForEach-Object                    Cmdlet    Microsoft.PowerShell.Core Per...
Get-PSHostProcessInfo             Cmdlet    Microsoft.PowerShell.Core Get...
Get-PSSessionConfiguration        Cmdlet    Microsoft.PowerShell.Core Get...
New-PSSessionOption               Cmdlet    Microsoft.PowerShell.Core Cre...
New-PSTransportOption             Cmdlet    Microsoft.PowerShell.Core Cre...
Out-Host                          Cmdlet    Microsoft.PowerShell.Core Sen...
Start-Job                         Cmdlet    Microsoft.PowerShell.Core Sta...
Where-Object                      Cmdlet    Microsoft.PowerShell.Core Sel...
Debug-Process                     Cmdlet    Microsoft.PowerShell.M... Deb...
Get-Process                       Cmdlet    Microsoft.PowerShell.M... Get...
Get-WmiObject                     Cmdlet    Microsoft.PowerShell.M... Get...
Start-Process                     Cmdlet    Microsoft.PowerShell.M... Sta...
Stop-Process                      Cmdlet    Microsoft.PowerShell.M... Sto...
Wait-Process                      Cmdlet    Microsoft.PowerShell.M... Wai...
Clear-Variable                    Cmdlet    Microsoft.PowerShell.U... Del...
Convert-String                    Cmdlet    Microsoft.PowerShell.U... For...
ConvertFrom-Csv                   Cmdlet    Microsoft.PowerShell.U... Con...
ConvertFrom-Json                  Cmdlet    Microsoft.PowerShell.U... Con...
ConvertTo-Html                    Cmdlet    Microsoft.PowerShell.U... Con...
ConvertTo-Xml                     Cmdlet    Microsoft.PowerShell.U... Cre...
Debug-Runspace                    Cmdlet    Microsoft.PowerShell.U... Sta...
Export-Csv                        Cmdlet    Microsoft.PowerShell.U... Con...
Export-FormatData                 Cmdlet    Microsoft.PowerShell.U... Sav...
Format-List                       Cmdlet    Microsoft.PowerShell.U... For...
Format-Table                      Cmdlet    Microsoft.PowerShell.U... For...
Get-Unique                        Cmdlet    Microsoft.PowerShell.U... Ret...
Group-Object                      Cmdlet    Microsoft.PowerShell.U... Gro...
Import-Clixml                     Cmdlet    Microsoft.PowerShell.U... Imp...
Import-Csv                        Cmdlet    Microsoft.PowerShell.U... Cre...
Measure-Object                    Cmdlet    Microsoft.PowerShell.U... Cal...
Out-File                          Cmdlet    Microsoft.PowerShell.U... Sen...
Out-GridView                      Cmdlet    Microsoft.PowerShell.U... Sen...
Select-Object                     Cmdlet    Microsoft.PowerShell.U... Sel...
Set-Variable                      Cmdlet    Microsoft.PowerShell.U... Set...
Sort-Object                       Cmdlet    Microsoft.PowerShell.U... Sor...
Tee-Object                        Cmdlet    Microsoft.PowerShell.U... Sav...
Trace-Command                     Cmdlet    Microsoft.PowerShell.U... Con...
Write-Information                 Cmdlet    Microsoft.PowerShell.U... Spe...
Export-BinaryMiLog                Cmdlet    CimCmdlets                Cre...
Get-CimAssociatedInstance         Cmdlet    CimCmdlets                Ret...
Get-CimInstance                   Cmdlet    CimCmdlets                Get...
Import-BinaryMiLog                Cmdlet    CimCmdlets                Use...
Invoke-CimMethod                  Cmdlet    CimCmdlets                Inv...
New-CimInstance                   Cmdlet    CimCmdlets                Cre...



When you searched for process , it returned 12 results. However, when searching for

processes , it produced 78 results. If your search only finds one match, Get-Help  displays
the help content instead of listing the search results.

PowerShell

Output

Remove-CimInstance                Cmdlet    CimCmdlets                Rem...
Set-CimInstance                   Cmdlet    CimCmdlets                Mod...
Compress-Archive                  Function  Microsoft.PowerShell.A... Cre...
Get-Counter                       Cmdlet    Microsoft.PowerShell.D... Get...
Invoke-WSManAction                Cmdlet    Microsoft.WSMan.Manage... Inv...
Remove-WSManInstance              Cmdlet    Microsoft.WSMan.Manage... Del...
Get-WSManInstance                 Cmdlet    Microsoft.WSMan.Manage... Dis...
New-WSManInstance                 Cmdlet    Microsoft.WSMan.Manage... Cre...
Set-WSManInstance                 Cmdlet    Microsoft.WSMan.Manage... Mod...
about_Arithmetic_Operators        HelpFile
about_Arrays                      HelpFile
about_Environment_Variables       HelpFile
about_Execution_Policies          HelpFile
about_Functions                   HelpFile
about_Jobs                        HelpFile
about_Logging                     HelpFile
about_Methods                     HelpFile
about_Objects                     HelpFile
about_Pipelines                   HelpFile
about_Preference_Variables        HelpFile
about_Remote                      HelpFile
about_Remote_Jobs                 HelpFile
about_Session_Configuration_Files HelpFile
about_Simplified_Syntax           HelpFile
about_Switch                      HelpFile
about_Variables                   HelpFile
about_Variable_Provider           HelpFile
about_Windows_PowerShell_5.1      HelpFile
about_WQL                         HelpFile
about_WS-Management_Cmdlets       HelpFile
about_Foreach-Parallel            HelpFile
about_Parallel                    HelpFile
about_Sequence                    HelpFile

help *hotfix*

NAME
    Get-HotFix

SYNOPSIS
    Gets the hotfixes that are installed on local or remote computers.



You can also find commands that lack help articles with Get-Help , although this
capability isn't commonly known. The more  function is one of the commands that
doesn't have a help article. To confirm that you can find commands with Get-Help  that
don't include help articles, use the help  function to find more .

PowerShell

The search only found one match, so it returned the basic syntax information you see
when a command doesn't have a help article.

Output

SYNTAX
    Get-HotFix [-ComputerName <System.String[]>] [-Credential
    <System.Management.Automation.PSCredential>] [-Description
    <System.String[]>] [<CommonParameters>]

    Get-HotFix [[-Id] <System.String[]>] [-ComputerName <System.String[]>]
    [-Credential <System.Management.Automation.PSCredential>]
    [<CommonParameters>]

DESCRIPTION
    > This cmdlet is only available on the Windows platform. The
    `Get-HotFix` cmdlet uses the Win32_QuickFixEngineering WMI class to
    list hotfixes that are installed on the local computer or specified
    remote computers.

RELATED LINKS
    Online Version: https://learn.microsoft.com/powershell/module/microsoft.
    powershell.management/get-hotfix?view=powershell-5.1&WT.mc_id=ps-gethelp
    about_Arrays
    Add-Content
    Get-ComputerRestorePoint
    Get-Credential
    Win32_QuickFixEngineering class

REMARKS
    To see the examples, type: "Get-Help Get-HotFix -Examples".
    For more information, type: "Get-Help Get-HotFix -Detailed".
    For technical information, type: "Get-Help Get-HotFix -Full".
    For online help, type: "Get-Help Get-HotFix -Online"

help *more*

NAME
    more

SYNTAX



The PowerShell help system also contains conceptual About help articles. You must
update the help content on your system to get the About articles. For more information,
see the Updating help section of this chapter.

Use the following command to return a list of all About help articles on your system.

PowerShell

When you limit the results to one About help article, Get-Help  displays the content of
that article.

PowerShell

Earlier in this chapter, you updated the PowerShell help articles on your computer the
first time you ran the Get-Help  cmdlet. You should periodically run the Update-Help
cmdlet on your computer to obtain any updates to the help content.

In the following example, Update-Help  downloads the PowerShell help content for all
modules installed on your computer. You should use the Force parameter to ensure that
you download the latest version of the help content.

PowerShell

    more [[-paths] <string[]>]

ALIASES
    None

REMARKS
    None

help About_*

help about_Updatable_Help

Updating help

） Important

In Windows PowerShell 5.1, you must run Update-Help  as an administrator in an
elevated PowerShell session.



As shown in the following results, a module returned an error. Errors aren't uncommon
and usually occur when the module's author doesn't configure updatable help correctly.

Output

Update-Help  requires internet access to download the help content. If your computer
doesn't have internet access, use the Save-Help  cmdlet on a computer with internet
access to download and save the updated help content. Then, use the SourcePath
parameter of Update-Help  to specify the location of the saved updated help content.

Get-Command  is another multipurpose command that helps you find commands. When
you run Get-Command  without any parameters, it returns a list of all PowerShell
commands on your system. You can also use Get-Command  to get command syntax
similar to Get-Help .

How do you determine the syntax for Get-Command ? You could use Get-Help  to display
the help article for Get-Command , as shown in the Get-Help section of this chapter. You
can also use Get-Command  with the Syntax parameter to view the syntax for any
command. This shortcut helps you quickly determine how to use a command without
navigating through its help content.

PowerShell

Update-Help -Force

Update-Help : Failed to update Help for the module(s) 'BitsTransfer' with UI
culture(s) {en-US} : Unable to retrieve the HelpInfo XML file for UI culture
en-US. Make sure the HelpInfoUri property in the module manifest is valid or
check your network connection and then try the command again.
At line:1 char:1
+ Update-Help
+ ~~~~~~~~~~~
    + CategoryInfo          : ResourceUnavailable: (:) [Update-Help], Except
   ion
    + FullyQualifiedErrorId : UnableToRetrieveHelpInfoXml,Microsoft.PowerShe
   ll.Commands.UpdateHelpCommand

Get-Command

Get-Command -Name Get-Command -Syntax



Using Get-Command  with the Syntax parameter provides a more concise view of the
syntax that shows the parameters and their value types, without listing the specific
allowable values like Get-Help  shows.

Output

If you need more detailed information about how to use a command, use Get-Help .

PowerShell

The SYNTAX section of Get-Help  provides a more user-friendly display by expanding
enumerated values for parameters. It shows you the actual values you can use, making it
easier to understand the available options.

Output

Get-Command [[-ArgumentList] <Object[]>] [-Verb <string[]>]
[-Noun <string[]>] [-Module <string[]>]
[-FullyQualifiedModule <ModuleSpecification[]>] [-TotalCount <int>]
[-Syntax] [-ShowCommandInfo] [-All] [-ListImported]
[-ParameterName <string[]>] [-ParameterType <PSTypeName[]>]
[<CommonParameters>]

Get-Command [[-Name] <string[]>] [[-ArgumentList] <Object[]>]
[-Module <string[]>] [-FullyQualifiedModule <ModuleSpecification[]>]
[-CommandType <CommandTypes>] [-TotalCount <int>] [-Syntax]
[-ShowCommandInfo] [-All] [-ListImported] [-ParameterName <string[]>]
[-ParameterType <PSTypeName[]>] [<CommonParameters>]

help Get-Command -Full

...
    Get-Command [[-Name] <System.String[]>] [[-ArgumentList]
    <System.Object[]>] [-All] [-CommandType {Alias | Function | Filter |
    Cmdlet | ExternalScript | Application | Script | Workflow |
    Configuration | All}] [-FullyQualifiedModule
    <Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-ListImported]
    [-Module <System.String[]>] [-ParameterName <System.String[]>]
    [-ParameterType <System.Management.Automation.PSTypeName[]>]
    [-ShowCommandInfo] [-Syntax] [-TotalCount <System.Int32>]
    [<CommonParameters>]

    Get-Command [[-ArgumentList] <System.Object[]>] [-All]
    [-FullyQualifiedModule
    <Microsoft.PowerShell.Commands.ModuleSpecification[]>] [-ListImported]
    [-Module <System.String[]>] [-Noun <System.String[]>] [-ParameterName
    <System.String[]>] [-ParameterType
    <System.Management.Automation.PSTypeName[]>] [-ShowCommandInfo]
    [-Syntax] [-TotalCount <System.Int32>] [-Verb <System.String[]>]



The PARAMETERS section of the help for Get-Command  reveals that the Name, Noun,
and Verb parameters accept wildcard characters.

Output

The following example uses the *  wildcard character with the value for the Name
parameter of Get-Command .

    [<CommonParameters>]
...

...
    -Name <System.String[]>
        Specifies an array of names. This cmdlet gets only commands that
        have the specified name. Enter a name or name pattern. Wildcard
        characters are permitted.

        To get commands that have the same name, use the All parameter. When
        two commands have the same name, by default, `Get-Command` gets the
        command that runs when you type the command name.

        Required?                    false
        Position?                    0
        Default value                None
        Accept pipeline input?       True (ByPropertyName, ByValue)
        Accept wildcard characters?  true

    -Noun <System.String[]>
        Specifies an array of command nouns. This cmdlet gets commands,
        which include cmdlets, functions, and aliases, that have names that
        include the specified noun. Enter one or more nouns or noun
        patterns. Wildcard characters are permitted.

        Required?                    false
        Position?                    named
        Default value                None
        Accept pipeline input?       True (ByPropertyName)
        Accept wildcard characters?  true
    -Verb <System.String[]>
        Specifies an array of command verbs. This cmdlet gets commands,
        which include cmdlets, functions, and aliases, that have names that
        include the specified verb. Enter one or more verbs or verb
        patterns. Wildcard characters are permitted.

        Required?                    false
        Position?                    named
        Default value                None
        Accept pipeline input?       True (ByPropertyName)
        Accept wildcard characters?  true
...



PowerShell

When you use wildcard characters with the Name parameter of Get-Command , it returns
PowerShell commands and native commands, as shown in the following results.

Output

You can limit the results of Get-Command  to PowerShell commands using the
CommandType parameter.

PowerShell

Another option might be to use either the Verb or Noun parameter or both since only
PowerShell commands have verbs and nouns.

The following example uses Get-Command  to find commands on your computer that work
with processes. Use the Noun parameter and specify Process  as its value.

PowerShell

Get-Command -Name *service*

CommandType     Name                                               Version
-----------     ----                                               -------
Function        Get-NetFirewallServiceFilter                       2.0.0.0
Function        Set-NetFirewallServiceFilter                       2.0.0.0
Cmdlet          Get-Service                                        3.1.0.0
Cmdlet          New-Service                                        3.1.0.0
Cmdlet          New-WebServiceProxy                                3.1.0.0
Cmdlet          Restart-Service                                    3.1.0.0
Cmdlet          Resume-Service                                     3.1.0.0
Cmdlet          Set-Service                                        3.1.0.0
Cmdlet          Start-Service                                      3.1.0.0
Cmdlet          Stop-Service                                       3.1.0.0
Cmdlet          Suspend-Service                                    3.1.0.0
Application     SecurityHealthService.exe                          10.0.2...
Application     SensorDataService.exe                              10.0.2...
Application     services.exe                                       10.0.2...
Application     services.msc                                       0.0.0.0
Application     TieringEngineService.exe                           10.0.2...
Application     Windows.WARP.JITService.exe                        10.0.2...

Get-Command -Name *service* -CommandType Cmdlet, Function, Alias, Script

Get-Command -Noun Process



Output

In this chapter, you learned how to find commands with Get-Help  and Get-Command . You
also learned how to use the help system to understand how to use commands once you
find them. In addition, you learned how to update the help system on your computer
when new help content is available.

1. Is the DisplayName parameter of Get-Service  positional?
2. How many parameter sets does the Get-Process  cmdlet have?
3. What PowerShell commands exist for working with event logs?
4. What's the PowerShell command for returning a list of PowerShell processes

running on your computer?
5. How do you update the PowerShell help content stored on your computer?

To learn more about the concepts covered in this chapter, read the following PowerShell
help articles.

Get-Help
Get-Command
Update-Help
Save-Help
about_Updatable_Help
about_Command_Syntax

CommandType     Name                                               Version
-----------     ----                                               -------
Cmdlet          Debug-Process                                      3.1.0.0
Cmdlet          Get-Process                                        3.1.0.0
Cmdlet          Start-Process                                      3.1.0.0
Cmdlet          Stop-Process                                       3.1.0.0
Cmdlet          Wait-Process                                       3.1.0.0

Summary

Review

References

Next steps

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/update-help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/save-help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_updatable_help
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_command_syntax


In the next chapter, you'll learn about objects, properties, methods, and the Get-Member
cmdlet.



Chapter 3 - Discovering objects,
properties, and methods
Article • 08/19/2024

PowerShell is an object-oriented scripting language. It represents data and system states
using structured objects derived from .NET classes defined in the .NET Framework. By
leveraging the .NET Framework, PowerShell offers access to various system capabilities,
including file system, registry, and Windows Management Instrumentation (WMI)
classes. PowerShell also has access to the .NET Framework class library, which contains a
vast collection of classes that you can use to develop robust PowerShell scripts.

In PowerShell, each item or state is an instance of an object that can be explored and
manipulated. The Get-Member  cmdlet is one of the primary tools provided by PowerShell
for object discovery, which reveals an object's characteristics. This chapter explores how
PowerShell leverages objects and how you can discover and manipulate these objects to
streamline your scripts and manage your systems more efficiently.

To follow the specific examples in this chapter, ensure that your lab environment
computer is part of your lab environment Active Directory domain. You must also install
the Active Directory PowerShell module bundled with the Windows Remote Server
Administration Tools (RSAT). If you're using Windows 10 build 1809 or later, including
Windows 11, you can install RSAT as a Windows feature.

For information about installing RSAT, see Windows Management modules.
For older versions of Windows, see RSAT for Windows.

Get-Member  provides insight into the objects, properties, and methods associated with
PowerShell commands. You can pipe any PowerShell command that produces object-
based output to Get-Member . When you pipe the output of a command to Get-Member , it

Prerequisites

７ Note

Active Directory is unsupported for Windows Home editions.

Get-Member

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/module-compatibility#windows-management-modules
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/remote-server-administration-tools


reveals the structure of the object returned by the command, detailing its properties and
methods.

Properties: The attributes of an object.
Methods: The actions you can perform on an object.

To illustrate this concept, consider a driver's license as an analogy. Like any object, a
driver's license has properties, such as eye color, which typically includes blue  and
brown  values. In contrast, methods represent actions you can perform on the object. For
instance, Revoke is a method that the Department of Motor Vehicles can perform on a
driver's license.

To retrieve details about the Windows Time service on your system using PowerShell,
use the Get-Service  cmdlet.

PowerShell

The results include the Status, Name, and DisplayName properties. The Status property
indicates that the service is Running . The value for the Name property is w32time , and
the value for the DisplayName property is Windows Time .

Output

To list all available properties and methods for Get-Service , pipe it to Get-Member .

PowerShell

The results show the first line contains one piece of significant information. TypeName
identifies the type of object returned, which in this example is a
System.ServiceProcess.ServiceController object. This name is often abbreviated to the
last part of the TypeName, such as ServiceController, in this example.

Output

Properties

Get-Service -Name w32time

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time

Get-Service -Name w32time | Get-Member



Notice when you piped Get-Service  to Get-Member , there are more properties than are
displayed by default. Although these additional properties aren't shown by default, you
can select them by piping to Select-Object  and using the Property parameter. The
following example selects all properties by piping the results of Get-Service  to Select-
Object  and specifying the *  wildcard character as the value for the Property parameter.

PowerShell

   TypeName: System.ServiceProcess.ServiceController

Name                      MemberType    Definition
----                      ----------    ----------
Name                      AliasProperty Name = ServiceName
RequiredServices          AliasProperty RequiredServices = ServicesDepend...
Disposed                  Event         System.EventHandler Disposed(Syst...
Close                     Method        void Close()
Continue                  Method        void Continue()
CreateObjRef              Method        System.Runtime.Remoting.ObjRef Cr...
Dispose                   Method        void Dispose(), void IDisposable....
Equals                    Method        bool Equals(System.Object obj)
ExecuteCommand            Method        void ExecuteCommand(int command)
GetHashCode               Method        int GetHashCode()
GetLifetimeService        Method        System.Object GetLifetimeService()
GetType                   Method        type GetType()
InitializeLifetimeService Method        System.Object InitializeLifetimeS...
Pause                     Method        void Pause()
Refresh                   Method        void Refresh()
Start                     Method        void Start(), void Start(string[]...
Stop                      Method        void Stop()
WaitForStatus             Method        void WaitForStatus(System.Service...
CanPauseAndContinue       Property      bool CanPauseAndContinue {get;}
CanShutdown               Property      bool CanShutdown {get;}
CanStop                   Property      bool CanStop {get;}
Container                 Property      System.ComponentModel.IContainer ...
DependentServices         Property      System.ServiceProcess.ServiceCont...
DisplayName               Property      string DisplayName {get;set;}
MachineName               Property      string MachineName {get;set;}
ServiceHandle             Property      System.Runtime.InteropServices.Sa...
ServiceName               Property      string ServiceName {get;set;}
ServicesDependedOn        Property      System.ServiceProcess.ServiceCont...
ServiceType               Property      System.ServiceProcess.ServiceType...
Site                      Property      System.ComponentModel.ISite Site ...
StartType                 Property      System.ServiceProcess.ServiceStar...
Status                    Property      System.ServiceProcess.ServiceCont...
ToString                  ScriptMethod  System.Object ToString();

Get-Service -Name w32time | Select-Object -Property *



By default, PowerShell returns four properties as a table and five or more as a list.
However, some commands apply custom formatting to override the default number of
properties displayed in a table. You can use Format-Table  and Format-List  to override
these defaults manually.

Output

Specific properties can also be selected using a comma-separated list as the value of the
Property parameter.

PowerShell

Output

You can use wildcard characters when specifying property names with Select-Object .

In the following example, use Can*  as one of the values for the Property parameter to
return all the properties that start with Can . These include CanPauseAndContinue,
CanShutdown, and CanStop.

PowerShell

Name                : w32time
RequiredServices    : {}
CanPauseAndContinue : False
CanShutdown         : True
CanStop             : True
DisplayName         : Windows Time
DependentServices   : {}
MachineName         : .
ServiceName         : w32time
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Get-Service -Name w32time |
    Select-Object -Property Status, Name, DisplayName, ServiceType

 Status Name    DisplayName                         ServiceType
 ------ ----    -----------                         -----------
Running w32time Windows Time Win32OwnProcess, Win32ShareProcess



Notice there are more properties listed than are displayed by default.

Output

Methods are actions you can perform on an object. Use the MemberType parameter to
narrow down the results of Get-Member  to display only the methods for Get-Service .

PowerShell

As you can see, there are several methods.

Output

Get-Service -Name w32time |
    Select-Object -Property Status, DisplayName, Can*

Status              : Running
DisplayName         : Windows Time
CanPauseAndContinue : False
CanShutdown         : True
CanStop             : True

Methods

Get-Service -Name w32time | Get-Member -MemberType Method

   TypeName: System.ServiceProcess.ServiceController

Name                      MemberType Definition
----                      ---------- ----------
Close                     Method     void Close()
Continue                  Method     void Continue()
CreateObjRef              Method     System.Runtime.Remoting.ObjRef Creat...
Dispose                   Method     void Dispose(), void IDisposable.Dis...
Equals                    Method     bool Equals(System.Object obj)
ExecuteCommand            Method     void ExecuteCommand(int command)
GetHashCode               Method     int GetHashCode()
GetLifetimeService        Method     System.Object GetLifetimeService()
GetType                   Method     type GetType()
InitializeLifetimeService Method     System.Object InitializeLifetimeServ...
Pause                     Method     void Pause()
Refresh                   Method     void Refresh()
Start                     Method     void Start(), void Start(string[] args)
Stop                      Method     void Stop()
WaitForStatus             Method     void WaitForStatus(System.ServicePro...



You can use the Stop method to stop a Windows service. You must run this command
from an elevated PowerShell session.

PowerShell

Query the status of the Windows Time service to confirm it's stopped.

PowerShell

Output

You might use methods sparingly, but you should be aware of them. Sometimes, you
find Get-*  commands without a corresponding Set-*  command. Often, you can find a
method to perform a Set-*  action in this scenario. The Get-SqlAgentJob  cmdlet in the
SqlServer PowerShell module is an excellent example. No corresponding Set-*  cmdlet
exists, but you can use a method to complete the same task. For more information
about the SqlServer PowerShell module and installation instructions, see the SQL Server
PowerShell overview.

Another reason to be aware of methods is some PowerShell users assume you can't
make destructive changes with Get-*  commands, but they can actually cause severe
problems if misused.

A better option is to use a dedicated cmdlet if one exists to perform an action. For
example, use the Start-Service  cmdlet to start the Windows Time service.

By default, Start-Service , like the Start method of Get-Service , doesn't return any
results. However, one of the benefits of using a cmdlet is that it often provides
additional capabilities that aren't available with a method.

In the following example, use the PassThru parameter, which causes a cmdlet that
doesn't typically produce output to generate output.

Since PowerShell doesn't participate in User Access Control (UAC), you must run
commands that require elevation, such as Start-Service , from an elevated PowerShell

(Get-Service -Name w32time).Stop()

Get-Service -Name w32time

Status   Name               DisplayName
------   ----               -----------
Stopped  w32time            Windows Time

https://learn.microsoft.com/en-us/sql/powershell/download-sql-server-ps-module
https://learn.microsoft.com/en-us/sql/powershell/download-sql-server-ps-module


session.

PowerShell

Output

To retrieve information about the PowerShell process running on your lab environment
computer, use the Get-Process  cmdlet.

PowerShell

Output

To determine the available properties, pipe Get-Process  to Get-Member .

PowerShell

When using the Get-Process  command, you might notice that some properties
displayed by default are missing when you view the results of Get-Member . This behavior
is because several of the values shown by default, such as NPM(K) , PM(K) , WS(K) , and
CPU(s) , are calculated properties. You must pipe commands to Get-Member  to determine
their actual property names.

Get-Service -Name w32time | Start-Service -PassThru

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time

７ Note

When working with PowerShell cmdlets, it's important to avoid making
assumptions about their output.

Get-Process -Name powershell

Handles  NPM(K)    PM(K)      WS(K)     CPU(s)     Id  SI ProcessName
-------  ------    -----      -----     ------     --  -- -----------
    710      31    55692      70580       0.72   9436   2 powershell

Get-Process -Name powershell | Get-Member



Output

   TypeName: System.Diagnostics.Process

Name                       MemberType     Definition
----                       ----------     ----------
Handles                    AliasProperty  Handles = Handlecount
Name                       AliasProperty  Name = ProcessName
NPM                        AliasProperty  NPM = NonpagedSystemMemorySize64
PM                         AliasProperty  PM = PagedMemorySize64
SI                         AliasProperty  SI = SessionId
VM                         AliasProperty  VM = VirtualMemorySize64
WS                         AliasProperty  WS = WorkingSet64
Disposed                   Event          System.EventHandler Disposed(Sy...
ErrorDataReceived          Event          System.Diagnostics.DataReceived...
Exited                     Event          System.EventHandler Exited(Syst...
OutputDataReceived         Event          System.Diagnostics.DataReceived...
BeginErrorReadLine         Method         void BeginErrorReadLine()
BeginOutputReadLine        Method         void BeginOutputReadLine()
CancelErrorRead            Method         void CancelErrorRead()
CancelOutputRead           Method         void CancelOutputRead()
Close                      Method         void Close()
CloseMainWindow            Method         bool CloseMainWindow()
CreateObjRef               Method         System.Runtime.Remoting.ObjRef ...
Dispose                    Method         void Dispose(), void IDisposabl...
Equals                     Method         bool Equals(System.Object obj)
GetHashCode                Method         int GetHashCode()
GetLifetimeService         Method         System.Object GetLifetimeService()
GetType                    Method         type GetType()
InitializeLifetimeService  Method         System.Object InitializeLifetim...
Kill                       Method         void Kill()
Refresh                    Method         void Refresh()
Start                      Method         bool Start()
ToString                   Method         string ToString()
WaitForExit                Method         bool WaitForExit(int millisecon...
WaitForInputIdle           Method         bool WaitForInputIdle(int milli...
__NounName                 NoteProperty   string __NounName=Process
BasePriority               Property       int BasePriority {get;}
Container                  Property       System.ComponentModel.IContaine...
EnableRaisingEvents        Property       bool EnableRaisingEvents {get;s...
ExitCode                   Property       int ExitCode {get;}
ExitTime                   Property       datetime ExitTime {get;}
Handle                     Property       System.IntPtr Handle {get;}
HandleCount                Property       int HandleCount {get;}
HasExited                  Property       bool HasExited {get;}
Id                         Property       int Id {get;}
MachineName                Property       string MachineName {get;}
MainModule                 Property       System.Diagnostics.ProcessModul...
MainWindowHandle           Property       System.IntPtr MainWindowHandle ...
MainWindowTitle            Property       string MainWindowTitle {get;}
MaxWorkingSet              Property       System.IntPtr MaxWorkingSet {ge...
MinWorkingSet              Property       System.IntPtr MinWorkingSet {ge...
Modules                    Property       System.Diagnostics.ProcessModul...
NonpagedSystemMemorySize   Property       int NonpagedSystemMemorySize {g...



You can't pipe a command to Get-Member  that doesn't generate output. Because Start-
Service  doesn't produce output by default, attempting to pipe it to Get-Member  results
in an error.

PowerShell

NonpagedSystemMemorySize64 Property       long NonpagedSystemMemorySize64...
PagedMemorySize            Property       int PagedMemorySize {get;}
PagedMemorySize64          Property       long PagedMemorySize64 {get;}
PagedSystemMemorySize      Property       int PagedSystemMemorySize {get;}
PagedSystemMemorySize64    Property       long PagedSystemMemorySize64 {g...
PeakPagedMemorySize        Property       int PeakPagedMemorySize {get;}
PeakPagedMemorySize64      Property       long PeakPagedMemorySize64 {get;}
PeakVirtualMemorySize      Property       int PeakVirtualMemorySize {get;}
PeakVirtualMemorySize64    Property       long PeakVirtualMemorySize64 {g...
PeakWorkingSet             Property       int PeakWorkingSet {get;}
PeakWorkingSet64           Property       long PeakWorkingSet64 {get;}
PriorityBoostEnabled       Property       bool PriorityBoostEnabled {get;...
PriorityClass              Property       System.Diagnostics.ProcessPrior...
PrivateMemorySize          Property       int PrivateMemorySize {get;}
PrivateMemorySize64        Property       long PrivateMemorySize64 {get;}
PrivilegedProcessorTime    Property       timespan PrivilegedProcessorTim...
ProcessName                Property       string ProcessName {get;}
ProcessorAffinity          Property       System.IntPtr ProcessorAffinity...
Responding                 Property       bool Responding {get;}
SafeHandle                 Property       Microsoft.Win32.SafeHandles.Saf...
SessionId                  Property       int SessionId {get;}
Site                       Property       System.ComponentModel.ISite Sit...
StandardError              Property       System.IO.StreamReader Standard...
StandardInput              Property       System.IO.StreamWriter Standard...
StandardOutput             Property       System.IO.StreamReader Standard...
StartInfo                  Property       System.Diagnostics.ProcessStart...
StartTime                  Property       datetime StartTime {get;}
SynchronizingObject        Property       System.ComponentModel.ISynchron...
Threads                    Property       System.Diagnostics.ProcessThrea...
TotalProcessorTime         Property       timespan TotalProcessorTime {get;}
UserProcessorTime          Property       timespan UserProcessorTime {get;}
VirtualMemorySize          Property       int VirtualMemorySize {get;}
VirtualMemorySize64        Property       long VirtualMemorySize64 {get;}
WorkingSet                 Property       int WorkingSet {get;}
WorkingSet64               Property       long WorkingSet64 {get;}
PSConfiguration            PropertySet    PSConfiguration {Name, Id, Prio...
PSResources                PropertySet    PSResources {Name, Id, Handleco...
Company                    ScriptProperty System.Object Company {get=$thi...
CPU                        ScriptProperty System.Object CPU {get=$this.To...
Description                ScriptProperty System.Object Description {get=...
FileVersion                ScriptProperty System.Object FileVersion {get=...
Path                       ScriptProperty System.Object Path {get=$this.M...
Product                    ScriptProperty System.Object Product {get=$thi...
ProductVersion             ScriptProperty System.Object ProductVersion {g...



Output

To avoid this error, specify the PassThru parameter with Start-Service . As previously
mentioned, adding the PassThru parameter causes a cmdlet that doesn't usually
produce output to generate output.

PowerShell

Output

Start-Service -Name w32time | Get-Member

７ Note

To be piped to Get-Member , a command must produce object-based output.

Get-Member : You must specify an object for the Get-Member cmdlet.
At line:1 char:31
+ Start-Service -Name w32time | Get-Member
+                               ~~~~~~~~~~
    + CategoryInfo          : CloseError: (:) [Get-Member], InvalidOperation
   Exception
    + FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Comma
   nds.GetMemberCommand

Start-Service -Name w32time -PassThru | Get-Member

   TypeName: System.ServiceProcess.ServiceController

Name                      MemberType    Definition
----                      ----------    ----------
Name                      AliasProperty Name = ServiceName
RequiredServices          AliasProperty RequiredServices = ServicesDepend...
Disposed                  Event         System.EventHandler Disposed(Syst...
Close                     Method        void Close()
Continue                  Method        void Continue()
CreateObjRef              Method        System.Runtime.Remoting.ObjRef Cr...
Dispose                   Method        void Dispose(), void IDisposable....
Equals                    Method        bool Equals(System.Object obj)
ExecuteCommand            Method        void ExecuteCommand(int command)
GetHashCode               Method        int GetHashCode()
GetLifetimeService        Method        System.Object GetLifetimeService()
GetType                   Method        type GetType()
InitializeLifetimeService Method        System.Object InitializeLifetimeS...
Pause                     Method        void Pause()
Refresh                   Method        void Refresh()



Out-Host  is designed to show output directly in the PowerShell host and doesn't
produce object-based output. As a result, you can't pipe its output to Get-Member , which
requires object-based input.

PowerShell

Output

Knowing the type of object a command produces allows you to search for commands
that accept that type of object as input.

Start                     Method        void Start(), void Start(string[]...
Stop                      Method        void Stop()
WaitForStatus             Method        void WaitForStatus(System.Service...
CanPauseAndContinue       Property      bool CanPauseAndContinue {get;}
CanShutdown               Property      bool CanShutdown {get;}
CanStop                   Property      bool CanStop {get;}
Container                 Property      System.ComponentModel.IContainer ...
DependentServices         Property      System.ServiceProcess.ServiceCont...
DisplayName               Property      string DisplayName {get;set;}
MachineName               Property      string MachineName {get;set;}
ServiceHandle             Property      System.Runtime.InteropServices.Sa...
ServiceName               Property      string ServiceName {get;set;}
ServicesDependedOn        Property      System.ServiceProcess.ServiceCont...
ServiceType               Property      System.ServiceProcess.ServiceType...
Site                      Property      System.ComponentModel.ISite Site ...
StartType                 Property      System.ServiceProcess.ServiceStar...
Status                    Property      System.ServiceProcess.ServiceCont...
ToString                  ScriptMethod  System.Object ToString();

Get-Service -Name w32time | Out-Host | Get-Member

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time

Get-Member : You must specify an object for the Get-Member cmdlet.
At line:1 char:40
+ Get-Service -Name w32time | Out-Host | Get-Member
+                                        ~~~~~~~~~~
    + CategoryInfo          : CloseError: (:) [Get-Member], InvalidOperation
   Exception
    + FullyQualifiedErrorId : NoObjectInGetMember,Microsoft.PowerShell.Comma
   nds.GetMemberCommand

Get-Command



PowerShell

The following commands accept a ServiceController object via pipeline or parameter
input.

Output

To identify the commands added to the ActiveDirectory PowerShell module after you
install RSAT, use Get-Command  combined with the Module parameter. The following
example lists all the commands available in the ActiveDirectory module.

PowerShell

The ActiveDirectory PowerShell module added a total of 147 commands.

Have you observed the naming convention of these commands? The nouns in the
command names are prefixed with AD to avoid potential naming conflicts with
commands in other modules. This prefixing is a common practice among PowerShell
modules.

Output

Get-Command -ParameterType ServiceController

CommandType     Name                                               Version
-----------     ----                                               -------
Cmdlet          Get-Service                                        3.1.0.0
Cmdlet          Restart-Service                                    3.1.0.0
Cmdlet          Resume-Service                                     3.1.0.0
Cmdlet          Set-Service                                        3.1.0.0
Cmdlet          Start-Service                                      3.1.0.0
Cmdlet          Stop-Service                                       3.1.0.0
Cmdlet          Suspend-Service                                    3.1.0.0

Active Directory

７ Note

As mentioned in the chapter prerequisites, ensure you have RSAT installed for this
section. Additionally, your lab environment computer must be a member of your
lab environment Active Directory domain.

Get-Command -Module ActiveDirectory



By default, the Get-ADUser  cmdlet retrieves a limited set of properties for user objects
and limits its output to the first 1,000 users. This constraint is a performance
optimization designed to avoid overwhelming Active Directory with excessive data
retrieval.

PowerShell

Even if you only have a basic understanding of Active Directory, you might recognize
that a user account has more properties than those shown in the example.

Output

The Get-ADUser  cmdlet includes a Properties parameter to specify additional properties
beyond the defaults you want to retrieve. To return all properties, use the *  wildcard
character as the parameter value.

CommandType     Name                                               Version
-----------     ----                                               -------
Cmdlet          Add-ADCentralAccessPolicyMember                    1.0.1.0
Cmdlet          Add-ADComputerServiceAccount                       1.0.1.0
Cmdlet          Add-ADDomainControllerPasswordReplicationPolicy    1.0.1.0
Cmdlet          Add-ADFineGrainedPasswordPolicySubject             1.0.1.0
Cmdlet          Add-ADGroupMember                                  1.0.1.0
Cmdlet          Add-ADPrincipalGroupMembership                     1.0.1.0
Cmdlet          Add-ADResourcePropertyListMember                   1.0.1.0
Cmdlet          Clear-ADAccountExpiration                          1.0.1.0
Cmdlet          Clear-ADClaimTransformLink                         1.0.1.0
Cmdlet          Disable-ADAccount                                  1.0.1.0
...

Get-ADUser -Identity mike | Get-Member -MemberType Properties

   TypeName: Microsoft.ActiveDirectory.Management.ADUser

Name              MemberType Definition                                     
----              ---------- ----------                                     
DistinguishedName Property   System.String DistinguishedName {get;set;}     
Enabled           Property   System.Boolean Enabled {get;set;}              
GivenName         Property   System.String GivenName {get;set;}             
Name              Property   System.String Name {get;}                      
ObjectClass       Property   System.String ObjectClass {get;set;}           
ObjectGUID        Property   System.Nullable`1[[System.Guid, mscorlib, Ve...
SamAccountName    Property   System.String SamAccountName {get;set;}        
SID               Property   System.Security.Principal.SecurityIdentifier...
Surname           Property   System.String Surname {get;set;}               
UserPrincipalName Property   System.String UserPrincipalName {get;set;}



PowerShell

Output

Get-ADUser -Identity mike -Properties * | Get-Member -MemberType Properties

   TypeName: Microsoft.ActiveDirectory.Management.ADUser

Name                                 MemberType Definition                  
----                                 ---------- ----------                  
AccountExpirationDate                Property   System.DateTime AccountEx...
accountExpires                       Property   System.Int64 accountExpir...
AccountLockoutTime                   Property   System.DateTime AccountLo...
AccountNotDelegated                  Property   System.Boolean AccountNot...
AllowReversiblePasswordEncryption    Property   System.Boolean AllowRever...
AuthenticationPolicy                 Property   Microsoft.ActiveDirectory...
AuthenticationPolicySilo             Property   Microsoft.ActiveDirectory...
BadLogonCount                        Property   System.Int32 BadLogonCoun...
badPasswordTime                      Property   System.Int64 badPasswordT...
badPwdCount                          Property   System.Int32 badPwdCount ...
CannotChangePassword                 Property   System.Boolean CannotChan...
CanonicalName                        Property   System.String CanonicalNa...
Certificates                         Property   Microsoft.ActiveDirectory...
City                                 Property   System.String City {get;s...
CN                                   Property   System.String CN {get;}     
codePage                             Property   System.Int32 codePage {ge...
Company                              Property   System.String Company {ge...
CompoundIdentitySupported            Property   Microsoft.ActiveDirectory...
Country                              Property   System.String Country {ge...
countryCode                          Property   System.Int32 countryCode ...
Created                              Property   System.DateTime Created {...
createTimeStamp                      Property   System.DateTime createTim...
Deleted                              Property   System.Boolean Deleted {g...
Department                           Property   System.String Department ...
Description                          Property   System.String Description...
DisplayName                          Property   System.String DisplayName...
DistinguishedName                    Property   System.String Distinguish...
Division                             Property   System.String Division {g...
DoesNotRequirePreAuth                Property   System.Boolean DoesNotReq...
dSCorePropagationData                Property   Microsoft.ActiveDirectory...
EmailAddress                         Property   System.String EmailAddres...
EmployeeID                           Property   System.String EmployeeID ...
EmployeeNumber                       Property   System.String EmployeeNum...
Enabled                              Property   System.Boolean Enabled {g...
Fax                                  Property   System.String Fax {get;set;}
GivenName                            Property   System.String GivenName {...
HomeDirectory                        Property   System.String HomeDirecto...
HomedirRequired                      Property   System.Boolean HomedirReq...
HomeDrive                            Property   System.String HomeDrive {...
HomePage                             Property   System.String HomePage {g...
HomePhone                            Property   System.String HomePhone {...
Initials                             Property   System.String Initials {g...
instanceType                         Property   System.Int32 instanceType...



isDeleted                            Property   System.Boolean isDeleted ...
KerberosEncryptionType               Property   Microsoft.ActiveDirectory...
LastBadPasswordAttempt               Property   System.DateTime LastBadPa...
LastKnownParent                      Property   System.String LastKnownPa...
lastLogoff                           Property   System.Int64 lastLogoff {...
lastLogon                            Property   System.Int64 lastLogon {g...
LastLogonDate                        Property   System.DateTime LastLogon...
lastLogonTimestamp                   Property   System.Int64 lastLogonTim...
LockedOut                            Property   System.Boolean LockedOut ...
logonCount                           Property   System.Int32 logonCount {...
LogonWorkstations                    Property   System.String LogonWorkst...
Manager                              Property   System.String Manager {ge...
MemberOf                             Property   Microsoft.ActiveDirectory...
MNSLogonAccount                      Property   System.Boolean MNSLogonAc...
MobilePhone                          Property   System.String MobilePhone...
Modified                             Property   System.DateTime Modified ...
modifyTimeStamp                      Property   System.DateTime modifyTim...
msDS-User-Account-Control-Computed   Property   System.Int32 msDS-User-Ac...
Name                                 Property   System.String Name {get;}   
nTSecurityDescriptor                 Property   System.DirectoryServices....
ObjectCategory                       Property   System.String ObjectCateg...
ObjectClass                          Property   System.String ObjectClass...
ObjectGUID                           Property   System.Nullable`1[[System...
objectSid                            Property   System.Security.Principal...
Office                               Property   System.String Office {get...
OfficePhone                          Property   System.String OfficePhone...
Organization                         Property   System.String Organizatio...
OtherName                            Property   System.String OtherName {...
PasswordExpired                      Property   System.Boolean PasswordEx...
PasswordLastSet                      Property   System.DateTime PasswordL...
PasswordNeverExpires                 Property   System.Boolean PasswordNe...
PasswordNotRequired                  Property   System.Boolean PasswordNo...
POBox                                Property   System.String POBox {get;...
PostalCode                           Property   System.String PostalCode ...
PrimaryGroup                         Property   System.String PrimaryGrou...
primaryGroupID                       Property   System.Int32 primaryGroup...
PrincipalsAllowedToDelegateToAccount Property   Microsoft.ActiveDirectory...
ProfilePath                          Property   System.String ProfilePath...
ProtectedFromAccidentalDeletion      Property   System.Boolean ProtectedF...
pwdLastSet                           Property   System.Int64 pwdLastSet {...
SamAccountName                       Property   System.String SamAccountN...
sAMAccountType                       Property   System.Int32 sAMAccountTy...
ScriptPath                           Property   System.String ScriptPath ...
sDRightsEffective                    Property   System.Int32 sDRightsEffe...
ServicePrincipalNames                Property   Microsoft.ActiveDirectory...
SID                                  Property   System.Security.Principal...
SIDHistory                           Property   Microsoft.ActiveDirectory...
SmartcardLogonRequired               Property   System.Boolean SmartcardL...
sn                                   Property   System.String sn {get;set;} 
State                                Property   System.String State {get;...
StreetAddress                        Property   System.String StreetAddre...
Surname                              Property   System.String Surname {ge...
Title                                Property   System.String Title {get;...
TrustedForDelegation                 Property   System.Boolean TrustedFor...
TrustedToAuthForDelegation           Property   System.Boolean TrustedToA...



The default configuration for retrieving Active Directory user account properties is
intentionally limited to avoid performance issues. Trying to return every property for
every user account in your production Active Directory environment could severely
degrade the performance of your domain controllers and network. Usually, you only
need specific properties for certain users. However, returning all properties for a single
user is reasonable when identifying the available properties.

It's not uncommon to run a command multiple times when prototyping it. If you
anticipate running a resource-intensive query when prototyping a command, consider
executing it once and storing the results in a variable. Then, you can work with the
variable's contents more efficiently than repeatedly executing a resource-intensive
query.

For example, the following command retrieves all properties for a user account and
stores the results in a variable named $Users . Work with the contents of the $Users
variable instead of running the Get-ADUser  command multiple times. Remember, the
variable's contents don't update automatically when a user's information changes in
Active Directory.

PowerShell

You can explore the available properties by piping the $Users  variable to Get-Member .

PowerShell

To view specific properties such as Name, LastLogonDate, and
LastBadPasswordAttempt, pipe the $Users  variable to Select-Object . This method
displays the desired properties and their values based on the contents of the $Users
variable, eliminating the need for multiple queries to Active Directory. It's a more
resource-efficient approach than repeatedly executing the Get-ADUser  command.

UseDESKeyOnly                        Property   System.Boolean UseDESKeyO...
userAccountControl                   Property   System.Int32 userAccountC...
userCertificate                      Property   Microsoft.ActiveDirectory...
UserPrincipalName                    Property   System.String UserPrincip...
uSNChanged                           Property   System.Int64 uSNChanged {...
uSNCreated                           Property   System.Int64 uSNCreated {...
whenChanged                          Property   System.DateTime whenChang...
whenCreated                          Property   System.DateTime whenCreat...

$Users = Get-ADUser -Identity mike -Properties *

$Users | Get-Member -MemberType Properties



PowerShell

When you query Active Directory, filter the data at the source using the Properties
parameter of Get-ADUser  to return only the necessary properties.

PowerShell

Output

In this chapter, you learned how to determine what type of object a command produces,
what properties and methods are available for a command, and how to work with
commands that limit the properties returned by default.

1. What type of object does the Get-Process  cmdlet produce?
2. How do you determine what the available properties are for a command?
3. What should you check for if a command exists to get something but not to set

the same thing?
4. How can some commands that don't return output by default be made to

generate output?
5. What should you consider doing when prototyping a command that produces a

large amount of output?

$Users | Select-Object -Property Name, LastLogonDate, LastBadPasswordAttempt

Get-ADUser -Identity mike -Properties LastLogonDate, LastBadPasswordAttempt

DistinguishedName      : CN=Mike F. Robbins,CN=Users,DC=mikefrobbins,DC=com
Enabled                : True
GivenName              : Mike
LastBadPasswordAttempt :
LastLogonDate          : 11/14/2023 5:10:16 AM
Name                   : Mike F. Robbins
ObjectClass            : user
ObjectGUID             : 11c7b61f-46c3-4399-9ed0-ff4e453bc2a2
SamAccountName         : mike
SID                    : S-1-5-21-611971124-518002951-3581791498-1105
Surname                : Robbins
UserPrincipalName      : μ@mikefrobbins.com

Summary

Review



Get-Member
Viewing Object Structure (Get-Member)
about_Objects
about_Properties
about_Methods
No PowerShell Cmdlet to Start or Stop Something? Don't Forget to Check for
Methods on the Get Cmdlets

In the next chapter, you'll learn about one-liners and the pipeline.

References

Next steps

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member
https://learn.microsoft.com/en-us/powershell/scripting/samples/viewing-object-structure--get-member-
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_objects
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_properties
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_methods
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/
https://mikefrobbins.com/2016/12/15/no-powershell-cmdlet-to-start-or-stop-something-dont-forget-to-check-for-methods-on-the-get-cmdlets/


Chapter 4 - One-Liners and the pipeline
Article • 01/08/2025

When I started learning PowerShell, I initially relied on the Graphical User Interface (GUI)
for tasks that seemed too complex for simple PowerShell commands. However, as I
continued to learn, I improved my skills and moved from basic one-liners to creating
scripts, functions, and modules. It's important to remember that feeling overwhelmed by
advanced examples online is normal. No one starts as an expert in PowerShell; we all
start as beginners.

For those who primarily use the GUI for administrative tasks, install the management
tools on your administrative workstation to remotely manage your servers. Whether
your server uses a GUI or the Server Core OS installation, this approach is beneficial. It's
a practical way to familiarize yourself with remote server management in preparation for
performing administrative tasks with PowerShell.

As with the previous chapters, try these concepts in your lab environment.

A PowerShell one-liner is one continuous pipeline. It's a common misconception that a
command on one physical line is a PowerShell one-liner, but this isn't always true.

For instance, consider the following example: the command extends over multiple
physical lines, yet it's a PowerShell one-liner because it forms a continuous pipeline.
Line-breaking a lengthy one-liner at the pipe symbol, a natural breaking point in
PowerShell, is recommended to enhance readability and clarity. This strategic use of line
breaks improves readability without disrupting the flow of the pipeline.

PowerShell

Output

One-Liners

Get-Service |
    Where-Object CanPauseAndContinue -EQ $true |
    Select-Object -Property *

Name                : LanmanWorkstation
RequiredServices    : {NSI, MRxSmb20, Bowser}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Workstation



DependentServices   : {SessionEnv, Netlogon}
MachineName         : .
ServiceName         : LanmanWorkstation
ServicesDependedOn  : {NSI, MRxSmb20, Bowser}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Automatic
Site                :
Container           :

Name                : Netlogon
RequiredServices    : {LanmanWorkstation}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Netlogon
DependentServices   : {}
MachineName         : .
ServiceName         : Netlogon
ServicesDependedOn  : {LanmanWorkstation}
ServiceHandle       :
Status              : Running
ServiceType         : Win32ShareProcess
StartType           : Automatic
Site                :
Container           :

Name                : vmicheartbeat
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Hyper-V Heartbeat Service
DependentServices   : {}
MachineName         : .
ServiceName         : vmicheartbeat
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Name                : vmickvpexchange
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Hyper-V Data Exchange Service
DependentServices   : {}
MachineName         : .
ServiceName         : vmickvpexchange
ServicesDependedOn  : {}



ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Name                : vmicrdv
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Hyper-V Remote Desktop Virtualization Service
DependentServices   : {}
MachineName         : .
ServiceName         : vmicrdv
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Name                : vmicshutdown
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Hyper-V Guest Shutdown Service
DependentServices   : {}
MachineName         : .
ServiceName         : vmicshutdown
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Name                : vmicvss
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : False
CanStop             : True
DisplayName         : Hyper-V Volume Shadow Copy Requestor
DependentServices   : {}
MachineName         : .
ServiceName         : vmicvss
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual



Site                :
Container           :

Name                : webthreatdefsvc
RequiredServices    : {RpcSs, wtd}
CanPauseAndContinue : True
CanShutdown         : True
CanStop             : True
DisplayName         : Web Threat Defense Service
DependentServices   : {}
MachineName         : .
ServiceName         : webthreatdefsvc
ServicesDependedOn  : {RpcSs, wtd}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :

Name                : webthreatdefusersvc_644de
RequiredServices    : {}
CanPauseAndContinue : True
CanShutdown         : True
CanStop             : True
DisplayName         : Web Threat Defense User Service_644de
DependentServices   : {}
MachineName         : .
ServiceName         : webthreatdefusersvc_644de
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : 240
StartType           : Automatic
Site                :
Container           :

Name                : Winmgmt
RequiredServices    : {RPCSS}
CanPauseAndContinue : True
CanShutdown         : True
CanStop             : True
DisplayName         : Windows Management Instrumentation
DependentServices   : {}
MachineName         : .
ServiceName         : Winmgmt
ServicesDependedOn  : {RPCSS}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Automatic
Site                :
Container           :



Natural line breaks can occur at commonly used characters, including comma ( , ) and
opening brackets ( [ ), braces ( { ), and parenthesis ( ( ). Others that aren't so common
include the semicolon ( ; ), equals sign ( = ), and both opening single and double quotes
( ' , " ).

Using the backtick ( ` ) or grave accent character as a line continuation is controversial.
It's best to avoid it if possible. Using a backtick following a natural line break character is
a common mistake. This redundancy is unnecessary and can clutter the code.

The commands in the following example execute correctly from the PowerShell console.
However, attempting to run them in the console pane of the PowerShell Integrated
Scripting Environment (ISE) results in an error. This difference occurs because, unlike the
PowerShell console, the console pane of the ISE doesn't automatically anticipate the
continuation of a command onto the next line. To prevent this issue, press Shift + Enter

in the console pane of the ISE instead of Enter  when you need to extend a command
across multiple lines. This key combination signals to the ISE that the command is
continuing on the following line, preventing the execution that leads to errors.

PowerShell

Output

This next example doesn't qualify as a PowerShell one-liner because it's not one
continuous pipeline. Instead, it's two separate commands placed on a single line,

Get-Service -Name w32time |
    Select-Object -Property *

Name                : w32time
RequiredServices    : {}
CanPauseAndContinue : False
CanShutdown         : True
CanStop             : True
DisplayName         : Windows Time
DependentServices   : {}
MachineName         : .
ServiceName         : w32time
ServicesDependedOn  : {}
ServiceHandle       :
Status              : Running
ServiceType         : Win32OwnProcess, Win32ShareProcess
StartType           : Manual
Site                :
Container           :



separated by a semicolon. This semicolon indicates the end of one command and the
beginning of another.

PowerShell

Output

Many programming and scripting languages require a semicolon at the end of each line.
However, in PowerShell, semicolons at the end of lines are unnecessary and not
recommended. You should avoid them for cleaner and more readable code.

This chapter demonstrates how to filter the results of various commands.

It's a best practice in PowerShell to filter the results as early as possible in the pipeline.
Achieving this involves applying filters using parameters on the initial command, usually
at the beginning of the pipeline. This is commonly referred to as filtering left.

To illustrate this concept, consider the following example: Use the Name parameter of
Get-Service  to filter the results at the beginning of the pipeline, returning only the
details for the Windows Time service. This method demonstrates efficient data retrieval,
ensuring you only return the necessary and relevant information.

PowerShell

Output

It's common to see online examples of a PowerShell command being piped to the
Where-Object  cmdlet to filter its results. This technique is inefficient if an earlier
command in the pipeline has a parameter to perform the filtering.

$Service = 'w32time'; Get-Service -Name $Service

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time

Filter Left

Get-Service -Name w32time

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time



PowerShell

Output

The first example demonstrates filtering directly at the source, returning results
specifically for the Windows Time service. In contrast, the second example retrieves all
services and then uses another command to filter the results. This might seem
insignificant in small-scale scenarios, but consider a situation involving a large dataset,
like Active Directory. It's inefficient to retrieve details for thousands of user accounts
only to narrow them down to a small subset. Practice filtering left — applying filters as
early as possible in the command sequence — even in seemingly trivial cases. This habit
ensures efficiency in more complex scenarios where it becomes more important.

There's a misconception that the order of commands in PowerShell is inconsequential,
but this is a misunderstanding. The sequence in which you arrange commands,
particularly when filtering, is important. For example, suppose you're using Select-
Object  to choose specific properties and Where-Object  to filter. In that case, it's essential
to apply the filtering first. Failing to do so means the necessary properties might not be
available in the pipeline for filtering, leading to ineffective or erroneous results.

The following example fails to produce results because the CanPauseAndContinue
property is absent when Select-Object  is piped to Where-Object . This is because the
CanPauseAndContinue property wasn't included in the selection made by Select-
Object . Effectively, it's excluded or filtered out.

PowerShell

Reversing the order of Select-Object  and Where-Object  produces the desired results.

PowerShell

Get-Service | Where-Object Name -EQ w32time

Status   Name               DisplayName
------   ----               -----------
Running  W32Time            Windows Time

Command sequencing for effective filtering

Get-Service |
    Select-Object -Property DisplayName, Running, Status |
    Where-Object CanPauseAndContinue



Output

As seen in many examples throughout this book, you can often use the output of one
command as input for another command. In Chapter 3, Get-Member  was used to
determine what type of object a command produces.

Chapter 3 also showed using the ParameterType parameter of Get-Command  to
determine what commands accepted that type of input. Depending on how thorough
help for a command is, it might include an INPUTS and OUTPUTS section.

The INPUTS section indicates that you can pipe a ServiceController or a String object to
the Stop-Service  cmdlet.

PowerShell

The following output is abbreviated to show the relevant portion of the help.

Output

Get-Service |
    Where-Object CanPauseAndContinue |
    Select-Object -Property DisplayName, Status

DisplayName                                    Status
-----------                                    ------
Workstation                                   Running
Netlogon                                      Running
Hyper-V Heartbeat Service                     Running
Hyper-V Data Exchange Service                 Running
Hyper-V Remote Desktop Virtualization Service Running
Hyper-V Guest Shutdown Service                Running
Hyper-V Volume Shadow Copy Requestor          Running
Web Threat Defense Service                    Running
Web Threat Defense User Service_644de         Running
Windows Management Instrumentation            Running

The Pipeline

help Stop-Service -Full

...
INPUTS
    System.ServiceProcess.ServiceController
        You can pipe a service object to this cmdlet.



However, it doesn't specify which parameters accept this type of input. You can
determine that information by checking the different parameters in the full version of
the help for the Stop-Service  cmdlet.

PowerShell

Once again, only the relevant help is shown in the following results. Notice that the
DisplayName parameter doesn't accept pipeline input. The InputObject parameter
accepts pipeline input by value for ServiceController objects. The Name parameter
accepts pipeline input by value for String objects and pipeline input by property name.

Output

    System.String
        You can pipe a string that contains the name of a service to this
        cmdlet.

OUTPUTS
    None
        By default, this cmdlet returns no output.

    System.ServiceProcess.ServiceController
        When you use the PassThru parameter, this cmdlet returns a
        ServiceController object representing the service.
...

help Stop-Service -Full

...
-DisplayName <System.String[]>
    Specifies the display names of the services to stop. Wildcard
    characters are permitted.

    Required?                    true
    Position?                    named
    Default value                None
    Accept pipeline input?       False
    Accept wildcard characters?  true

-InputObject <System.ServiceProcess.ServiceController[]>
    Specifies ServiceController objects that represent the services to
    stop. Enter a variable that contains the objects, or type a command
    or expression that gets the objects.

    Required?                    true
    Position?                    0
    Default value                None
    Accept pipeline input?       True (ByValue)
    Accept wildcard characters?  false



When handling pipeline input, a parameter that accepts pipeline input both by property
name and by value prioritizes by value binding first. If this method fails, it attempts to
process pipeline input by property name. However, the term by value can be
misleading. A more accurate description is by type.

For instance, if you pipe the output of a command that generates a ServiceController
object to Stop-Service , this output is bound to the InputObject parameter. If the piped
command produces a String object, it associates the output with the Name parameter.
If you pipe output from a command that doesn't produce a ServiceController or String
object, but does include a property named Name, Stop-Service  binds the value of the
Name property to its Name parameter.

Determine what type of output the Get-Service  command produces.

PowerShell

Get-Service  produces a ServiceController object type.

Output

As shown in the help for Stop-Service  cmdlet, the InputObject parameter accepts
ServiceController objects through the pipeline by value. This implies that when you
pipe the output of the Get-Service  cmdlet to Stop-Service , the ServiceController
objects produced by Get-Service  bind to the InputObject parameter of Stop-Service .

PowerShell

-Name <System.String[]>
    Specifies the service names of the services to stop. Wildcard
    characters are permitted.

    Required?                    true
    Position?                    0
    Default value                None
    Accept pipeline input?       True (ByPropertyName, ByValue)
    Accept wildcard characters?  true
...

Get-Service -Name w32time | Get-Member

   TypeName: System.ServiceProcess.ServiceController

Get-Service -Name w32time | Stop-Service



Now try string input. Pipe w32time  to Get-Member  to confirm that it's a string.

PowerShell

Output

The PowerShell help documentation illustrates that when you pipe a string to Stop-
Service , it binds to the Name parameter by value. Conduct a practical test to see this in
action: pipe the string w32time  to Stop-Service . This example demonstrates how Stop-
Service  processes the string w32time  as the name of the service to stop. Execute the
following command to observe this binding and command execution in action.

Notice that w32time  is enclosed in single quotes. In PowerShell, it's a best practice to use
single quotes for static strings, reserving double quotes for situations where the string
contains variables that require expansion. Single quotes tell PowerShell to treat the
content literally without parsing for variables. This approach not only ensures accuracy
in how your script interprets the string but also enhances performance, as PowerShell
expends less processing effort on strings within single quotes.

PowerShell

Create a custom object to test pipeline input by property name for the Name parameter
of Stop-Service .

PowerShell

The contents of the CustomObject variable is a PSCustomObject object type and it
contains a property named Name.

PowerShell

'w32time' | Get-Member

   TypeName: System.String

'w32time' | Stop-Service

$customObject = [pscustomobject]@{
    Name = 'w32time'
}

$customObject | Get-Member



Output

When working with variables in PowerShell, such as $customObject  in this example, it's
important to use double quotes if you need to enclose the variable in quotes. Double
quotes allow for variable expansion — PowerShell evaluates the variable and uses its
value. For example, if you enclose $customObject  in double quotes and pipe it to Get-
Member , PowerShell processes the value of $customObject . In contrast, using single
quotes would result in piping the literal string $customObject  to Get-Member , not the
value of the variable. This distinction is important for scenarios where you need to
evaluate the value of variables.

When piping the contents of the $customObject  variable to the Stop-Service  cmdlet,
the binding to the Name parameter occurs by property name rather than by value. This
is because $customObject  is an object that contains a property named Name. In this
scenario, PowerShell identifies the Name property within $customObject  and uses its
value for the Name parameter of Stop-Service .

Create another custom object using a different property name, such as Service.

PowerShell

An error occurs while trying to stop the w32time  service by piping $customObject  to
Stop-Service . The pipeline binding fails because $customObject  doesn't produce a
ServiceController or String object and doesn't contain a Name property.

PowerShell

Output

   TypeName: System.Management.Automation.PSCustomObject

Name        MemberType   Definition
----        ----------   ----------
Equals      Method       bool Equals(System.Object obj)
GetHashCode Method       int GetHashCode()
GetType     Method       type GetType()
ToString    Method       string ToString()
Name        NoteProperty string Name=w32time

$customObject = [pscustomobject]@{
    Service = 'w32time'
}

$customObject | Stop-Service



When the output property names of one command don't match the pipeline input
requirements of another command, you can use Select-Object  to rename the property
names so they line up correctly.

In the following example, use Select-Object  to rename the Service property to a
property named Name.

At first glance, the syntax of this example might appear complex. However, it's essential
to understand that more than copying and pasting code is required to learn the syntax.
Instead, take the time to type out the code manually. This hands-on practice helps you
remember the syntax, and it becomes more intuitive with repeated effort. Utilizing
multiple monitors or split screen can also aid in the learning process. Display the
example code on one screen while actively typing and experimenting with it on another.
This setup makes it easier to follow along and enhances your understanding and
retention of the syntax.

PowerShell

There are instances where you might need to use a parameter that doesn't accept
pipeline input. In such cases, you can still use the output of one command as the input
for another. First, capture and save the display names of a few specific Windows services
into a text file. This step allows you to use the saved data as input for another command.

PowerShell

You can use parentheses to pass the output of one command as input for a parameter
to another command.

Stop-Service : Cannot find any service with service name
'@{Service=w32time}'.
At line:1 char:17
+ $customObject | Stop-Service
+                 ~~~~~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (@{Service=w32time}:String) [
   Stop-Service], ServiceCommandException
    + FullyQualifiedErrorId : NoServiceFoundForGivenName,Microsoft.PowerShe
   ll.Commands.StopServiceCommand

$customObject |
    Select-Object -Property @{Name='Name';Expression={$_.Service}} |
    Stop-Service

'Background Intelligent Transfer Service', 'Windows Time' |
    Out-File -FilePath $env:TEMP\services.txt



PowerShell

This concept is like the order of operations in Algebra. Just as mathematical operations
within parentheses are computed first, the command enclosed in parentheses is
executed before the outer command.

PowerShellGet, a module included with PowerShell version 5.0 and higher, provides
commands to discover, install, update, and publish PowerShell modules and other items
in a NuGet repository. For those using PowerShell version 3.0 and above, PowerShellGet
is also available as a separate download.

The PowerShell Gallery  is an online repository hosted by Microsoft, designed as a
central hub for sharing PowerShell modules, scripts, and other resources. While
Microsoft hosts the PowerShell Gallery, the PowerShell community contributes most of
the available modules and scripts. Given the source of these modules and scripts,
exercise caution before integrating any code from the PowerShell Gallery into your
environment. Review and test downloads from the PowerShell Gallery in an isolated test
environment. This process ensures the code is secure and reliable, works as expected,
and safeguards your environment from potential issues or vulnerabilities arising from
unvetted code.

Many organizations opt to establish their own internal, private NuGet repository. This
repository serves a dual purpose. First, it acts as a secure location for storing modules
developed in-house, intended solely for internal use. Secondly, it provides a vetted
collection of modules sourced externally, including those from public repositories.
Companies typically undertake a thorough validation process before adding these
external modules to the internal repository. This process is important to ensure the
modules are free from malicious content and align with the security and operational
standards of the company.

Use the Find-Module  cmdlet that's part of the PowerShellGet module to find a module
in the PowerShell Gallery that I wrote named MrToolkit.

PowerShell

Output

Stop-Service -DisplayName (Get-Content -Path $env:TEMP\services.txt)

PowerShellGet

Find-Module -Name MrToolkit

https://www.powershellgallery.com/
https://www.powershellgallery.com/


The first time you use one of the commands from the PowerShellGet module, you're
prompted to install the NuGet provider.

To install the MrToolkit module, pipe the previous command to Install-Module .

PowerShell

Output

Since the PowerShell Gallery is an untrusted repository, it prompts you to approve the
installation of the module.

The MrToolkit module includes a function named Get-MrPipelineInput . This cmdlet is
designed to provide users with a convenient method for identifying the parameters of a
command capable of accepting pipeline input. Specifically, it reveals three key aspects:

Which parameters of a command can receive pipeline input
The type of object each parameter accepts
Whether they accept pipeline input by value or by property name

NuGet provider is required to continue
PowerShellGet requires NuGet provider version '2.8.5.201' or newer to
interact with NuGet-based repositories. The NuGet provider must be available
 in 'C:\Program Files\PackageManagement\ProviderAssemblies' or
'C:\Users\mikefrobbins\AppData\Local\PackageManagement\ProviderAssemblies'.
You can also install the NuGet provider by running 'Install-PackageProvider
-Name NuGet -MinimumVersion 2.8.5.201 -Force'. Do you want PowerShellGet to
install and import the NuGet provider now?
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is "Y"):

Version    Name                      Repository        Description
-------    ----                      ----------        -----------
1.3        MrToolkit                 PSGallery         Misc PowerShell Tools

Find-Module -Name MrToolkit | Install-Module -Scope CurrentUser

Untrusted repository
You are installing the modules from an untrusted repository. If you trust
this repository, change its InstallationPolicy value by running the
Set-PSRepository cmdlet. Are you sure you want to install the modules from
'https://www.powershellgallery.com/api/v2'?
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "N"):y

Finding pipeline input the easy way



This capability dramatically simplifies the process of understanding and utilizing the
pipeline capabilities of PowerShell commands.

The information previously obtained by analyzing the help documentation can be
determined using this function.

PowerShell

Output

In this chapter, you learned about the intricacies of PowerShell one-liners. You also
learned that the physical line count of a command is irrelevant to its classification as a
PowerShell one-liner. Additionally, you learned about key concepts such as filtering left,
the pipeline, and PowerShellGet.

1. What's a PowerShell one-liner?
2. What are some characters where natural line breaks can occur in PowerShell?
3. Why should you filter left?
4. What are the two ways that a PowerShell command can accept pipeline input?
5. Why shouldn't you trust commands found in the PowerShell Gallery?

about_Pipelines
about_Command_Syntax
about_Parameters

Get-MrPipelineInput -Name Stop-Service | Format-List

ParameterName                   : InputObject
ParameterType                   : System.ServiceProcess.ServiceController[]
ValueFromPipeline               : True
ValueFromPipelineByPropertyName : False

ParameterName                   : Name
ParameterType                   : System.String[]
ValueFromPipeline               : True
ValueFromPipelineByPropertyName : True

Summary

Review

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_command_syntax
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_parameters


PowerShellGet: The BIG EASY way to discover, install, and update PowerShell
modules

In the next chapter, you'll learn about formatting, aliases, providers, and comparison
operators.

Next steps

https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/
https://mikefrobbins.com/2015/04/23/powershellget-the-big-easy-way-to-discover-install-and-update-powershell-modules/


Chapter 5 - Formatting, aliases,
providers, comparison
Article • 01/09/2025

The SqlServer PowerShell module is required by some examples shown in this chapter.
For more information about the SqlServer PowerShell module and installation
instructions, see SQL Server PowerShell overview. It's also used in subsequent chapters.
Download and install it on your Windows lab environment computer.

In Chapter 4, you learned to filter as far to the left as possible. The rule for manually
formatting a command's output is similar to that rule, except it needs to occur as far to
the right as possible.

The most common format commands are Format-Table  and Format-List . Format-Wide
and Format-Custom  can also be used, but are less common.

As mentioned in Chapter 3, a command that returns more than four properties defaults
to a list unless custom formatting is used.

PowerShell

Output

Use the Format-Table  cmdlet to manually override the formatting and show the output
in a table instead of a list.

PowerShell

Prerequisites

Format Right

Get-Service -Name w32time |
    Select-Object -Property Status, DisplayName, Can*

Status              : Running
DisplayName         : Windows Time
CanPauseAndContinue : False
CanShutdown         : True
CanStop             : True

https://learn.microsoft.com/en-us/sql/powershell/download-sql-server-ps-module


Output

The default output for Get-Service  is three properties in a table.

PowerShell

Output

Use the Format-List  cmdlet to override the default formatting and return the results in
a list.

PowerShell

Notice that simply piping Get-Service  to Format-List  made it return additional
properties. This doesn't occur with every command because of how the format for that
particular command is set up behind the scenes.

Output

Get-Service -Name w32time |
    Select-Object -Property Status, DisplayName, Can* |
    Format-Table

Status  DisplayName  CanPauseAndContinue CanShutdown CanStop
------  -----------  ------------------- ----------- -------
Running Windows Time               False        True    True

Get-Service -Name w32time

Status   Name               DisplayName
------   ----               -----------
Running  w32time            Windows Time

Get-Service -Name w32time | Format-List

Name                : w32time
DisplayName         : Windows Time
Status              : Running
DependentServices   : {}
ServicesDependedOn  : {}
CanPauseAndContinue : False
CanShutdown         : True
CanStop             : True
ServiceType         : Win32OwnProcess, Win32ShareProcess



The number one thing to be aware of with the format cmdlets is they produce format
objects that are different than normal objects in PowerShell.

PowerShell

Output

Get-Service -Name w32time | Format-List | Get-Member

   TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatStartData

Name                                    MemberType Definition
----                                    ---------- ----------
Equals                                  Method     bool Equals(System.Obj...
GetHashCode                             Method     int GetHashCode()
GetType                                 Method     type GetType()
ToString                                Method     string ToString()
autosizeInfo                            Property   Microsoft.PowerShell.C...
ClassId2e4f51ef21dd47e99d3c952918aff9cd Property   string ClassId2e4f51ef...
groupingEntry                           Property   Microsoft.PowerShell.C...
pageFooterEntry                         Property   Microsoft.PowerShell.C...
pageHeaderEntry                         Property   Microsoft.PowerShell.C...
shapeInfo                               Property   Microsoft.PowerShell.C...

   TypeName: Microsoft.PowerShell.Commands.Internal.Format.GroupStartData

Name                                    MemberType Definition
----                                    ---------- ----------
Equals                                  Method     bool Equals(System.Obj...
GetHashCode                             Method     int GetHashCode()
GetType                                 Method     type GetType()
ToString                                Method     string ToString()
ClassId2e4f51ef21dd47e99d3c952918aff9cd Property   string ClassId2e4f51ef...
groupingEntry                           Property   Microsoft.PowerShell.C...
shapeInfo                               Property   Microsoft.PowerShell.C...

   TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatEntryData

Name                                    MemberType Definition
----                                    ---------- ----------
Equals                                  Method     bool Equals(System.Obj...
GetHashCode                             Method     int GetHashCode()
GetType                                 Method     type GetType()
ToString                                Method     string ToString()
ClassId2e4f51ef21dd47e99d3c952918aff9cd Property   string ClassId2e4f51ef...
formatEntryInfo                         Property   Microsoft.PowerShell.C...
outOfBand                               Property   bool outOfBand {get;set;}
writeStream                             Property   Microsoft.PowerShell.C...



What this means is format commands can't be piped to most other commands. They
can be piped to some of the Out-*  commands, but that's about it. This is why you want
to perform any formatting at the very end of the line (format right).

An alias in PowerShell is a shorter name for a command. PowerShell includes a set of
built-in aliases and you can also define your own aliases.

The Get-Alias  cmdlet is used to find aliases. If you already know the alias for a
command, the Name parameter is used to determine what command the alias is
associated with.

PowerShell

Output

Multiple aliases can be specified for the value of the Name parameter.

   TypeName: Microsoft.PowerShell.Commands.Internal.Format.GroupEndData

Name                                    MemberType Definition
----                                    ---------- ----------
Equals                                  Method     bool Equals(System.Obj...
GetHashCode                             Method     int GetHashCode()
GetType                                 Method     type GetType()
ToString                                Method     string ToString()
ClassId2e4f51ef21dd47e99d3c952918aff9cd Property   string ClassId2e4f51ef...
groupingEntry                           Property   Microsoft.PowerShell.C...

   TypeName: Microsoft.PowerShell.Commands.Internal.Format.FormatEndData

Name                                    MemberType Definition
----                                    ---------- ----------
Equals                                  Method     bool Equals(System.Obj...
GetHashCode                             Method     int GetHashCode()
GetType                                 Method     type GetType()
ToString                                Method     string ToString()
ClassId2e4f51ef21dd47e99d3c952918aff9cd Property   string ClassId2e4f51ef...
groupingEntry                           Property   Microsoft.PowerShell.C...

Aliases

Get-Alias -Name gcm

CommandType     Name                                               Version
-----------     ----                                               -------
Alias           gcm -> Get-Command



PowerShell

Output

You often see the Name parameter omitted since it's a positional parameter.

PowerShell

Output

If you want to find aliases for a command, you need to use the Definition parameter.

PowerShell

Output

The Definition parameter can't be used positionally, so it must be specified.

Aliases can save you a few keystrokes, and they're fine when you type commands into
the console. They shouldn't be used in scripts or any code that you're saving or sharing
with others. As mentioned earlier in this book, using full cmdlet and parameter names is
self-documenting and easier to understand.

Get-Alias -Name gcm, gm

CommandType     Name                                               Version
-----------     ----                                               -------
Alias           gcm -> Get-Command
Alias           gm -> Get-Member

Get-Alias gm

CommandType     Name                                               Version
-----------     ----                                               -------
Alias           gm -> Get-Member

Get-Alias -Definition Get-Command, Get-Member

CommandType     Name                                               Version
-----------     ----                                               -------
Alias           gcm -> Get-Command
Alias           gm -> Get-Member



Use caution when creating your own aliases because they only exist in your current
PowerShell session on your computer.

A provider in PowerShell is an interface that allows file system-like access to a data
store. There are several built-in providers in PowerShell.

PowerShell

As you can see in the following results, there are built-in providers for the registry,
aliases, environment variables, the file system, functions, variables, certificates, and
WSMan.

Output

The actual drives that these providers use to expose their data store can be determined
with the Get-PSDrive  cmdlet. The Get-PSDrive  cmdlet not only displays drives exposed
by providers but also displays Windows logical drives, including drives mapped to
network shares.

PowerShell

Output

Providers

Get-PSProvider

Name                 Capabilities                 Drives
----                 ------------                 ------
Registry             ShouldProcess, Transactions  {HKLM, HKCU}
Alias                ShouldProcess                {Alias}
Environment          ShouldProcess                {Env}
FileSystem           Filter, ShouldProcess, Cr... {C, D}
Function             ShouldProcess                {Function}
Variable             ShouldProcess                {Variable}

Get-PSDrive

Name           Used (GB)     Free (GB) Provider      Root
----           ---------     --------- --------      ----
Alias                                  Alias
C                  18.56        107.62 FileSystem    C:\
Cert                                   Certificate   \
D                                      FileSystem    D:\
Env                                    Environment



Third-party modules such as the ActiveDirectory PowerShell module and the SqlServer
PowerShell module both add their own PowerShell provider and PSDrive.

Import the ActiveDirectory and SqlServer PowerShell modules.

PowerShell

Check to see if any additional PowerShell providers were added.

PowerShell

Notice that in the following set of results, two new PowerShell providers now exist, one
for Active Directory and another one for SQL Server.

Output

A PSDrive for each of those modules was also added.

PowerShell

Output

Function                               Function
HKCU                                   Registry      HKEY_CURRENT_USER
HKLM                                   Registry      HKEY_LOCAL_MACHINE
Variable                               Variable
WSMan                                  WSMan

Import-Module -Name ActiveDirectory, SQLServer

Get-PSProvider

Name                 Capabilities                       Drives
----                 ------------                       ------
Registry             ShouldProcess, Transactions        {HKLM, HKCU}
Alias                ShouldProcess                      {Alias}
Environment          ShouldProcess                      {Env}
FileSystem           Filter, ShouldProcess, Credentials {C, A, D}
Function             ShouldProcess                      {Function}
Variable             ShouldProcess                      {Variable}
ActiveDirectory      Include, Exclude, Filter, Shoul... {AD}
SqlServer            Credentials                        {SQLSERVER}

Get-PSDrive



PSDrives can be accessed just like a traditional file system.

PowerShell

Output

PowerShell contains various comparison operators that are used to compare values or
find values that match certain patterns. The following table contains a list of comparison
operators in PowerShell.

All the operators listed in the table are case-insensitive. To make them case-sensitive,
place a c  in front of the operator. For example, -ceq  is the case-sensitive version of the
equals ( -eq ) comparison operator.

Name           Used (GB)     Free (GB) Provider      Root
----           ---------     --------- --------      ----
A                                      FileSystem    A:\
AD                                     ActiveDire... //RootDSE/
Alias                                  Alias
C                  19.38        107.13 FileSystem    C:\
Cert                                   Certificate   \
D                                      FileSystem    D:\
Env                                    Environment
Function                               Function
HKCU                                   Registry      HKEY_CURRENT_USER
HKLM                                   Registry      HKEY_LOCAL_MACHINE
SQLSERVER                              SqlServer     SQLSERVER:\
Variable                               Variable
WSMan                                  WSMan

Get-ChildItem -Path Cert:\LocalMachine\CA

   PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\CA

Thumbprint                                Subject
----------                                -------
FEE449EE0E3965A5246F000E87FDE2A065FD89D4  CN=Root Agency
D559A586669B08F46A30A133F8A9ED3D038E2EA8  OU=www.verisign.com/CPS Incorp....
109F1CAED645BB78B3EA2B94C0697C740733031C  CN=Microsoft Windows Hardware C...

Comparison Operators

ﾉ Expand table



Operator Definition

-eq Equal to

-ne Not equal to

-gt Greater than

-ge Greater than or equal to

-lt Less than

-le Less than or equal to

-like Match using the *  wildcard character

-notlike Doesn't match using the *  wildcard character

-match Matches the specified regular expression

-notmatch Doesn't match the specified regular expression

-contains Determines if a collection contains a specified value

-notcontains Determines if a collection doesn't contain a specific value

-in Determines if a specified value is in a collection

-notin Determines if a specified value isn't in a collection

-replace Replaces the specified value

Proper case "PowerShell" is equal to lower case "powershell" using the equals
comparison operator.

PowerShell

Output

It's not equal using the case-sensitive version of the equals comparison operator.

PowerShell

'PowerShell' -eq 'powershell'

True

'PowerShell' -ceq 'powershell'



Output

The not equal comparison operator reverses the condition.

PowerShell

Output

Greater than, greater than or equal to, less than, and less than or equal all work with
string or numeric values.

PowerShell

Output

Using greater than or equal to instead of greater than with the previous example returns
the Boolean true since five is equal to five.

PowerShell

Output

Based on the results from the previous two examples, you can probably guess how both
less than and less than or equal to work.

PowerShell

False

'PowerShell' -ne 'powershell'

False

5 -gt 5

False

5 -ge 5

True

5 -lt 10



Output

The -like  and -match  operators can be confusing, even for experienced PowerShell
users. -like  is used with the wildcard characters *  and ?  to perform "like" matches.

PowerShell

Output

The -match  operator uses a regular expression to perform the matching.

PowerShell

Output

Use the range operator to store the numbers 1 through 10 in a variable.

PowerShell

Determine if the $Numbers  variable includes 15.

PowerShell

Output

Determine if it includes the number 10.

True

'PowerShell' -like '*shell'

True

'PowerShell' -match '^.*shell$'

True

$Numbers = 1..10

$Numbers -contains 15

False



PowerShell

Output

The -notcontains  operator reverses the logic to see if the $Numbers  variable doesn't
contain a value.

PowerShell

The previous example returns the Boolean true because it's true that the $Numbers
variable doesn't contain 15.

Output

It does, however, contain the number 10, so it's false when tested.

PowerShell

Output

The -in  comparison operator was first introduced in PowerShell version 3.0. It's used to
determine if a value is in an array. The $Numbers  variable is an array since it contains
multiple values.

PowerShell

Output

$Numbers -contains 10

True

$Numbers -notcontains 15

True

$Numbers -notcontains 10

False

15 -in $Numbers



In other words, -in  performs the same test as the contains comparison operator except
from the opposite direction.

PowerShell

Output

Fifteen isn't in the $Numbers  array, so false is returned in the following example.

PowerShell

Output

Just like the -contains  operator, not  reverses the logic for the -in  operator.

PowerShell

The previous example returns false because the $Numbers  array does include 10 and the
condition tests to determine if it doesn't contain 10.

Output

Determine if fifteen isn't in the $Numbers  array.

PowerShell

False

10 -in $Numbers

True

15 -in $Numbers

False

10 -notin $Numbers

False

15 -notin $Numbers



15 is "not in" the $Numbers  array so it returns the Boolean true.

Output

The -replace  operator does just want you would think. It's used to replace something.
Specifying one value replaces that value with nothing. In the following example, you
replace "Shell" with nothing.

PowerShell

Output

If you want to replace a value with a different one, specify the new one after the pattern
you want to replace. SQL Saturday in Baton Rouge is an event I try to speak at every
year. In the following example, the word "Saturday" is replaced with the abbreviation
"Sat".

PowerShell

Output

There are also methods like Replace() that can be used to replace things similar to how
the replace operator works. However, the -replace  operator is case-insensitive by
default, and the Replace() method is case-sensitive.

PowerShell

Notice that the word "Saturday" isn't replaced. This is because it's specified in a different
case than the original.

True

'PowerShell' -replace 'Shell'

Power

'SQL Saturday - Baton Rouge' -replace 'saturday','Sat'

SQL Sat - Baton Rouge

'SQL Saturday - Baton Rouge'.Replace('saturday','Sat')



Output

When the word "Saturday" is specified in the same case as the original, the Replace()
method performs the replacement as expected.

PowerShell

Output

Be careful when using methods to transform data because you can encounter
unforeseen problems, such as failing the Turkey Test. For an example, see my blog
article, Using Pester to Test PowerShell Code with Other Cultures . I recommend using
operators instead of methods whenever possible to avoid these types of problems.

While the comparison operators can be used, as shown in the previous examples, I
typically use them with the Where-Object  cmdlet to perform filtering.

You learned several topics in this chapter, including Formatting Right, Aliases, Providers,
and Comparison Operators.

1. Why is it necessary to perform formatting as far to the right as possible?
2. How do you determine what the actual cmdlet is for the %  alias?
3. Why shouldn't you use aliases in scripts you save or code you share with others?
4. Perform a directory listing on the drives that are associated with the Registry

provider.
5. What's one of the main benefits of using the replace operator instead of the

replace method?

SQL Saturday - Baton Rouge

'SQL Saturday - Baton Rouge'.Replace('Saturday','Sat')

SQL Sat - Baton Rouge

Summary

Review

References

https://mikefrobbins.com/2015/10/22/using-pester-to-test-powershell-code-with-other-cultures/
https://mikefrobbins.com/2015/10/22/using-pester-to-test-powershell-code-with-other-cultures/


Format-Table
Format-List
Format-Wide
about_Aliases
about_Providers
about_Comparison_Operators
about_Arrays

In the next chapter, you'll learn about flow control, scripting, loops, and conditional
logic.

Next steps

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/format-table
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/format-list
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/format-wide
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_providers
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arrays


Chapter 6 - Flow control
Article • 03/25/2025

When you move from writing PowerShell one-liners to writing scripts, it sounds more
complicated than it is. A script is nothing more than the same or similar commands you
run interactively in the PowerShell console, except you save them as a .ps1  file. There
are some scripting constructs that you might use, such as a foreach  loop instead of the
ForEach-Object  cmdlet. The differences can be confusing for beginners when
considering that foreach  is both a language keyword and an alias for the ForEach-
Object  cmdlet.

One of the best aspects of PowerShell is its scalability. Once you learn how to perform a
task for a single item, applying the same action to hundreds of items is almost as
straightforward. Loop through the items using one of the different types of loops in
PowerShell.

ForEach-Object  is a cmdlet for iterating through items in a pipeline, such as with
PowerShell one-liners. ForEach-Object  streams the objects through the pipeline.

Although the Module parameter of Get-Command  accepts multiple string values, it only
accepts them via pipeline input by property name. In the following scenario, if you want
to pipe two string values to Get-Command  for use with the Module parameter, you need
to use the ForEach-Object  cmdlet.

PowerShell

Output

Scripting

Looping

ForEach-Object

'ActiveDirectory', 'SQLServer' |
    ForEach-Object {Get-Command -Module $_} |
    Group-Object -Property ModuleName -NoElement |
    Sort-Object -Property Count -Descending



In the previous example, $_  is the current object. Beginning with PowerShell version 3.0,
$PSItem  can be used instead of $_ . Most experienced PowerShell users prefer using $_
since it's backward compatible and less to type.

When using the foreach  keyword, you must store the items in memory before iterating
through them, which could be difficult if you don't know how many items you're
working with.

PowerShell

Output

Many times a loop such as foreach  or ForEach-Object  is necessary. Otherwise you
receive an error message.

PowerShell

Count Name
----- ----
  147 ActiveDirectory
   82 SqlServer

$ComputerName = 'DC01', 'WEB01'
foreach ($Computer in $ComputerName) {
    Get-ADComputer -Identity $Computer
}

DistinguishedName : CN=DC01,OU=Domain Controllers,DC=mikefrobbins,DC=com
DNSHostName       : dc01.mikefrobbins.com
Enabled           : True
Name              : DC01
ObjectClass       : computer
ObjectGUID        : c38da20c-a484-469d-ba4c-bab3fb71ae8e
SamAccountName    : DC01$
SID               : S-1-5-21-2989741381-570885089-3319121794-1001
UserPrincipalName :

DistinguishedName : CN=WEB01,CN=Computers,DC=mikefrobbins,DC=com
DNSHostName       : web01.mikefrobbins.com
Enabled           : True
Name              : WEB01
ObjectClass       : computer
ObjectGUID        : 33aa530e-1e31-40d8-8c78-76a18b673c33
SamAccountName    : WEB01$
SID               : S-1-5-21-2989741381-570885089-3319121794-1107
UserPrincipalName :



Output

Other times, you can get the same results while eliminating the loop. Consult the cmdlet
help to understand your options.

PowerShell

Output

As you can see in the previous examples, the Identity parameter for Get-ADComputer
only accepts a single value when provided via parameter input. However, by using the

Get-ADComputer -Identity 'DC01', 'WEB01'

Get-ADComputer : Cannot convert 'System.Object[]' to the type
'Microsoft.ActiveDirectory.Management.ADComputer' required by parameter
'Identity'. Specified method is not supported.
At line:1 char:26
+ Get-ADComputer -Identity 'DC01', 'WEB01'
+                          ~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidArgument: (:) [Get-ADComputer], Parame
   terBindingException
    + FullyQualifiedErrorId : CannotConvertArgument,Microsoft.ActiveDirecto
   ry.Management.Commands.GetADComputer

'DC01', 'WEB01' | Get-ADComputer

DistinguishedName : CN=DC01,OU=Domain Controllers,DC=mikefrobbins,DC=com
DNSHostName       : dc01.mikefrobbins.com
Enabled           : True
Name              : DC01
ObjectClass       : computer
ObjectGUID        : c38da20c-a484-469d-ba4c-bab3fb71ae8e
SamAccountName    : DC01$
SID               : S-1-5-21-2989741381-570885089-3319121794-1001
UserPrincipalName :

DistinguishedName : CN=WEB01,CN=Computers,DC=mikefrobbins,DC=com
DNSHostName       : web01.mikefrobbins.com
Enabled           : True
Name              : WEB01
ObjectClass       : computer
ObjectGUID        : 33aa530e-1e31-40d8-8c78-76a18b673c33
SamAccountName    : WEB01$
SID               : S-1-5-21-2989741381-570885089-3319121794-1107
UserPrincipalName :



pipeline, you can send multiple values to the command because the values are
processed one at a time.

A for  loop iterates while a specified condition is true. I don't use the for  loop often,
but it has uses.

PowerShell

Output

In the previous example, the loop iterates four times by starting with the number one
and continuing as long as the counter variable $i  is less than 5. It sleeps for a total of
10 seconds.

There are two different do  loops in PowerShell: do until  and do while . do until  runs
until the specified condition is false.

The following example is a numbers game that continues until the value you guess
equals the same number that the Get-Random  cmdlet generated.

PowerShell

For

for ($i = 1; $i -lt 5; $i++) {
    Write-Output "Sleeping for $i seconds"
    Start-Sleep -Seconds $i
}

Sleeping for 1 seconds
Sleeping for 2 seconds
Sleeping for 3 seconds
Sleeping for 4 seconds

Do

$number = Get-Random -Minimum 1 -Maximum 10
do {
    $guess = Read-Host -Prompt "What's your guess?"
    if ($guess -lt $number) {
        Write-Output 'Too low!'
    } elseif ($guess -gt $number) {
        Write-Output 'Too high!'
    }



Output

Do While  is the opposite. It runs as long as the specified condition is evaluated as true.

PowerShell

Output

The same results are achieved with a Do While  loop by reversing the test condition to
not equals.

do  loops always run at least once because the condition is evaluated at the end of the
loop.

Like the do while  loop, a while  loop runs as long as the specified condition is true. The
difference, however, is that a while  loop evaluates the condition at the top of the loop

}
until ($guess -eq $number)

What's your guess?: 1
Too low!
What's your guess?: 2
Too low!
What's your guess?: 3

$number = Get-Random -Minimum 1 -Maximum 10
do {
    $guess = Read-Host -Prompt "What's your guess?"
    if ($guess -lt $number) {
        Write-Output 'Too low!'
    } elseif ($guess -gt $number) {
        Write-Output 'Too high!'
    }
}
while ($guess -ne $number)

What's your guess?: 1
Too low!
What's your guess?: 2
Too low!
What's your guess?: 3
Too low!
What's your guess?: 4

While



before any code is run. So, it doesn't run if the condition is evaluated as false.

The following example calculates what day Thanksgiving Day is on in the United States.
It's always on the fourth Thursday of November. The loop starts with the 22nd day of
November and adds a day, while the day of the week isn't equal to Thursday. If the 22nd
is a Thursday, the loop doesn't run at all.

PowerShell

Output

The break  keyword is designed to exit a loop and is often used with the switch
statement. In the following example, break  causes the loop to end after the first
iteration.

PowerShell

Output

The continue  keyword is designed to skip to the next iteration of a loop.

The following example outputs the numbers 1, 2, 4, and 5. It skips number 3 and
continues with the next iteration of the loop. Like break , continue  breaks out of the
loop except only for the current iteration. Execution continues with the next iteration
instead of breaking out of the loop altogether and stopping.

$date = Get-Date -Date 'November 22'
while ($date.DayOfWeek -ne 'Thursday') {
    $date = $date.AddDays(1)
}
Write-Output $date

Thursday, November 23, 2017 12:00:00 AM

break, continue, and return

for ($i = 1; $i -lt 5; $i++) {
    Write-Output "Sleeping for $i seconds"
    Start-Sleep -Seconds $i
    break
}

Sleeping for 1 seconds



PowerShell

Output

The return  keyword is designed to exit out of the existing scope.

Notice in the following example that return  outputs the first result and then exits out of
the loop.

PowerShell

Output

A more thorough explanation of the result statement can be found in one of my blog
articles: The PowerShell return keyword .

In this chapter, you learned about the different types of loops that exist in PowerShell.

while ($i -lt 5) {
    $i += 1
    if ($i -eq 3) {
        continue
    }
    Write-Output $i
}

1
2
4
5

$number = 1..10
foreach ($n in $number) {
    if ($n -ge 4) {
        return $n
    }
}

4

Summary

Review

https://mikefrobbins.com/2015/07/23/the-powershell-return-keyword/
https://mikefrobbins.com/2015/07/23/the-powershell-return-keyword/


1. What's the difference between the ForEach-Object  cmdlet and the foreach
statement?

2. What's the primary advantage of using a while  loop instead of a do while  or do
until  loop?

3. How do the break  and continue  statements differ?

ForEach-Object
about_Foreach
about_For
about_Do
about_While
about_Break
about_Continue
about_Return

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_foreach
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_for
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_do
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_while
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_break
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_continue
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_return


Chapter 7 - Working with WMI
Article • 03/24/2025

Windows PowerShell ships by default with cmdlets for working with other technologies,
such as Windows Management Instrumentation (WMI). The WMI cmdlets are
deprecated and aren't available in PowerShell 6+, but are covered here as you might
encounter them in older scripts running on Windows PowerShell. For new development,
use the CIM cmdlets instead.

Several native WMI cmdlets exist in PowerShell without you having to install any other
software or modules. Get-Command  can be used to determine what WMI cmdlets exist in
Windows PowerShell. The following results are from a Windows 11 system running
PowerShell version 5.1. Your results might differ depending on the PowerShell version
you're running.

PowerShell

Output

The Common Information Model (CIM) cmdlets were introduced in PowerShell 3.0 and
are grouped within a dedicated module. To list all available CIM cmdlets, use the Get-
Command  cmdlet with the Module parameter, as shown in the following example.

PowerShell

Output

WMI and CIM

Get-Command -Noun WMI*

CommandType     Name                                               Version
-----------     ----                                               -------
Cmdlet          Get-WmiObject                                      3.1.0.0
Cmdlet          Invoke-WmiMethod                                   3.1.0.0
Cmdlet          Register-WmiEvent                                  3.1.0.0
Cmdlet          Remove-WmiObject                                   3.1.0.0
Cmdlet          Set-WmiInstance                                    3.1.0.0

Get-Command -Module CimCmdlets



The CIM cmdlets still allow you to work with WMI, so don't be confused when someone
states: "When I query WMI with the PowerShell CIM cmdlets".

As previously mentioned, WMI is a separate technology from PowerShell, and you're just
using the CIM cmdlets to access WMI. You might find an old VBScript that uses WMI
Query Language (WQL) to query WMI, such as in the following example.

VB

You can take the WQL query from the VBScript and use it with the Get-CimInstance
cmdlet without any modifications.

PowerShell

CommandType     Name                                               Version
-----------     ----                                               -------
Cmdlet          Export-BinaryMiLog                                 1.0.0.0
Cmdlet          Get-CimAssociatedInstance                          1.0.0.0
Cmdlet          Get-CimClass                                       1.0.0.0
Cmdlet          Get-CimInstance                                    1.0.0.0
Cmdlet          Get-CimSession                                     1.0.0.0
Cmdlet          Import-BinaryMiLog                                 1.0.0.0
Cmdlet          Invoke-CimMethod                                   1.0.0.0
Cmdlet          New-CimInstance                                    1.0.0.0
Cmdlet          New-CimSession                                     1.0.0.0
Cmdlet          New-CimSessionOption                               1.0.0.0
Cmdlet          Register-CimIndicationEvent                        1.0.0.0
Cmdlet          Remove-CimInstance                                 1.0.0.0
Cmdlet          Remove-CimSession                                  1.0.0.0
Cmdlet          Set-CimInstance                                    1.0.0.0

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
    & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\CIMV2")

Set colBIOS = objWMIService.ExecQuery _
    ("Select * from Win32_BIOS")

For each objBIOS in colBIOS
    Wscript.Echo "Manufacturer: " & objBIOS.Manufacturer
    Wscript.Echo "Name: " & objBIOS.Name
    Wscript.Echo "Serial Number: " & objBIOS.SerialNumber
    Wscript.Echo "SMBIOS Version: " & objBIOS.SMBIOSBIOSVersion
    Wscript.Echo "Version: " & objBIOS.Version
Next

Get-CimInstance -Query 'Select * from Win32_BIOS'



Output

The previous example isn't how I typically query WMI with PowerShell. But it works and
allows you to easily migrate existing Visual Basic scripts to PowerShell. When writing a
one-liner to query WMI, I use the following syntax.

PowerShell

Output

If you only want the serial number, pipe the output to Select-Object  and specify only
the SerialNumber property.

PowerShell

Output

By default, when querying WMI, several properties that are never used are retrieved
behind the scenes. It doesn't matter much when querying WMI on the local computer.
But once you start querying remote computers, it's not only extra processing time to
return that information but also more unnecessary information to send across the
network. Get-CimInstance  has a Property parameter that limits the information
retrieved, making the WMI query more efficient.

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 3810-1995-1654-4615-2295-2755-89
Version           : VRTUAL - 4001628

Get-CimInstance -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 3810-1995-1654-4615-2295-2755-89
Version           : VRTUAL - 4001628

Get-CimInstance -ClassName Win32_BIOS |
    Select-Object -Property SerialNumber

SerialNumber
------------
3810-1995-1654-4615-2295-2755-89



PowerShell

Output

The previous results returned an object. To return a string, use the ExpandProperty
parameter.

PowerShell

Output

You could also use the dotted syntax style to return a string, eliminating the need to
pipe to Select-Object .

PowerShell

Output

You should still be running PowerShell as a local admin and domain user. When you try
to query information from a remote computer using the Get-CimInstance  cmdlet, you
receive an access denied error message.

Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber |
    Select-Object -Property SerialNumber

SerialNumber
------------
3810-1995-1654-4615-2295-2755-89

Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber |
    Select-Object -ExpandProperty SerialNumber

3810-1995-1654-4615-2295-2755-89

(Get-CimInstance -ClassName Win32_BIOS -Property SerialNumber).SerialNumber

3810-1995-1654-4615-2295-2755-89

Query Remote Computers with the CIM
cmdlets



PowerShell

Output

Many people have security concerns regarding PowerShell, but you have the same
permissions in PowerShell as in the GUI. No more and no less. The problem in the
previous example is that the user running PowerShell doesn't have rights to query WMI
information from the DC01 server. You could relaunch PowerShell as a domain
administrator since Get-CimInstance  doesn't have a Credential parameter. But that isn't
a good idea because anything you run from PowerShell would run as a domain admin.
Depending on the situation, that scenario could be dangerous from a security
standpoint.

Using the principle of least privilege, elevate to your domain admin account on a per-
command basis using the Credential parameter if a command has one. Get-CimInstance
doesn't have a Credential parameter, so the solution in this scenario is to create a
CimSession first. Then, use the CimSession instead of a computer name to query WMI
on the remote computer.

PowerShell

Output

The CIM session was stored in a variable named $CimSession . Notice that you also
specify the Get-Credential  cmdlet in parentheses so that it executes first, prompting for
alternate credentials, before creating the new session. I show you another more efficient

Get-CimInstance -ComputerName dc01 -ClassName Win32_BIOS

Get-CimInstance : Access is denied.
At line:1 char:1
+ Get-CimInstance -ComputerName dc01 -ClassName Win32_BIOS
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : PermissionDenied: (root\cimv2:Win32_BIOS:Stri
   ng) [Get-CimInstance], CimException
    + FullyQualifiedErrorId : HRESULT 0x80070005,Microsoft.Management.Infra
   structure.CimCmdlets.GetCimInstanceCommand
    + PSComputerName        : dc01

$CimSession = New-CimSession -ComputerName dc01 -Credential (Get-Credential)

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential



way to specify alternate credentials later in this chapter, but it's important to understand
this basic concept before making it more complicated.

You can now use the CIM session created in the previous example with the Get-
CimInstance  cmdlet to query the BIOS information from WMI on the remote computer.

PowerShell

Output

There are several other benefits to using CIM sessions instead of just specifying a
computer name. When you run multiple queries to the same computer, using a CIM
session is more efficient than using the computer name for each query. Creating a CIM
session only sets up the connection once. Then, multiple queries use that same session
to retrieve information. Using the computer name requires the cmdlets to set up and
tear down the connection with each query.

The Get-CimInstance  cmdlet uses the WSMan protocol by default, which means the
remote computer needs PowerShell version 3.0 or higher to connect. It's actually not the
PowerShell version that matters, it's the stack version. The stack version can be
determined using the Test-WSMan  cmdlet. It needs to be version 3.0, which you find with
PowerShell version 3.0 and higher.

PowerShell

Output

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 0986-6980-3916-0512-6608-8243-13
Version           : VRTUAL - 4001628
PSComputerName    : dc01

Test-WSMan -ComputerName dc01

wsmid           : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentit
                  y.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor   : Microsoft Corporation
ProductVersion  : OS: 0.0.0 SP: 0.0 Stack: 3.0



The older WMI cmdlets use the DCOM protocol, which is compatible with older versions
of Windows. However, the firewall typically blocks DCOM on newer versions of
Windows. The New-CimSessionOption  cmdlet allows you to create a DCOM protocol
connection for use with New-CimSession . This option allows the Get-CimInstance  cmdlet
to communicate with versions of Windows as old as Windows Server 2000. This ability
also means that PowerShell isn't required on the remote computer when using the Get-
CimInstance  cmdlet with a CimSession configured to use the DCOM protocol.

Create the DCOM protocol option using the New-CimSessionOption  cmdlet and store it in
a variable.

PowerShell

For efficiency, you can store your domain administrator or elevated credentials in a
variable so you don't have to constantly enter them for each command.

PowerShell

Output

I have a server named SQL03 that runs Windows Server 2008 (non-R2). It's the newest
Windows Server operating system that doesn't have PowerShell installed by default.

Create a CimSession to SQL03 using the DCOM protocol.

PowerShell

Notice in the previous command that you specify the variable named $Cred  as the value
for the Credential parameter instead of manually entering your credentials again.

The output of the query is the same regardless of the underlying protocol.

$DCOM = New-CimSessionOption -Protocol Dcom

$Cred = Get-Credential

cmdlet Get-Credential at command pipeline position 1
Supply values for the following parameters:
Credential

$CimSession = New-CimSession -ComputerName sql03 -SessionOption $DCOM -
Credential $Cred



PowerShell

Output

The Get-CimSession  cmdlet is used to see what CimSessions are currently connected
and what protocols they use.

PowerShell

Output

Retrieve and store the previously created CimSessions in a variable named $CimSession .

PowerShell

Query both computers with one command, one using the WSMan protocol and the
other with DCOM.

PowerShell

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 7237-7483-8873-8926-7271-5004-86
Version           : VRTUAL - 4001628
PSComputerName    : sql03

Get-CimSession

Id           : 1
Name         : CimSession1
InstanceId   : 80742787-e38e-41b1-a7d7-fa1369cf1402
ComputerName : dc01
Protocol     : WSMAN

Id           : 2
Name         : CimSession2
InstanceId   : 8fcabd81-43cf-4682-bd53-ccce1e24aecb
ComputerName : sql03
Protocol     : DCOM

$CimSession = Get-CimSession



Output

One of my blog articles on WMI and CIM cmdlets features a PowerShell function that
automatically detects whether to use WSMan or DCOM and then sets up the
appropriate CIM session for you. For more information, see PowerShell Function to
Create CimSessions to Remote Computers with Fallback to Dcom .

When you finish with the CIM sessions, remove them with the Remove-CimSession
cmdlet. To remove all CIM sessions, pipe Get-CimSession  to Remove-CimSession .

PowerShell

In this chapter, you learned about using PowerShell to work with WMI on local and
remote computers. You also learned how to use the CIM cmdlets to work with remote
computers using the WSMan and DCOM protocols.

1. What's the difference in the WMI and CIM cmdlets?
2. By default, what protocol does the Get-CimInstance  cmdlet use?
3. What are some benefits of using a CIM session instead of specifying a computer

name with Get-CimInstance ?

Get-CimInstance -CimSession $CimSession -ClassName Win32_BIOS

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 0986-6980-3916-0512-6608-8243-13
Version           : VRTUAL - 4001628
PSComputerName    : dc01

SMBIOSBIOSVersion : 090006
Manufacturer      : American Megatrends Inc.
Name              : Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz
SerialNumber      : 7237-7483-8873-8926-7271-5004-86
Version           : VRTUAL - 4001628
PSComputerName    : sql03

Get-CimSession | Remove-CimSession

Summary

Review

https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/
https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/
https://mikefrobbins.com/2014/08/28/powershell-function-to-create-cimsessions-to-remote-computers-with-fallback-to-dcom/


4. How do you specify an alternate protocol other than the default one for use with
Get-CimInstance ?

5. How do you close or remove CIM sessions?

about_WMI
about_WMI_Cmdlets
about_WQL
CimCmdlets Module
Video: Using CIM Cmdlets and CIM Sessions

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wmi
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wmi_cmdlets
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wql
https://learn.microsoft.com/en-us/powershell/module/cimcmdlets/
https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-second-hop-problem-with-cimsessions/
https://mikefrobbins.com/2013/09/12/phillyposh-user-group-meeting-presentation-follow-up-powershell-second-hop-problem-with-cimsessions/


Chapter 8 - PowerShell remoting
Article • 03/26/2025

PowerShell offers several ways to run commands against remote computers. In the last
chapter, you explored how to remotely query WMI using the CIM cmdlets. PowerShell
also includes several cmdlets that feature a built-in ComputerName parameter.

As shown in the following example, you can use Get-Command  with the ParameterName
parameter to identify cmdlets that include a ComputerName parameter.

PowerShell

Output

Get-Command -ParameterName ComputerName

CommandType Name              Version Source                         
----------- ----              ------- ------                         
Cmdlet      Add-Computer      3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Clear-EventLog    3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Connect-PSSession 3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Enter-PSSession   3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Get-EventLog      3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Get-HotFix        3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Get-Process       3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Get-PSSession     3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Get-Service       3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Get-WmiObject     3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Invoke-Command    3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Invoke-WmiMethod  3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Limit-EventLog    3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      New-EventLog      3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      New-PSSession     3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Receive-Job       3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Receive-PSSession 3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Register-WmiEvent 3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Remove-Computer   3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Remove-EventLog   3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Remove-PSSession  3.0.0.0 Microsoft.PowerShell.Core      
Cmdlet      Remove-WmiObject  3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Rename-Computer   3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Restart-Computer  3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Send-MailMessage  3.1.0.0 Microsoft.PowerShell.Utility   
Cmdlet      Set-Service       3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Set-WmiInstance   3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Show-EventLog     3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Stop-Computer     3.1.0.0 Microsoft.PowerShell.Management



Commands such as Get-Process  and Get-HotFix  include a ComputerName parameter,
but this approach isn't the long-term direction Microsoft recommends for running
commands against remote systems. Even when you find a command with a
ComputerName parameter, it often lacks a Credential parameter, making it difficult to
specify alternate credentials. Running PowerShell from an elevated session doesn't
guarantee success, as a network firewall can block the request between your system and
the remote computer.

To use the PowerShell remoting commands demonstrated in this chapter, PowerShell
remoting must be enabled on the remote computer. You can enable it by running the
Enable-PSRemoting  cmdlet.

PowerShell

Output

If you want an interactive remote session, one-to-one remoting is what you want. This
type of remoting is provided via the Enter-PSSession  cmdlet.

Store your domain admin credentials in the $Cred  variable. This approach allows you to
enter your credentials once and reuse them on a per-command basis as long as your
current PowerShell session remains active.

PowerShell

Establish a one-to-one PowerShell remoting session to the domain controller named
dc01.

Cmdlet      Test-Connection   3.1.0.0 Microsoft.PowerShell.Management
Cmdlet      Write-EventLog    3.1.0.0 Microsoft.PowerShell.Management

Enable-PSRemoting

WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.

WinRM has been updated for remote management.
WinRM firewall exception enabled.

One-to-one remoting

$Cred = Get-Credential



PowerShell

Notice the PowerShell prompt is preceded by [dc01] . This prefix indicates you're in an
interactive session with the remote computer named dc01. Any commands you run now
execute on dc01, not your local machine.

Output

Remember that you can only access the PowerShell commands and modules installed
on the remote computer. If you installed other modules locally, they aren't available in
the remote session.

When connected via a one-to-one interactive remoting session, it's as if you're sitting
directly at the remote machine.

PowerShell

Output

Enter-PSSession -ComputerName dc01 -Credential $Cred

[dc01]: PS C:\Users\Administrator\Documents>

[dc01]: Get-Process | Get-Member

   TypeName: System.Diagnostics.Process

Name                       MemberType     Definition
----                       ----------     ----------
Handles                    AliasProperty  Handles = Handlecount
Name                       AliasProperty  Name = ProcessName
NPM                        AliasProperty  NPM = NonpagedSystemMemorySize64
PM                         AliasProperty  PM = PagedMemorySize64
SI                         AliasProperty  SI = SessionId
VM                         AliasProperty  VM = VirtualMemorySize64
WS                         AliasProperty  WS = WorkingSet64
Disposed                   Event          System.EventHandler Disposed(Sy...
ErrorDataReceived          Event          System.Diagnostics.DataReceived...
Exited                     Event          System.EventHandler Exited(Syst...
OutputDataReceived         Event          System.Diagnostics.DataReceived...
BeginErrorReadLine         Method         void BeginErrorReadLine()
BeginOutputReadLine        Method         void BeginOutputReadLine()
CancelErrorRead            Method         void CancelErrorRead()
CancelOutputRead           Method         void CancelOutputRead()
Close                      Method         void Close()
CloseMainWindow            Method         bool CloseMainWindow()
CreateObjRef               Method         System.Runtime.Remoting.ObjRef ...
Dispose                    Method         void Dispose(), void IDisposabl...



Equals                     Method         bool Equals(System.Object obj)
GetHashCode                Method         int GetHashCode()
GetLifetimeService         Method         System.Object GetLifetimeService()
GetType                    Method         type GetType()
InitializeLifetimeService  Method         System.Object InitializeLifetim...
Kill                       Method         void Kill()
Refresh                    Method         void Refresh()
Start                      Method         bool Start()
ToString                   Method         string ToString()
WaitForExit                Method         bool WaitForExit(int millisecon...
WaitForInputIdle           Method         bool WaitForInputIdle(int milli...
__NounName                 NoteProperty   string __NounName=Process
BasePriority               Property       int BasePriority {get;}
Container                  Property       System.ComponentModel.IContaine...
EnableRaisingEvents        Property       bool EnableRaisingEvents {get;s...
ExitCode                   Property       int ExitCode {get;}
ExitTime                   Property       datetime ExitTime {get;}
Handle                     Property       System.IntPtr Handle {get;}
HandleCount                Property       int HandleCount {get;}
HasExited                  Property       bool HasExited {get;}
Id                         Property       int Id {get;}
MachineName                Property       string MachineName {get;}
MainModule                 Property       System.Diagnostics.ProcessModul...
MainWindowHandle           Property       System.IntPtr MainWindowHandle ...
MainWindowTitle            Property       string MainWindowTitle {get;}
MaxWorkingSet              Property       System.IntPtr MaxWorkingSet {ge...
MinWorkingSet              Property       System.IntPtr MinWorkingSet {ge...
Modules                    Property       System.Diagnostics.ProcessModul...
NonpagedSystemMemorySize   Property       int NonpagedSystemMemorySize {g...
NonpagedSystemMemorySize64 Property       long NonpagedSystemMemorySize64...
PagedMemorySize            Property       int PagedMemorySize {get;}
PagedMemorySize64          Property       long PagedMemorySize64 {get;}
PagedSystemMemorySize      Property       int PagedSystemMemorySize {get;}
PagedSystemMemorySize64    Property       long PagedSystemMemorySize64 {g...
PeakPagedMemorySize        Property       int PeakPagedMemorySize {get;}
PeakPagedMemorySize64      Property       long PeakPagedMemorySize64 {get;}
PeakVirtualMemorySize      Property       int PeakVirtualMemorySize {get;}
PeakVirtualMemorySize64    Property       long PeakVirtualMemorySize64 {g...
PeakWorkingSet             Property       int PeakWorkingSet {get;}
PeakWorkingSet64           Property       long PeakWorkingSet64 {get;}
PriorityBoostEnabled       Property       bool PriorityBoostEnabled {get;...
PriorityClass              Property       System.Diagnostics.ProcessPrior...
PrivateMemorySize          Property       int PrivateMemorySize {get;}
PrivateMemorySize64        Property       long PrivateMemorySize64 {get;}
PrivilegedProcessorTime    Property       timespan PrivilegedProcessorTim...
ProcessName                Property       string ProcessName {get;}
ProcessorAffinity          Property       System.IntPtr ProcessorAffinity...
Responding                 Property       bool Responding {get;}
SafeHandle                 Property       Microsoft.Win32.SafeHandles.Saf...
SessionId                  Property       int SessionId {get;}
Site                       Property       System.ComponentModel.ISite Sit...
StandardError              Property       System.IO.StreamReader Standard...
StandardInput              Property       System.IO.StreamWriter Standard...
StandardOutput             Property       System.IO.StreamReader Standard...
StartInfo                  Property       System.Diagnostics.ProcessStart...



When you finish working with the remote computer, run the Exit-PSSession  cmdlet to
end the remote session.

PowerShell

While you might occasionally need to perform tasks interactively on a remote computer,
PowerShell remoting becomes more powerful when you simultaneously execute
commands across multiple remote systems. Use the Invoke-Command  cmdlet to run
commands on one or more remote computers at the same time.

In the following example, you query three servers for the status of the Windows Time
service. The Get-Service  cmdlet is placed inside the script block of Invoke-Command ,
meaning it executes on each remote computer.

PowerShell

The results are returned to your local session as deserialized objects.

Output

StartTime                  Property       datetime StartTime {get;}
SynchronizingObject        Property       System.ComponentModel.ISynchron...
Threads                    Property       System.Diagnostics.ProcessThrea...
TotalProcessorTime         Property       timespan TotalProcessorTime {get;}
UserProcessorTime          Property       timespan UserProcessorTime {get;}
VirtualMemorySize          Property       int VirtualMemorySize {get;}
VirtualMemorySize64        Property       long VirtualMemorySize64 {get;}
WorkingSet                 Property       int WorkingSet {get;}
WorkingSet64               Property       long WorkingSet64 {get;}
PSConfiguration            PropertySet    PSConfiguration {Name, Id, Prio...
PSResources                PropertySet    PSResources {Name, Id, Handleco...
Company                    ScriptProperty System.Object Company {get=$thi...
CPU                        ScriptProperty System.Object CPU {get=$this.To...
Description                ScriptProperty System.Object Description {get=...
FileVersion                ScriptProperty System.Object FileVersion {get=...
Path                       ScriptProperty System.Object Path {get=$this.M...
Product                    ScriptProperty System.Object Product {get=$thi...
ProductVersion             ScriptProperty System.Object ProductVersion {g...

[dc01]:  Exit-PSSession

One-to-many remoting

Invoke-Command -ComputerName dc01, sql02, web01 {
    Get-Service -Name W32time
} -Credential $Cred



To confirm the returned objects are deserialized, pipe the output to Get-Member .

PowerShell

Output

Notice that most methods are missing from deserialized objects. The methods are
missing because these objects aren't live. They're inert snapshots of the object's state
when you execute the command against the remote computer. For example, you can't
start or stop a service using a deserialized object since it no longer has access to the
required methods.

Status   Name        DisplayName       PSComputerName
------   ----        -----------       --------------
Running  W32time     Windows Time      web01
Start... W32time     Windows Time      dc01
Running  W32time     Windows Time      sql02

Invoke-Command -ComputerName dc01, sql02, web01 {
    Get-Service -Name W32time
} -Credential $Cred | Get-Member

   TypeName: Deserialized.System.ServiceProcess.ServiceController

Name                MemberType   Definition
----                ----------   ----------
GetType             Method       type GetType()
ToString            Method       string ToString(), string ToString(strin...
Name                NoteProperty string Name=W32time
PSComputerName      NoteProperty string PSComputerName=dc01
PSShowComputerName  NoteProperty bool PSShowComputerName=True
RequiredServices    NoteProperty Deserialized.System.ServiceProcess.Servi...
RunspaceId          NoteProperty guid RunspaceId=5ed06925-8037-43ef-9072-...
CanPauseAndContinue Property     System.Boolean {get;set;}
CanShutdown         Property     System.Boolean {get;set;}
CanStop             Property     System.Boolean {get;set;}
Container           Property      {get;set;}
DependentServices   Property     Deserialized.System.ServiceProcess.Servi...
DisplayName         Property     System.String {get;set;}
MachineName         Property     System.String {get;set;}
ServiceHandle       Property     System.String {get;set;}
ServiceName         Property     System.String {get;set;}
ServicesDependedOn  Property     Deserialized.System.ServiceProcess.Servi...
ServiceType         Property     System.String {get;set;}
Site                Property      {get;set;}
StartType           Property     System.String {get;set;}
Status              Property     System.String {get;set;}



However, this doesn't mean you can't use methods like Stop()  with Invoke-Command .
The key is that you must call the method within the remote session.

To demonstrate, stop the Windows Time service on all three remote servers by invoking
the Stop()  method remotely.

PowerShell

Output

As mentioned in an earlier chapter, if there's a cmdlet available to accomplish a task, it's
preferable to use it rather than calling a method directly. For example, use the Stop-
Service  cmdlet instead of the Stop()  method to stop a service.

In the previous example, the Stop()  method is used to make a point. Some people
mistakenly believe that you can't use methods with PowerShell remoting. While it's true
that you can't call methods on deserialized objects returned to your local session, you
can, however, invoke them within the remote session.

In the final example from the previous section, you ran two commands using the
Invoke-Command  cmdlet. This scenario resulted in two separate sessions being
established and torn down. One for each command.

Like CIM sessions, a persistent PowerShell session allows you to run multiple commands
against a remote computer without the overhead of creating a new session for each
command.

Invoke-Command -ComputerName dc01, sql02, web01 {
    (Get-Service -Name W32time).Stop()
} -Credential $Cred

Invoke-Command -ComputerName dc01, sql02, web01 {
    Get-Service -Name W32time
} -Credential $Cred

Status   Name        DisplayName       PSComputerName
------   ----        -----------       --------------
Stopped  W32time     Windows Time      web01
Stopped  W32time     Windows Time      dc01
Stopped  W32time     Windows Time      sql02

PowerShell sessions



Create a PowerShell session to each of the three computers you're working with in this
chapter, DC01, SQL02, and WEB01.

PowerShell

Now, use the $Session  variable to start the Windows Time service by calling its method
and then verify the service status.

PowerShell

Output

Once you create the session with alternate credentials, you don't need to specify those
credentials again for each command.

Be sure to remove the sessions when you finish using them.

PowerShell

In this chapter, you learned the fundamentals of PowerShell remoting, including running
commands interactively on a single remote computer and executing commands across
multiple systems using one-to-many remoting. You also explored the advantages of
using persistent PowerShell sessions when running multiple commands against the
same remote computer.

$Session = New-PSSession -ComputerName dc01, sql02, web01 -Credential $Cred

Invoke-Command -Session $Session {(Get-Service -Name W32time).Start()}
Invoke-Command -Session $Session {Get-Service -Name W32time}

Status   Name        DisplayName       PSComputerName
------   ----        -----------       --------------
Running  W32time     Windows Time      web01
Start... W32time     Windows Time      dc01
Running  W32time     Windows Time      sql02

Get-PSSession | Remove-PSSession

Summary

Review



1. How do you enable PowerShell remoting?
2. What PowerShell command do you use to start an interactive session with a

remote computer?
3. What's one benefit of using a PowerShell remoting session instead of specifying

the computer name with each command?
4. Can you use a PowerShell session in a one-to-one interactive remoting scenario?
5. What's the difference between the objects returned by cmdlets run locally and

objects returned when the same cmdlets are executed on remote computers using
Invoke-Command ?

about_Remote
about_Remote_Output
about_Remote_Requirements
about_Remote_Troubleshooting
about_Remote_Variables
PowerShell Remoting FAQ

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_output
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_troubleshooting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_variables
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/powershell-remoting-faq


Chapter 9 - Functions
Article • 01/23/2025

PowerShell one-liners and scripts that have to be modified often are good candidates to
turn into reusable functions.

Write functions whenever possible because they're more tool-oriented. You can add the
functions to a script module, put that module in a location defined in the
$env:PSModulePath , and call the functions without needing to locate where you saved
the functions. Using the PowerShellGet module, it's easy to share your PowerShell
modules in a NuGet repository. PowerShellGet ships with PowerShell version 5.0 and
higher. It's also available as a separate download for PowerShell version 3.0 and higher.

Don't overcomplicate things. Keep it simple and use the most straightforward way to
accomplish a task. Avoid aliases and positional parameters in any code that you reuse.
Format your code for readability. Don't hardcode values; use parameters and variables.
Don't write unnecessary code even if it doesn't hurt anything. It adds unnecessary
complexity. Attention to detail goes a long way when writing any PowerShell code.

When naming your functions in PowerShell, use a Pascal case name with an approved
verb and a singular noun. To obtain a list of approved verbs in PowerShell, run Get-Verb .
The following example sorts the results of Get-Verb  by the Verb property.

PowerShell

The Group property gives you an idea of how the verbs are meant to be used.

Output

Naming

Get-Verb | Sort-Object -Property Verb

Verb        Group
----        -----
Add         Common
Approve     Lifecycle
Assert      Lifecycle
Backup      Data
Block       Security
Checkpoint  Data
Clear       Common
Close       Common

https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions


Compare     Data
Complete    Lifecycle
Compress    Data
Confirm     Lifecycle
Connect     Communications
Convert     Data
ConvertFrom Data
ConvertTo   Data
Copy        Common
Debug       Diagnostic
Deny        Lifecycle
Disable     Lifecycle
Disconnect  Communications
Dismount    Data
Edit        Data
Enable      Lifecycle
Enter       Common
Exit        Common
Expand      Data
Export      Data
Find        Common
Format      Common
Get         Common
Grant       Security
Group       Data
Hide        Common
Import      Data
Initialize  Data
Install     Lifecycle
Invoke      Lifecycle
Join        Common
Limit       Data
Lock        Common
Measure     Diagnostic
Merge       Data
Mount       Data
Move        Common
New         Common
Open        Common
Optimize    Common
Out         Data
Ping        Diagnostic
Pop         Common
Protect     Security
Publish     Data
Push        Common
Read        Communications
Receive     Communications
Redo        Common
Register    Lifecycle
Remove      Common
Rename      Common
Repair      Diagnostic
Request     Lifecycle
Reset       Common



It's important to use an approved verb for your PowerShell functions. Modules that
contain functions with unapproved verbs generate a warning message when they're
imported into a PowerShell session. That warning message makes your functions look
unprofessional. Unapproved verbs also limit the discoverability of your functions.

A function in PowerShell is declared with the function keyword followed by the function
name and then an opening and closing curly brace ( { } ). The code executed by the
function is contained within those curly braces.

PowerShell

Resize      Common
Resolve     Diagnostic
Restart     Lifecycle
Restore     Data
Resume      Lifecycle
Revoke      Security
Save        Data
Search      Common
Select      Common
Send        Communications
Set         Common
Show        Common
Skip        Common
Split       Common
Start       Lifecycle
Step        Common
Stop        Lifecycle
Submit      Lifecycle
Suspend     Lifecycle
Switch      Common
Sync        Data
Test        Diagnostic
Trace       Diagnostic
Unblock     Security
Undo        Common
Uninstall   Lifecycle
Unlock      Common
Unprotect   Security
Unpublish   Data
Unregister  Lifecycle
Update      Data
Use         Other
Wait        Lifecycle
Watch       Common
Write       Communications

A simple function



The function shown in the following example is a simple example that returns the
version of PowerShell.

PowerShell

Output

When you use a generic name for your functions, such as Get-Version , it could cause
naming conflicts. Default commands added in the future or commands that others
might write could conflict with them. Prefix the noun portion of your function names to
help prevent naming conflicts. For example: <ApprovedVerb>-<Prefix><SingularNoun> .

The following example uses the prefix PS .

PowerShell

Other than the name, this function is identical to the previous one.

PowerShell

Output

function Get-Version {
    $PSVersionTable.PSVersion
}

Get-Version

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      14393  693

function Get-PSVersion {
    $PSVersionTable.PSVersion
}

Get-PSVersion

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      14393  693



You can still have a name conflict even when you add a prefix to the noun. I like to prefix
my function nouns with my initials. Develop a standard and stick to it.

PowerShell

This function is no different than the previous two, except for using a more unique name
to try to prevent naming conflicts with other PowerShell commands.

PowerShell

Output

Once loaded into memory, you can see functions on the Function PSDrive.

PowerShell

Output

If you want to remove these functions from your current session, remove them from the
Function PSDrive or close and reopen PowerShell.

PowerShell

Verify that the functions were indeed removed.

function Get-MrPSVersion {
    $PSVersionTable.PSVersion
}

Get-MrPSVersion

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      14393  693

Get-ChildItem -Path Function:\Get-*Version

CommandType     Name                                               Version
-----------     ----                                               -------
Function        Get-Version
Function        Get-PSVersion
Function        Get-MrPSVersion

Get-ChildItem -Path Function:\Get-*Version | Remove-Item



PowerShell

If the functions were loaded as part of a module, you can unload the module to remove
them.

PowerShell

The Remove-Module  cmdlet removes PowerShell modules from memory in your current
PowerShell session. It doesn't remove them from your system or disk.

Don't statically assign values. Use parameters and variables instead. When naming your
parameters, use the same name as the default cmdlets for your parameter names
whenever possible.

In the following function, notice that I used ComputerName and not Computer,
ServerName, or Host for the parameter name. Using ComputerName standardizes the
parameter name to match the parameter name and case like the default cmdlets.

PowerShell

The following function queries all commands on your system and returns the number
with specific parameter names.

PowerShell

Get-ChildItem -Path Function:\Get-*Version

Remove-Module -Name <ModuleName>

Parameters

function Test-MrParameter {

    param (
        $ComputerName
    )

    Write-Output $ComputerName

}

function Get-MrParameterCount {
    param (
        [string[]]$ParameterName
    )



As you can see in the following results, 39 commands that have a ComputerName
parameter. There aren't any commands with parameters such as Computer,
ServerName, Host, or Machine.

PowerShell

Output

Use the same case for your parameter names as the default cmdlets. For example, use
ComputerName , not computername . This naming scheme helps people familiar with
PowerShell discover your functions and look and feel like the default cmdlets.

The param  statement allows you to define one or more parameters. A comma ( , )
separates the parameter definitions. For more information, see
about_Functions_Advanced_Parameters.

Turning a function into an advanced function in PowerShell is simple. One of the
differences between a function and an advanced function is that advanced functions
have common parameters that are automatically added. Common parameters include
parameters such as Verbose and Debug.

    foreach ($Parameter in $ParameterName) {
        $Results = Get-Command -ParameterName $Parameter -ErrorAction 
SilentlyContinue

        [pscustomobject]@{
            ParameterName   = $Parameter
            NumberOfCmdlets = $Results.Count
        }
    }
}

Get-MrParameterCount -ParameterName ComputerName, Computer, ServerName,
    Host, Machine

ParameterName NumberOfCmdlets
------------- ---------------
ComputerName               39
Computer                    0
ServerName                  0
Host                        0
Machine                     0

Advanced functions

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters


Start with the Test-MrParameter  function that was used in the previous section.

PowerShell

There are a couple of different ways to see the common parameters. One is by viewing
the syntax with Get-Command .

PowerShell

Notice the Test-MrParameter  function doesn't have any common parameters.

Output

Another is to drill down into the parameters property of Get-Command .

PowerShell

Output

Add the CmdletBinding  attribute to turn the function into an advanced function.

PowerShell

function Test-MrParameter {

    param (
        $ComputerName
    )

    Write-Output $ComputerName

}

Get-Command -Name Test-MrParameter -Syntax

Test-MrParameter [[-ComputerName] <Object>]

(Get-Command -Name Test-MrParameter).Parameters.Keys

ComputerName

function Test-MrCmdletBinding {

    [CmdletBinding()] # Turns a regular function into an advanced function
    param (
        $ComputerName



When you specify CmdletBinding , the common parameters are added automatically.
CmdletBinding  requires a param  block, but the param  block can be empty.

PowerShell

Output

Drilling down into the parameters property of Get-Command  shows the actual parameter
names, including the common ones.

PowerShell

Output

The SupportsShouldProcess  attribute adds the WhatIf and Confirm risk mitigation
parameters. These parameters are only needed for commands that make changes.

    )

    Write-Output $ComputerName

}

Get-Command -Name Test-MrCmdletBinding -Syntax

Test-MrCmdletBinding [[-ComputerName] <Object>] [<CommonParameters>]

(Get-Command -Name Test-MrCmdletBinding).Parameters.Keys

ComputerName
Verbose
Debug
ErrorAction
WarningAction
InformationAction
ErrorVariable
WarningVariable
InformationVariable
OutVariable
OutBuffer
PipelineVariable

SupportsShouldProcess



PowerShell

Notice that there are now WhatIf and Confirm parameters.

PowerShell

Output

Once again, you can also use Get-Command  to return a list of the actual parameter names,
including the common, ones along with WhatIf and Confirm.

PowerShell

Output

function Test-MrSupportsShouldProcess {

    [CmdletBinding(SupportsShouldProcess)]
    param (
        $ComputerName
    )

    Write-Output $ComputerName

}

Get-Command -Name Test-MrSupportsShouldProcess -Syntax

Test-MrSupportsShouldProcess [[-ComputerName] <Object>] [-WhatIf] [-Confirm]
[<CommonParameters>]

(Get-Command -Name Test-MrSupportsShouldProcess).Parameters.Keys

ComputerName
Verbose
Debug
ErrorAction
WarningAction
InformationAction
ErrorVariable
WarningVariable
InformationVariable
OutVariable
OutBuffer
PipelineVariable
WhatIf
Confirm



Validate input early on. Don't allow your code to continue on a path when it can't
complete without valid input.

Always specify a datatype for the variables used for parameters. In the following
example, String is specified as the datatype for the ComputerName parameter. This
validation limits it to only allow a single computer name to be specified for the
ComputerName parameter.

PowerShell

An error is generated if more than one computer name is specified.

PowerShell

Output

The problem with the current definition is that it's valid to omit the value of the
ComputerName parameter, but a value is required for the function to complete
successfully. This scenario is where the Mandatory  parameter attribute is beneficial.

Parameter validation

function Test-MrParameterValidation {

    [CmdletBinding()]
    param (
        [string]$ComputerName
    )

    Write-Output $ComputerName

}

Test-MrParameterValidation -ComputerName Server01, Server02

Test-MrParameterValidation : Cannot process argument transformation on
parameter 'ComputerName'. Cannot convert value to type System.String.
At line:1 char:42
+ Test-MrParameterValidation -ComputerName Server01, Server02
+                                          ~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidData: (:) [Test-MrParameterValidation]
   , ParameterBindingArgumentTransformationException
    + FullyQualifiedErrorId : ParameterArgumentTransformationError,Test-MrP
   arameterValidation



The syntax used in the following example is compatible with PowerShell version 3.0 and
higher. [Parameter(Mandatory=$true)]  could be specified to make the function
compatible with PowerShell version 2.0 or higher.

PowerShell

Now that the ComputerName is required, if one isn't specified, the function prompts for
one.

PowerShell

Output

If you want to allow more than one value for the ComputerName parameter, use the
String datatype but add square brackets ( [] ) to the datatype to allow an array of
strings.

PowerShell

function Test-MrParameterValidation {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory)]
        [string]$ComputerName
    )

    Write-Output $ComputerName

}

Test-MrParameterValidation

cmdlet Test-MrParameterValidation at command pipeline position 1
Supply values for the following parameters:
ComputerName:

function Test-MrParameterValidation {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory)]
        [string[]]$ComputerName
    )

    Write-Output $ComputerName



Maybe you want to specify a default value for the ComputerName parameter if one isn't
specified. The problem is that default values can't be used with mandatory parameters.
Instead, use the ValidateNotNullOrEmpty  parameter validation attribute with a default
value.

Even when setting a default value, try not to use static values. In the following example,
$env:COMPUTERNAME  is used as the default value, which is automatically translated to the
local computer name if a value isn't provided.

PowerShell

Inline comments are useful if you're writing complex code, but users don't see them
unless they look at the code.

The function in the following example has an inline comment in the foreach  loop. While
this particular comment might not be difficult to locate, imagine if the function
contained hundreds of lines of code.

PowerShell

}

function Test-MrParameterValidation {

    [CmdletBinding()]
    param (
        [ValidateNotNullOrEmpty()]
        [string[]]$ComputerName = $env:COMPUTERNAME
    )

    Write-Output $ComputerName

}

Verbose output

function Test-MrVerboseOutput {

    [CmdletBinding()]
    param (
        [ValidateNotNullOrEmpty()]
        [string[]]$ComputerName = $env:COMPUTERNAME
    )

    foreach ($Computer in $ComputerName) {
        #Attempting to perform an action on $Computer <<-- Don't use



A better option is to use Write-Verbose  instead of inline comments.

PowerShell

The verbose output isn't displayed when the function is called without the Verbose
parameter.

PowerShell

The verbose output is displayed when the function is called with the Verbose parameter.

PowerShell

Extra code is necessary when you want your function to accept pipeline input. As
mentioned earlier in this book, commands can accept pipeline input by value (by type)
or by property name. You can write your functions like the native commands so they
accept either one or both of these input types.

        #inline comments like this, use write verbose instead.
        Write-Output $Computer
    }

}

function Test-MrVerboseOutput {

    [CmdletBinding()]
    param (
        [ValidateNotNullOrEmpty()]
        [string[]]$ComputerName = $env:COMPUTERNAME
    )

    foreach ($Computer in $ComputerName) {
        Write-Verbose -Message "Attempting to perform an action on 
$Computer"
        Write-Output $Computer
    }

}

Test-MrVerboseOutput -ComputerName Server01, Server02

Test-MrVerboseOutput -ComputerName Server01, Server02 -Verbose

Pipeline input



To accept pipeline input by value, specify the ValueFromPipeline  parameter attribute for
that particular parameter. You can only accept pipeline input by value from one
parameter of each datatype. If you have two parameters that accept string input, only
one of them can accept pipeline input by value. If you specified by value for both of the
string parameters, the input wouldn't know which parameter to bind to. This scenario is
another reason I call this type of pipeline input by type instead of by value.

Pipeline input is received one item at a time, similar to how items are handled in a
foreach  loop. A process  block is required to process each item if your function accepts
an array as input. If your function only accepts a single value as input, a process  block
isn't necessary but is recommended for consistency.

PowerShell

Accepting pipeline input by property name is similar, except you specify it with the
ValueFromPipelineByPropertyName  parameter attribute, and it can be specified for any
number of parameters regardless of datatype. The key is the output of the command
being piped in must have a property name that matches the name of the parameter or a
parameter alias of your function.

PowerShell

function Test-MrPipelineInput {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory,
                   ValueFromPipeline)]
        [string[]]$ComputerName
    )

    process {
        Write-Output $ComputerName
    }

}

function Test-MrPipelineInput {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory,
                   ValueFromPipelineByPropertyName)]
        [string[]]$ComputerName
    )

    process {
            Write-Output $ComputerName



begin  and end  blocks are optional. begin  is specified before the process  block and is
used to perform any initial work before the items are received from the pipeline. Values
that are piped in aren't accessible in the begin  block. The end  block is specified after
the process  block and is used for cleanup after all items piped in are processed.

The function shown in the following example generates an unhandled exception when a
computer can't be contacted.

PowerShell

There are a couple of different ways to handle errors in PowerShell. Try/Catch  is the
more modern way to handle errors.

PowerShell

    }

}

Error handling

function Test-MrErrorHandling {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory,
                   ValueFromPipeline,
                   ValueFromPipelineByPropertyName)]
        [string[]]$ComputerName
    )

    process {
        foreach ($Computer in $ComputerName) {
            Test-WSMan -ComputerName $Computer
        }
    }

}

function Test-MrErrorHandling {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory,
                   ValueFromPipeline,
                   ValueFromPipelineByPropertyName)]
        [string[]]$ComputerName
    )



Although the function shown in the previous example uses error handling, it generates
an unhandled exception because the command doesn't generate a terminating error.
Only terminating errors are caught. Specify the ErrorAction parameter with Stop as its
value to turn a nonterminating error into a terminating one.

PowerShell

Don't modify the global $ErrorActionPreference  variable unless absolutely necessary. If
you change it in a local scope, it reverts to the previous value when you exit that scope.

    process {
        foreach ($Computer in $ComputerName) {
            try {
                Test-WSMan -ComputerName $Computer
            }
            catch {
                Write-Warning -Message "Unable to connect to Computer: 
$Computer"
            }
        }
    }

}

function Test-MrErrorHandling {

    [CmdletBinding()]
    param (
        [Parameter(Mandatory,
                   ValueFromPipeline,
                   ValueFromPipelineByPropertyName)]
        [string[]]$ComputerName
    )

    process {
        foreach ($Computer in $ComputerName) {
            try {
                Test-WSMan -ComputerName $Computer -ErrorAction Stop
            }
            catch {
                Write-Warning -Message "Unable to connect to Computer: 
$Computer"
            }
        }
    }

}



If you're using something like .NET directly from within your PowerShell function, you
can't specify the ErrorAction parameter on the command itself. You can change the
$ErrorActionPreference  variable just before you call the .NET method.

Adding help to your functions is considered a best practice. Help allows people you
share them with to know how to use them.

PowerShell

Comment-based help

function Get-MrAutoStoppedService {

<#
.SYNOPSIS
    Returns a list of services that are set to start automatically, are not
    currently running, excluding the services that are set to delayed start.

.DESCRIPTION
    Get-MrAutoStoppedService is a function that returns a list of services
    from the specified remote computer(s) that are set to start
    automatically, are not currently running, and it excludes the services
    that are set to start automatically with a delayed startup.

.PARAMETER ComputerName
    The remote computer(s) to check the status of the services on.

.PARAMETER Credential
    Specifies a user account that has permission to perform this action. The
    default is the current user.

.EXAMPLE
     Get-MrAutoStoppedService -ComputerName 'Server1', 'Server2'

.EXAMPLE
     'Server1', 'Server2' | Get-MrAutoStoppedService

.EXAMPLE
     Get-MrAutoStoppedService -ComputerName 'Server1' -Credential (Get-
Credential)

.INPUTS
    String

.OUTPUTS
    PSCustomObject

.NOTES
    Author:  Mike F. Robbins
    Website: https://mikefrobbins.com
    Twitter: @mikefrobbins



When you add comment-based help to your functions, help can be retrieved for them
like the default built-in commands.

All the syntax for writing a function in PowerShell can seem overwhelming for someone
getting started. If you can't remember the syntax for something, open a second instance
of the PowerShell Integrated Scripting Environment (ISE) on a separate monitor and view
the "Cmdlet (advanced function) - Complete" snippet while typing in the code for your
functions. Snippets can be accessed in the PowerShell ISE using the Ctrl  + J  key
combination.

In this chapter, you learned the basics of writing functions in PowerShell, including how
to:

Create advanced functions
Use parameter validation
Use verbose output
Support pipeline input
Handle errors
Create comment-based help

1. How do you obtain a list of approved verbs in PowerShell?
2. How do you turn a PowerShell function into an advanced function?
3. When should WhatIf and Confirm parameters be added to your PowerShell

functions?
4. How do you turn a nonterminating error into a terminating one?
5. Why should you add comment-based help to your functions?

#>

    [CmdletBinding()]
    param (

    )

    #Function Body

}

Summary

Review



about_Functions
about_Functions_Advanced_Parameters
about_CommonParameters
about_Functions_CmdletBindingAttribute
about_Functions_Advanced
about_Try_Catch_Finally
about_Comment_Based_Help
Video: PowerShell Toolmaking with Advanced Functions and Script Modules

References

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_try_catch_finally
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help
https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-modules/
https://mikefrobbins.com/2016/05/26/video-powershell-toolmaking-with-advanced-functions-and-script-modules/


Chapter 10 - Script modules
Article • 03/27/2025

If you find yourself using the same PowerShell one-liners or scripts often, turning them
into reusable tools is even more important. Packaging your functions in a script module
gives them a more professional feel and makes them easier to support and share with
others.

One thing we didn't cover in the previous chapter is dot-sourcing functions. When you
define a function in a script but not part of a module, the only way to load it into
memory is by dot-sourcing its .ps1  file.

For example, save the following function in a file named Get-MrPSVersion.ps1 .

PowerShell

When you run the script, it appears that nothing happens.

PowerShell

Attempting to call the function results in an error because it isn't loaded into memory.

PowerShell

Output

Dot-sourcing functions

function Get-MrPSVersion {
    $PSVersionTable
}

.\Get-MrPSVersion.ps1

Get-MrPSVersion

Get-MrPSVersion : The term 'Get-MrPSVersion' is not recognized as the name
of a cmdlet, function, script file, or operable program. Check the spelling
of the name, or if a path was included, verify that the path is correct and
try again.
At line:1 char:1
+ Get-MrPSVersion
+ ~~~~~~~~~~~~~~~



You can confirm whether functions are loaded into memory by verifying their existence
on the Function: PSDrive.

PowerShell

Output

The issue with running the script that defines the function is that it loads it into the
Script scope. Once the script finishes executing, PowerShell discards that scope along
with the function.

To keep the function available after the script runs, it needs to be loaded into the Global
scope. You can accomplish this by dot-sourcing the script file. You can use a relative
path for this purpose.

PowerShell

You can also use the full path to the script when dot-sourcing it.

PowerShell

If part of the path is stored in a variable, you can combine it with the rest of the path.
There's no need to use string concatenation to do this.

PowerShell

    + CategoryInfo          : ObjectNotFound: (Get-MrPSVersion:String) [],
   CommandNotFoundException
    + FullyQualifiedErrorId : CommandNotFoundException

Get-ChildItem -Path Function:\Get-MrPSVersion

Get-ChildItem : Cannot find path 'Get-MrPSVersion' because it does not
exist.
At line:1 char:1
+ Get-ChildItem -Path Function:\Get-MrPSVersion
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (Get-MrPSVersion:String) [Get
   -ChildItem], ItemNotFoundException
    + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.Ge
   tChildItemCommand

. .\Get-MrPSVersion.ps1

. C:\Demo\Get-MrPSVersion.ps1



Now, if you check the Function PSDrive, you see the Get-MrPSVersion  function is
available.

PowerShell

Output

In PowerShell, a script module is simply a .psm1  file that contains one or more functions,
just like a regular script, but with a different file extension.

How do you create a script module? You might assume with a command named
something like New-Module . That assumption is a reasonable guess, but that command
actually creates a dynamic module, not a script module.

This scenario is a good reminder to always read the help documentation, even when a
command name looks exactly like what you need.

PowerShell

Output

$Path = 'C:\'
. $Path\Get-MrPSVersion.ps1

Get-ChildItem -Path Function:\Get-MrPSVersion

CommandType     Name                                               Version
-----------     ----                                               -------
Function        Get-MrPSVersion

Script modules

help New-Module

NAME
    New-Module

SYNOPSIS
    Creates a new dynamic module that exists only in memory.

SYNTAX
    New-Module [-Name] <System.String> [-ScriptBlock]
    <System.Management.Automation.ScriptBlock> [-ArgumentList



The previous chapter mentioned that functions should use approved verbs. Otherwise,
PowerShell generates a warning when the module is imported.

The following example uses the New-Module  cmdlet to create a dynamic module in
memory, specifically to demonstrate what happens when you don't use an approved

    <System.Object[]>] [-AsCustomObject] [-Cmdlet <System.String[]>]
    [-Function <System.String[]>] [-ReturnResult] [<CommonParameters>]

DESCRIPTION
    The `New-Module` cmdlet creates a dynamic module from a script block.
    The members of the dynamic module, such as functions and variables, are
    immediately available in the session and remain available until you
    close the session.

    Like static modules, by default, the cmdlets and functions in a dynamic
    module are exported and the variables and aliases are not. However, you
    can use the Export-ModuleMember cmdlet and the parameters of
    `New-Module` to override the defaults.

    You can also use the **AsCustomObject** parameter of `New-Module` to 
return
    the dynamic module as a custom object. The members of the modules, such
    as functions, are implemented as script methods of the custom object
    instead of being imported into the session.

    Dynamic modules exist only in memory, not on disk. Like all modules,
    the members of dynamic modules run in a private module scope that is a
    child of the global scope. Get-Module cannot get a dynamic module, but
    Get-Command can get the exported members.

    To make a dynamic module available to `Get-Module`, pipe a `New-Module`
    command to Import-Module, or pipe the module object that `New-Module`
    returns to `Import-Module`. This action adds the dynamic module to the
    `Get-Module` list, but it does not save the module to disk or make it
    persistent.

RELATED LINKS
    Online Version: https://learn.microsoft.com/powershell/module/microsoft.
    powershell.core/new-module?view=powershell-5.1&WT.mc_id=ps-gethelp
    Export-ModuleMember
    Get-Module
    Import-Module
    Remove-Module
    about_Modules

REMARKS
    To see the examples, type: "Get-Help New-Module -Examples".
    For more information, type: "Get-Help New-Module -Detailed".
    For technical information, type: "Get-Help New-Module -Full".
    For online help, type: "Get-Help New-Module -Online"



verb.

PowerShell

Output

Although you used the New-Module  cmdlet in the previous example, as mentioned
before, it's not the command for creating script modules in PowerShell.

To create a script module, save your functions in a .psm1  file. For example, save the
following two functions in a file named MyScriptModule.psm1 .

PowerShell

Try to run one of the functions.

PowerShell

New-Module -Name MyModule -ScriptBlock {

    function Return-MrOsVersion {
        Get-CimInstance -ClassName Win32_OperatingSystem |
        Select-Object -Property @{Label='OperatingSystem';Expression=
{$_.Caption}}
    }

    Export-ModuleMember -Function Return-MrOsVersion

} | Import-Module

WARNING: The names of some imported commands from the module 'MyModule' 
include
unapproved verbs that might make them less discoverable. To find the 
commands with
unapproved verbs, run the Import-Module command again with the Verbose 
parameter. For a
list of approved verbs, type Get-Verb.

function Get-MrPSVersion {
    $PSVersionTable
}

function Get-MrComputerName {
    $env:COMPUTERNAME
}

Get-MrComputerName



When you call the function, you receive an error saying PowerShell can't find it. Like
before, checking the Function: PSDrive confirms that it isn't loaded into memory.

Output

To make the function available, you can manually import the MyScriptModule.psm1  file
using the Import-Module  cmdlet.

PowerShell

PowerShell introduced module autoloading in version 3. To take advantage of this
feature, the script module must be saved in a folder with the same base name as the
.psm1  file. That folder must be located in one of the directories specified in the

$env:PSModulePath  environment variable.

PowerShell

The output of $env:PSModulePath  is difficult to read.

Output

To make the results more readable, split the paths on the semicolon path separator so
each one appears on its own line.

PowerShell

Get-MrComputerName : The term 'Get-MrComputerName' is not recognized as the
name of a cmdlet, function, script file, or operable program. Check the
spelling of the name, or if a path was included, verify that the path is
correct and try again.
At line:1 char:1
+ Get-MrComputerName
+ ~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (Get-MrComputerName:String) [
   ], CommandNotFoundException
    + FullyQualifiedErrorId : CommandNotFoundException

Import-Module C:\MyScriptModule.psm1

$env:PSModulePath

C:\Users\mike-ladm\Documents\WindowsPowerShell\Modules;C:\Program Files\Wind
owsPowerShell\Modules;C:\Windows\system32\WindowsPowerShell\v1.0\Modules;C:\
Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\



The first three paths in the list are the default module locations. SQL Server
Management Studio added the last path when you installed it.

Output

For module autoloading to work, you must place the MyScriptModule.psm1  file must in a
folder named MyScriptModule , and that folder must reside directly inside one of the
paths listed in
$env:PSModulePath .

Not all those paths are equally useful. For example, the current user path on my system
isn't the first one in the list. That's because I sign in to Windows with a different account
than the one I use to run PowerShell. So, it doesn't point to my user's documents folder.

The second path is the AllUsers path, which is where I store all of my modules.

The third path points to C:\Windows\System32 , a protected system location. Only
Microsoft should be placing modules there, as it falls under the operating system's
directory structure.

Once you place the .psm1  file in an appropriate folder within one of these paths,
PowerShell automatically loads the module the first time you call one of its commands.

Every module should include a module manifest, which is a .psd1  file containing
metadata about the module. While the .psd1  extension is used for manifests, not all
.psd1  files are module manifests. You can also use them for other purposes, such as
defining environment data in a DSC
configuration.

You can create a module manifest using the New-ModuleManifest  cmdlet. The only
required parameter is Path, but for the module to work correctly, you must also specify
the RootModule parameter.

$env:PSModulePath -split ';'

C:\Users\mike-ladm\Documents\WindowsPowerShell\Modules
C:\Program Files\WindowsPowerShell\Modules
C:\Windows\system32\WindowsPowerShell\v1.0\Modules
C:\Program Files (x86)\Microsoft SQL Server\130\Tools\PowerShell\Modules\

Module manifests



It's a best practice to include values like Author and Description, especially if you plan
to publish your module to a NuGet repository using PowerShellGet. These fields are
required in that scenario.

One quick way to tell if a module lacks a manifest is to check its version.

PowerShell

A version number of 0.0  is a clear sign that the module lacks a manifest.

Output

You should include all recommended details when creating a module manifest to ensure
your module is well-documented and ready for sharing or publishing.

PowerShell

If you omit any values when initially creating the module manifest, you can add or
update it later using the Update-ModuleManifest  cmdlet. Avoid recreating the manifest
with New-ModuleManifest  once you create it, as doing so generates a new GUID.

Sometimes, your module might include helper functions you don't want to expose to
users. These private functions are used internally by other functions in the module but
aren't exposed to users. There are a few ways to handle this scenario.

Get-Module -Name MyScriptModule

ModuleType Version    Name                                ExportedCommands
---------- -------    ----                                ----------------
Script     0.0        MyScriptModule                      {Get-MrComputer...

$moduleManifestParams = @{
    Path = 
"$env:ProgramFiles\WindowsPowerShell\Modules\MyScriptModule\MyScriptModule.p
sd1"
    RootModule = 'MyScriptModule'
    Author = 'Mike F. Robbins'
    Description = 'MyScriptModule'
    CompanyName = 'mikefrobbins.com'
}

New-ModuleManifest @moduleManifestParams

Defining public and private functions



If you're not following best practices and only have a .psm1  file without a proper
module structure, your only option is to control visibility using the Export-ModuleMember
cmdlet. This option lets you explicitly define which functions should be exposed directly
from within the .psm1  script module file, keeping everything else private by default.

In the following example, only the Get-MrPSVersion  function is exposed to users of your
module, while the Get-MrComputerName  function remains accessible internally to other
functions within the module.

PowerShell

Determine what commands are available publicly in the MyScriptModule module.

PowerShell

Output

If you add a module manifest to your module, it's a best practice to explicitly list the
functions you want to export in the FunctionsToExport section. This option gives you
control over what you expose to users from the .psd1  module manifest file.

PowerShell

You don't need to use both Export-ModuleMember  in the .psm1  file and the

FunctionsToExport  section in the module manifest. Either approach is enough on its
own.

function Get-MrPSVersion {
    $PSVersionTable
}

function Get-MrComputerName {
    $env:COMPUTERNAME
}

Export-ModuleMember -Function Get-MrPSVersion

Get-Command -Module MyScriptModule

CommandType     Name                                               Version
-----------     ----                                               -------
Function        Get-MrPSVersion                                    1.0

FunctionsToExport = 'Get-MrPSVersion'



In this chapter, you learned how to turn your functions into a script module in
PowerShell. You also explored best practices for creating script modules, including the
importance of adding a module manifest to define metadata and manage exported
commands.

1. How do you create a script module in PowerShell?
2. Why is it important to use approved verbs for your function names?
3. How do you create a module manifest in PowerShell?
4. What are the two ways to export only specific functions from a module?
5. What conditions must be met for a module to autoload when you run one of its

commands?

How to Create PowerShell Script Modules and Module Manifests
about_Modules
New-ModuleManifest
Export-ModuleMember

Summary

Review

References

https://mikefrobbins.com/2013/07/04/how-to-create-powershell-script-modules-and-module-manifests/
https://mikefrobbins.com/2013/07/04/how-to-create-powershell-script-modules-and-module-manifests/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_modules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/export-modulemember


Optimizing your shell experience
Article • 12/01/2022

PowerShell is a command-line shell and a scripting language used for automation.

Wikipedia  includes the following description of a shell:

A shell manages the user-system interaction by prompting users for input,
interpreting their input, and then handling output from the underlying operating
system (much like a read-eval-print loop or REPL ).

Similar to other shells like bash  or cmd.exe , PowerShell allows you to run any command
available on your system, not just PowerShell commands.

PowerShell commands are known as cmdlets (pronounced command-lets). Cmdlets are
PowerShell commands, not stand-alone executables. PowerShell commands can't be run
in other shells without running PowerShell first.

PowerShell is a modern command shell that includes the best features of other popular
shells. Unlike most shells that only accept and return text, PowerShell accepts and
returns .NET objects. The shell has several features that you can use to optimize your
interactive user experience.

Robust command-line history
Tab completion and command prediction
Supports command and parameter aliases
Pipeline for chaining commands
In-console help system, similar to Unix man  pages

Features of the PowerShell command-line
interface

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://wikipedia.org/wiki/Shell_(computing)#Overview
https://wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_history
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipelines
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fshell%2Foptimize-shell%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fshell%2Foptimize-shell.md&documentVersionIndependentId=fd309bfd-493c-c99c-152d-e351e17c25dd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0e45c8ef-7c99-2156-2012-59d3f6e2ad35+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


Running commands in the shell
Article • 01/23/2025

PowerShell is a command-line shell and a scripting language used for automation.
Similar to other shells, like bash  on Linux or the Windows Command Shell ( cmd.exe ),
PowerShell lets you to run any command available on your system, not just PowerShell
commands.

For any shell in any operating system there are three types of commands:

Shell language keywords are part of the shell's scripting language.
Examples of bash  keywords include: if , then , else , elif , and fi .
Examples of cmd.exe  keywords include: dir , copy , move , if , and echo .
Examples of PowerShell keywords include: for , foreach , try , catch , and trap .

Shell language keywords can only be used within the runtime environment of the
shell. There is no executable file, external to the shell, that provides the keyword's
functionality.

OS-native commands are executable files installed in the operating system. The
executables can be run from any command-line shell, like PowerShell. This includes
script files that may require other shells to work properly. For example, if you run a
Windows batch script ( .cmd  file) in PowerShell, PowerShell runs cmd.exe  and
passes in the batch file for execution.

Shell environment-specific commands are commands defined in external files that
can only be used within the runtime environment of the shell. These include scripts
and functions, or they can be specially compiled modules that add commands to
the shell runtime. In PowerShell, these commands are known as cmdlets
(pronounced "command-lets").

Any native command can be run from the PowerShell command line. Usually you run
the command exactly as you would in bash  or cmd.exe . The following example shows
running the grep  command in bash  on Ubuntu Linux.

Bash

Types of commands

Running native commands



After starting PowerShell on Ubuntu, you can run the same command from the
PowerShell command line:

PowerShell

Most shells include features for using variables, evaluating expressions, and handling
strings. But each shell does these things differently. In PowerShell, all parameters start
with a hyphen ( - ) character. In cmd.exe , most parameters use a slash ( / ) character.
Other command-line tools may not have a special character for parameters.

Each shell has its own way of handling and evaluating strings on the command line.
When running native commands in PowerShell that expect strings to be quoted in a
specific way, you may need adjust how you pass those strings.

For more information, see the following articles:

about_Parsing
about_Quoting_Rules

PowerShell 7.2 introduced a new experimental feature PSNativeCommandArgumentPassing
that improved native command handling. For more information, see
$PSNativeCommandArgumentPassing.

PowerShell also has several more output streams than other shells. The bash  and
cmd.exe  shells have stdout and stderr. PowerShell has six output streams. For more
information, see about_Redirection and about_Output_Streams.

sdwheeler@circumflex:~$ grep sdwheeler /etc/passwd
sdwheeler:x:1000:1000:,,,:/home/sdwheeler:/bin/bash
sdwheeler@circumflex:~$ pwsh
PowerShell 7.2.6
Copyright (c) Microsoft Corporation.

https://aka.ms/powershell
Type 'help' to get help.

PS /home/sdwheeler> grep sdwheeler /etc/passwd
sdwheeler:x:1000:1000:,,,:/home/sdwheeler:/bin/bash

Passing arguments to native commands

Handling output and errors

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_parsing#passing-arguments-to-native
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommandargumentpassing
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_redirection
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_output_streams


In general, the output sent to stdout by a native command is sent to the Success stream
in PowerShell. Output sent to stderr by a native command is sent to the Error stream in
PowerShell.

When a native command has a non-zero exit code, $?  is set to $false . If the exit code
is zero, $?  is set to $true .

However, this changed in PowerShell 7.2. Error records redirected from native
commands, like when using redirection operators ( 2>&1 ), aren't written to PowerShell's
$Error  variable and the preference variable $ErrorActionPreference  doesn't affect the
redirected output.

Many native commands write to stderr as an alternative stream for additional
information. This behavior can cause confusion in PowerShell when looking through
errors and the additional output information can be lost if $ErrorActionPreference  is set
to a state that mutes the output.

PowerShell 7.3 added a new experimental feature
PSNativeCommandErrorActionPreference  that allows you to control whether output to

stderr  is treated as an error. For more information, see
$PSNativeCommandUseErrorActionPreference.

As previously noted, PowerShell commands are known as cmdlets. Cmdlets are collected
into PowerShell modules that can be loaded on demand. Cmdlets can be written in any
compiled .NET language or using the PowerShell scripting language itself.

The PowerShell call operator ( & ) lets you run commands that are stored in variables and
represented by strings or script blocks. You can use this to run any native command or
PowerShell command. This is useful in a script when you need to dynamically construct
the command-line parameters for a native command. For more information, see the call
operator.

The Start-Process  cmdlet can be used to run native commands, but should only be
used when you need to control how the command is executed. The cmdlet has
parameters to support the following scenarios:

Run a command using different credentials
Hide the console window created by the new process

Running PowerShell commands

PowerShell commands that run other commands

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommanduseerroractionpreference
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#call-operator-
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#call-operator-


Redirect stdin, stdout, and stderr streams
Use a different working directory for the command

The following example runs the native command sort.exe  with redirected input and
output streams.

PowerShell

For more information, see Start-Process.

On Windows, the Invoke-Item  cmdlet performs the default action for the specified item.
For example, it runs an executable file or opens a document file using the application
associated with the document file type. The default action depends on the type of item
and is resolved by the PowerShell provider that provides access to the item.

The following example opens the PowerShell source code repository in your default web
browser.

PowerShell

For more information, see Invoke-Item.

$processOptions = @{
    FilePath = "sort.exe"
    RedirectStandardInput = "TestSort.txt"
    RedirectStandardOutput = "Sorted.txt"
    RedirectStandardError = "SortError.txt"
    UseNewEnvironment = $true
}
Start-Process @processOptions

Invoke-Item https://github.com/PowerShell/PowerShell

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/start-process
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-item


Using tab-completion in the shell
Article • 02/08/2023

PowerShell provides completions on input to provide hints, enable discovery, and speed
up input entry. Command names, parameter names, argument values and file paths can
all be completed by pressing the Tab  key.

The Tab  key is the default key binding on Windows. PSReadLine also provides a
MenuComplete  function that's bound to Ctrl + Space . The MenuComplete  function displays
a list of matching completions below the command line.

These keybindings can be changed using PSReadLine cmdlets or the application that's
hosting PowerShell. Keybindings can be different on non-Windows platforms. For more
information, see about_PSReadLine_Functions.

PowerShell has enabled tab completion for many aspects of the command line
experience.

To fill in a filename or path from the available choices automatically, type part of the
name and press the Tab  key. PowerShell automatically expands the name to the first
match that it finds. Pressing the Tab  key again cycles through all the available choices
with each key press.

The tab expansion of cmdlet names is slightly different. To use tab expansion on a
cmdlet name, type the entire first part of the name (the verb) and the hyphen that
follows it. You can fill in more of the name for a partial match. For example, if you type
get-co  and then press the Tab  key, PowerShell automatically expands this to the Get-
Command  cmdlet (notice that it also changes the case of letters to their standard form). If
you press Tab  key again, PowerShell replaces this with the only other matching cmdlet
name, Get-Content . Tab completion also works to resolve PowerShell aliases and native
executables.

The following graphic shows examples of tab and menu completion.

Built-in tab completion features

Filename completion

Command and parameter name completion

https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline_functions#completion-functions


Each new version of PowerShell includes improvements to tab completion that fix bugs
and improve usability.

PowerShell 7.0

Tab completion resolves variable assignments that are enums or are type
constrained
Tab completion expands abbreviated cmdlets and functions. For example, i-
psdf<tab>  returns Import-PowerShellDataFile

PowerShell 7.2

Fix tab completion for unlocalized about*  topics
Fix splatting being treated as positional parameter in completions
Add completions for Comment-based Help keywords
Add completion for #Requires  statements
Add tab completion for View parameter of Format-*  cmdlets
Add support for class-based argument completers

PowerShell 7.3

Fix tab completion within the script block specified for the
ValidateScriptAttribute

Added tab completion for loop labels after break  and continue
Improve Hashtable completion in multiple scenarios

Other tab completion enhancements



Parameter splatting
Arguments parameter for Invoke-CimMethod
FilterHashtable parameter for Get-WinEvent
Property parameter for the CIM cmdlets
Removes duplicates from member completion scenarios

Support forward slashes in network share (UNC path) completion
Improve member auto completion
Prioritize ValidateSet  completions over enums for parameters
Add type inference support for generic methods with type parameters
Improve type inference and completions

Allows methods to be shown in completion results for ForEach-Object -
MemberName

Prevents completion on expressions that return void like ( [void]("") )
Allows non-default Class constructors to show up when class completion is
based on the AST

Built-in tab expansion is controlled by the internal function TabExpansion or
TabExpansion2. It's possible to create functions or modules that replace the default
behavior of these functions. You can find examples in the PowerShell Gallery by
searching for the TabExpansion  keyword.

The ArgumentCompletions  attribute allows you to add tab completion values to a specific
parameter. The ArgumentCompletions  attribute is similar to ValidateSet . Both attributes
takes a list of values to be presented when the user presses Tab  after the parameter
name. However, unlike ValidateSet , the values aren't validated.

For more information, see:

ArgumentCompletions
ValidateSet

Other ways to enhance tab completion of
command parameters

Using the ValidateSet  or ArgumentCompletions  attributes
with parameters

Using the ArgumentCompleter  attribute or Register-
ArgumentCompleter  with parameters

https://www.powershellgallery.com/packages?q=tabexpansion
https://www.powershellgallery.com/packages?q=tabexpansion
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#argumentcompletions-attribute
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#validateset-attribute


An argument completer is a script block or function that provides dynamic tab
completion for parameter values.

The ArgumentCompleter  attribute allows you to register a function that provides tab
completion values to for the parameter. The argument completer function must be
available to the function containing the parameter with the ArgumentCompleter  attribute.
Usually, the function is defined in the same script or module.

For more information, see ArgumentCompleter.

The Register-ArgumentCompleter  cmdlet registers a script block as an argument
completer function at run time for any command you specify. This allows you to define
argument completers outside of the script or module or for native commands. For more
information, see Register-ArgumentCompleter.

PSReadLine 2.1.0 introduced the Predictive IntelliSense feature. Predictive IntelliSense
provides suggestions for full commands based on items from your PSReadLine history.

PSReadLine 2.2.2 extends the power of Predictive IntelliSense by adding support for
plug-in modules that use advanced logic to provide suggestions for full commands. The
Az.Tools.Predictor module was the first plug-in for Predictive IntelliSense. It uses
Machine Learning to predict what Azure PowerShell command you want to run and the
parameters you want to use.

For more information, see Using predictors.

Predictive IntelliSense in PSReadLine

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_argument_completion#argumentcompleter-attribute
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-argumentcompleter?view=powershell-7.5


Using predictors in PSReadLine
Article • 01/11/2024

PSReadLine 2.1.0 introduced the Predictive IntelliSense feature. Predictive IntelliSense
provides suggestions for full commands based on items from your PSReadLine history.
PSReadLine 2.2.2 extends the power of Predictive IntelliSense by adding support for
plug-in modules that use advanced logic to provide suggestions for full commands. The
latest version, PSReadLine 2.2.6, enables predictions by default.

When Predictive IntelliSense is enabled, the prediction suggestion appears as colored
text following the user's cursor. The suggestions from Predictive IntelliSense help new
and experienced users of PowerShell discover, edit, and execute full commands based
on matching predictions. Suggestions can come from the user's history and additional
domain specific plugins.

The previous images shows the default InlineView  of the suggestion. Pressing
RightArrow  key accepts an inline suggestion. After accepting the suggestion, you can

edit the command line before hitting Enter  to run the command.

PSReadLine also offers a ListView  presentation of the suggestions.

When in the list view, you can use the arrow keys to scroll through the available
suggestions. List view also shows the source of the prediction.

Using Predictive IntelliSense



PSReadLine defaults to InlineView . You can switch between InlineView  and ListView
by pressing the F2  key. You can also use the PredictionViewStyle parameter of Set-
PSReadLineOption  to change the view.

To use Predictive IntelliSense you must have a newer version of PSReadLine installed.
For best results, install the latest version of the module.

To install PSReadLine using PowerShellGet:

PowerShell

Or install using the new PowerShellGet v3  module:

PowerShell

PSReadLine can be installed in Windows PowerShell 5.1 or in PowerShell 7 or higher. To
use predictor plug-ins you must be running in PowerShell 7.2 or higher. Windows
PowerShell 5.1 can use the history-based predictor.

In PSReadLine 2.2.6, Predictive IntelliSense is enabled by default depending on the
following conditions:

If Virtual Terminal (VT) is supported and PSReadLine running in PowerShell 7.2 or
higher, PredictionSource is set to HistoryAndPlugin
If VT is supported and PSReadLine running in PowerShell older than 7.2,
PredictionSource is set to History
If VT isn't supported, PredictionSource is set to None .

Use the following command to see the current setting:

PowerShell

You can change the prediction source using the Set-PSReadLineOption  cmdlet with the
PredictionSource parameter. The PredictionSource can be set to:

Managing Predictive IntelliSense

Install-Module -Name PSReadLine

Install-PSResource -Name PSReadLine

Get-PSReadLineOption | Select-Object -Property PredictionSource

https://www.powershellgallery.com/packages/PowerShellGet/3.0.14-beta14
https://www.powershellgallery.com/packages/PowerShellGet/3.0.14-beta14


None

History

Plugin

HistoryAndPlugin

By default, predictions appear in light grey text on the same line the user is typing. To
support accessibility needs, you can customize the prediction color. Colors are defined
using ANSI escape sequences. You can use $PSStyle  to compose ANSI escape
sequences.

PowerShell

Or you can create your own. The default light-grey prediction text color can be restored
using the following ANSI escape sequence.

PowerShell

For more information about setting prediction color and other PSReadLine settings, see
Set-PSReadLineOption.

PSReadLine contains functions to navigate and accept predictions. For example:

AcceptSuggestion  - Accept the current inline suggestion

AcceptNextSuggestionWord  - Accept the next word of the inline suggestion

７ Note

History-based predictions come from the history maintained by PSReadLine. That
history is more comprehensive than the session-based history you can see using
Get-History . For more information, see Command history section of
about_PSReadLine.

Setting the prediction color

Set-PSReadLineOption -Colors @{ InlinePrediction = $PSStyle.Background.Blue 
}

Set-PSReadLineOption -Colors @{ InlinePrediction = "`e[38;5;238m" }

Changing keybindings

https://learn.microsoft.com/en-us/powershell/module/psreadline/set-psreadlineoption?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline#command-history


AcceptSuggestion  is built within ForwardChar , which is bound to RightArrow  by
default
AcceptNextSuggestionWord  is built within the function ForwardWord , which can be
bound to Ctrl + f

You can use the Set-PSReadLineKeyHandler  cmdlet to change key bindings.

PowerShell

With this binding, pressing Ctrl + f  accepts the next word of an inline suggestion when
the cursor is at the end of current editing line. You can bind other keys to
AcceptSuggestion  and AcceptNextSuggestionWord  for similar functionalities. For example,
you may want to make RightArrow  accept the next word of the inline suggestion, instead
of the whole suggestion line.

PowerShell

The Az.Tools.Predictor module was the first plug-in for Predictive IntelliSense. It uses
Machine Learning to predict what Azure PowerShell command you want to run and the
parameters you want to use. For more information and installation instructions, see
Announcing General Availability of Az.Tools.Predictor .

The CompletionPredictor module adds an IntelliSense experience for anything that can
be tab-completed in PowerShell. With PSReadLine set to InlineView , you get the
normal tab completion experience. When you switch to ListView , you get the
IntelliSense experience. You can install the CompletionPredictor  module from the
PowerShell Gallery.

Set-PSReadLineKeyHandler -Chord "Ctrl+f" -Function ForwardWord

Set-PSReadLineKeyHandler -Chord "RightArrow" -Function ForwardWord

Using other predictor plug-ins

https://techcommunity.microsoft.com/t5/azure-tools-blog/announcing-general-availability-of-az-tools-predictor/ba-p/3297956
https://techcommunity.microsoft.com/t5/azure-tools-blog/announcing-general-availability-of-az-tools-predictor/ba-p/3297956
https://www.powershellgallery.com/packages/CompletionPredictor
https://www.powershellgallery.com/packages/CompletionPredictor


As previously noted, ListView  shows you the source of the prediction. If you have
multiple plug-ins installed the predictions are grouped by source with History listed first
followed by each plug-in in the order that they were loaded.

You can write your own predictor using C# to create a compiled PowerShell module. The
module must implement the
System.Management.Automation.Subsystem.Prediction.ICommandPredictor interface.
This interface declares the methods used to query for prediction results and provide
feedback.

For more information, see How to create a command-line predictor.

Creating your own predictor module

https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/create-cmdline-predictor


Using dynamic help
Article • 03/27/2023

Dynamic Help provides just-in-time help that allows you to stay focused on your work
without losing your place typing on the command line.

Dynamic Help provides a view of full cmdlet help shown in an alternative screen buffer.
PSReadLine maps the function ShowCommandHelp  to the F1 key.

When the cursor is at the end of a fully expanded cmdlet name, pressing F1

displays the help for that cmdlet.
When the cursor is at the end of a fully expanded parameter name, pressing F1

displays the help for the cmdlet beginning at the parameter.

The pager in PSReadLine allows you to scroll the displayed help using the up and down
arrow keys. Pressing Q  exits the alternative screen buffer and returns to the current
cursor position on the command line on the primary screen.

Pressing Alt + h  provides dynamic help for parameters. The help is shown below the
current command line similar to MenuComplete. The cursor must be at the end of the

Getting cmdlet help

Getting focused parameter help



fully expanded parameter name when you press the Alt + h  key.

To quickly select and edit the arguments of a cmdlet without disturbing your syntax
using Alt + a . Based on the cursor position, it searches from the current cursor position
and stops when it finds any arguments on the command line.

Not all keybindings work for all operating systems and terminal applications. For
example, keybindings for the Alt  key don't work on macOS by default. On Linux, Ctrl

+ [  is the same as Escape . And Ctrl + Spacebar  generates a Control + 2  key sequence
instead of the Control + Spacebar  sequence expected.

To work around these quirks, map the PSReadLine function to an available key
combination. For example:

PowerShell

Selecting arguments on the command line

Choosing keybindings



For more information about keybindings and workarounds, see Using PSReadLine key
handlers.

Set-PSReadLineKeyHandler -Chord 'Ctrl+l' -Function ShowParameterHelp
Set-PSReadLineKeyHandler -Chord 'Ctrl+k' -Function SelectCommandArgument



Using aliases
Article • 07/23/2024

An alias is an alternate name or shorthand name for a cmdlet or for a command
element, such as a function, script, file, or executable file. You can run the command
using the alias instead of the executable name.

PowerShell provides cmdlets for managing command aliases. The following command
shows the cmdlets that manage aliases.

PowerShell

Output

For more information, see about_Aliases.

Use the Get-Alias cmdlet to list the aliases available in your environment. To list the
aliases for a single cmdlet, use the Definition parameter and specify the executable
name.

PowerShell

Output

Managing command aliases

Get-Command -Noun Alias

CommandType Name         Version Source
----------- ----         ------- ------
Cmdlet      Export-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Get-Alias    7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Import-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      New-Alias    7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Remove-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Set-Alias    7.0.0.0 Microsoft.PowerShell.Utility

Get-Alias -Definition Get-ChildItem

CommandType     Name
-----------     ----
Alias           dir -> Get-ChildItem

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-alias?view=powershell-7.5


To get the definition of a single alias, use the Name parameter.

PowerShell

Output

To create an alias, use the Set-Alias  command. You can create aliases for cmdlets,
functions, scripts, and native executables files.

PowerShell

PowerShell has several aliases that allow Unix and cmd.exe  users to use familiar
commands in Windows. The following table show common commands, the related
PowerShell cmdlet, and the PowerShell alias:

Windows Command
Shell

Unix
command

PowerShell
cmdlet

PowerShell alias

cd , chdir cd Set-Location sl , cd , chdir

cls clear Clear-Host cls  clear

copy cp Copy-Item cpi , cp , copy

del , erase , rd , rmdir rm Remove-Item ri , del , erase , rd , rm ,
rmdir

dir ls Get-ChildItem gci , dir , ls

Alias           gci -> Get-ChildItem
Alias           ls -> Get-ChildItem

Get-Alias -Name gci

CommandType     Name
-----------     ----
Alias           gci -> Get-ChildItem

Set-Alias -Name np -Value Notepad.exe
Set-Alias -Name cmpo  -Value Compare-Object

Compatibility aliases in Windows

ﾉ Expand table



Windows Command
Shell

Unix
command

PowerShell
cmdlet

PowerShell alias

echo echo Write-Output write  echo

md mkdir New-Item ni

move mv Move-Item mi , move , mi

popd popd Pop-Location popd

pwd Get-Location gl , pwd

pushd pushd Push-Location pushd

ren mv Rename-Item rni , ren

type cat Get-Content gc , cat , type

You can assign an alias to a cmdlet, script, function, or executable file. Unlike some Unix
shells, you cannot assign an alias to a command with parameters. For example, you can
assign an alias to the Get-Eventlog  cmdlet, but you cannot assign an alias to the Get-
Eventlog -LogName System  command. You must create a function that contains the
command with parameters.

For more information, see about_Aliases.

PowerShell also provides ways to create shorthand names for parameters. Parameter
aliases are defined using the Alias  attribute when you declare the parameter. These
can't be defined using the *-Alias  cmdlets.

７ Note

The aliases in this table are Windows-specific. Some aliases aren't available on
other platforms. This is to allow the native command to work in a PowerShell
session. For example, ls  isn't defined as a PowerShell alias on macOS or Linux so
that the native command is run instead of Get-ChildItem .

Creating alternate names for commands with
parameters

Parameter aliases and shorthand names

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases#alternate-names-for-commands-with-parameters


For more information, see the Alias attribute documentation.

In addition to parameter aliases, PowerShell lets you specify the parameter name using
the fewest characters needed to uniquely identify the parameter. For example, the Get-
ChildItem  cmdlet has the Recurse and ReadOnly parameters. To uniquely identify the
Recurse parameter you only need to provide -Rec . If you combine that with the
command alias, Get-ChildItem -Recurse  can be shortened to dir -Rec .

Aliases are a convenience feature to be used interactively in the shell. You should always
use the full command and parameter names in your scripts.

Aliases can be deleted or redefined in a profile script
Any aliases you define may not be available to the user of your scripts
Aliases make your code harder to read and maintain

Don't use aliases in scripts

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#alias-attribute


Customizing your shell environment
Article • 02/26/2025

A PowerShell profile is a script that runs when PowerShell starts. You can use the profile
to customize the environment. You can:

Add aliases, functions, and variables
Load modules
Create PowerShell drives
Run arbitrary commands
Change preference settings

Putting these settings in your profile ensures that they're available whenever you start
PowerShell on your system.

The $PROFILE  automatic variable stores the paths to the PowerShell profiles that are
available in the current session.

There are four possible profiles available to support different user scopes and different
PowerShell hosts. The fully qualified paths for each profile script are stored in the
following member properties of $PROFILE .

AllUsersAllHosts
AllUsersCurrentHost
CurrentUserAllHosts
CurrentUserCurrentHost

You can create profile scripts that run for all users or just one user, the CurrentUser.
CurrentUser profiles are stored under the user's home directory path. The location
varies depending on the operating system and the version of PowerShell you use.

By default, referencing the $PROFILE  variable returns the path to the "Current User,
Current Host" profile. The other profiles path can be accessed through the properties of

７ Note

To run scripts in Windows, the PowerShell execution policy needs to be set to
RemoteSigned  at a minimum. Execution policies don't apply to macOS and Linux.
For more information, see about_Execution_Policy.

The $PROFILE variable

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies


the $PROFILE  variable. The following command shows the default profile locations on
Windows.

PowerShell

The following command shows the default profile locations on Ubuntu Linux.

PowerShell

There are also profiles that run for all PowerShell hosts or specific hosts. The profile
script for each PowerShell host has a name unique for that host. For example, the
filename for the standard Console Host on Windows or the default terminal application
on other platforms is Microsoft.PowerShell_profile.ps1 . For Visual Studio Code (VS
Code), the filename is Microsoft.VSCode_profile.ps1 .

For more information, see about_Profiles.

When you first install PowerShell on a system, the profile script files and the directories
they belong to don't exist. The following command creates the "Current User, Current
Host" profile script file if it doesn't exist.

PowerShell

PS> $PROFILE | Select-Object *
AllUsersAllHosts       : C:\Program Files\PowerShell\7\profile.ps1
AllUsersCurrentHost    : C:\Program 
Files\PowerShell\7\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts    : C:\Users\username\Documents\PowerShell\profile.ps1
CurrentUserCurrentHost : 
C:\Users\username\Documents\PowerShell\Microsoft.PowerShell_profile.ps1
Length                 : 69

$PROFILE | Select-Object *

AllUsersAllHosts       : /opt/microsoft/powershell/7/profile.ps1
AllUsersCurrentHost    : 
/opt/microsoft/powershell/7/Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts    : /home/username/.config/powershell/profile.ps1
CurrentUserCurrentHost : 
/home/username/.config/powershell/Microsoft.PowerShell_profile.ps1
Length                 : 67

How to create your personal profile

if (!(Test-Path -Path $PROFILE)) {
  New-Item -ItemType File -Path $PROFILE -Force

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles


The Force parameter of New-Item  cmdlet creates the necessary folders when they don't
exist. After you create the script file, you can use your favorite editor to customize your
shell environment.

The previous articles talked about using tab completion, command predictors, and
aliases. These articles showed the commands used to load the required modules, create
custom completers, define key bindings, and other settings. These are the kinds of
customizations that you want to have available in every PowerShell interactive session.
The profile script is the place for these settings.

The simplest way to edit your profile script is to open the file in your favorite code
editor. For example, the following command opens the profile in VS Code .

PowerShell

You could also use notepad.exe  on Windows, vi  on Linux, or any other text editor.

The following profile script has examples for many of the customizations mentioned in
the previous articles. You can use any of these settings in your own profile.

PowerShell

}

Adding customizations to your profile

code $PROFILE

## Map PSDrives to other registry hives
if (!(Test-Path HKCR:)) {
    $null = New-PSDrive -Name HKCR -PSProvider Registry -Root 
HKEY_CLASSES_ROOT
    $null = New-PSDrive -Name HKU -PSProvider Registry -Root HKEY_USERS
}

## Customize the prompt
function prompt {
    $identity = [Security.Principal.WindowsIdentity]::GetCurrent()
    $principal = [Security.Principal.WindowsPrincipal] $identity
    $adminRole = [Security.Principal.WindowsBuiltInRole]::Administrator

    $prefix = if (Test-Path Variable:/PSDebugContext) { '[DBG]: ' } else { 
'' }
    if ($principal.IsInRole($adminRole)) {
        $prefix = "[ADMIN]:$prefix"
    }

https://code.visualstudio.com/
https://code.visualstudio.com/


This profile script provides examples for the following customization:

Adds two new PSDrives for the other root registry hives.
Creates a customized prompt that changes if you're running in an elevated session.

    $body = 'PS ' + $PWD.path
    $suffix = $(if ($NestedPromptLevel -ge 1) { '>>' }) + '> '
    "${prefix}${body}${suffix}"
}

## Create $PSStyle if running on a version older than 7.2
## - Add other ANSI color definitions as needed

if ($PSVersionTable.PSVersion.ToString() -lt '7.2.0') {
    # define escape char since "`e" may not be supported
    $esc = [char]0x1b
    $PSStyle = [pscustomobject]@{
        Foreground = @{
            Magenta = "${esc}[35m"
            BrightYellow = "${esc}[93m"
        }
        Background = @{
            BrightBlack = "${esc}[100m"
        }
    }
}

## Set PSReadLine options and keybindings
$PSROptions = @{
    ContinuationPrompt = '  '
    Colors             = @{
        Operator         = $PSStyle.Foreground.Magenta
        Parameter        = $PSStyle.Foreground.Magenta
        Selection        = $PSStyle.Background.BrightBlack
        InLinePrediction = $PSStyle.Foreground.BrightYellow + 
$PSStyle.Background.BrightBlack
    }
}
Set-PSReadLineOption @PSROptions
Set-PSReadLineKeyHandler -Chord 'Ctrl+f' -Function ForwardWord
Set-PSReadLineKeyHandler -Chord 'Enter' -Function ValidateAndAcceptLine

## Add argument completer for the dotnet CLI tool
$scriptblock = {
    param($wordToComplete, $commandAst, $cursorPosition)
    dotnet complete --position $cursorPosition $commandAst.ToString() |
        ForEach-Object {
            [System.Management.Automation.CompletionResult]::new($_, $_, 
'ParameterValue', $_)
        }
}
Register-ArgumentCompleter -Native -CommandName dotnet -ScriptBlock 
$scriptblock

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_filesystem_provider
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_prompts


Configures PSReadLine and adds key binding. The color settings use the $PSStyle
feature to define the ANSI color settings.
Adds tab completion for the dotnet CLI tool. The tool provides parameters to help
resolve the command-line arguments. The script block for Register-
ArgumentCompleter uses that feature to provide the tab completion.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals
https://learn.microsoft.com/en-us/dotnet/core/tools/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-argumentcompleter
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-argumentcompleter


Using PSReadLine key handlers
Article • 03/29/2023

The PSReadLine module provides key handlers that map PSReadLine functions to
keyboard chords. Keyboard chords are a sequence of one or more keystrokes that are
pressed at the same time. For example, the chord Ctrl + Spacebar  is the combination of
the Ctrl  and Spacebar  keys pressed at the same time. A PSReadLine function is a
predefined action that can be performed on a command line. For example, the
MenuComplete  function allows you to choose from a list of options from a menu
complete the input on the command line.

PSReadLine has several predefined key handlers that are bound by default. You can also
define your own custom key handlers. Run the following command to list the key
handlers that are currently defined.

PowerShell

You can also get a list of all unbound PSReadLine functions that are available to be
bound to a key chord.

PowerShell

You can use the Set-PSReadLineKeyHandler  cmdlet to bind a function to a key handler.
The following command binds the MenuComplete  function to the chord Ctrl + Spacebar .

PowerShell

The names of the keys in the chord are defined by the [System.ConsoleKey]
enumeration. For more information, see System.ConsoleKey documentation. For
example, the name of the 2  key in [System.ConsoleKey]  is D2 , whereas the name of the
2  key on the numeric keypad is NumPad2 . You can use the [System.Console]::ReadKey()

method to find the name of the key you pressed.

Get-PSReadLineKeyHandler

Get-PSReadLineKeyHandler -Unbound

Set-PSReadLineKeyHandler -Chord 'Ctrl+Spacebar' -Function MenuComplete

Finding key names and chord bindings

https://learn.microsoft.com/en-us/dotnet/api/system.consolekey


PowerShell

The following output shows the information returned by the ReadKey()  method for the
Ctrl + 2  key chord.

Output

For the PSReadLine key handler cmdlets, this chord is represented as Ctrl+D2 . The
following example binds this chord to a function.

PowerShell

You can bind multiple cords to a single function. By default, the BackwardDeleteChar
function is bound to two chords.

PowerShell

Output

On Windows, you can also use the Alt + ?  key chord to show the function bound to
the next key chord you enter. When you type Alt + ?  you see the following prompt:

[System.Console]::ReadKey()

KeyChar Key Modifiers
------- --- ---------
        D2   Control

Set-PSReadLineKeyHandler -Chord 'Ctrl+D2' -Function MenuComplete

Get-PSReadLineKeyHandler -Chord Backspace, Ctrl+h

Key       Function           Description
---       --------           -----------
Backspace BackwardDeleteChar Delete the character before the cursor
Ctrl+h    BackwardDeleteChar Delete the character before the cursor

７ Note

The Chord parameter is case-sensitive. Meaning, you can create different bindings
for Ctrl + X  and Ctrl + x .



Output

When you hit the Backspace  key you get the following response:

Output

The key codes generated by your keyboard can be different depending on the operating
system and terminal application you are using.

The Macintosh keyboard doesn't have an Alt  key like Windows and Linux systems.
Instead, it has the ⌥ Option  key. macOS uses this key differently than the Alt  key on
other systems. However, you can configure the terminal and iTerm2 applications on
macOS to treat it as an Alt  key.

Open the Settings window from the App bar in Terminal.app. Select Profiles and choose
the profile you want to configure. Select the Keyboard tab of the configuration options.
Below the list of keys, select the Use Option as Meta Key setting. This setting allows the
⌥ Option  key to act as Alt  in the Terminal application.

what-is-key:

Backspace: BackwardDeleteChar - Delete the character before the cursor

Key handlers on non-Windows computers

macOS

Configuring the Terminal application



Open the Settings window from the App Bar in iTerm.app. Select Profiles and choose
the profile you want to configure. Select the Keys tab of the configuration options.
Select the Esc+ option for both the Left Option Key and Right Option Key settings. This
setting allows the ⌥ Option  key to act as Alt  in the iTerm application.

Configuring the iTerm2 application



On Linux platforms, the key code generated can be different than other systems. For
example:

Ctrl + [  is the same as Escape

Ctrl + Spacebar  generates the key codes for Ctrl + D2 . If you want to map a
function Ctrl + Spacebar  you must use the chord Ctrl+D2 .

PowerShell

Use the ReadKey()  method to verify the key codes generated by your keyboard.

７ Note

The exact steps may vary depending on the versions of macOS and the terminal
applications. These examples were captured on macOS Ventura 13.2.1 and iTerm2
v3.4.16.

Linux

Set-PSReadLineKeyHandler -Chord 'Ctrl+D2' -Function MenuComplete

Commonly used key handlers



Here are a few commonly used key handlers that are bound by default on Windows.
Note that the key binding may be different on non-Windows platforms.

Complete the input by selecting from a menu of possible completion values.

Default chord: Ctrl+Spacebar

The following example shows the menu of possible completions for commands
beginning with select .

Output

Use the arrow keys to select the completion you want. Press the Enter  key to complete
the input. As you move through the selections, help for the selected command is
displayed below the menu.

This function clears the screen similar to the cls  or clear  commands.

Default chord: Ctrl+l

Selects the next argument on the command line.

Default chord: Alt+a

You may have command in your history that you want to run again with different
parameter values. You can use the chord to cycle through each parameter and change
the value as needed.

New-AzVM -ResourceGroupName myRGName -Location eastus -Name myVM

MenuComplete

PS C:\> select<Ctrl+Spacebar>
select                   Select-Object            Select-PSFPropertyValue  
Select-Xml
Select-AzContext         Select-PSFConfig         Select-PSMDBuildProject
Select-AzSubscription    Select-PSFObject         Select-String

Select-Object

ClearScreen

SelectCommandArgument



Pressing Alt + a  selects the next parameter argument in turn: myRGName , eastus , myVM .

Moves the cursor to the matching brace.

Default chord: Ctrl+]

This functions moves your cursor to the closing brace that matches the brace at the
current cursor position on the command line. The function works for brackets ( [] ),
braces ( {} ), and parentheses, ( () ).

Start or accumulate a numeric argument use to repeat a keystroke the specified number
of times.

Default chord: Alt+0  through Alt+9

For example, typing Alt + 4 + #  enters ####  on the command line.

Get-PSReadLineKeyHandler
Set-PSReadLineKeyHandler

GotoBrace

DigitArgument

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/psreadline/get-psreadlinekeyhandler?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/psreadline/set-psreadlinekeyhandler?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fshell%2Fusing-keyhandlers%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fshell%2Fusing-keyhandlers.md&documentVersionIndependentId=f3b96642-949b-d167-bff0-10b2dc2fb4fd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e02e2079-b041-49ad-ae0e-c39206acc5f9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Configuring a light colored theme
Article • 03/07/2023

The default colors for both PowerShell and PSReadLine are selected for a dark
background terminal. However, some users may choose to use a light background with
dark text. Since most of the default colors don't set the background, using light
foreground colors on a light background produces unreadable text.

PSReadLine allows you to define colors for 18 different syntax elements. You can view
the current settings using the Get-PSReadLineOption  cmdlet.

Output

EditMode                               : Windows
AddToHistoryHandler                    : 
System.Func`2[System.String,System.Object]
HistoryNoDuplicates                    : True
HistorySavePath                        : 
C:\Users\user1\AppData\Roaming\Microsoft\Wind...
HistorySaveStyle                       : SaveIncrementally
HistorySearchCaseSensitive             : False
HistorySearchCursorMovesToEnd          : False
MaximumHistoryCount                    : 4096
ContinuationPrompt                     : >>
ExtraPromptLineCount                   : 0
PromptText                             : {> }
BellStyle                              : Audible
DingDuration                           : 50
DingTone                               : 1221
CommandsToValidateScriptBlockArguments : {ForEach-Object, %, Invoke-Command, 
icm...}
CommandValidationHandler               :
CompletionQueryItems                   : 100
MaximumKillRingCount                   : 10
ShowToolTips                           : True
ViModeIndicator                        : None
WordDelimiters                         : ;:,.[]{}()/\|^&*-=+'"-—―
AnsiEscapeTimeout                      : 100
PredictionSource                       : HistoryAndPlugin
PredictionViewStyle                    : InlineView
CommandColor                           : "`e[93m"
CommentColor                           : "`e[32m"
ContinuationPromptColor                : "`e[37m"
DefaultTokenColor                      : "`e[37m"
EmphasisColor                          : "`e[96m"
ErrorColor                             : "`e[91m"
InlinePredictionColor                  : "`e[38;5;238m"
KeywordColor                           : "`e[92m"
ListPredictionColor                    : "`e[33m"
ListPredictionSelectedColor            : "`e[48;5;238m"



The color settings are stored as strings containing ANSI escape sequences that change
the color in your terminal. Using the Set-PSReadLineOption  cmdlet you can change the
colors to values that work better for a light-colored background.

The PowerShell ISE can be configured to use a light theme for both the editor and
console panes. You can also view and change the colors that the ISE uses for various
syntax and output types. You can use these color choices to define a similar theme for
PSReadLine.

The following hashtable defines colors for PSReadLine that mimic the colors in the
PowerShell ISE.

PowerShell

MemberColor                            : "`e[97m"
NumberColor                            : "`e[97m"
OperatorColor                          : "`e[90m"
ParameterColor                         : "`e[90m"
SelectionColor                         : "`e[30;47m"
StringColor                            : "`e[36m"
TypeColor                              : "`e[37m"
VariableColor                          : "`e[92m"

Defining colors for a light theme

$ISETheme = @{
    Command                  = $PSStyle.Foreground.FromRGB(0x0000FF)
    Comment                  = $PSStyle.Foreground.FromRGB(0x006400)
    ContinuationPrompt       = $PSStyle.Foreground.FromRGB(0x0000FF)
    Default                  = $PSStyle.Foreground.FromRGB(0x0000FF)
    Emphasis                 = $PSStyle.Foreground.FromRGB(0x287BF0)
    Error                    = $PSStyle.Foreground.FromRGB(0xE50000)
    InlinePrediction         = $PSStyle.Foreground.FromRGB(0x93A1A1)
    Keyword                  = $PSStyle.Foreground.FromRGB(0x00008b)
    ListPrediction           = $PSStyle.Foreground.FromRGB(0x06DE00)
    Member                   = $PSStyle.Foreground.FromRGB(0x000000)
    Number                   = $PSStyle.Foreground.FromRGB(0x800080)
    Operator                 = $PSStyle.Foreground.FromRGB(0x757575)
    Parameter                = $PSStyle.Foreground.FromRGB(0x000080)
    String                   = $PSStyle.Foreground.FromRGB(0x8b0000)
    Type                     = $PSStyle.Foreground.FromRGB(0x008080)
    Variable                 = $PSStyle.Foreground.FromRGB(0xff4500)
    ListPredictionSelected   = $PSStyle.Background.FromRGB(0x93A1A1)
    Selection                = $PSStyle.Background.FromRGB(0x00BFFF)
}

７ Note



To have the color settings you want in every PowerShell session, you must add the
configuration settings to your PowerShell profile script. For an example, see Customizing
your shell environment

Add the $ISETheme  variable and the following Set-PSReadLineOption  command to your
profile.

PowerShell

Beginning in PowerShell 7.2, PowerShell adds colorized output to the default console
experience. The colors used are defined in the $PSStyle  variable and are designed for a
dark background. The following settings work better for a light background terminal.

PowerShell

In PowerShell 7.2 and higher you can use the FromRGB()  method of $PSStyle  to
create the ANSI escape sequences for the colors you want.

For more information about $PSStyle , see about_ANSI_Terminals.

For more information about ANSI escape sequences, see the ANSI escape code
article in Wikipedia.

Setting the color theme in your profile

Set-PSReadLineOption -Colors $ISETheme

$PSStyle.Formatting.FormatAccent       = "`e[32m"
$PSStyle.Formatting.TableHeader        = "`e[32m"
$PSStyle.Formatting.ErrorAccent        = "`e[36m"
$PSStyle.Formatting.Error              = "`e[31m"
$PSStyle.Formatting.Warning            = "`e[33m"
$PSStyle.Formatting.Verbose            = "`e[33m"
$PSStyle.Formatting.Debug              = "`e[33m"
$PSStyle.Progress.Style                = "`e[33m"
$PSStyle.FileInfo.Directory            = 
$PSStyle.Background.FromRgb(0x2f6aff) +
                                         $PSStyle.Foreground.BrightWhite
$PSStyle.FileInfo.SymbolicLink         = "`e[36m"
$PSStyle.FileInfo.Executable           = "`e[95m"
$PSStyle.FileInfo.Extension['.ps1']    = "`e[36m"
$PSStyle.FileInfo.Extension['.ps1xml'] = "`e[36m"
$PSStyle.FileInfo.Extension['.psd1']   = "`e[36m"
$PSStyle.FileInfo.Extension['.psm1']   = "`e[36m"

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_ANSI_Terminals
https://en.wikipedia.org/wiki/ANSI_escape_code


The ISE color theme may not work for users with color-blindness or other conditions
that limit their ability to see colors.

The World Wide Web Consortium (W3C)  has recommendations for using colors for
accessibility. The Web Content Accessibility Guidelines (WCAG) 2.1 recommends that
"visual presentation of text and images of text has a contrast ratio of at least 4.5:1." For
more information, see Success Criterion 1.4.3 Contrast (Minimum) .

The Contrast Ratio  website provides a tool that lets you pick foreground and
background colors and measure the contrast. You can use this tool to find color
combinations that work best for you.

Choosing colors for accessibility

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://www.w3.org/
https://www.w3.org/TR/WCAG/#contrast-minimum
https://contrast-ratio.com/
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fshell%2Fusing-light-theme%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fshell%2Fusing-light-theme.md&documentVersionIndependentId=e0e9d3a1-8761-cac1-3d12-e884d6a1883a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+919d5e86-ca63-c2a5-26f5-b636041fd071+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Improve the accessibility of output in
PowerShell
Article • 09/12/2024

Most terminal environments only display raw text. Users that rely on screen readers are
faced with tedious narration when consuming large amounts of raw text because the
raw output doesn't have the accessibility metadata to characterize the format of the
content.

There are two ways to improve the accessibility of the output in PowerShell:

Output the data in a way that it can be viewed in another tool that supports screen
reading technologies.
Reduce the amount of output displayed in the terminal by filtering and selecting
the data you want and output the text in a more readable format.

For large amounts of data, rather than output to the host, consider writing output in a
format that can be viewed in another tool that supports screen reading technologies.
You might need to save the data to a file in a format that can be opened in another
application.

For small to moderate size output, use the Out-GridView  command. The output is
rendered using Windows Presentation Foundation (WPF) in tabular form, much like a
spreadsheet. The GridView control allows you to sort, filter, and search the data, which
reduces the amount of data that needs to be read. The GridView control is also
accessible to screen readers. The Narrator tool built into Windows is able to read the
GridView details, including column names and row count.

The following example shows how to display a list of services in a GridView control.

PowerShell

Display the data in a tool outside of the
terminal

Out-GridView command on Windows

Get-Service | Out-GridView



The Out-GridView  command is only available in PowerShell on Windows.

Spreadsheet applications such as Microsoft Excel support CSV files. The following
example shows how to save the output of a command to a CSV file.

PowerShell

The Invoke-Item  command opens the file in the default application for CSV files, which
is usually Microsoft Excel.

HTML files can be viewed by web browsers such as Microsoft Edge. The following
example shows how to save the output of a command to an HTML file.

PowerShell

The Invoke-Item  command opens the file in your default web browser.

One way to improve the accessibility of the output is to reduce the amount of output
displayed in the terminal. PowerShell has several commands that can help you filter and
select the data you want.

Rather than returning a large mount of data, use commands such as Select-Object ,
Sort-Object , and Where-Object  to reduce the amount of output. The following example
gets the list of services on the computer.

Each of the following commands improves the output in a different way:

Character Separated Value (CSV) format

Get-Service | Export-Csv -Path .\myFile.csv
Invoke-Item .\myFile.csv

HyperText Markup Language (HTML) format

Get-Service | ConvertTo-Html | Out-File .\myFile.html
Invoke-Item .\myFile.html

Reduce the amount of output

Select and filter data



The -ErrorAction SilentlyContinue  parameter suppresses error messages that
might be generated if the user doesn't have permission to view some services.
The Where-Object  command reduces the number of items returned by filtering the
list to only show services that are running and have event  in the description.
The Select-Object  command selects only the service name and display name.
The Format-List  command displays the output in list format, which provides a
better narration experience for screen readers.

PowerShell

The default property names of .NET objects output by PowerShell can be verbose and
confusing. You can use calculated properties to change the property names and values
to something easier to understood when read by a narrator technology.

The following example shows how to get the top five processes by memory usage and
display the process name and memory usage in megabytes.

PowerShell

By default, Get-Process  displays the WorkingSet as the number of bytes of memory
used. Without formatting, it can be difficult to understand the magnitude of the
number. The calculated property converts the number of bytes to megabytes and
formats the number with commas and limits the value to two decimal places.

Output

Get-Service -ErrorAction SilentlyContinue |
    Where-Object {$_.Status -eq 'Running' -and $_.Description -match 
'event'} |
    Select-Object Name, DisplayName |
    Format-List

Reformat the output with calculated properties

Get-Process |
    Sort-Object WorkingSet -Descending |
    Select-Object -First 5 -Property ProcessName,
        @{n="MemoryMB"; e={'{0:N}' -f ($_.WorkingSet/1Mb)}} |
    Format-List

ProcessName : vmmemWSL
MemoryMB    : 1,217.69

ProcessName : Memory Compression
MemoryMB    : 780.45



Out-GridView
Export-Csv
ConvertTo-Html
about_Calculated_Properties

ProcessName : Code
MemoryMB    : 726.43

ProcessName : OUTLOOK
MemoryMB    : 460.16

ProcessName : msedgewebview2
MemoryMB    : 428.94

Additional reading

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/out-gridview?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-csv?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertto-html?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_calculated_properties


Deep dive articles
Article • 11/17/2022

The articles in this section are designed to be an in-depth look into PowerShell topics.
These articles don't replace the reference articles, but provide diverse examples,
illustrate edge cases, and warn about pitfalls and common mistakes.

This collection is also a showcase for community contributions. The inaugural set of
articles come from @KevinMarquette  and were originally published at
PowerShellExplained.com .

If you're interested in contributing content to this collection, please read the Contributor
Guide . When you are ready to propose a contribution, submit an issue in the GitHub
repository using the Document Idea template  and include a link to the existing
content you want to share.

How to contribute content

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://aka.ms/PSDocsContributor
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?assignees=&labels=doc-idea&template=New_Document_Request.md&title=Community+contribution
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fdeep-dives%2Foverview%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fdeep-dives%2Foverview.md&documentVersionIndependentId=97e0de0e-1f24-6aae-956f-89aa77406fcf&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4f8a3e51-84b2-53f6-1cd8-f0949d0a56e9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Everything you wanted to know about
arrays
Article • 06/20/2024

Arrays are a fundamental language feature of most programming languages. They're a
collection of values or objects that are difficult to avoid. Let's take a close look at arrays
and everything they have to offer.

I'm going to start with a basic technical description of what arrays are and how they are
used by most programming languages before I shift into the other ways PowerShell
makes use of them.

An array is a data structure that serves as a collection of multiple items. You can iterate
over the array or access individual items using an index. The array is created as a
sequential chunk of memory where each value is stored right next to the other.

I'll touch on each of those details as we go.

Because arrays are such a basic feature of PowerShell, there is a simple syntax for
working with them in PowerShell.

An empty array can be created by using @()

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

What is an array?

Basic usage

Create an array

PS> $data = @()
PS> $data.Count

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arrays
https://powershellexplained.com/2018-10-15-Powershell-arrays-Everything-you-wanted-to-know/
https://powershellexplained.com/2018-10-15-Powershell-arrays-Everything-you-wanted-to-know/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


We can create an array and seed it with values just by placing them in the @()
parentheses.

PowerShell

This array has 4 items. When we call the $data  variable, we see the list of our items. If
it's an array of strings, then we get one line per string.

We can declare an array on multiple lines. The comma is optional in this case and
generally left out.

PowerShell

I prefer to declare my arrays on multiple lines like that. Not only does it get easier to
read when you have multiple items, it also makes it easier to compare to previous
versions when using source control.

It's commonly understood that @()  is the syntax for creating an array, but comma-
separated lists work most of the time.

PowerShell

0

PS> $data = @('Zero','One','Two','Three')
PS> $data.Count
4

PS> $data
Zero
One
Two
Three

$data = @(
    'Zero'
    'One'
    'Two'
    'Three'
)

Other syntax

$data = 'Zero','One','Two','Three'



One cool little trick worth mentioning is that you can use Write-Output  to quickly create
strings at the console.

PowerShell

This is handy because you don't have to put quotes around the strings when the
parameter accepts strings. I would never do this in a script but it's fair game in the
console.

Now that you have an array with items in it, you may want to access and update those
items.

To access individual items, we use the brackets []  with an offset value starting at 0. This
is how we get the first item in our array:

PowerShell

The reason why we use zero here is because the first item is at the beginning of the list
so we use an offset of 0 items to get to it. To get to the second item, we would need to
use an offset of 1 to skip the first item.

PowerShell

This would mean that the last item is at offset 3.

PowerShell

Write-Output to create arrays

$data = Write-Output Zero One Two Three

Accessing items

Offset

PS> $data = 'Zero','One','Two','Three'
PS> $data[0]
Zero

PS> $data[1]
One



Now you can see why I picked the values that I did for this example. I introduced this as
an offset because that is what it really is, but this offset is more commonly referred to as
an index. An index that starts at 0 . For the rest of this article I will call the offset an
index.

In most languages, you can only specify a single number as the index and you get a
single item back. PowerShell is much more flexible. You can use multiple indexes at
once. By providing a list of indexes, we can select several items.

PowerShell

The items are returned based on the order of the indexes provided. If you duplicate an
index, you get that item both times.

PowerShell

We can specify a sequence of numbers with the built-in ..  operator.

PowerShell

This works in reverse too.

PS> $data[3]
Three

Index

Special index tricks

PS> $data[0,2,3]
Zero
Two
Three

PS> $data[3,0,3]
Three
Zero
Three

PS> $data[1..3]
One
Two
Three



PowerShell

You can use negative index values to offset from the end. So if you need the last item in
the list, you can use -1 .

PowerShell

One word of caution here with the ..  operator. The sequence 0..-1  and -1..0
evaluate to the values 0,-1  and -1,0 . It's easy to see $data[0..-1]  and think it would
enumerate all items if you forget this detail. $data[0..-1]  gives you the same value as

$data[0,-1]  by giving you the first and last item in the array (and none of the other
values). Here is a larger example:

PowerShell

This is the same as:

PowerShell

In most languages, if you try to access an index of an item that is past the end of the
array, you would get some type of error or an exception. PowerShell silently returns

PS> $data[3..1]
Three
Two
One

PS> $data[-1]
Three

PS> $a = 1,2,3,4,5,6,7,8
PS> $a[2..-1]
3
2
1
8

PS> $a[2,1,0,-1]
3
2
1
8

Out of bounds



nothing.

PowerShell

If your variable is $null  and you try to index it like an array, you get a
System.Management.Automation.RuntimeException  exception with the message Cannot
index into a null array .

PowerShell

So make sure your arrays are not $null  before you try to access elements inside them.

Arrays and other collections have a Count  property that tells you how many items are in
the array.

PowerShell

PowerShell 3.0 added a Count  property to most objects. you can have a single object
and it should give you a count of 1 .

PowerShell

Even $null  has a Count  property except it returns 0 .

PowerShell

PS> $null -eq $data[9000]
True

Cannot index into a null array

PS> $empty = $null
PS> $empty[0]
Error: Cannot index into a null array.

Count

PS> $data.Count
4

PS> $date = Get-Date
PS> $date.Count
1



There are some traps here that I will revisit when I cover checking for $null  or empty
arrays later on in this article.

A common programming error is created because arrays start at index 0. Off-by-one
errors can be introduced in two ways.

The first is by mentally thinking you want the second item and using an index of 2  and
really getting the third item. Or by thinking that you have four items and you want last
item, so you use the count to access the last item.

PowerShell

PowerShell is perfectly happy to let you do that and give you exactly what item exists at
index 4: $null . You should be using $data.Count - 1  or the -1  that we learned about
above.

PowerShell

This is where you can use the -1  index to get the last element.

PowerShell

Lee Dailey also pointed out to me that we can use $data.GetUpperBound(0)  to get the
max index number.

PowerShell

PS> $null.Count
0

Off-by-one errors

$data[ $data.Count ]

PS> $data[ $data.Count - 1 ]
Three

PS> $data[ -1 ]
Three

PS> $data.GetUpperBound(0)
3



The second most common way is when iterating the list and not stopping at the right
time. I'll revisit this when we talk about using the for  loop.

We can use the same index to update existing items in the array. This gives us direct
access to update individual items.

PowerShell

If we try to update an item that is past the last element, then we get an Index was
outside the bounds of the array.  error.

PowerShell

I'll revisit this later when I talk about how to make an array larger.

At some point, you might need to walk or iterate the entire list and perform some action
for each item in the array.

Arrays and the PowerShell pipeline are meant for each other. This is one of the simplest
ways to process over those values. When you pass an array to a pipeline, each item
inside the array is processed individually.

PowerShell

PS> $data[ $data.GetUpperBound(0) ]
Three

Updating items

$data[2] = 'dos'
$data[3] = 'tres'

PS> $data[4] = 'four'
Index was outside the bounds of the array.
At line:1 char:1
+ $data[4] = 'four'
+ ~~~~~~~~~~~~~
+ CategoryInfo          : OperationStopped: (:) [], IndexOutOfRangeException
+ FullyQualifiedErrorId : System.IndexOutOfRangeException

Iteration

Pipeline



If you have not seen $PSItem  before, just know that it's the same thing as $_ . You can
use either one because they both represent the current object in the pipeline.

The foreach  loop works well with collections. Using the syntax: foreach ( <variable> in
<collection> )

PowerShell

I tend to forget about this one but it works well for simple operations. PowerShell allows
you to call ForEach()  on a collection.

PowerShell

The ForEach()  takes a parameter that is a script block. You can drop the parentheses
and just provide the script block.

PowerShell

PS> $data = 'Zero','One','Two','Three'
PS> $data | ForEach-Object {"Item: [$PSItem]"}
Item: [Zero]
Item: [One]
Item: [Two]
Item: [Three]

ForEach loop

foreach ( $node in $data )
{
    "Item: [$node]"
}

ForEach method

PS> $data.ForEach({"Item [$PSItem]"})
Item [Zero]
Item [One]
Item [Two]
Item [Three]

$data.ForEach{"Item [$PSItem]"}



This is a lesser known syntax but it works just the same. This ForEach  method was added
in PowerShell 4.0.

The for  loop is used heavily in most other languages but you don't see it much in
PowerShell. When you do see it, it's often in the context of walking an array.

PowerShell

The first thing we do is initialize an $index  to 0 . Then we add the condition that $index
must be less than $data.Count . Finally, we specify that every time we loop that we must
increase the index by 1 . In this case $index++  is short for $index = $index + 1 . The
format operator ( -f ) is used to insert the value of $data[$index]  in the output string.

Whenever you're using a for  loop, pay special attention to the condition. I used $index
-lt $data.Count  here. It's easy to get the condition slightly wrong to get an off-by-one
error in your logic. Using $index -le $data.Count  or $index -lt ($data.Count - 1)  are
ever so slightly wrong. That would cause your result to process too many or too few
items. This is the classic off-by-one error.

This is one that is easy to overlook. If you provide an array to a switch statement, it
checks each item in the array.

PowerShell

For loop

for ( $index = 0; $index -lt $data.Count; $index++)
{
    "Item: [{0}]" -f $data[$index]
}

Switch loop

$data = 'Zero','One','Two','Three'
switch( $data )
{
    'One'
    {
        'Tock'
    }
    'Three'
    {
        'Tock'
    }
    Default

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#format-operator--f


Output

There are a lot of cool things that we can do with the switch statement. I have another
article dedicated to this.

Everything you ever wanted to know about the switch statement

When your array is a collection of string or integers (value types), sometimes you may
want to update the values in the array as you loop over them. Most of the loops above
use a variable in the loop that holds a copy of the value. If you update that variable, the
original value in the array is not updated.

The exception to that statement is the for  loop. If you want to walk an array and
update values inside it, then the for  loop is what you're looking for.

PowerShell

This example takes a value by index, makes a few changes, and then uses that same
index to assign it back.

So far, the only thing we've placed in an array is a value type, but arrays can also contain
objects.

PowerShell

    {
        'Tick'
    }
}

Tick
Tock
Tick
Tock

Updating values

for ( $index = 0; $index -lt $data.Count; $index++ )
{
    $data[$index] = "Item: [{0}]" -f $data[$index]
}

Arrays of Objects



Many cmdlets return collections of objects as arrays when you assign them to a variable.

PowerShell

All of the basic features we already talked about still apply to arrays of objects with a
few details worth pointing out.

We can use an index to access an individual item in a collection just like with value
types.

PowerShell

We can access and update properties directly.

PowerShell

$data = @(
    [pscustomobject]@{FirstName='Kevin';LastName='Marquette'}
    [pscustomobject]@{FirstName='John'; LastName='Doe'}
)

$processList = Get-Process

Accessing properties

PS> $data[0]

FirstName LastName
-----     ----
Kevin     Marquette

PS> $data[0].FirstName

Kevin

PS> $data[0].FirstName = 'Jay'
PS> $data[0]

FirstName LastName
-----     ----
Jay       Marquette

Array properties



Normally you would have to enumerate the whole list like this to access all the
properties:

PowerShell

Or by using the Select-Object -ExpandProperty  cmdlet.

PowerShell

But PowerShell offers us the ability to request LastName  directly. PowerShell enumerates
them all for us and returns a clean list.

PowerShell

The enumeration still happens but we don't see the complexity behind it.

This is where Where-Object  comes in so we can filter and select what we want out of the
array based on the properties of the object.

PowerShell

We can write that same query to get the FirstName  we are looking for.

PS> $data | ForEach-Object {$_.LastName}

Marquette
Doe

PS> $data | Select-Object -ExpandProperty LastName

Marquette
Doe

PS> $data.LastName

Marquette
Doe

Where-Object filtering

PS> $data | Where-Object {$_.FirstName -eq 'Kevin'}

FirstName LastName
-----     ----
Kevin     Marquette



PowerShell

Arrays have a Where()  method on them that allows you to specify a scriptblock  for the
filter.

PowerShell

This feature was added in PowerShell 4.0.

With value types, the only way to update the array is to use a for loop because we need
to know the index to replace the value. We have more options with objects because they
are reference types. Here is a quick example:

PowerShell

This loop is walking every object in the $data  array. Because objects are reference types,
the $person  variable references the exact same object that is in the array. So updates to
its properties do update the original.

You still can't replace the whole object this way. If you try to assign a new object to the
$person  variable, you're updating the variable reference to something else that no
longer points to the original object in the array. This doesn't work like you would expect:

PowerShell

$data | where FirstName -EQ Kevin

Where()

$data.Where({$_.FirstName -eq 'Kevin'})

Updating objects in loops

foreach($person in $data)
{
    $person.FirstName = 'Kevin'
}

foreach($person in $data)
{
    $person = [pscustomobject]@{
        FirstName='Kevin'
        LastName='Marquette'



The operators in PowerShell also work on arrays. Some of them work slightly differently.

The -join  operator is the most obvious one so let's look at it first. I like the -join
operator and use it often. It joins all elements in the array with the character or string
that you specify.

PowerShell

One of the features that I like about the -join  operator is that it handles single items.

PowerShell

I use this inside logging and verbose messages.

PowerShell

Here is a clever trick that Lee Dailey pointed out to me. If you ever want to join
everything without a delimiter, instead of doing this:

PowerShell

    }
}

Operators

-join

PS> $data = @(1,2,3,4)
PS> $data -join '-'
1-2-3-4
PS> $data -join ','
1,2,3,4

PS> 1 -join '-'
1

PS> $data = @(1,2,3,4)
PS> "Data is $($data -join ',')."
Data is 1,2,3,4.

-join $array



You can use -join  with the array as the parameter with no prefix. Take a look at this
example to see that I'm talking about.

PowerShell

The other operators like -replace  and -split  execute on each item in the array. I can't
say that I have ever used them this way but here is an example.

PowerShell

The -contains  operator allows you to check an array of values to see if it contains a
specified value.

PowerShell

When you have a single value that you would like to verify matches one of several
values, you can use the -in  operator. The value would be on the left and the array on
the right-hand side of the operator.

PS> $data = @(1,2,3,4)
PS> $data -join $null
1234

PS> $data = @(1,2,3,4)
PS> -join $data
1234

-replace and -split

PS> $data = @('ATX-SQL-01','ATX-SQL-02','ATX-SQL-03')
PS> $data -replace 'ATX','LAX'
LAX-SQL-01
LAX-SQL-02
LAX-SQL-03

-contains

PS> $data = @('red','green','blue')
PS> $data -contains 'green'
True

-in



PowerShell

This can get expensive if the list is large. I often use a regex pattern if I'm checking more
than a few values.

PowerShell

Equality and arrays can get complicated. When the array is on the left side, every item
gets compared. Instead of returning True , it returns the object that matches.

PowerShell

When you use the -ne  operator, we get all the values that are not equal to our value.

PowerShell

When you use this in an if()  statement, a value that is returned is a True  value. If no
value is returned, then it's a False  value. Both of these next statements evaluate to
True .

PowerShell

PS> $data = @('red','green','blue')
PS> 'green' -in $data
True

PS> $data = @('red','green','blue')
PS> $pattern = "^({0})$" -f ($data -join '|')
PS> $pattern
^(red|green|blue)$

PS> 'green' -match $pattern
True

-eq and -ne

PS> $data = @('red','green','blue')
PS> $data -eq 'green'
green

PS> $data = @('red','green','blue')
PS> $data -ne 'green'
red
blue



I'll revisit this in a moment when we talk about testing for $null .

The -match  operator tries to match each item in the collection.

PowerShell

When you use -match  with a single value, a special variable $Matches  gets populated
with match info. This isn't the case when an array is processed this way.

We can take the same approach with Select-String .

PowerShell

I take a closer look at Select-String , -match  and the $Matches  variable in another post
called The many ways to use regex .

Testing for $null  or empty arrays can be tricky. Here are the common traps with arrays.

At a glance, this statement looks like it should work.

$data = @('red','green','blue')
if ( $data -eq 'green' )
{
    'Green was found'
}
if ( $data -ne 'green' )
{
    'And green was not found'
}

-match

PS> $servers = @(
    'LAX-SQL-01'
    'LAX-API-01'
    'ATX-SQL-01'
    'ATX-API-01'
)
PS> $servers -match 'SQL'
LAX-SQL-01
ATX-SQL-01

$servers | Select-String SQL

$null or empty

https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression/
https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression/


PowerShell

But I just went over how -eq  checks each item in the array. So we can have an array of
several items with a single $null value and it would evaluate to $true

PowerShell

This is why it's a best practice to place the $null  on the left side of the operator. This
makes this scenario a non-issue.

PowerShell

A $null  array isn't the same thing as an empty array. If you know you have an array,
check the count of objects in it. If the array is $null , the count is 0 .

PowerShell

There is one more trap to watch out for here. You can use the Count  even if you have a
single object, unless that object is a PSCustomObject . This is a bug that is fixed in
PowerShell 6.1. That's good news, but a lot of people are still on 5.1 and need to watch
out for it.

PowerShell

if ( $array -eq $null)
{
    'Array is $null'
}

$array = @('one',$null,'three')
if ( $array -eq $null)
{
    'I think Array is $null, but I would be wrong'
}

if ( $null -eq $array )
{
    'Array actually is $null'
}

if ( $array.Count -gt 0 )
{
    "Array isn't empty"
}



If you're still on PowerShell 5.1, you can wrap the object in an array before checking the
count to get an accurate count.

PowerShell

To fully play it safe, check for $null , then check the count.

PowerShell

I recently saw someone on Reddit ask how to verify that every value in an array matches
a given value. Reddit user u/bis  had this clever solution that checks for any incorrect
values and then flips the result.

PowerShell

At this point, you're starting to wonder how to add items to an array. The quick answer
is that you can't. An array is a fixed size in memory. If you need to grow it or add a
single item to it, then you need to create a new array and copy all the values over from

PS> $object = [pscustomobject]@{Name='TestObject'}
PS> $object.Count
$null

if ( @($array).Count -gt 0 )
{
    "Array isn't empty"
}

if ( $null -ne $array -and @($array).Count -gt 0 )
{
    "Array isn't empty"
}

All -eq

$results = Test-Something
if ( -not ( $results -ne 'Passed') )
{
    'All results a Passed'
}

Adding to arrays



the old array. This sounds like a lot of work, however, PowerShell hides the complexity of
creating the new array. PowerShell implements the addition operator ( + ) for arrays.

We can use the addition operator with arrays to create a new array. So given these two
arrays:

PowerShell

We can add them together to get a new array.

PowerShell

We can create a new array in place and add an item to it like this:

PowerShell

７ Note

PowerShell does not implement a subtraction operation. If you want a flexible
alternative to an array, you need to use a generic List object.

Array addition

$first = @(
    'Zero'
    'One'
)
$second = @(
    'Two'
    'Three'
)

PS> $first + $second

Zero
One
Two
Three

Plus equals +=

$data = @(
    'Zero'
    'One'
    'Two'



Just remember that every time you use +=  that you're duplicating and creating a new
array. This is a not an issue for small datasets but it scales extremely poorly.

You can assign the results of any pipeline into a variable. It's an array if it contains
multiple items.

PowerShell

Normally when we think of using the pipeline, we think of the typical PowerShell one-
liners. We can leverage the pipeline with foreach()  statements and other loops. So
instead of adding items to an array in a loop, we can drop items onto the pipeline.

PowerShell

By default, an array in PowerShell is created as a [psobject[]]  type. This allows it to
contain any type of object or value. This works because everything is inherited from the
PSObject  type.

You can create an array of any type using a similar syntax. When you create a strongly
typed array, it can only contain values or objects the specified type.

PowerShell

    'Three'
)
$data += 'four'

Pipeline assignment

$array = 1..5 | ForEach-Object {
    "ATX-SQL-$PSItem"
}

$array = foreach ( $node in (1..5))
{
    "ATX-SQL-$node"
}

Array Types

Strongly typed arrays



Adding items to an array is one of its biggest limitations, but there are a few other
collections that we can turn to that solve this problem.

The ArrayList  is commonly one of the first things that we think of when we need an
array that is faster to work with. It acts like an object array every place that we need it,
but it handles adding items quickly.

Here is how we create an ArrayList  and add items to it.

PowerShell

We are calling into .NET to get this type. In this case, we are using the default
constructor to create it. Then we call the Add  method to add an item to it.

The reason I'm using [void]  at the beginning of the line is to suppress the return code.
Some .NET calls do this and can create unexpected output.

If the only data that you have in your array is strings, then also take a look at using
StringBuilder . It's almost the same thing but has some methods that are just for
dealing with strings. The StringBuilder  is specially designed for performance.

It's common to see people move to ArrayList  from arrays. But it comes from a time
where C# didn't have generic support. The ArrayList  is deprecated in support for the
generic List[]

A generic type is a special type in C# that defines a generalized class and the user
specifies the data types it uses when created. So if you want a list of numbers or strings,
you would define that you want list of int  or string  types.

PS> [int[]] $numbers = 1,2,3
PS> [int[]] $numbers2 = 'one','two','three'
ERROR: Cannot convert value "one" to type "System.Int32". Input string was 
not in a correct format."

PS> [string[]] $strings = 'one','two','three'

ArrayList

$myarray = [System.Collections.ArrayList]::new()
[void]$myArray.Add('Value')

Generic List

https://powershellexplained.com/2017-11-20-Powershell-StringBuilder/
https://powershellexplained.com/2017-11-20-Powershell-StringBuilder/


Here is how you create a List for strings.

PowerShell

Or a list for numbers.

PowerShell

We can cast an existing array to a list like this without creating the object first:

PowerShell

We can shorten the syntax with the using namespace  statement in PowerShell 5 and
newer. The using  statement needs to be the first line of your script. By declaring a
namespace, PowerShell lets you leave it off of the data types when you reference them.

PowerShell

This makes the List  much more usable.

You have a similar Add  method available to you. Unlike the ArrayList, there is no return
value on the Add  method so we don't have to void  it.

PowerShell

And we can still access the elements like other arrays.

PowerShell

$mylist = [System.Collections.Generic.List[string]]::new()

$mylist = [System.Collections.Generic.List[int]]::new()

$mylist = [System.Collections.Generic.List[int]]@(1,2,3)

using namespace System.Collections.Generic
$myList = [List[int]]@(1,2,3)

$myList.Add(10)

PS> $myList[-1]
10



You can have a list of any type, but when you don't know the type of objects, you can
use [List[psobject]]  to contain them.

PowerShell

The ArrayList  and the generic List[]  both support removing items from the
collection.

PowerShell

When working with value types, it removes the first one from the list. You can call it over
and over again to keep removing that value. If you have reference types, you have to
provide the object that you want removed.

PowerShell

PowerShell

The remove method returns true  if it was able to find and remove the item from the
collection.

List[psobject]

$list = [List[psobject]]::new()

Remove()

using namespace System.Collections.Generic
$myList = [List[string]]@('Zero','One','Two','Three')
[void]$myList.Remove("Two")
Zero
One
Three

[List[System.Management.Automation.PSDriveInfo]]$drives = Get-PSDrive
$drives.Remove($drives[2])

$delete = $drives[2]
$drives.Remove($delete)

More collections



There are many other collections that can be used but these are the good generic array
replacements. If you're interested in learning about more of these options, take a look at
this Gist  that Mark Kraus  put together.

Now that I have covered all the major functionality, here are a few more things that I
wanted to mention before I wrap this up.

I mentioned that you can't change the size of an array once it's created. We can create
an array of a pre-determined size by calling it with the new($size)  constructor.

PowerShell

An interesting little trick is that you can multiply an array by an integer.

PowerShell

A common scenario is that you want to create an array with all zeros. If you're only
going to have integers, a strongly typed array of integers defaults to all zeros.

Other nuances

Pre-sized arrays

$data = [Object[]]::new(4)
$data.Count
4

Multiplying arrays

PS> $data = @('red','green','blue')
PS> $data * 3
red
green
blue
red
green
blue
red
green
blue

Initialize with 0

https://gist.github.com/kevinblumenfeld/4a698dbc90272a336ed9367b11d91f1c
https://gist.github.com/kevinblumenfeld/4a698dbc90272a336ed9367b11d91f1c
https://get-powershellblog.blogspot.com/2016/11/about-mark-kraus.html
https://get-powershellblog.blogspot.com/2016/11/about-mark-kraus.html


PowerShell

We can use the multiplying trick to do this too.

PowerShell

The nice thing about the multiplying trick is that you can use any value. So if you would
rather have 255  as your default value, this would be a good way to do it.

PowerShell

An array inside an array is called a nested array. I don't use these much in PowerShell
but I have used them more in other languages. Consider using an array of arrays when
your data fits in a grid like pattern.

Here are two ways we can create a two-dimensional array.

PowerShell

PS> [int[]]::new(4)
0
0
0
0

PS> $data = @(0) * 4
PS> $data
0
0
0
0

PS> $data = @(255) * 4
PS> $data
255
255
255
255

Nested arrays

$data = @(@(1,2,3),@(4,5,6),@(7,8,9))

$data2 = @(
    @(1,2,3),
    @(4,5,6),



The comma is very important in those examples. I gave an earlier example of a normal
array on multiple lines where the comma was optional. That isn't the case with a multi-
dimensional array.

The way we use the index notation changes slightly now that we've a nested array. Using
the $data  above, this is how we would access the value 3.

PowerShell

Add a set of bracket for each level of array nesting. The first set of brackets is for the
outer most array and then you work your way in from there.

PowerShell likes to unwrap or enumerate arrays. This is a core aspect of the way
PowerShell uses the pipeline but there are times that you don't want that to happen.

I commonly pipe objects to Get-Member  to learn more about them. When I pipe an array
to it, it gets unwrapped and Get-Member sees the members of the array and not the
actual array.

PowerShell

To prevent that unwrap of the array, you can use Write-Output -NoEnumerate .

PowerShell

    @(7,8,9)
)

PS> $outside = 0
PS> $inside = 2
PS> $data[$outside][$inside]
3

Write-Output -NoEnumerate

PS> $data = @('red','green','blue')
PS> $data | Get-Member
TypeName: System.String
...

PS> Write-Output -NoEnumerate $data | Get-Member
TypeName: System.Object[]
...



I have a second way that's more of a hack (and I try to avoid hacks like this). You can
place a comma in front of the array before you pipe it. This wraps $data  into another
array where it is the only element, so after the unwrapping the outer array we get back
$data  unwrapped.

PowerShell

This unwrapping of arrays also happens when you output or return values from a
function. You can still get an array if you assign the output to a variable so this isn't
commonly an issue.

The catch is that you have a new array. If that is ever a problem, you can use Write-
Output -NoEnumerate $array  or return ,$array  to work around it.

I know this is all a lot to take in. My hope is that you learn something from this article
every time you read it and that it turns out to be a good reference for you for a long
time to come. If you found this to be helpful, please share it with others you think may
get value out of it.

From here, I would recommend you check out a similar post that I wrote about
hashtables.

PS> ,$data | Get-Member
TypeName: System.Object[]
...

Return an array

Anything else?



Everything you wanted to know about
hashtables
Article • 06/26/2023

I want to take a step back and talk about hashtables. I use them all the time now. I was
teaching someone about them after our user group meeting last night and I realized I
had the same confusion about them as he had. Hashtables are really important in
PowerShell so it's good to have a solid understanding of them.

I want you to first see a Hashtable as a collection in the traditional definition of a
hashtable. This definition gives you a fundamental understanding of how they work
when they get used for more advanced stuff later. Skipping this understanding is often a
source of confusion.

Before I jump into what a Hashtable is, I need to mention arrays first. For the purpose of
this discussion, an array is a list or collection of values or objects.

PowerShell

Once you have your items into an array, you can either use foreach  to iterate over the
list or use an index to access individual elements in the array.

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

Hashtable as a collection of things

What is an array?

$array = @(1,2,3,5,7,11)

foreach($item in $array)
{
    Write-Output $item

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_hash_tables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arrays
https://powershellexplained.com/2016-11-06-powershell-hashtable-everything-you-wanted-to-know-about/
https://powershellexplained.com/2016-11-06-powershell-hashtable-everything-you-wanted-to-know-about/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


You can also update values using an index in the same way.

PowerShell

I just scratched the surface on arrays but that should put them into the right context as I
move onto hashtables.

I'm going to start with a basic technical description of what hashtables are, in the
general sense, before I shift into the other ways PowerShell uses them.

A hashtable is a data structure, much like an array, except you store each value (object)
using a key. It's a basic key/value store. First, we create an empty hashtable.

PowerShell

Notice that braces, instead of parentheses, are used to define a hashtable. Then we add
an item using a key like this:

PowerShell

The person's name is the key and their age is the value that I want to save.

Once you add your values to the hashtable, you can pull them back out using that same
key (instead of using a numeric index like you would have for an array).

}

Write-Output $array[3]

$array[2] = 13

What is a hashtable?

$ageList = @{}

$key = 'Kevin'
$value = 36
$ageList.Add( $key, $value )

$ageList.Add( 'Alex', 9 )

Using the brackets for access



PowerShell

When I want Kevin's age, I use his name to access it. We can use this approach to add or
update values into the hashtable too. This is just like using the Add()  method above.

PowerShell

There's another syntax you can use for accessing and updating values that I'll cover in a
later section. If you're coming to PowerShell from another language, these examples
should fit in with how you may have used hashtables before.

So far I've created an empty hashtable for these examples. You can pre-populate the
keys and values when you create them.

PowerShell

The real value of this type of a hashtable is that you can use them as a lookup table.
Here is a simple example.

PowerShell

$ageList['Kevin']
$ageList['Alex']

$ageList = @{}

$key = 'Kevin'
$value = 36
$ageList[$key] = $value

$ageList['Alex'] = 9

Creating hashtables with values

$ageList = @{
    Kevin = 36
    Alex  = 9
}

As a lookup table

$environments = @{
    Prod = 'SrvProd05'
    QA   = 'SrvQA02'
    Dev  = 'SrvDev12'



In this example, you specify an environment for the $env  variable and it will pick the
correct server. You could use a switch($env){...}  for a selection like this but a
hashtable is a nice option.

This gets even better when you dynamically build the lookup table to use it later. So
think about using this approach when you need to cross reference something. I think we
would see this even more if PowerShell wasn't so good at filtering on the pipe with
Where-Object . If you're ever in a situation where performance matters, this approach
needs to be considered.

I won't say that it's faster, but it does fit into the rule of If performance matters, test it .

Generally, you think of a hashtable as a key/value pair, where you provide one key and
get one value. PowerShell allows you to provide an array of keys to get multiple values.

PowerShell

In this example, I use the same lookup hashtable from above and provide three different
array styles to get the matches. This is a hidden gem in PowerShell that most people
aren't aware of.

Because a hashtable is a collection of key/value pairs, you iterate over it differently than
you do for an array or a normal list of items.

The first thing to notice is that if you pipe your hashtable, the pipe treats it like one
object.

PowerShell

}

$server = $environments[$env]

Multiselection

$environments[@('QA','DEV')]
$environments[('QA','DEV')]
$environments['QA','DEV']

Iterating hashtables

PS> $ageList | Measure-Object
count : 1

https://github.com/PoshCode/PowerShellPracticeAndStyle/blob/master/Best-Practices/Performance.md
https://github.com/PoshCode/PowerShellPracticeAndStyle/blob/master/Best-Practices/Performance.md


Even though the Count  property tells you how many values it contains.

PowerShell

You get around this issue by using the Values  property if all you need is just the values.

PowerShell

It's often more useful to enumerate the keys and use them to access the values.

PowerShell

Here is the same example with a foreach(){...}  loop.

PowerShell

We are walking each key in the hashtable and then using it to access the value. This is a
common pattern when working with hashtables as a collection.

That brings us to GetEnumerator()  for iterating over our hashtable.

PowerShell

PS> $ageList.Count
2

PS> $ageList.Values | Measure-Object -Average
Count   : 2
Average : 22.5

PS> $ageList.Keys | ForEach-Object{
    $message = '{0} is {1} years old!' -f $_, $ageList[$_]
    Write-Output $message
}
Kevin is 36 years old
Alex is 9 years old

foreach($key in $ageList.Keys)
{
    $message = '{0} is {1} years old' -f $key, $ageList[$key]
    Write-Output $message
}

GetEnumerator()



The enumerator gives you each key/value pair one after another. It was designed
specifically for this use case. Thank you to Mark Kraus  for reminding me of this one.

One important detail is that you can't modify a hashtable while it's being enumerated. If
we start with our basic $environments  example:

PowerShell

And trying to set every key to the same server value fails.

PowerShell

This will also fail even though it looks like it should also be fine:

PowerShell

$ageList.GetEnumerator() | ForEach-Object{
    $message = '{0} is {1} years old!' -f $_.Key, $_.Value
    Write-Output $message
}

BadEnumeration

$environments = @{
    Prod = 'SrvProd05'
    QA   = 'SrvQA02'
    Dev  = 'SrvDev12'
}

$environments.Keys | ForEach-Object {
    $environments[$_] = 'SrvDev03'
}

An error occurred while enumerating through a collection: Collection was 
modified;
enumeration operation may not execute.
+ CategoryInfo          : InvalidOperation: 
tableEnumerator:HashtableEnumerator) [],
 RuntimeException
+ FullyQualifiedErrorId : BadEnumeration

foreach($key in $environments.Keys) {
    $environments[$key] = 'SrvDev03'
}

Collection was modified; enumeration operation may not execute.
    + CategoryInfo          : OperationStopped: (:) [], 

https://get-powershellblog.blogspot.com/
https://get-powershellblog.blogspot.com/


The trick to this situation is to clone the keys before doing the enumeration.

PowerShell

So far the type of objects we placed in our hashtable were all the same type of object. I
used ages in all those examples and the key was the person's name. This is a great way
to look at it when your collection of objects each have a name. Another common way to
use hashtables in PowerShell is to hold a collection of properties where the key is the
name of the property. I'll step into that idea in this next example.

The use of property-based access changes the dynamics of hashtables and how you can
use them in PowerShell. Here is our usual example from above treating the keys as
properties.

PowerShell

Just like the examples above, this example adds those keys if they don't exist in the
hashtable already. Depending on how you defined your keys and what your values are,
this is either a little strange or a perfect fit. The age list example has worked great up
until this point. We need a new example for this to feel right going forward.

PowerShell

InvalidOperationException
    + FullyQualifiedErrorId : System.InvalidOperationException

$environments.Keys.Clone() | ForEach-Object {
    $environments[$_] = 'SrvDev03'
}

Hashtable as a collection of properties

Property-based access

$ageList = @{}
$ageList.Kevin = 35
$ageList.Alex = 9

$person = @{
    name = 'Kevin'
    age  = 36
}



And we can add and access attributes on the $person  like this.

PowerShell

All of a sudden this hashtable starts to feel and act like an object. It's still a collection of
things, so all the examples above still apply. We just approach it from a different point
of view.

In most cases, you can just test for the value with something like this:

PowerShell

It's simple but has been the source of many bugs for me because I was overlooking one
important detail in my logic. I started to use it to test if a key was present. When the
value was $false  or zero, that statement would return $false  unexpectedly.

PowerShell

This works around that issue for zero values but not $null vs non-existent keys. Most of
the time you don't need to make that distinction but there are methods for when you
do.

PowerShell

We also have a ContainsValue()  for the situation where you need to test for a value
without knowing the key or iterating the whole collection.

You can remove keys with the Remove()  method.

$person.city = 'Austin'
$person.state = 'TX'

Checking for keys and values

if( $person.age ){...}

if( $person.age -ne $null ){...}

if( $person.ContainsKey('age') ){...}

Removing and clearing keys



PowerShell

Assigning them a $null  value just leaves you with a key that has a $null  value.

A common way to clear a hashtable is to just initialize it to an empty hashtable.

PowerShell

While that does work, try to use the Clear()  method instead.

PowerShell

This is one of those instances where using the method creates self-documenting code
and it makes the intentions of the code very clean.

By default, hashtables aren't ordered (or sorted). In the traditional context, the order
doesn't matter when you always use a key to access values. You may find that you want
the properties to stay in the order that you define them. Thankfully, there's a way to do
that with the ordered  keyword.

PowerShell

Now when you enumerate the keys and values, they stay in that order.

$person.Remove('age')

$person = @{}

$person.Clear()

All the fun stuff

Ordered hashtables

$person = [ordered]@{
    name = 'Kevin'
    age  = 36
}

Inline hashtables



When you're defining a hashtable on one line, you can separate the key/value pairs with
a semicolon.

PowerShell

This will come in handy if you're creating them on the pipe.

There are a few cmdlets that support the use of hashtables to create custom or
calculated properties. You commonly see this with Select-Object  and Format-Table . The
hashtables have a special syntax that looks like this when fully expanded.

PowerShell

The Name  is what the cmdlet would label that column. The Expression  is a script block
that is executed where $_  is the value of the object on the pipe. Here is that script in
action:

PowerShell

I placed that in a variable but it could easily be defined inline and you can shorten Name
to n  and Expression  to e  while you're at it.

PowerShell

$person = @{ name = 'kevin'; age = 36; }

Custom expressions in common pipeline commands

$property = @{
    Name = 'TotalSpaceGB'
    Expression = { ($_.Used + $_.Free) / 1GB }
}

$drives = Get-PSDrive | where Used
$drives | Select-Object -Property Name, $property

Name     TotalSpaceGB
----     ------------
C    238.472652435303

$drives | Select-Object -Property Name, @{n='TotalSpaceGB';e={($_.Used + 
$_.Free) / 1GB}}



I personally don't like how long that makes commands and it often promotes some bad
behaviors that I won't get into. I'm more likely to create a new hashtable or
pscustomobject  with all the fields and properties that I want instead of using this
approach in scripts. But there's a lot of code out there that does this so I wanted you to
be aware of it. I talk about creating a pscustomobject  later on.

It's easy to sort a collection if the objects have the data that you want to sort on. You
can either add the data to the object before you sort it or create a custom expression for
Sort-Object .

PowerShell

In this example I'm taking a list of users and using some custom cmdlet to get
additional information just for the sort.

If you have a list of hashtables that you want to sort, you'll find that the Sort-Object
doesn't treat your keys as properties. We can get a round that by using a custom sort
expression.

PowerShell

This is one of my favorite things about hashtables that many people don't discover early
on. The idea is that instead of providing all the properties to a cmdlet on one line, you

Custom sort expression

Get-ADUser | Sort-Object -Property @{ e={ Get-TotalSales $_.Name } }

Sort a list of Hashtables

$data = @(
    @{name='a'}
    @{name='c'}
    @{name='e'}
    @{name='f'}
    @{name='d'}
    @{name='b'}
)

$data | Sort-Object -Property @{e={$_.name}}

Splatting hashtables at cmdlets



can instead pack them into a hashtable first. Then you can give the hashtable to the
function in a special way. Here is an example of creating a DHCP scope the normal way.

PowerShell

Without using splatting, all those things need to be defined on a single line. It either
scrolls off the screen or will wrap where ever it feels like. Now compare that to a
command that uses splatting.

PowerShell

The use of the @  sign instead of the $  is what invokes the splat operation.

Just take a moment to appreciate how easy that example is to read. They are the exact
same command with all the same values. The second one is easier to understand and
maintain going forward.

I use splatting anytime the command gets too long. I define too long as causing my
window to scroll right. If I hit three properties for a function, odds are that I'll rewrite it
using a splatted hashtable.

One of the most common ways I use splatting is to deal with optional parameters that
come from some place else in my script. Let's say I have a function that wraps a Get-
CimInstance  call that has an optional $Credential  argument.

PowerShell

Add-DhcpServerV4Scope -Name 'TestNetwork' -StartRange '10.0.0.2' -EndRange 
'10.0.0.254' -SubnetMask '255.255.255.0' -Description 'Network for testlab 
A' -LeaseDuration (New-TimeSpan -Days 8) -Type "Both"

$DHCPScope = @{
    Name          = 'TestNetwork'
    StartRange    = '10.0.0.2'
    EndRange      = '10.0.0.254'
    SubnetMask    = '255.255.255.0'
    Description   = 'Network for testlab A'
    LeaseDuration = (New-TimeSpan -Days 8)
    Type          = "Both"
}
Add-DhcpServerV4Scope @DHCPScope

Splatting for optional parameters

$CIMParams = @{
    ClassName = 'Win32_BIOS'

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting


I start by creating my hashtable with common parameters. Then I add the $Credential  if
it exists. Because I'm using splatting here, I only need to have the call to Get-
CimInstance  in my code once. This design pattern is very clean and can handle lots of
optional parameters easily.

To be fair, you could write your commands to allow $null  values for parameters. You
just don't always have control over the other commands you're calling.

You can splat multiple hashtables to the same cmdlet. If we revisit our original splatting
example:

PowerShell

I'll use this method when I have a common set of parameters that I'm passing to lots of
commands.

There's nothing wrong with splatting a single parameter if makes you code cleaner.

    ComputerName = $ComputerName
}

if($Credential)
{
    $CIMParams.Credential = $Credential
}

Get-CimInstance @CIMParams

Multiple splats

$Common = @{
    SubnetMask  = '255.255.255.0'
    LeaseDuration = (New-TimeSpan -Days 8)
    Type = "Both"
}

$DHCPScope = @{
    Name        = 'TestNetwork'
    StartRange  = '10.0.0.2'
    EndRange    = '10.0.0.254'
    Description = 'Network for testlab A'
}

Add-DhcpServerv4Scope @DHCPScope @Common

Splatting for clean code



PowerShell

Splatting also works on some executables that use a /param:value  syntax. Robocopy.exe ,
for example, has some parameters like this.

PowerShell

I don't know that this is all that useful, but I found it interesting.

Hashtables support the addition operator to combine two hashtables.

PowerShell

This only works if the two hashtables don't share a key.

We can use hashtables as values inside a hashtable.

PowerShell

$log = @{Path = '.\logfile.log'}
Add-Content "logging this command" @log

Splatting executables

$robo = @{R=1;W=1;MT=8}
robocopy source destination @robo

Adding hashtables

$person += @{Zip = '78701'}

Nested hashtables

$person = @{
    name = 'Kevin'
    age  = 36
}
$person.location = @{}
$person.location.city = 'Austin'
$person.location.state = 'TX'



I started with a basic hashtable containing two keys. I added a key called location  with
an empty hashtable. Then I added the last two items to that location  hashtable. We can
do this all inline too.

PowerShell

This creates the same hashtable that we saw above and can access the properties the
same way.

PowerShell

There are many ways to approach the structure of your objects. Here is a second way to
look at a nested hashtable.

PowerShell

This mixes the concept of using hashtables as a collection of objects and a collection of
properties. The values are still easy to access even when they're nested using whatever
approach you prefer.

PowerShell

$person = @{
    name = 'Kevin'
    age  = 36
    location = @{
        city  = 'Austin'
        state = 'TX'
    }
}

$person.location.city
Austin

$people = @{
    Kevin = @{
        age  = 36
        city = 'Austin'
    }
    Alex = @{
        age  = 9
        city = 'Austin'
    }
}

PS> $people.kevin.age
36



I tend to use the dot property when I'm treating it like a property. Those are generally
things I've defined statically in my code and I know them off the top of my head. If I
need to walk the list or programmatically access the keys, I use the brackets to provide
the key name.

PowerShell

Having the ability to nest hashtables gives you a lot of flexibility and options.

As soon as you start nesting hashtables, you're going to need an easy way to look at
them from the console. If I take that last hashtable, I get an output that looks like this
and it only goes so deep:

PowerShell

My go to command for looking at these things is ConvertTo-Json  because it's very clean
and I frequently use JSON on other things.

PowerShell

PS> $people.kevin['city']
Austin
PS> $people['Alex'].age
9
PS> $people['Alex']['City']
Austin

foreach($name in $people.Keys)
{
    $person = $people[$name]
    '{0}, age {1}, is in {2}' -f $name, $person.age, $person.city
}

Looking at nested hashtables

PS> $people
Name                           Value
----                           -----
Kevin                          {age, city}
Alex                           {age, city}

PS> $people | ConvertTo-Json
{
    "Kevin":  {
                "age":  36,
                "city":  "Austin"



Even if you don't know JSON, you should be able to see what you're looking for. There's
a Format-Custom  command for structured data like this but I still like the JSON view
better.

Sometimes you just need to have an object and using a hashtable to hold properties
just isn't getting the job done. Most commonly you want to see the keys as column
names. A pscustomobject  makes that easy.

PowerShell

Even if you don't create it as a pscustomobject  initially, you can always cast it later when
needed.

PowerShell

            },
    "Alex":  {
                "age":  9,
                "city":  "Austin"
            }
}

Creating objects

$person = [pscustomobject]@{
    name = 'Kevin'
    age  = 36
}

$person

name  age
----  ---
Kevin  36

$person = @{
    name = 'Kevin'
    age  = 36
}

[pscustomobject]$person

name  age
----  ---
Kevin  36



I already have detailed write-up for pscustomobject that you should go read after this
one. It builds on a lot of the things learned here.

Struggling with getting a hashtable to save to a CSV is one of the difficulties that I was
referring to above. Convert your hashtable to a pscustomobject  and it will save correctly
to CSV. It helps if you start with a pscustomobject  so the column order is preserved. But
you can cast it to a pscustomobject  inline if needed.

PowerShell

Again, check out my write-up on using a pscustomobject.

If I need to save a nested hashtable to a file and then read it back in again, I use the
JSON cmdlets to do it.

PowerShell

There are two important points about this method. First is that the JSON is written out
multiline so I need to use the -Raw  option to read it back into a single string. The
Second is that the imported object is no longer a [hashtable] . It's now a
[pscustomobject]  and that can cause issues if you don't expect it.

Watch for deeply-nested hashtables. When you convert it to JSON you might not get
the results you expect.

PowerShell

Reading and writing hashtables to file

Saving to CSV

$person | ForEach-Object{ [pscustomobject]$_ } | Export-Csv -Path $path

Saving a nested hashtable to file

$people | ConvertTo-Json | Set-Content -Path $path
$people = Get-Content -Path $path -Raw | ConvertFrom-Json

@{ a = @{ b = @{ c = @{ d = "e" }}}} | ConvertTo-Json

{
  "a": {



Use Depth parameter to ensure that you have expanded all the nested hashtables.

PowerShell

If you need it to be a [hashtable]  on import, then you need to use the Export-CliXml
and Import-CliXml  commands.

If you need to convert JSON to a [hashtable] , there's one way that I know of to do it
with the JavaScriptSerializer in .NET.

PowerShell

Beginning in PowerShell v6, JSON support uses the NewtonSoft JSON.NET and adds
hashtable support.

PowerShell

    "b": {
      "c": "System.Collections.Hashtable"
    }
  }
}

@{ a = @{ b = @{ c = @{ d = "e" }}}} | ConvertTo-Json -Depth 3

{
  "a": {
    "b": {
      "c": {
        "d": "e"
      }
    }
  }
}

Converting JSON to Hashtable

[Reflection.Assembly]::LoadWithPartialName("System.Web.Script.Serialization"
)
$JSSerializer = 
[System.Web.Script.Serialization.JavaScriptSerializer]::new()
$JSSerializer.Deserialize($json,'Hashtable')

'{ "a": "b" }' | ConvertFrom-Json -AsHashtable

Name      Value

https://learn.microsoft.com/en-us/dotnet/api/system.web.script.serialization.javascriptserializer?view=netframework-4.8&preserve-view=true


PowerShell 6.2 added the Depth parameter to ConvertFrom-Json . The default Depth is
1024.

If you have a file that contains a hashtable using PowerShell syntax, there's a way to
import it directly.

PowerShell

It imports the contents of the file into a scriptblock , then checks to make sure it
doesn't have any other PowerShell commands in it before it executes it.

On that note, did you know that a module manifest (the .psd1  file) is just a hashtable?

Most of the time, the keys are just strings. So we can put quotes around anything and
make it a key.

PowerShell

You can do some odd things that you may not have realized you could do.

PowerShell

----      -----
a         b

Reading directly from a file

$content = Get-Content -Path $Path -Raw -ErrorAction Stop
$scriptBlock = [scriptblock]::Create( $content )
$scriptBlock.CheckRestrictedLanguage( $allowedCommands, $allowedVariables, 
$true )
$hashtable = ( & $scriptBlock )

Keys can be any object

$person = @{
    'full name' = 'Kevin Marquette'
    '#' = 3978
}
$person['full name']

$person.'full name'



Just because you can do something, it doesn't mean that you should. That last one just
looks like a bug waiting to happen and would be easily misunderstood by anyone
reading your code.

Technically your key doesn't have to be a string but they're easier to think about if you
only use strings. However, indexing doesn't work well with the complex keys.

PowerShell

Accessing a value in the hashtable by its key doesn't always work. For example:

PowerShell

When the key is an array, you must wrap the $key  variable in a subexpression so that it
can be used with member access ( . ) notation. Or, you can use array index ( [] )
notation.

$PSBoundParameters  is an automatic variable that only exists inside the context of a
function. It contains all the parameters that the function was called with. This isn't
exactly a hashtable but close enough that you can treat it like one.

That includes removing keys and splatting it to other functions. If you find yourself
writing proxy functions, take a closer look at this one.

$key = 'full name'
$person.$key

$ht = @{ @(1,2,3) = "a" }
$ht

Name                           Value
----                           -----
{1, 2, 3}                      a

$key = $ht.Keys[0]
$ht.$($key)
a
$ht[$key]
a

Use in automatic variables

$PSBoundParameters

https://tommymaynard.com/the-psboundparameters-automatic-variable-2016/
https://tommymaynard.com/the-psboundparameters-automatic-variable-2016/


See about_Automatic_Variables for more details.

One important thing to remember is that this only includes the values that are passed in
as parameters. If you also have parameters with default values but aren't passed in by
the caller, $PSBoundParameters  doesn't contain those values. This is commonly
overlooked.

This automatic variable lets you assign default values to any cmdlet without changing
the cmdlet. Take a look at this example.

PowerShell

This adds an entry to the $PSDefaultParameterValues  hashtable that sets UTF8  as the
default value for the Out-File -Encoding  parameter. This is session-specific so you
should place it in your $PROFILE .

I use this often to pre-assign values that I type quite often.

PowerShell

This also accepts wildcards so you can set values in bulk. Here are some ways you can
use that:

PowerShell

For a more in-depth breakdown, see this great article on Automatic Defaults  by
Michael Sorens .

PSBoundParameters gotcha

$PSDefaultParameterValues

$PSDefaultParameterValues["Out-File:Encoding"] = "UTF8"

$PSDefaultParameterValues[ "Connect-VIServer:Server" ] = 
'VCENTER01.contoso.local'

$PSDefaultParameterValues[ "Get-*:Verbose" ] = $true
$PSDefaultParameterValues[ "*:Credential" ] = Get-Credential

Regex $Matches

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://www.simple-talk.com/sysadmin/PowerShell/PowerShell-time-saver-automatic-defaults/
https://www.simple-talk.com/sysadmin/PowerShell/PowerShell-time-saver-automatic-defaults/
http://cleancode.sourceforge.net/wwwdoc/about.html
http://cleancode.sourceforge.net/wwwdoc/about.html


When you use the -match  operator, an automatic variable called $Matches  is created
with the results of the match. If you have any sub expressions in your regex, those sub
matches are also listed.

PowerShell

This is one of my favorite features that most people don't know about. If you use a
named regex match, then you can access that match by name on the matches.

PowerShell

In the example above, the (?<Name>.*)  is a named sub expression. This value is then
placed in the $Matches.Name  property.

One little known feature of Group-Object  is that it can turn some datasets into a
hashtable for you.

PowerShell

This will add each row into a hashtable and use the specified property as the key to
access it.

$message = 'My SSN is 123-45-6789.'

$message -match 'My SSN is (.+)\.'
$Matches[0]
$Matches[1]

Named matches

$message = 'My Name is Kevin and my SSN is 123-45-6789.'

if($message -match 'My Name is (?<Name>.+) and my SSN is (?<SSN>.+)\.')
{
    $Matches.Name
    $Matches.SSN
}

Group-Object -AsHashtable

Import-Csv $Path | Group-Object -AsHashtable -Property Email



One important thing to know is that hashtables are objects. And each variable is just a
reference to an object. This means that it takes more work to make a valid copy of a
hashtable.

When you have one hashtable and assign it to a second variable, both variables point to
the same hashtable.

PowerShell

This highlights that they're the same because altering the values in one will also alter the
values in the other. This also applies when passing hashtables into other functions. If
those functions make changes to that hashtable, your original is also altered.

If we have a simple hashtable like our example above, we can use Clone()  to make a
shallow copy.

PowerShell

This will allow us to make some basic changes to one that don't impact the other.

Copying Hashtables

Assigning reference types

PS> $orig = @{name='orig'}
PS> $copy = $orig
PS> $copy.name = 'copy'
PS> 'Copy: [{0}]' -f $copy.name
PS> 'Orig: [{0}]' -f $orig.name

Copy: [copy]
Orig: [copy]

Shallow copies, single level

PS> $orig = @{name='orig'}
PS> $copy = $orig.Clone()
PS> $copy.name = 'copy'
PS> 'Copy: [{0}]' -f $copy.name
PS> 'Orig: [{0}]' -f $orig.name

Copy: [copy]
Orig: [orig]



The reason why it's called a shallow copy is because it only copies the base level
properties. If one of those properties is a reference type (like another hashtable), then
those nested objects will still point to each other.

PowerShell

So you can see that even though I cloned the hashtable, the reference to person  wasn't
cloned. We need to make a deep copy to truly have a second hashtable that isn't linked
to the first.

There are a couple of ways to make a deep copy of a hashtable (and keep it as a
hashtable). Here's a function using PowerShell to recursively create a deep copy:

PowerShell

Shallow copies, nested

PS> $orig = @{
        person=@{
            name='orig'
        }
    }
PS> $copy = $orig.Clone()
PS> $copy.person.name = 'copy'
PS> 'Copy: [{0}]' -f $copy.person.name
PS> 'Orig: [{0}]' -f $orig.person.name

Copy: [copy]
Orig: [copy]

Deep copies

function Get-DeepClone
{
    [CmdletBinding()]
    param(
        $InputObject
    )
    process
    {
        if($InputObject -is [hashtable]) {
            $clone = @{}
            foreach($key in $InputObject.Keys)
            {
                $clone[$key] = Get-DeepClone $InputObject[$key]
            }
            return $clone
        } else {
            return $InputObject



It doesn't handle any other reference types or arrays, but it's a good starting point.

Another way is to use .NET to deserialize it using CliXml like in this function:

PowerShell

For extremely large hashtables, the deserializing function is faster as it scales out.
However, there are some things to consider when using this method. Since it uses
CliXml, it's memory intensive and if you are cloning huge hashtables, that might be a
problem. Another limitation of the CliXml is there is a depth limitation of 48. Meaning, if
you have a hashtable with 48 layers of nested hashtables, the cloning will fail and no
hashtable will be output at all.

I covered a lot of ground quickly. My hope is that you walk away leaning something new
or understanding it better every time you read this. Because I covered the full spectrum
of this feature, there are aspects that just may not apply to you right now. That is
perfectly OK and is kind of expected depending on how much you work with
PowerShell.

        }
    }
}

function Get-DeepClone
{
    param(
        $InputObject
    )
    $TempCliXmlString = 
[System.Management.Automation.PSSerializer]::Serialize($obj, 
[int32]::MaxValue)
    return 
[System.Management.Automation.PSSerializer]::Deserialize($TempCliXmlString)
}

Anything else?



Everything you wanted to know about
PSCustomObject
Article • 06/20/2024

PSCustomObject  is a great tool to add into your PowerShell tool belt. Let's start with the
basics and work our way into the more advanced features. The idea behind using a
PSCustomObject  is to have a simple way to create structured data. Take a look at the first
example and you'll have a better idea of what that means.

I love using [pscustomobject]  in PowerShell. Creating a usable object has never been
easier. Because of that, I'm going to skip over all the other ways you can create an
object but I need to mention that most of these examples are PowerShell v3.0 and
newer.

PowerShell

This method works well for me because I use hashtables for just about everything. But
there are times when I would like PowerShell to treat hashtables more like an object. The
first place you notice the difference is when you want to use Format-Table  or Export-
Csv  and you realize that a hashtable is just a collection of key/value pairs.

You can then access and use the values like you would a normal object.

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

Creating a PSCustomObject

$myObject = [pscustomobject]@{
    Name     = 'Kevin'
    Language = 'PowerShell'
    State    = 'Texas'
}

https://powershellexplained.com/2016-10-28-powershell-everything-you-wanted-to-know-about-pscustomobject/
https://powershellexplained.com/2016-10-28-powershell-everything-you-wanted-to-know-about-pscustomobject/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


While I am on the topic, did you know you could do this:

PowerShell

I do prefer to create the object from the start but there are times you have to work with
a hashtable first. This example works because the constructor takes a hashtable for the
object properties. One important note is that while this method works, it isn't an exact
equivalent. The biggest difference is that the order of the properties isn't preserved.

If you want to preserve the order, see Ordered hashtables.

You may have seen people use New-Object  to create custom objects.

PowerShell

This way is quite a bit slower but it may be your best option on early versions of
PowerShell.

I find the best way to save a hashtable to a file is to save it as JSON. You can import it
back into a [pscustomobject]

$myObject.Name

Converting a hashtable

$myHashtable = @{
    Name     = 'Kevin'
    Language = 'PowerShell'
    State    = 'Texas'
}
$myObject = [pscustomobject]$myHashtable

Legacy approach

$myHashtable = @{
    Name     = 'Kevin'
    Language = 'PowerShell'
    State    = 'Texas'
}

$myObject = New-Object -TypeName psobject -Property $myHashtable

Saving to a file



PowerShell

I cover more ways to save objects to a file in my article on The many ways to read and
write to files .

You can still add new properties to your PSCustomObject  with Add-Member .

PowerShell

You can also remove properties off of an object.

PowerShell

The .psobject  is an intrinsic member that gives you access to base object metadata. For
more information about intrinsic members, see about_Intrinsic_Members.

Sometimes you need a list of all the property names on an object.

PowerShell

$myObject | ConvertTo-Json -Depth 1 | Set-Content -Path $Path
$myObject = Get-Content -Path $Path | ConvertFrom-Json

Working with properties

Adding properties

$myObject | Add-Member -MemberType NoteProperty -Name 'ID' -Value 
'KevinMarquette'

$myObject.ID

Remove properties

$myObject.psobject.Properties.Remove('ID')

Enumerating property names

$myObject | Get-Member -MemberType NoteProperty | select -ExpandProperty 
Name

https://powershellexplained.com/2017-03-18-Powershell-reading-and-saving-data-to-files
https://powershellexplained.com/2017-03-18-Powershell-reading-and-saving-data-to-files
https://powershellexplained.com/2017-03-18-Powershell-reading-and-saving-data-to-files
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_intrinsic_members


We can get this same list off of the psobject  property too.

PowerShell

I already mentioned that you can access property values directly.

PowerShell

You can use a string for the property name and it will still work.

PowerShell

We can take this one more step and use a variable for the property name.

PowerShell

I know that looks strange, but it works.

To continue on from the last section, you can dynamically walk the properties and create
a hashtable from them.

PowerShell

$myobject.psobject.Properties.Name

７ Note

Get-Member  returns the properties in alphabetical order. Using the member-access
operator to enumerate the property names returns the properties in the order they
were defined on the object.

Dynamically accessing properties

$myObject.Name

$myObject.'Name'

$property = 'Name'
$myObject.$property

Convert PSCustomObject into a hashtable



If you need to know if a property exists, you could just check for that property to have a
value.

PowerShell

But if the value could be $null  you can check to see if it exists by checking the
psobject.Properties  for it.

PowerShell

If you need to add a script method to an object, you can do it with Add-Member  and a
ScriptBlock . You have to use the this  automatic variable reference the current object.
Here is a scriptblock  to turn an object into a hashtable. (same code form the last
example)

PowerShell

Then we add it to our object as a script property.

$hashtable = @{}
foreach( $property in $myobject.psobject.Properties.Name )
{
    $hashtable[$property] = $myObject.$property
}

Testing for properties

if( $null -ne $myObject.ID )

if( $myobject.psobject.Properties.Match('ID').Count )

Adding object methods

$ScriptBlock = {
    $hashtable = @{}
    foreach( $property in $this.psobject.Properties.Name )
    {
        $hashtable[$property] = $this.$property
    }
    return $hashtable
}



PowerShell

Then we can call our function like this:

PowerShell

Objects and value types don't handle variable assignments the same way. If you assign
value types to each other, only the value get copied to the new variable.

PowerShell

In this case, $first  is 1 and $second  is 2.

Object variables hold a reference to the actual object. When you assign one object to a
new variable, they still reference the same object.

PowerShell

Because $third  and $fourth  reference the same instance of an object, both $third.key
and $fourth.Key  are 4.

If you need a true copy of an object, you can clone it.

$memberParam = @{
    MemberType = "ScriptMethod"
    InputObject = $myobject
    Name = "ToHashtable"
    Value = $scriptBlock
}
Add-Member @memberParam

$myObject.ToHashtable()

Objects vs Value types

$first = 1
$second = $first
$second = 2

$third = [pscustomobject]@{Key=3}
$fourth = $third
$fourth.Key = 4

psobject.Copy()



PowerShell

Clone creates a shallow copy of the object. They have different instances now and
$third.key  is 3 and $fourth.Key  is 4 in this example.

I call this a shallow copy because if you have nested objects (objects with properties
contain other objects), only the top-level values are copied. The child objects will
reference each other.

Now that we have an object, there are a few more things we can do with it that may not
be nearly as obvious. First thing we need to do is give it a PSTypeName . This is the most
common way I see people do it:

PowerShell

I recently discovered another way to do this from Redditor u/markekraus . He talks about
this approach that allows you to define it inline.

PowerShell

I love how nicely this just fits into the language. Now that we have an object with a
proper type name, we can do some more things.

$third = [pscustomobject]@{Key=3}
$fourth = $third.psobject.Copy()
$fourth.Key = 4

PSTypeName for custom object types

$myObject.psobject.TypeNames.Insert(0,"My.Object")

$myObject = [pscustomobject]@{
    PSTypeName = 'My.Object'
    Name       = 'Kevin'
    Language   = 'PowerShell'
    State      = 'Texas'
}

７ Note

You can also create custom PowerShell types using PowerShell classes. For more
information, see PowerShell Class Overview.

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Classes


PowerShell decides for us what properties to display by default. A lot of the native
commands have a .ps1xml  formatting file  that does all the heavy lifting. From this
post by Boe Prox , there's another way for us to do this on our custom object using
just PowerShell. We can give it a MemberSet  for it to use.

PowerShell

Now when my object just falls to the shell, it will only show those properties by default.

This is nice but I recently saw a better way using Update-TypeData to specify the default
properties.

PowerShell

That is simple enough that I could almost remember it if I didn't have this post as a
quick reference. Now I can easily create objects with lots of properties and still give it a
nice clean view when looking at it from the shell. If I need to access or see those other
properties, they're still there.

PowerShell

Using DefaultPropertySet (the long way)

$defaultDisplaySet = 'Name','Language'
$defaultDisplayPropertySet = New-Object 
System.Management.Automation.PSPropertySet('DefaultDisplayPropertySet',
[string[]]$defaultDisplaySet)
$PSStandardMembers = 
[System.Management.Automation.PSMemberInfo[]]@($defaultDisplayPropertySet)
$MyObject | Add-Member MemberSet PSStandardMembers $PSStandardMembers

Update-TypeData with DefaultPropertySet

$TypeData = @{
    TypeName = 'My.Object'
    DefaultDisplayPropertySet = 'Name','Language'
}
Update-TypeData @TypeData

$myObject | Format-List *

Update-TypeData with ScriptProperty

https://mcpmag.com/articles/2014/05/13/PowerShell-properties-part-3.aspx
https://mcpmag.com/articles/2014/05/13/PowerShell-properties-part-3.aspx
https://learn-powershell.net/2013/08/03/quick-hits-set-the-default-property-display-in-PowerShell-on-custom-objects/
https://learn-powershell.net/2013/08/03/quick-hits-set-the-default-property-display-in-PowerShell-on-custom-objects/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/update-typedata


Something else I got out of that video was creating script properties for your objects.
This would be a good time to point out that this works for existing objects too.

PowerShell

You can do this before your object is created or after and it will still work. This is what
makes this different than using Add-Member  with a script property. When you use Add-
Member  the way I referenced earlier, it only exists on that specific instance of the object.
This one applies to all objects with this TypeName .

You can now use these custom types for parameters in your functions and scripts. You
can have one function create these custom objects and then pass them into other
functions.

PowerShell

PowerShell requires that the object is the type you specified. It throws a validation error
if the type doesn't match automatically to save you the step of testing for it in your
code. A great example of letting PowerShell do what it does best.

You can also define an OutputType  for your advanced functions.

PowerShell

$TypeData = @{
    TypeName = 'My.Object'
    MemberType = 'ScriptProperty'
    MemberName = 'UpperCaseName'
    Value = {$this.Name.ToUpper()}
}
Update-TypeData @TypeData

Function parameters

param( [PSTypeName('My.Object')]$Data )

Function OutputType

function Get-MyObject
{
    [OutputType('My.Object')]
    [CmdletBinding()]
        param



The OutputType attribute value is only a documentation note. It isn't derived from the
function code or compared to the actual function output.

The main reason you would use an output type is so that meta information about your
function reflects your intentions. Things like Get-Command  and Get-Help  that your
development environment can take advantage of. If you want more information, then
take a look at the help for it: about_Functions_OutputTypeAttribute.

With that said, if you're using Pester to unit test your functions then it would be a good
idea to validate the output objects match your OutputType. This could catch variables
that just fall to the pipe when they shouldn't.

The context of this was all about [pscustomobject] , but a lot of this information applies
to objects in general.

I have seen most of these features in passing before but never saw them presented as a
collection of information on PSCustomObject . Just this last week I stumbled upon
another one and was surprised that I had not seen it before. I wanted to pull all these
ideas together so you can hopefully see the bigger picture and be aware of them when
you have an opportunity to use them. I hope you learned something and can find a way
to work this into your scripts.

        (
            ...

Closing thoughts

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_outputtypeattribute


Everything you wanted to know about
variable substitution in strings
Article • 06/20/2024

There are many ways to use variables in strings. I'm calling this variable substitution but
I'm referring to any time you want to format a string to include values from variables.
This is something that I often find myself explaining to new scripters.

The first class of methods can be referred to as concatenation. It's basically taking
several strings and joining them together. There's a long history of using concatenation
to build formatted strings.

PowerShell

Concatenation works out OK when there are only a few values to add. But this can get
complicated quickly.

PowerShell

PowerShell

This simple example is already getting harder to read.

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

Concatenation

$name = 'Kevin Marquette'
$message = 'Hello, ' + $name

$first = 'Kevin'
$last = 'Marquette'

$message = 'Hello, ' + $first + ' ' + $last + '.'

https://powershellexplained.com/2017-01-13-powershell-variable-substitution-in-strings/
https://powershellexplained.com/2017-01-13-powershell-variable-substitution-in-strings/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


PowerShell has another option that is easier. You can specify your variables directly in
the strings.

PowerShell

The type of quotes you use around the string makes a difference. A double quoted
string allows the substitution but a single quoted string doesn't. There are times you
want one or the other so you have an option.

Things get a little tricky when you start trying to get the values of properties into a
string. This is where many new people get tripped up. First let me show you what they
think should work (and at face value almost looks like it should).

PowerShell

You would be expecting to get the CreationTime  off of the $directory , but instead you
get this Time: C:\windows.CreationTime  as your value. The reason is that this type of
substitution only sees the base variable. It considers the period as part of the string so it
stops resolving the value any deeper.

It just so happens that this object gives a string as a default value when placed into a
string. Some objects give you the type name instead like System.Collections.Hashtable .
Just something to watch for.

PowerShell allows you to do command execution inside the string with a special syntax.
This allows us to get the properties of these objects and run any other command to get
a value.

PowerShell

Variable substitution

$message = "Hello, $first $last."

Command substitution

$directory = Get-Item 'C:\windows'
$message = "Time: $directory.CreationTime"

$message = "Time: $($directory.CreationTime)"



This works great for some situations but it can get just as crazy as concatenation if you
have just a few variables.

You can run commands inside a string. Even though I have this option, I don't like it. It
gets cluttered quickly and hard to debug. I either run the command and save to a
variable or use a format string.

PowerShell

.NET has a way to format strings that I find fairly easy to work with. First let me show you
the static method for it before I show you the PowerShell shortcut to do the same thing.

PowerShell

What is happening here is that the string is parsed for the tokens {0}  and {1} , then it
uses that number to pick from the values provided. If you want to repeat one value
some place in the string, you can reuse that values number.

The more complicated the string gets, the more value you get out of this approach.

If your format line gets too long, you can place your values into an array first.

PowerShell

Command execution

$message = "Date: $(Get-Date)"

Format string

# .NET string format string
[string]::Format('Hello, {0} {1}.',$first,$last)

# PowerShell format string
'Hello, {0} {1}.' -f $first, $last

Format values as arrays

$values = @(
    "Kevin"
    "Marquette"
)
'Hello, {0} {1}.' -f $values



This is not splatting because I'm passing the whole array in, but the idea is similar.

I intentionally called these out as coming from .NET because there are lots of formatting
options already well documented on it. There are built-in ways to format various data
types.

PowerShell

Output

I'm not going to go into them but I just wanted to let you know that this is a very
powerful formatting engine if you need it.

Sometimes you actually do want to concatenate a list of values together. There's a -
join  operator that can do that for you. It even lets you specify a character to join
between the strings.

PowerShell

If you want to -join  some strings without a separator, you need to specify an empty
string '' . But if that is all you need, there's a faster option.

PowerShell

Advanced formatting

"{0:yyyyMMdd}" -f (Get-Date)
"Population {0:N0}" -f  8175133

20211110
Population 8,175,133

Joining strings

$servers = @(
    'server1'
    'server2'
    'server3'
)

$servers  -join ','

https://learn.microsoft.com/en-us/dotnet/api/system.string.format#overloads


It's also worth pointing out that you can also -split  strings too.

This is often overlooked but a great cmdlet for building a file path.

PowerShell

The great thing about this is it works out the backslashes correctly when it puts the
values together. This is especially important if you are taking values from users or config
files.

This also goes well with Split-Path  and Test-Path . I also cover these in my post about
reading and saving to files .

I do need to mention adding strings here before I go on. Remember that a string is just
an array of characters. When you add multiple strings together, a new array is created
each time.

Look at this example:

PowerShell

It looks very basic but what you don't see is that each time a string is added to $message
that a whole new string is created. Memory gets allocated, data gets copied and the old
one is discarded. Not a big deal when it's only done a few times, but a loop like this
would really expose the issue.

[string]::Concat('server1','server2','server3')
[string]::Concat($servers)

Join-Path

$folder = 'Temp'
Join-Path -Path 'C:\windows' -ChildPath $folder

Strings are arrays

$message = "Numbers: "
foreach($number in 1..10000)
{
    $message += " $number"
}

https://powershellexplained.com/2017-03-18-Powershell-reading-and-saving-data-to-files/
https://powershellexplained.com/2017-03-18-Powershell-reading-and-saving-data-to-files/


StringBuilder is also very popular for building large strings from lots of smaller strings.
The reason why is because it just collects all the strings you add to it and only
concatenates all of them at the end when you retrieve the value.

PowerShell

Again, this is something that I'm reaching out to .NET for. I don't use it often anymore
but it's good to know it's there.

This is used for suffix concatenation within the string. Sometimes your variable doesn't
have a clean word boundary.

PowerShell

Thank you Redditor u/real_parbold  for that one.

Here is an alternate to this approach:

PowerShell

I personally use format string for this, but this is good to know incase you see it in the
wild.

StringBuilder

$stringBuilder = New-Object -TypeName "System.Text.StringBuilder"

[void]$stringBuilder.Append("Numbers: ")
foreach($number in 1..10000)
{
    [void]$stringBuilder.Append(" $number")
}
$message = $stringBuilder.ToString()

Delineation with braces

$test = "Bet"
$tester = "Better"
Write-Host "$test $tester ${test}ter"

Write-Host "$test $tester $($test)ter"
Write-Host "{0} {1} {0}ter" -f $test, $tester

Find and replace tokens



While most of these features limit your need to roll your own solution, there are times
where you may have large template files where you want to replace strings inside.

Let us assume you pulled in a template from a file that has a lot of text.

PowerShell

You may have lots of tokens to replace. The trick is to use a very distinct token that is
easy to find and replace. I tend to use a special character at both ends to help
distinguish it.

I recently found a new way to approach this. I decided to leave this section in here
because this is a pattern that is commonly used.

When I have a list of tokens that I need to replace, I take a more generic approach. I
would place them in a hashtable and iterate over them to do the replace.

PowerShell

Those tokens could be loaded from JSON or CSV if needed.

There's a clever way to define a substitution string with single quotes and expand the
variables later. Look at this example:

PowerShell

$letter = Get-Content -Path TemplateLetter.txt -RAW
$letter = $letter -replace '#FULL_NAME#', 'Kevin Marquette'

Replace multiple tokens

$tokenList = @{
    Full_Name = 'Kevin Marquette'
    Location = 'Orange County'
    State = 'CA'
}

$letter = Get-Content -Path TemplateLetter.txt -RAW
foreach( $token in $tokenList.GetEnumerator() )
{
    $pattern = '#{0}#' -f $token.key
    $letter = $letter -replace $pattern, $token.Value
}

ExecutionContext ExpandString



The call to InvokeCommand.ExpandString  on the current execution context uses the
variables in the current scope for substitution. The key thing here is that the $message
can be defined very early before the variables even exist.

If we expand on that just a little bit, we can perform this substitution over and over with
different values.

PowerShell

To keep going on this idea; you could be importing a large email template from a text
file to do this. I have to thank Mark Kraus  for this suggestion.

I'm a fan of the format string approach. I definitely do this with the more complicated
strings or if there are multiple variables. On anything that is very short, I may use any
one of these.

I covered a lot of ground on this one. My hope is that you walk away learning
something new.

If you'd like to learn more about the methods and features that make string
interpolation possible, see the following list for the reference documentation.

Concatenation uses the addition operator
Variable and command substitution follow the quoting rules
Formatting uses the format operator

$message = 'Hello, $Name!'
$name = 'Kevin Marquette'
$string = $ExecutionContext.InvokeCommand.ExpandString($message)

$message = 'Hello, $Name!'
$nameList = 'Mark Kraus','Kevin Marquette','Lee Dailey'
foreach($name in $nameList){
    $ExecutionContext.InvokeCommand.ExpandString($message)
}

Whatever works the best for you

Anything else?

Links

https://get-powershellblog.blogspot.com/
https://get-powershellblog.blogspot.com/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators#adding-and-multiplying-non-numeric-types
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_operators#format-operator--f


Joining strings uses the join operator and references Join-Path, but you could also
read about Join-String
Arrays are documented in About arrays
StringBuilder is a .NET class, with its own documentation
Braces in strings is also covered in the quoting rules
Token replacement uses the replace operator
The $ExecutionContext.InvokeCommand.ExpandString()  method has .NET API
reference documentation

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_join
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/join-path
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/join-string
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arrays
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_quoting_rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators#replacement-operator
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.commandinvocationintrinsics.expandstring
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.commandinvocationintrinsics.expandstring


Everything you wanted to know about
the if  statement
Article • 12/18/2023

Like many other languages, PowerShell has statements for conditionally executing code
in your scripts. One of those statements is the If statement. Today we will take a deep
dive into one of the most fundamental commands in PowerShell.

Your scripts often need to make decisions and perform different logic based on those
decisions. This is what I mean by conditional execution. You have one statement or value
to evaluate, then execute a different section of code based on that evaluation. This is
exactly what the if  statement does.

Here is a basic example of the if  statement:

PowerShell

The first thing the if  statement does is evaluate the expression in parentheses. If it
evaluates to $true , then it executes the scriptblock  in the braces. If the value was

$false , then it would skip over that scriptblock.

In the previous example, the if  statement was just evaluating the $condition  variable.
It was $true  and would have executed the Write-Output  command inside the

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

Conditional execution

The if  statement

$condition = $true
if ( $condition )
{
    Write-Output "The condition was true"
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
https://powershellexplained.com/2019-08-11-Powershell-if-then-else-equals-operator/
https://powershellexplained.com/2019-08-11-Powershell-if-then-else-equals-operator/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


scriptblock.

In some languages, you can place a single line of code after the if  statement and it
gets executed. That isn't the case in PowerShell. You must provide a full scriptblock
with braces for it to work correctly.

The most common use of the if  statement for is comparing two items with each other.
PowerShell has special operators for different comparison scenarios. When you use a
comparison operator, the value on the left-hand side is compared to the value on the
right-hand side.

The -eq  does an equality check between two values to make sure they're equal to each
other.

PowerShell

In this example, I'm taking a known value of 5  and comparing it to my $value  to see if
they match.

One possible use case is to check the status of a value before you take an action on it.
You could get a service and check that the status was running before you called
Restart-Service  on it.

It's common in other languages like C# to use ==  for equality (ex: 5 == $value ) but that
doesn't work with PowerShell. Another common mistake that people make is to use the
equals sign (ex: 5 = $value ) that is reserved for assigning values to variables. By placing
your known value on the left, it makes that mistake more awkward to make.

This operator (and others) has a few variations.

-eq  case-insensitive equality
-ieq  case-insensitive equality
-ceq  case-sensitive equality

Comparison operators

-eq for equality

$value = Get-MysteryValue
if ( 5 -eq $value )
{
    # do something
}



Many operators have a related operator that is checking for the opposite result. -ne
verifies that the values don't equal each other.

PowerShell

Use this to make sure that the action only executes if the value isn't 5 . A good use-cases
where would be to check if a service was in the running state before you try to start it.

Variations:

-ne  case-insensitive not equal
-ine  case-insensitive not equal

-cne  case-sensitive not equal

These are inverse variations of -eq . I'll group these types together when I list variations
for other operators.

These operators are used when checking to see if a value is larger or smaller than
another value. The -gt -ge -lt -le  stand for GreaterThan, GreaterThanOrEqual,
LessThan, and LessThanOrEqual.

PowerShell

Variations:

-gt  greater than
-igt  greater than, case-insensitive
-cgt  greater than, case-sensitive
-ge  greater than or equal

-ne not equal

if ( 5 -ne $value )
{
    # do something
}

-gt -ge -lt -le for greater than or less than

if ( $value -gt 5 )
{
    # do something
}



-ige  greater than or equal, case-insensitive
-cge  greater than or equal, case-sensitive
-lt  less than
-ilt  less than, case-insensitive
-clt  less than, case-sensitive

-le  less than or equal
-ile  less than or equal, case-insensitive
-cle  less than or equal, case-sensitive

I don't know why you would use case-sensitive and insensitive options for these
operators.

PowerShell has its own wildcard-based pattern matching syntax and you can use it with
the -like  operator. These wildcard patterns are fairly basic.

?  matches any single character
*  matches any number of characters

PowerShell

It's important to point out that the pattern matches the whole string. If you need to
match something in the middle of the string, you need to place the *  on both ends of
the string.

PowerShell

Variations:

-like  case-insensitive wildcard

-like wildcard matches

$value = 'S-ATX-SQL01'
if ( $value -like 'S-*-SQL??')
{
    # do something
}

$value = 'S-ATX-SQL02'
if ( $value -like '*SQL*')
{
    # do something
}



-ilike  case-insensitive wildcard
-clike  case-sensitive wildcard
-notlike  case-insensitive wildcard not matched
-inotlike  case-insensitive wildcard not matched
-cnotlike  case-sensitive wildcard not matched

The -match  operator allows you to check a string for a regular-expression-based match.
Use this when the wildcard patterns aren't flexible enough for you.

PowerShell

A regex pattern matches anywhere in the string by default. So you can specify a
substring that you want matched like this:

PowerShell

Regex is a complex language of its own and worth looking into. I talk more about -
match  and the many ways to use regex  in another article.

Variations:

-match  case-insensitive regex
-imatch  case-insensitive regex

-cmatch  case-sensitive regex
-notmatch  case-insensitive regex not matched
-inotmatch  case-insensitive regex not matched
-cnotmatch  case-sensitive regex not matched

-match regular expression

$value = 'S-ATX-SQL01'
if ( $value -match 'S-\w\w\w-SQL\d\d')
{
    # do something
}

$value = 'S-ATX-SQL01'
if ( $value -match 'SQL')
{
    # do something
}

-is of type

https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression/
https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression/


You can check a value's type with the -is  operator.

PowerShell

You may use this if you're working with classes or accepting various objects over the
pipeline. You could have either a service or a service name as your input. Then check to
see if you have a service and fetch the service if you only have the name.

PowerShell

Variations:

-is  of type
-isnot  not of type

When you use the previous operators with a single value, the result is $true  or $false .
This is handled slightly differently when working with a collection. Each item in the
collection gets evaluated and the operator returns every value that evaluates to $true .

PowerShell

This still works correctly in an if  statement. So a value is returned by your operator,
then the whole statement is $true .

PowerShell

if ( $value -is [string] )
{
    # do something
}

if ( $Service -isnot [System.ServiceProcess.ServiceController] )
{
    $Service = Get-Service -Name $Service
}

Collection operators

PS> 1,2,3,4 -eq 3
3

$array = 1..6
if ( $array -gt 3 )
{



There's one small trap hiding in the details here that I need to point out. When using the
-ne  operator this way, it's easy to mistakenly look at the logic backwards. Using -ne
with a collection returns $true  if any item in the collection doesn't match your value.

PowerShell

This may look like a clever trick, but we have operators -contains  and -in  that handle
this more efficiently. And -notcontains  does what you expect.

The -contains  operator checks the collection for your value. As soon as it finds a match,
it returns $true .

PowerShell

This is the preferred way to see if a collection contains your value. Using Where-Object
(or -eq ) walks the entire list every time and is significantly slower.

Variations:

-contains  case-insensitive match
-icontains  case-insensitive match
-ccontains  case-sensitive match
-notcontains  case-insensitive not matched

-inotcontains  case-insensitive not matched
-cnotcontains  case-sensitive not matched

    # do something
}

PS> 1,2,3 -ne 4
1
2
3

-contains

$array = 1..6
if ( $array -contains 3 )
{
    # do something
}



The -in  operator is just like the -contains  operator except the collection is on the
right-hand side.

PowerShell

Variations:

-in  case-insensitive match
-iin  case-insensitive match
-cin  case-sensitive match
-notin  case-insensitive not matched

-inotin  case-insensitive not matched
-cnotin  case-sensitive not matched

Logical operators are used to invert or combine other expressions.

The -not  operator flips an expression from $false  to $true  or from $true  to $false .
Here is an example where we want to perform an action when Test-Path  is $false .

PowerShell

Most of the operators we talked about do have a variation where you do not need to
use the -not  operator. But there are still times it is useful.

You can use !  as an alias for -not .

-in

$array = 1..6
if ( 3 -in $array )
{
    # do something
}

Logical operators

-not

if ( -not ( Test-Path -Path $path ) )

! operator



PowerShell

You may see !  used more by people that come from another languages like C#. I prefer
to type it out because I find it hard to see when quickly looking at my scripts.

You can combine expressions with the -and  operator. When you do that, both sides
need to be $true  for the whole expression to be $true .

PowerShell

In that example, $age  must be 13 or older for the left side and less than 55 for the right
side. I added extra parentheses to make it clearer in that example but they're optional as
long as the expression is simple. Here is the same example without them.

PowerShell

Evaluation happens from left to right. If the first item evaluates to $false , it exits early
and doesn't perform the right comparison. This is handy when you need to make sure a
value exists before you use it. For example, Test-Path  throws an error if you give it a
$null  path.

PowerShell

The -or  allows for you to specify two expressions and returns $true  if either one of
them is $true .

PowerShell

if ( -not $value ){}
if ( !$value ){}

-and

if ( ($age -gt 13) -and ($age -lt 55) )

if ( $age -gt 13 -and $age -lt 55 )

if ( $null -ne $path -and (Test-Path -Path $path) )

-or



Just like with the -and  operator, the evaluation happens from left to right. Except that if
the first part is $true , then the whole statement is $true  and it doesn't process the rest
of the expression.

Also make note of how the syntax works for these operators. You need two separate
expressions. I have seen users try to do something like this $value -eq 5 -or 6  without
realizing their mistake.

This one is a little unusual. -xor  allows only one expression to evaluate to $true . So if
both items are $false  or both items are $true , then the whole expression is $false .
Another way to look at this is the expression is only $true  when the results of the
expression are different.

It's rare that anyone would ever use this logical operator and I can't think up a good
example as to why I would ever use it.

Bitwise operators perform calculations on the bits within the values and produce a new
value as the result. Teaching bitwise operators is beyond the scope of this article, but
here is the list of them.

-band  binary AND

-bor  binary OR
-bxor  binary exclusive OR

-bnot  binary NOT
-shl  shift left
-shr  shift right

We can use normal PowerShell inside the condition statement.

PowerShell

if ( $age -le 13 -or $age -ge 55 )

-xor exclusive or

Bitwise operators

PowerShell expressions

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arithmetic_operators#bitwise-operators


Test-Path  returns $true  or $false  when it executes. This also applies to commands
that return other values.

PowerShell

It evaluates to $true  if there's a returned process and $false  if there isn't. It's perfectly
valid to use pipeline expressions or other PowerShell statements like this:

PowerShell

These expressions can be combined with each other with the -and  and -or  operators,
but you may have to use parenthesis to break them into subexpressions.

PowerShell

Having a no result or a $null  value evaluates to $false  in the if  statement. When
checking specifically for $null , it's a best practice to place the $null  on the left-hand
side.

PowerShell

There are quite a few nuances when dealing with $null  values in PowerShell. If you're
interested in diving deeper, I have an article about everything you wanted to know
about $null.

I almost forgot to add this one until Prasoon Karunan V  reminded me of it.

if ( Test-Path -Path $Path )

if ( Get-Process Notepad* )

if ( Get-Process | where Name -EQ Notepad )

if ( (Get-Process) -and (Get-Service) )

Checking for $null

if ( $null -eq $value )

Variable assignment within the condition

https://twitter.com/prasoonkarunan
https://twitter.com/prasoonkarunan


PowerShell

Normally when you assign a value to a variable, the value isn't passed onto the pipeline
or console. When you do a variable assignment in a sub expression, it does get passed
on to the pipeline.

PowerShell

See how the $first  assignment has no output and the $second  assignment does?
When an assignment is done in an if  statement, it executes just like the $second
assignment above. Here is a clean example on how you could use it:

PowerShell

If $process  gets assigned a value, then the statement is $true  and $process  gets
stopped.

Make sure you don't confuse this with -eq  because this isn't an equality check. This is a
more obscure feature that most people don't realize works this way.

You can also use the if  statement scriptblock to assign a value to a variable.

PowerShell

if ($process=Get-Process notepad -ErrorAction Ignore) {$process} else 
{$false}

PS> $first = 1
PS> ($second = 2)
2

if ( $process = Get-Process Notepad* )
{
    $process | Stop-Process
}

Variable assignment from the scriptblock

$discount = if ( $age -ge 55 )
{
    Get-SeniorDiscount
}
elseif ( $age -le 13 )
{
    Get-ChildDiscount



Each script block is writing the results of the commands, or the value, as output. We can
assign the result of the if  statement to the $discount  variable. That example could
have just as easily assigned those values to the $discount  variable directly in each
scriptblock. I can't say that I use this with the if  statement often, but I do have an
example where I used this recently.

The if  statement allows you to specify an action for not only when the statement is

$true , but also for when it's $false . This is where the else  statement comes into play.

The else  statement is always the last part of the if  statement when used.

PowerShell

In this example, we check the $path  to make sure it's a file. If we find the file, we move
it. If not, we write a warning. This type of branching logic is very common.

The if  and else  statements take a script block, so we can place any PowerShell
command inside them, including another if  statement. This allows you to make use of
much more complicated logic.

PowerShell

}
else
{
    0.00
}

Alternate execution path

else

if ( Test-Path -Path $Path -PathType Leaf )
{
    Move-Item -Path $Path -Destination $archivePath
}
else
{
    Write-Warning "$path doesn't exist or isn't a file."
}

Nested if



In this example, we test the happy path first and then take action on it. If that fails, we
do another check and to provide more detailed information to the user.

We aren't limited to just a single conditional check. We can chain if  and else
statements together instead of nesting them by using the elseif  statement.

PowerShell

The execution happens from the top to the bottom. The top if  statement is evaluated
first. If that is $false , then it moves down to the next elseif  or else  in the list. That
last else  is the default action to take if none of the others return $true .

if ( Test-Path -Path $Path -PathType Leaf )
{
    Move-Item -Path $Path -Destination $archivePath
}
else
{
    if ( Test-Path -Path $Path )
    {
        Write-Warning "A file was required but a directory was found 
instead."
    }
    else
    {
        Write-Warning "$path could not be found."
    }
}

elseif

if ( Test-Path -Path $Path -PathType Leaf )
{
    Move-Item -Path $Path -Destination $archivePath
}
elseif ( Test-Path -Path $Path )
{
    Write-Warning "A file was required but a directory was found instead."
}
else
{
    Write-Warning "$path could not be found."
}

switch



At this point, I need to mention the switch  statement. It provides an alternate syntax for
doing multiple comparisons with a value. With the switch , you specify an expression
and that result gets compared with several different values. If one of those values match,
the matching code block is executed. Take a look at this example:

PowerShell

There three possible values that can match the $itemType . In this case, it matches with
Role . I used a simple example just to give you some exposure to the switch  operator. I
talk more about everything you ever wanted to know about the switch statement in
another article.

I have a function called Invoke-SnowSql  that launches an executable with several
command-line arguments. Here is a clip from that function where I build the array of
arguments.

PowerShell

$itemType = 'Role'
switch ( $itemType )
{
    'Component'
    {
        'is a component'
    }
    'Role'
    {
        'is a role'
    }
    'Location'
    {
        'is a location'
    }
}

Array inline

$snowSqlParam = @(
    '--accountname', $Endpoint
    '--username', $Credential.UserName
    '--option', 'exit_on_error=true'
    '--option', 'output_format=csv'
    '--option', 'friendly=false'
    '--option', 'timing=false'
    if ($Debug)
    {
        '--option', 'log_level=DEBUG'
    }

https://github.com/loanDepot/SnowSQL/blob/a3731b52e4ab4ecb503fb81e2d8cb131e8f90410/SnowSQL/public/Invoke-SnowSql.ps1#L90
https://github.com/loanDepot/SnowSQL/blob/a3731b52e4ab4ecb503fb81e2d8cb131e8f90410/SnowSQL/public/Invoke-SnowSql.ps1#L90


The $Debug  and $Path  variables are parameters on the function that are provided by the
end user. I evaluate them inline inside the initialization of my array. If $Debug  is true,
then those values fall into the $snowSqlParam  in the correct place. Same holds true for
the $Path  variable.

It's inevitable that you run into a situation that has way too many comparisons to check
and your if  statement scrolls way off the right side of the screen.

PowerShell

They can be hard to read and that make you more prone to make mistakes. There are a
few things we can do about that.

There some operators in PowerShell that let you wrap you command to the next line.
The logical operators -and  and -or  are good operators to use if you want to break your
expression into multiple lines.

PowerShell

    if ($Path)
    {
        '--filename', $Path
    }
    else
    {
        '--query', $singleLineQuery
    }
)

Simplify complex operations

$user = Get-ADUser -Identity $UserName
if ( $null -ne $user -and $user.Department -eq 'Finance' -and $user.Title -
match 'Senior' -and $user.HomeDrive -notlike '\\server\*' )
{
    # Do Something
}

Line continuation

if ($null -ne $user -and
    $user.Department -eq 'Finance' -and
    $user.Title -match 'Senior' -and
    $user.HomeDrive -notlike '\\server\*'
)



There's still a lot going on there, but placing each piece on its own line makes a big
difference. I generally use this when I get more than two comparisons or if I have to
scroll to the right to read any of the logic.

We can take that statement out of the if  statement and only check the result.

PowerShell

This just feels much cleaner than the previous example. You also are given an
opportunity to use a variable name that explains what it's that you're really checking.
This is also and example of self-documenting code that saves unnecessary comments.

We can break this up into multiple statements and check them one at a time. In this
case, we use a flag or a tracking variable to combine the results.

PowerShell

{
    # Do Something
}

Pre-calculating results

$needsSecureHomeDrive = $null -ne $user -and
    $user.Department -eq 'Finance' -and
    $user.Title -match 'Senior' -and
    $user.HomeDrive -notlike '\\server\*'

if ( $needsSecureHomeDrive )
{
    # Do Something
}

Multiple if statements

$skipUser = $false

if( $null -eq $user )
{
    $skipUser = $true
}

if( $user.Department -ne 'Finance' )
{
    Write-Verbose "isn't in Finance department"
    $skipUser = $true



I did have to invert the logic to make the flag logic work correctly. Each evaluation is an
individual if  statement. The advantage of this is that when you're debugging, you can
tell exactly what the logic is doing. I was able to add much better verbosity at the same
time.

The obvious downside is that it's so much more code to write. The code is more
complex to look at as it takes a single line of logic and explodes it into 25 or more lines.

We can also move all that validation logic into a function. Look at how clean this looks
at a glance.

PowerShell

You still have to create the function to do the validation, but it makes this code much
easier to work with. It makes this code easier to test. In your tests, you can mock the call
to Test-ADDriveConfiguration  and you only need two tests for this function. One where
it returns $true  and one where it returns $false . Testing the other function is simpler
because it's so small.

}

if( $user.Title -match 'Senior' )
{
    Write-Verbose "Doesn't have Senior title"
    $skipUser = $true
}

if( $user.HomeDrive -like '\\server\*' )
{
    Write-Verbose "Home drive already configured"
    $skipUser = $true
}

if ( -not $skipUser )
{
    # do something
}

Using functions

if ( Test-SecureDriveConfiguration -ADUser $user )
{
    # do something
}



The body of that function could still be that one-liner we started with or the exploded
logic that we used in the last section. This works well for both scenarios and allows you
to easily change that implementation later.

One important use of the if  statement is to check for error conditions before you run
into errors. A good example is to check if a folder already exists before you try to create
it.

PowerShell

I like to say that if you expect an exception to happen, then it's not really an exception.
So check your values and validate your conditions where you can.

If you want to dive a little more into actual exception handling, I have an article on
everything you ever wanted to know about exceptions.

The if  statement is such a simple statement but is a fundamental piece of PowerShell.
You will find yourself using this multiple times in almost every script you write. I hope
you have a better understanding than you had before.

Error handling

if ( -not (Test-Path -Path $folder) )
{
    New-Item -Type Directory -Path $folder
}

Final words



Everything you ever wanted to know
about the switch statement
Article • 11/17/2022

Like many other languages, PowerShell has commands for controlling the flow of
execution within your scripts. One of those statements is the switch statement and in
PowerShell, it offers features that aren't found in other languages. Today, we take a deep
dive into working with the PowerShell switch .

One of the first statements that you learn is the if  statement. It lets you execute a script
block if a statement is $true .

PowerShell

You can have much more complicated logic using elseif  and else  statements. Here is
an example where I have a numeric value for day of the week and I want to get the
name as a string.

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

The if  statement

if ( Test-Path $Path )
{
    Remove-Item $Path
}

$day = 3

if ( $day -eq 0 ) { $result = 'Sunday'        }
elseif ( $day -eq 1 ) { $result = 'Monday'    }
elseif ( $day -eq 2 ) { $result = 'Tuesday'   }
elseif ( $day -eq 3 ) { $result = 'Wednesday' }
elseif ( $day -eq 4 ) { $result = 'Thursday'  }
elseif ( $day -eq 5 ) { $result = 'Friday'    }
elseif ( $day -eq 6 ) { $result = 'Saturday'  }

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_switch
https://powershellexplained.com/2018-01-12-Powershell-switch-statement/
https://powershellexplained.com/2018-01-12-Powershell-switch-statement/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


Output

It turns out that this is a common pattern and there are many ways to deal with this.
One of them is with a switch .

The switch  statement allows you to provide a variable and a list of possible values. If
the value matches the variable, then its scriptblock is executed.

PowerShell

Output

For this example, the value of $day  matches one of the numeric values, then the correct
name is assigned to $result . We're only doing a variable assignment in this example,
but any PowerShell can be executed in those script blocks.

We can write that last example in another way.

$result

Wednesday

Switch statement

$day = 3

switch ( $day )
{
    0 { $result = 'Sunday'    }
    1 { $result = 'Monday'    }
    2 { $result = 'Tuesday'   }
    3 { $result = 'Wednesday' }
    4 { $result = 'Thursday'  }
    5 { $result = 'Friday'    }
    6 { $result = 'Saturday'  }
}

$result

'Wednesday'

Assign to a variable



PowerShell

We're placing the value on the PowerShell pipeline and assigning it to the $result . You
can do this same thing with the if  and foreach  statements.

We can use the default  keyword to identify the what should happen if there is no
match.

PowerShell

Here we return the value Unknown  in the default case.

I was matching numbers in those last examples, but you can also match strings.

PowerShell

$result = switch ( $day )
{
    0 { 'Sunday'    }
    1 { 'Monday'    }
    2 { 'Tuesday'   }
    3 { 'Wednesday' }
    4 { 'Thursday'  }
    5 { 'Friday'    }
    6 { 'Saturday'  }
}

Default

$result = switch ( $day )
{
    0 { 'Sunday' }
    # ...
    6 { 'Saturday' }
    default { 'Unknown' }
}

Strings

$item = 'Role'

switch ( $item )
{
    Component
    {
        'is a component'
    }



Output

I decided not to wrap the Component , Role  and Location  matches in quotes here to
highlight that they're optional. The switch  treats those as a string in most cases.

One of the cool features of the PowerShell switch  is the way it handles arrays. If you
give a switch  an array, it processes each element in that collection.

PowerShell

Output

If you have repeated items in your array, then they're matched multiple times by the
appropriate section.

You can use the $PSItem  or $_  to reference the current item that was processed. When
we do a simple match, $PSItem  is the value that we're matching. I'll be performing some

    Role
    {
        'is a role'
    }
    Location
    {
        'is a location'
    }
}

is a role

Arrays

$roles = @('WEB','Database')

switch ( $roles ) {
    'Database'   { 'Configure SQL' }
    'WEB'        { 'Configure IIS' }
    'FileServer' { 'Configure Share' }
}

Configure IIS
Configure SQL

PSItem



advanced matches in the next section where this variable is used.

A unique feature of the PowerShell switch  is that it has a number of switch parameters
that change how it performs.

The matches aren't case-sensitive by default. If you need to be case-sensitive, you can
use -CaseSensitive . This can be used in combination with the other switch parameters.

We can enable wildcard support with the -Wildcard  switch. This uses the same wildcard
logic as the -like  operator to do each match.

PowerShell

Output

Here we're processing a message and then outputting it on different streams based on
the contents.

Parameters

-CaseSensitive

-Wildcard

$Message = 'Warning, out of disk space'

switch -Wildcard ( $message )
{
    'Error*'
    {
        Write-Error -Message $Message
    }
    'Warning*'
    {
        Write-Warning -Message $Message
    }
    default
    {
        Write-Information $message
    }
}

WARNING: Warning, out of disk space



The switch statement supports regex matches just like it does wildcards.

PowerShell

I have more examples of using regex in another article I wrote: The many ways to use
regex .

A little known feature of the switch statement is that it can process a file with the -File
parameter. You use -File  with a path to a file instead of giving it a variable expression.

PowerShell

-Regex

switch -Regex ( $message )
{
    '^Error'
    {
        Write-Error -Message $Message
    }
    '^Warning'
    {
        Write-Warning -Message $Message
    }
    default
    {
        Write-Information $message
    }
}

-File

switch -Wildcard -File $path
{
    'Error*'
    {
        Write-Error -Message $PSItem
    }
    'Warning*'
    {
        Write-Warning -Message $PSItem
    }
    default
    {
        Write-Output $PSItem
    }
}

https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression
https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression
https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression


It works just like processing an array. In this example, I combine it with wildcard
matching and make use of the $PSItem . This would process a log file and convert it to
warning and error messages depending on the regex matches.

Now that you're aware of all these documented features, we can use them in the context
of more advanced processing.

The switch  can be on an expression instead of a variable.

PowerShell

Whatever the expression evaluates to is the value used for the match.

You may have already picked up on this, but a switch  can match to multiple conditions.
This is especially true when using -Wildcard  or -Regex  matches. You can add the same
condition multiple times and all are triggered.

PowerShell

Output

All three of these statements are fired. This shows that every condition is checked (in
order). This holds true for processing arrays where each item checks each condition.

Advanced details

Expressions

switch ( ( Get-Service | where Status -EQ 'running' ).Name ) {...}

Multiple matches

switch ( 'Word' )
{
    'word' { 'lower case word match' }
    'Word' { 'mixed case word match' }
    'WORD' { 'upper case word match' }
}

lower case word match
mixed case word match
upper case word match



Normally, this is where I would introduce the break  statement, but it's better that we
learn how to use continue  first. Just like with a foreach  loop, continue  continues onto
the next item in the collection or exits the switch  if there are no more items. We can
rewrite that last example with continue statements so that only one statement executes.

PowerShell

Output

Instead of matching all three items, the first one is matched and the switch continues to
the next value. Because there are no values left to process, the switch exits. This next
example is showing how a wildcard could match multiple items.

PowerShell

Continue

switch ( 'Word' )
{
    'word'
    {
        'lower case word match'
        continue
    }
    'Word'
    {
        'mixed case word match'
        continue
    }
    'WORD'
    {
        'upper case word match'
        continue
    }
}

lower case word match

switch -Wildcard -File $path
{
    '*Error*'
    {
        Write-Error -Message $PSItem
        continue
    }
    '*Warning*'
    {
        Write-Warning -Message $PSItem



Because a line in the input file could contain both the word Error  and Warning , we only
want the first one to execute and then continue processing the file.

A break  statement exits the switch. This is the same behavior that continue  presents for
single values. The difference is shown when processing an array. break  stops all
processing in the switch and continue  moves onto the next item.

PowerShell

        continue
    }
    default
    {
        Write-Output $PSItem
    }
}

Break

$Messages = @(
    'Downloading update'
    'Ran into errors downloading file'
    'Error: out of disk space'
    'Sending email'
    '...'
)

switch -Wildcard ($Messages)
{
    'Error*'
    {
        Write-Error -Message $PSItem
        break
    }
    '*Error*'
    {
        Write-Warning -Message $PSItem
        continue
    }
    '*Warning*'
    {
        Write-Warning -Message $PSItem
        continue
    }
    default
    {
        Write-Output $PSItem
    }
}



Output

In this case, if we hit any lines that start with Error  then we get an error and the switch
stops. This is what that break  statement is doing for us. If we find Error  inside the
string and not just at the beginning, we write it as a warning. We do the same thing for
Warning . It's possible that a line could have both the word Error  and Warning , but we
only need one to process. This is what the continue  statement is doing for us.

The switch  statement supports break/continue  labels just like foreach .

PowerShell

I personally don't like the use of break labels but I wanted to point them out because
they're confusing if you've never seen them before. When you have multiple switch  or
foreach  statements that are nested, you may want to break out of more than the inner
most item. You can place a label on a switch  that can be the target of your break .

Downloading update
WARNING: Ran into errors downloading file
Write-Error -Message $PSItem : Error: out of disk space
+ CategoryInfo          : NotSpecified: (:) [Write-Error], 
WriteErrorException
+ FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorException

Break labels

:filelist foreach($path in $logs)
{
    :logFile switch -Wildcard -File $path
    {
        'Error*'
        {
            Write-Error -Message $PSItem
            break filelist
        }
        'Warning*'
        {
            Write-Error -Message $PSItem
            break logFile
        }
        default
        {
            Write-Output $PSItem
        }
    }
}



PowerShell 5.0 gave us enums and we can use them in a switch.

PowerShell

Output

If you want to keep everything as strongly typed enums, then you can place them in
parentheses.

PowerShell

Enum

enum Context {
    Component
    Role
    Location
}

$item = [Context]::Role

switch ( $item )
{
    Component
    {
        'is a component'
    }
    Role
    {
        'is a role'
    }
    Location
    {
        'is a location'
    }
}

is a role

switch ($item )
{
    ([Context]::Component)
    {
        'is a component'
    }
    ([Context]::Role)
    {
        'is a role'
    }
    ([Context]::Location)



The parentheses are needed here so that the switch doesn't treat the value
[Context]::Location  as a literal string.

We can use a scriptblock to perform the evaluation for a match if needed.

PowerShell

Output

This adds complexity and can make your switch  hard to read. In most cases where you
would use something like this it would be better to use if  and elseif  statements. I
would consider using this if I already had a large switch in place and I needed two items
to hit the same evaluation block.

One thing that I think helps with legibility is to place the scriptblock in parentheses.

PowerShell

    {
        'is a location'
    }
}

ScriptBlock

$age = 37

switch ( $age )
{
    {$PSItem -le 18}
    {
        'child'
    }
    {$PSItem -gt 18}
    {
        'adult'
    }
}

'adult'

switch ( $age )
{
    ({$PSItem -le 18})
    {
        'child'
    }



It still executes the same way and gives a better visual break when quickly looking at it.

We need to revisit regex to touch on something that isn't immediately obvious. The use
of regex populates the $Matches  variable. I do go into the use of $Matches  more when I
talk about The many ways to use regex . Here is a quick sample to show it in action
with named matches.

PowerShell

Output

You can match a $null  value that doesn't have to be the default.

PowerShell

    ({$PSItem -gt 18})
    {
        'adult'
    }
}

Regex $Matches

$message = 'my ssn is 123-23-3456 and credit card: 1234-5678-1234-5678'

switch -Regex ($message)
{
    '(?<SSN>\d\d\d-\d\d-\d\d\d\d)'
    {
        Write-Warning "message contains a SSN: $($Matches.SSN)"
    }
    '(?<CC>\d\d\d\d-\d\d\d\d-\d\d\d\d-\d\d\d\d)'
    {
        Write-Warning "message contains a credit card number: 
$($Matches.CC)"
    }
    '(?<Phone>\d\d\d-\d\d\d-\d\d\d\d)'
    {
        Write-Warning "message contains a phone number: $($Matches.Phone)"
    }
}

WARNING: message may contain a SSN: 123-23-3456
WARNING: message may contain a credit card number: 1234-5678-1234-5678

$null

https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression
https://powershellexplained.com/2017-07-31-Powershell-regex-regular-expression


Output

When testing for an empty string in a switch  statement, it's important to use the
comparison statement as shown in this example instead of the raw value '' . In a switch
statement, the raw value ''  also matches $null . For example:

PowerShell

Output

Also, be careful with empty returns from cmdlets. Cmdlets or pipelines that have no
output are treated as an empty array that doesn't match anything, including the
default  case.

PowerShell

$values = '', 5, $null
switch ( $values )
{
    $null          { "Value '$_' is `$null" }
    { '' -eq $_ }  { "Value '$_' is an empty string" }
    default        { "Value [$_] isn't an empty string or `$null" }
}

Value '' is an empty string
Value [5] isn't an empty string or $null
Value '' is $null

$values = '', 5, $null
switch ( $values )
{
    $null          { "Value '$_' is `$null" }
    ''             { "Value '$_' is an empty string" }
    default        { "Value [$_] isn't an empty string or `$null" }
}

Value '' is an empty string
Value [5] isn't an empty string or $null
Value '' is $null
Value '' is an empty string

$file = Get-ChildItem NonExistantFile*
switch ( $file )
{
    $null   { '$file is $null' }
    default { "`$file is type $($file.GetType().Name)" }



Lee Dailey pointed out that we can use a constant $true  expression to evaluate [bool]
items. Imagine if we have several boolean checks that need to happen.

PowerShell

Output

This is a clean way to evaluate and take action on the status of several boolean fields.
The cool thing about this is that you can have one match flip the status of a value that
hasn't been evaluated yet.

PowerShell

}
# No matches

Constant expression

$isVisible = $false
$isEnabled = $true
$isSecure = $true

switch ( $true )
{
    $isEnabled
    {
        'Do-Action'
    }
    $isVisible
    {
        'Show-Animation'
    }
    $isSecure
    {
        'Enable-AdminMenu'
    }
}

Do-Action
Enabled-AdminMenu

$isVisible = $false
$isEnabled = $true
$isAdmin = $false

switch ( $true )
{
    $isEnabled



Output

Setting $isEnabled  to $true  in this example makes sure that $isVisible  is also set to
$true . Then when $isVisible  gets evaluated, its scriptblock is invoked. This is a bit
counter-intuitive but is a clever use of the mechanics.

When the switch  is processing its values, it creates an enumerator and calls it $switch .
This is an automatic variable created by PowerShell and you can manipulate it directly.

PowerShell

This gives you the results of:

Output

By moving the enumerator forward, the next item doesn't get processed by the switch
but you can access that value directly. I would call it madness.

    {
        'Do-Action'
        $isVisible = $true
    }
    $isVisible
    {
        'Show-Animation'
    }
    $isAdmin
    {
        'Enable-AdminMenu'
    }
}

Do-Action
Show-Animation

$switch automatic variable

$a = 1, 2, 3, 4

switch($a) {
    1 { [void]$switch.MoveNext(); $switch.Current }
    3 { [void]$switch.MoveNext(); $switch.Current }
}

2
4



One of my most popular posts is the one I did on hashtables. One of the use cases for a
hashtable  is to be a lookup table. That's an alternate approach to a common pattern
that a switch  statement is often addressing.

PowerShell

Output

If I'm only using a switch  as a lookup, I often use a hashtable  instead.

PowerShell 5.0 introduced the enum  and it's also an option in this case.

PowerShell

Other patterns

Hashtables

$day = 3

$lookup = @{
    0 = 'Sunday'
    1 = 'Monday'
    2 = 'Tuesday'
    3 = 'Wednesday'
    4 = 'Thursday'
    5 = 'Friday'
    6 = 'Saturday'
}

$lookup[$day]

Wednesday

Enum

$day = 3

enum DayOfTheWeek {
    Sunday
    Monday
    Tuesday
    Wednesday
    Thursday
    Friday
    Saturday



Output

We could go all day looking at different ways to solve this problem. I just wanted to
make sure you knew you had options.

The switch statement is simple on the surface but it offers some advanced features that
most people don't realize are available. Stringing those features together makes this a
powerful feature. I hope you learned something that you had not realized before.

}

[DayOfTheWeek]$day

Wednesday

Final words



Everything you wanted to know about
exceptions
Article • 06/20/2024

Error handling is just part of life when it comes to writing code. We can often check and
validate conditions for expected behavior. When the unexpected happens, we turn to
exception handling. You can easily handle exceptions generated by other people's code
or you can generate your own exceptions for others to handle.

We need to cover some basic terms before we jump into this one.

An Exception is like an event that is created when normal error handling can't deal with
the issue. Trying to divide a number by zero or running out of memory are examples of
something that creates an exception. Sometimes the author of the code you're using
creates exceptions for certain issues when they happen.

When an exception happens, we say that an exception is thrown. To handle a thrown
exception, you need to catch it. If an exception is thrown and it isn't caught by
something, the script stops executing.

The call stack is the list of functions that have called each other. When a function is
called, it gets added to the stack or the top of the list. When the function exits or
returns, it is removed from the stack.

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

Basic terminology

Exception

Throw and Catch

The call stack

https://powershellexplained.com/2017-04-10-Powershell-exceptions-everything-you-ever-wanted-to-know/
https://powershellexplained.com/2017-04-10-Powershell-exceptions-everything-you-ever-wanted-to-know/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


When an exception is thrown, that call stack is checked in order for an exception handler
to catch it.

An exception is generally a terminating error. A thrown exception is either be caught or
it terminates the current execution. By default, a non-terminating error is generated by
Write-Error  and it adds an error to the output stream without throwing an exception.

I point this out because Write-Error  and other non-terminating errors do not trigger
the catch .

This is when you catch an error just to suppress it. Do this with caution because it can
make troubleshooting issues very difficult.

Here is a quick overview of the basic exception handling syntax used in PowerShell.

To create our own exception event, we throw an exception with the throw  keyword.

PowerShell

This creates a runtime exception that is a terminating error. It's handled by a catch  in a
calling function or exits the script with a message like this.

PowerShell

Terminating and non-terminating errors

Swallowing an exception

Basic command syntax

Throw

function Start-Something
{
    throw "Bad thing happened"
}

PS> Start-Something

Bad thing happened
At line:1 char:1
+ throw "Bad thing happened"
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~



I mentioned that Write-Error  doesn't throw a terminating error by default. If you
specify -ErrorAction Stop , Write-Error  generates a terminating error that can be
handled with a catch .

PowerShell

Thank you to Lee Dailey for reminding about using -ErrorAction Stop  this way.

If you specify -ErrorAction Stop  on any advanced function or cmdlet, it turns all Write-
Error  statements into terminating errors that stop execution or that can be handled by
a catch .

PowerShell

For more information about the ErrorAction parameter, see about_CommonParameters.
For more information about the $ErrorActionPreference  variable, see
about_Preference_Variables.

The way exception handling works in PowerShell (and many other languages) is that you
first try  a section of code and if it throws an error, you can catch  it. Here is a quick
sample.

PowerShell

    + CategoryInfo          : OperationStopped: (Bad thing happened:String) 
[], RuntimeException
    + FullyQualifiedErrorId : Bad thing happened

Write-Error -ErrorAction Stop

Write-Error -Message "Houston, we have a problem." -ErrorAction Stop

Cmdlet -ErrorAction Stop

Start-Something -ErrorAction Stop

Try/Catch

try
{
    Start-Something
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables


The catch  script only runs if there's a terminating error. If the try  executes correctly,
then it skips over the catch . You can access the exception information in the catch
block using the $_  variable.

Sometimes you don't need to handle an error but still need some code to execute if an
exception happens or not. A finally  script does exactly that.

Take a look at this example:

PowerShell

Anytime you open or connect to a resource, you should close it. If the
ExecuteNonQuery()  throws an exception, the connection isn't closed. Here is the same
code inside a try/finally  block.

PowerShell

catch
{
    Write-Output "Something threw an exception"
    Write-Output $_
}

try
{
    Start-Something -ErrorAction Stop
}
catch
{
    Write-Output "Something threw an exception or used Write-Error"
    Write-Output $_
}

Try/Finally

$command = [System.Data.SqlClient.SqlCommand]::new(queryString, connection)
$command.Connection.Open()
$command.ExecuteNonQuery()
$command.Connection.Close()

$command = [System.Data.SqlClient.SqlCommand]::new(queryString, connection)
try
{
    $command.Connection.Open()
    $command.ExecuteNonQuery()
}
finally
{



In this example, the connection is closed if there's an error. It also is closed if there's no
error. The finally  script runs every time.

Because you're not catching the exception, it still gets propagated up the call stack.

It's perfectly valid to use catch  and finally  together. Most of the time you'll use one or
the other, but you may find scenarios where you use both.

Now that we got the basics out of the way, we can dig a little deeper.

Inside the catch  block, there's an automatic variable ( $PSItem  or $_ ) of type
ErrorRecord  that contains the details about the exception. Here is a quick overview of
some of the key properties.

For these examples, I used an invalid path in ReadAllText  to generate this exception.

PowerShell

This gives you the cleanest message to use in logging and general output. ToString()  is
automatically called if $PSItem  is placed inside a string.

PowerShell

    $command.Connection.Close()
}

Try/Catch/Finally

$PSItem

[System.IO.File]::ReadAllText( '\\test\no\filefound.log')

PSItem.ToString()

catch
{
    Write-Output "Ran into an issue: $($PSItem.ToString())"
}

catch
{
    Write-Output "Ran into an issue: $PSItem"
}



This property contains additional information collected by PowerShell about the
function or script where the exception was thrown. Here is the InvocationInfo  from the
sample exception that I created.

PowerShell

The important details here show the ScriptName , the Line  of code and the

ScriptLineNumber  where the invocation started.

This property shows the order of function calls that got you to the code where the
exception was generated.

PowerShell

I'm only making calls to functions in the same script but this would track the calls if
multiple scripts were involved.

This is the actual exception that was thrown.

$PSItem.InvocationInfo

PS> $PSItem.InvocationInfo | Format-List *

MyCommand             : Get-Resource
BoundParameters       : {}
UnboundArguments      : {}
ScriptLineNumber      : 5
OffsetInLine          : 5
ScriptName            : C:\blog\throwerror.ps1
Line                  :     Get-Resource
PositionMessage       : At C:\blog\throwerror.ps1:5 char:5
                        +     Get-Resource
                        +     ~~~~~~~~~~~~
PSScriptRoot          : C:\blog
PSCommandPath         : C:\blog\throwerror.ps1
InvocationName        : Get-Resource

$PSItem.ScriptStackTrace

PS> $PSItem.ScriptStackTrace
at Get-Resource, C:\blog\throwerror.ps1: line 13
at Start-Something, C:\blog\throwerror.ps1: line 5
at <ScriptBlock>, C:\blog\throwerror.ps1: line 18

$PSItem.Exception



This is the general message that describes the exception and is a good starting point
when troubleshooting. Most exceptions have a default message but can also be set to
something custom when the exception is thrown.

PowerShell

This is also the message returned when calling $PSItem.ToString()  if there was not one
set on the ErrorRecord .

Exceptions can contain inner exceptions. This is often the case when the code you're
calling catches an exception and throws a different exception. The original exception is
placed inside the new exception.

PowerShell

I will revisit this later when I talk about re-throwing exceptions.

This is the StackTrace  for the exception. I showed a ScriptStackTrace  above, but this
one is for the calls to managed code.

Output

$PSItem.Exception.Message

PS> $PSItem.Exception.Message

Exception calling "ReadAllText" with "1" argument(s): "The network path was 
not found."

$PSItem.Exception.InnerException

PS> $PSItem.Exception.InnerExceptionMessage
The network path was not found.

$PSItem.Exception.StackTrace

at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, 
Int32 rights, Boolean
 useRights, FileShare share, Int32 bufferSize, FileOptions options, 
SECURITY_ATTRIBUTES secAttrs,
 String msgPath, Boolean bFromProxy, Boolean useLongPath, Boolean checkHost)
at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access, 
FileShare share, Int32
 bufferSize, FileOptions options, String msgPath, Boolean bFromProxy, 
Boolean useLongPath, Boolean



You only get this stack trace when the event is thrown from managed code. I'm calling a
.NET Framework function directly so that is all we can see in this example. Generally
when you're looking at a stack trace, you're looking for where your code stops and the
system calls begin.

There is more to exceptions than the basic syntax and exception properties.

You can be selective with the exceptions that you catch. Exceptions have a type and you
can specify the type of exception you want to catch.

PowerShell

The exception type is checked for each catch  block until one is found that matches your
exception. It's important to realize that exceptions can inherit from other exceptions. In
the example above, FileNotFoundException  inherits from IOException . So if the

IOException  was first, then it would get called instead. Only one catch block is invoked
even if there are multiple matches.

If we had a System.IO.PathTooLongException , the IOException  would match but if we
had an InsufficientMemoryException  then nothing would catch it and it would

 checkHost)
at System.IO.StreamReader..ctor(String path, Encoding encoding, Boolean 
detectEncodingFromByteOrderMarks,
 Int32 bufferSize, Boolean checkHost)
at System.IO.File.InternalReadAllText(String path, Encoding encoding, 
Boolean checkHost)
at CallSite.Target(Closure , CallSite , Type , String )

Working with exceptions

Catching typed exceptions

try
{
    Start-Something -Path $path
}
catch [System.IO.FileNotFoundException]
{
    Write-Output "Could not find $path"
}
catch [System.IO.IOException]
{
        Write-Output "IO error with the file: $path"
}



propagate up the stack.

It's possible to catch multiple exception types with the same catch  statement.

PowerShell

Thank you Redditor u/Sheppard_Ra  for suggesting this addition.

You can throw typed exceptions in PowerShell. Instead of calling throw  with a string:

PowerShell

Use an exception accelerator like this:

PowerShell

But you have to specify a message when you do it that way.

You can also create a new instance of an exception to be thrown. The message is
optional when you do this because the system has default messages for all built-in
exceptions.

PowerShell

Catch multiple types at once

try
{
    Start-Something -Path $path -ErrorAction Stop
}
catch [System.IO.DirectoryNotFoundException],
[System.IO.FileNotFoundException]
{
    Write-Output "The path or file was not found: [$path]"
}
catch [System.IO.IOException]
{
    Write-Output "IO error with the file: [$path]"
}

Throwing typed exceptions

throw "Could not find: $path"

throw [System.IO.FileNotFoundException] "Could not find: $path"



If you're not using PowerShell 5.0 or higher, you must use the older New-Object
approach.

PowerShell

By using a typed exception, you (or others) can catch the exception by the type as
mentioned in the previous section.

We can add these typed exceptions to Write-Error  and we can still catch  the errors by
exception type. Use Write-Error  like in these examples:

PowerShell

Then we can catch it like this:

PowerShell

throw [System.IO.FileNotFoundException]::new()
throw [System.IO.FileNotFoundException]::new("Could not find path: $path")

throw (New-Object -TypeName System.IO.FileNotFoundException )
throw (New-Object -TypeName System.IO.FileNotFoundException -ArgumentList 
"Could not find path: $path")

Write-Error -Exception

# with normal message
Write-Error -Message "Could not find path: $path" -Exception 
([System.IO.FileNotFoundException]::new()) -ErrorAction Stop

# With message inside new exception
Write-Error -Exception ([System.IO.FileNotFoundException]::new("Could not 
find path: $path")) -ErrorAction Stop

# Pre PS 5.0
Write-Error -Exception ([System.IO.FileNotFoundException]"Could not find 
path: $path") -ErrorAction Stop

Write-Error -Message "Could not find path: $path" -Exception (New-Object -
TypeName System.IO.FileNotFoundException) -ErrorAction Stop

catch [System.IO.FileNotFoundException]
{
    Write-Log $PSItem.ToString()
}



I compiled a master list with the help of the Reddit r/PowerShell  community that
contains hundreds of .NET exceptions to complement this post.

The big list of .NET exceptions

I start by searching that list for exceptions that feel like they would be a good fit for my
situation. You should try to use exceptions in the base System  namespace.

If you start using a lot of typed exceptions, remember that they are objects. Different
exceptions have different constructors and properties. If we look at the
FileNotFoundException documentation for System.IO.FileNotFoundException , we see
that we can pass in a message and a file path.

PowerShell

And it has a FileName  property that exposes that file path.

PowerShell

You should consult the .NET documentation for other constructors and object
properties.

If all you're going to do in your catch  block is throw  the same exception, then don't

catch  it. You should only catch  an exception that you plan to handle or perform some
action when it happens.

There are times where you want to perform an action on an exception but re-throw the
exception so something downstream can deal with it. We could write a message or log
the problem close to where we discover it but handle the issue further up the stack.

The big list of .NET exceptions

Exceptions are objects

[System.IO.FileNotFoundException]::new("Could not find file", $path)

catch [System.IO.FileNotFoundException]
{
    Write-Output $PSItem.Exception.FileName
}

Re-throwing an exception

https://powershellexplained.com/2017-04-07-all-dotnet-exception-list
https://powershellexplained.com/2017-04-07-all-dotnet-exception-list
https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileNotFoundException
https://learn.microsoft.com/en-us/dotnet/api


PowerShell

Interestingly enough, we can call throw  from within the catch  and it re-throws the
current exception.

PowerShell

We want to re-throw the exception to preserve the original execution information like
source script and line number. If we throw a new exception at this point, it hides where
the exception started.

If you catch an exception but you want to throw a different one, then you should nest
the original exception inside the new one. This allows someone down the stack to access
it as the $PSItem.Exception.InnerException .

PowerShell

The one thing that I don't like about using throw  for raw exceptions is that the error
message points at the throw  statement and indicates that line is where the problem is.

Output

catch
{
    Write-Log $PSItem.ToString()
    throw $PSItem
}

catch
{
    Write-Log $PSItem.ToString()
    throw
}

Re-throwing a new exception

catch
{
    throw [System.MissingFieldException]::new('Could not access 
field',$PSItem.Exception)
}

$PSCmdlet.ThrowTerminatingError()



Having the error message tell me that my script is broken because I called throw  on line
31 is a bad message for users of your script to see. It doesn't tell them anything useful.

Dexter Dhami pointed out that I can use ThrowTerminatingError()  to correct that.

PowerShell

If we assume that ThrowTerminatingError()  was called inside a function called Get-
Resource , then this is the error that we would see.

Output

Do you see how it points to the Get-Resource  function as the source of the problem?
That tells the user something useful.

Because $PSItem  is an ErrorRecord , we can also use ThrowTerminatingError  this way to
re-throw.

PowerShell

Unable to find the specified file.
At line:31 char:9
+         throw [System.IO.FileNotFoundException]::new()
+         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : OperationStopped: (:) [], 
FileNotFoundException
    + FullyQualifiedErrorId : Unable to find the specified file.

$PSCmdlet.ThrowTerminatingError(
    [System.Management.Automation.ErrorRecord]::new(
        ([System.IO.FileNotFoundException]"Could not find $Path"),
        'My.ID',
        [System.Management.Automation.ErrorCategory]::OpenError,
        $MyObject
    )
)

Get-Resource : Could not find C:\Program Files (x86)\Reference
Assemblies\Microsoft\Framework\.NETPortable\v4.6\System.IO.xml
At line:6 char:5
+     Get-Resource -Path $Path
+     ~~~~~~~~~~~~
    + CategoryInfo          : OpenError: (:) [Get-Resource], 
FileNotFoundException
    + FullyQualifiedErrorId : My.ID,Get-Resource



This changes the source of the error to the Cmdlet and hide the internals of your
function from the users of your Cmdlet.

Kirk Munro points out that some exceptions are only terminating errors when executed
inside a try/catch  block. Here is the example he gave me that generates a divide by
zero runtime exception.

PowerShell

Then invoke it like this to see it generate the error and still output the message.

PowerShell

But by placing that same code inside a try/catch , we see something else happen.

PowerShell

We see the error become a terminating error and not output the first message. What I
don't like about this one is that you can have this code in a function and it acts
differently if someone is using a try/catch .

I have not ran into issues with this myself but it is corner case to be aware of.

catch
{
    $PSCmdlet.ThrowTerminatingError($PSItem)
}

Try can create terminating errors

function Start-Something { 1/(1-1) }

&{ Start-Something; Write-Output "We did it. Send Email" }

try
{
    &{ Start-Something; Write-Output "We did it. Send Email" }
}
catch
{
    Write-Output "Notify Admin to fix error and send email"
}



One nuance of $PSCmdlet.ThrowTerminatingError()  is that it creates a terminating error
within your Cmdlet but it turns into a non-terminating error after it leaves your Cmdlet.
This leaves the burden on the caller of your function to decide how to handle the error.
They can turn it back into a terminating error by using -ErrorAction Stop  or calling it
from within a try{...}catch{...} .

One last take a way I had with my conversation with Kirk Munro was that he places a
try{...}catch{...}  around every begin , process  and end  block in all of his advanced
functions. In those generic catch blocks, he has a single line using
$PSCmdlet.ThrowTerminatingError($PSItem)  to deal with all exceptions leaving his
functions.

PowerShell

Because everything is in a try  statement within his functions, everything acts
consistently. This also gives clean errors to the end user that hides the internal code
from the generated error.

I focused on the try/catch  aspect of exceptions. But there's one legacy feature I need
to mention before we wrap this up.

$PSCmdlet.ThrowTerminatingError() inside try/catch

Public function templates

function Start-Something
{
    [CmdletBinding()]
    param()

    process
    {
        try
        {
            ...
        }
        catch
        {
            $PSCmdlet.ThrowTerminatingError($PSItem)
        }
    }
}

Trap



A trap  is placed in a script or function to catch all exceptions that happen in that scope.
When an exception happens, the code in the trap  is executed and then the normal
code continues. If multiple exceptions happen, then the trap is called over and over.

PowerShell

I personally never adopted this approach but I can see the value in admin or controller
scripts that log any and all exceptions, then still continue to execute.

Adding proper exception handling to your scripts not only make them more stable, but
also makes it easier for you to troubleshoot those exceptions.

I spent a lot of time talking throw  because it is a core concept when talking about
exception handling. PowerShell also gave us Write-Error  that handles all the situations
where you would use throw . So don't think that you need to be using throw  after
reading this.

Now that I have taken the time to write about exception handling in this detail, I'm
going to switch over to using Write-Error -Stop  to generate errors in my code. I'm also
going to take Kirk's advice and make ThrowTerminatingError  my goto exception handler
for every function.

trap
{
    Write-Log $PSItem.ToString()
}

throw [System.Exception]::new('first')
throw [System.Exception]::new('second')
throw [System.Exception]::new('third')

Closing remarks



Everything you wanted to know about
$null
Article • 06/11/2024

The PowerShell $null  often appears to be simple but it has a lot of nuances. Let's take a
close look at $null  so you know what happens when you unexpectedly run into a $null
value.

You can think of NULL as an unknown or empty value. A variable is NULL until you
assign a value or an object to it. This can be important because there are some
commands that require a value and generate errors if the value is NULL.

$null  is an automatic variable in PowerShell used to represent NULL. You can assign it
to variables, use it in comparisons and use it as a place holder for NULL in a collection.

PowerShell treats $null  as an object with a value of NULL. This is different than what
you may expect if you come from another language.

Anytime you try to use a variable that you have not initialized, the value is $null . This is
one of the most common ways that $null  values sneak into your code.

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

What is NULL?

PowerShell $null

Examples of $null

PS> $null -eq $undefinedVariable
True

https://powershellexplained.com/2018-12-23-Powershell-null-everything-you-wanted-to-know/
https://powershellexplained.com/2018-12-23-Powershell-null-everything-you-wanted-to-know/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


If you happen to mistype a variable name then PowerShell sees it as a different variable
and the value is $null .

The other way you find $null  values is when they come from other commands that
don't give you any results.

PowerShell

$null  values impact your code differently depending on where they show up.

If you use $null  in a string, then it's a blank value (or empty string).

PowerShell

This is one of the reasons that I like to place brackets around variables when using them
in log messages. It's even more important to identify the edges of your variable values
when the value is at the end of the string.

PowerShell

This makes empty strings and $null  values easy to spot.

PS> function Get-Nothing {}
PS> $value = Get-Nothing
PS> $null -eq $value
True

Impact of $null

In strings

PS> $value = $null
PS> Write-Output "'The value is $value'"
'The value is '

PS> $value = $null
PS> Write-Output "The value is [$value]"
The value is []

In numeric equation



When a $null  value is used in a numeric equation then your results are invalid if they
don't give an error. Sometimes the $null  evaluates to 0  and other times it makes the
whole result $null . Here is an example with multiplication that gives 0 or $null
depending on the order of the values.

PowerShell

A collection allows you use an index to access values. If you try to index into a collection
that is actually null , you get this error: Cannot index into a null array .

PowerShell

If you have a collection but try to access an element that is not in the collection, you get
a $null  result.

PowerShell

PS> $null * 5
PS> $null -eq ( $null * 5 )
True

PS> 5 * $null
0
PS> $null -eq ( 5 * $null )
False

In place of a collection

PS> $value = $null
PS> $value[10]
Cannot index into a null array.
At line:1 char:1
+ $value[10]
+ ~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (:) [], RuntimeException
    + FullyQualifiedErrorId : NullArray

$array = @( 'one','two','three' )
$null -eq $array[100]
True

In place of an object



If you try to access a property or sub property of an object that doesn't have the
specified property, you get a $null  value like you would for an undefined variable. It
doesn't matter if the variable is $null  or an actual object in this case.

PowerShell

Calling a method on a $null  object throws a RuntimeException .

PowerShell

Whenever I see the phrase You cannot call a method on a null-valued expression  then
the first thing I look for are places where I am calling a method on a variable without
first checking it for $null .

You may have noticed that I always place the $null  on the left when checking for $null
in my examples. This is intentional and accepted as a PowerShell best practice. There are
some scenarios where placing it on the right doesn't give you the expected result.

Look at this next example and try to predict the results:

PowerShell

PS> $null -eq $undefined.Some.Fake.Property
True

PS> $date = Get-Date
PS> $null -eq $date.Some.Fake.Property
True

Method on a null-valued expression

PS> $value = $null
PS> $value.ToString()
You cannot call a method on a null-valued expression.
At line:1 char:1
+ $value.ToString()
+ ~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (:) [], RuntimeException
    + FullyQualifiedErrorId : InvokeMethodOnNull

Checking for $null

if ( $value -eq $null )
{
    'The array is $null'



If I do not define $value , the first one evaluates to $true  and our message is The array
is $null . The trap here is that it's possible to create a $value  that allows both of them
to be $false

PowerShell

In this case, the $value  is an array that contains a $null . The -eq  checks every value in
the array and returns the $null  that is matched. This evaluates to $false . The -ne
returns everything that doesn't match $null  and in this case there are no results (This
also evaluates to $false ). Neither one is $true  even though it looks like one of them
should be.

Not only can we create a value that makes both of them evaluate to $false , it's possible
to create a value where they both evaluate to $true . Mathias Jessen (@IISResetMe) has
a good post  that dives into that scenario.

The PSScriptAnalyzer  module has a rule that checks for this issue called
PSPossibleIncorrectComparisonWithNull .

PowerShell

Because VS Code uses the PSScriptAnalyser rules too, it also highlights or identifies this
as a problem in your script.

}
if ( $value -ne $null )
{
    'The array is not $null'
}

$value = @( $null )

PSScriptAnalyzer and VSCode

PS> Invoke-ScriptAnalyzer ./myscript.ps1

RuleName                              Message
--------                              -------
PSPossibleIncorrectComparisonWithNull $null should be on the left side of 
equality comparisons.

Simple if check

https://blog.iisreset.me/schrodingers-argumentlist
https://blog.iisreset.me/schrodingers-argumentlist
https://www.powershellgallery.com/packages/PSScriptAnalyzer
https://www.powershellgallery.com/packages/PSScriptAnalyzer


A common way that people check for a non-$null value is to use a simple if()
statement without the comparison.

PowerShell

If the value is $null , this evaluates to $false . This is easy to read, but be careful that it's
looking for exactly what you're expecting it to look for. I read that line of code as:

If $value  has a value.

But that's not the whole story. That line is actually saying:

If $value  is not $null  or 0  or $false  or an empty string or an empty array.

Here is a more complete sample of that statement.

PowerShell

It's perfectly OK to use a basic if  check as long as you remember those other values
count as $false  and not just that a variable has a value.

I ran into this issue when refactoring some code a few days ago. It had a basic property
check like this.

PowerShell

if ( $value )
{
    Do-Something
}

if ( $null -ne $value -and
        $value -ne 0 -and
        $value -ne '' -and
        ($value -isnot [array] -or $value.Length -ne 0) -and
        $value -ne $false )
{
    Do-Something
}

if ( $object.Property )
{
    $object.Property = $value
}



I wanted to assign a value to the object property only if it existed. In most cases, the
original object had a value that would evaluate to $true  in the if  statement. But I ran
into an issue where the value was occasionally not getting set. I debugged the code and
found that the object had the property but it was a blank string value. This prevented it
from ever getting updated with the previous logic. So I added a proper $null  check and
everything worked.

PowerShell

It's little bugs like these that are hard to spot and make me aggressively check values for
$null .

If you try to access a property on a $null  value, that the property is also $null . The
Count  property is the exception to this rule.

PowerShell

When you have a $null  value, then the Count  is 0 . This special property is added by
PowerShell.

Almost all objects in PowerShell have that Count  property. One important exception is
the [pscustomobject]  in Windows PowerShell 5.1 (This is fixed in PowerShell 6.0). It
doesn't have a Count  property so you get a $null  value if you try to use it. I call this out
here so that you don't try to use Count  instead of a $null  check.

Running this example on Windows PowerShell 5.1 and PowerShell 6.0 gives you different
results.

PowerShell

if ( $null -ne $object.Property )
{
    $object.Property = $value
}

$null.Count

PS> $value = $null
PS> $value.Count
0

[PSCustomObject] Count



There is one special type of $null  that acts differently than the others. I am going to call
it the enumerable null but it's really a
System.Management.Automation.Internal.AutomationNull. This enumerable null is the
one you get as the result of a function or script block that returns nothing (a void result).

PowerShell

If you compare it with $null , you get a $null  value. When used in an evaluation where
a value is required, the value is always $null . But if you place it inside an array, it's
treated the same as an empty array.

PowerShell

You can have an array that contains one $null  value and its Count  is 1 . But if you place
an empty array inside an array then it's not counted as an item. The count is 0 .

If you treat the enumerable null like a collection, then it's empty.

If you pass in an enumerable null to a function parameter that isn't strongly typed,
PowerShell coerces the enumerable null into a $null  value by default. This means inside

$value = [pscustomobject]@{Name='MyObject'}
if ( $value.Count -eq 1 )
{
    "We have a value"
}

Enumerable null

PS> function Get-Nothing {}
PS> $nothing = Get-Nothing
PS> $null -eq $nothing
True

PS> $containEmpty = @( @() )
PS> $containNothing = @($nothing)
PS> $containNull = @($null)

PS> $containEmpty.Count
0
PS> $containNothing.Count
0
PS> $containNull.Count
1

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.automationnull


the function, the value is treated as $null  instead of the
System.Management.Automation.Internal.AutomationNull type.

The primary place you see the difference is when using the pipeline. You can pipe a
$null  value but not an enumerable null value.

PowerShell

Depending on your code, you should account for the $null  in your logic.

Either check for $null  first

Filter out null on the pipeline ( ... | where {$null -ne $_} | ... )
Handle it in the pipeline function

One of my favorite features of foreach  is that it doesn't enumerate over a $null
collection.

PowerShell

This saves me from having to $null  check the collection before I enumerate it. If you
have a collection of $null  values, the $node  can still be $null .

The foreach  started working this way with PowerShell 3.0. If you happen to be on an
older version, then this is not the case. This is one of the important changes to be aware
of when back-porting code for 2.0 compatibility.

Pipeline

PS> $null | ForEach-Object{ Write-Output 'NULL Value' }
'NULL Value'
PS> $nothing | ForEach-Object{ Write-Output 'No Value' }

foreach

foreach ( $node in $null )
{
    #skipped
}

Value types



Technically, only reference types can be $null . But PowerShell is very generous and
allows for variables to be any type. If you decide to strongly type a value type, it cannot
be $null . PowerShell converts $null  to a default value for many types.

PowerShell

There are some types that do not have a valid conversion from $null . These types
generate a Cannot convert null to type  error.

PowerShell

Using a strongly typed values in function parameters is very common. We generally
learn to define the types of our parameters even if we tend not to define the types of
other variables in our scripts. You may already have some strongly typed variables in
your functions and not even realize it.

PowerShell

PS> [int]$number = $null
PS> $number
0

PS> [bool]$boolean = $null
PS> $boolean
False

PS> [string]$string = $null
PS> $string -eq ''
True

PS> [datetime]$date = $null
Cannot convert null to type "System.DateTime".
At line:1 char:1
+ [datetime]$date = $null
+ ~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : MetadataError: (:) [], 
ArgumentTransformationMetadataException
    + FullyQualifiedErrorId : RuntimeException

Function parameters

function Do-Something
{
    param(
        [string] $Value



As soon as you set the type of the parameter as a string , the value can never be $null .
It's common to check if a value is $null  to see if the user provided a value or not.

PowerShell

$Value  is an empty string ''  when no value is provided. Use the automatic variable
$PSBoundParameters.Value  instead.

PowerShell

$PSBoundParameters  only contains the parameters that were specified when the function
was called. You can also use the ContainsKey  method to check for the property.

PowerShell

If the value is a string, you can use a static string function to check if the value is $null
or an empty string at the same time.

PowerShell

I find myself using this often when I know the value type should be a string.

I am a defensive scripter. Anytime I call a function and assign it to a variable, I check it
for $null .

PowerShell

    )
}

if ( $null -ne $Value ){...}

if ( $null -ne $PSBoundParameters.Value ){...}

if ( $PSBoundParameters.ContainsKey('Value') ){...}

IsNotNullOrEmpty

if ( -not [string]::IsNullOrEmpty( $value ) ){...}

When I $null check



I much prefer using if  or foreach  over using try/catch . Don't get me wrong, I still use
try/catch  a lot. But if I can test for an error condition or an empty set of results, I can
allow my exception handling be for true exceptions.

I also tend to check for $null  before I index into a value or call methods on an object.
These two actions fail for a $null  object so I find it important to validate them first. I
already covered those scenarios earlier in this post.

It's important to know that different functions and commands handle the no results
scenario differently. Many PowerShell commands return the enumerable null and an
error in the error stream. But others throw exceptions or give you a status object. It's still
up to you to know how the commands you use deal with the no results and error
scenarios.

One habit that I have picked up is initializing all my variables before I use them. You are
required to do this in other languages. At the top of my function or as I enter a foreach
loop, I define all the values that I'm using.

Here is a scenario that I want you to take a close look at. It's an example of a bug I had
to chase down before.

PowerShell

$userList = Get-ADUser kevmar
if ($null -ne $userList){...}

No results scenario

Initializing to $null

function Do-Something
{
    foreach ( $node in 1..6 )
    {
        try
        {
            $result = Get-Something -Id $node
        }
        catch
        {
            Write-Verbose "[$result] not valid"
        }

        if ( $null -ne $result )



The expectation here is that Get-Something  returns either a result or an enumerable null.
If there's an error, we log it. Then we check to make sure we got a valid result before
processing it.

The bug hiding in this code is when Get-Something  throws an exception and doesn't
assign a value to $result . It fails before the assignment so we don't even assign $null
to the $result  variable. $result  still contains the previous valid $result  from other
iterations. Update-Something  to execute multiple times on the same object in this
example.

I set $result  to $null  right inside the foreach  loop before I use it to mitigate this issue.

PowerShell

This also helps mitigate scoping issues. In that example, we assign values to $result
over and over in a loop. But because PowerShell allows variable values from outside the
function to bleed into the scope of the current function, initializing them inside your
function mitigates bugs that can be introduced that way.

An uninitialized variable in your function is not $null  if it's set to a value in a parent
scope. The parent scope could be another function that calls your function and uses the
same variable names.

If I take that same Do-something  example and remove the loop, I would end up with
something that looks like this example:

PowerShell

        {
            Update-Something $result
        }
    }
}

foreach ( $node in 1..6 )
{
    $result = $null
    try
    {
        ...

Scope issues



If the call to Get-Something  throws an exception, then my $null  check finds the $result
from Invoke-Something . Initializing the value inside your function mitigates this issue.

Naming variables is hard and it's common for an author to use the same variable names
in multiple functions. I know I use $node , $result , $data  all the time. So it would be very
easy for values from different scopes to show up in places where they should not be.

I have been talking about $null  values for this entire article but the topic is not
complete if I didn't mention redirecting output to $null . There are times when you have
commands that output information or objects that you want to suppress. Redirecting
output to $null  does that.

The Out-Null command is the built-in way to redirect pipeline data to $null .

PowerShell

function Invoke-Something
{
    $result = 'ParentScope'
    Do-Something
}

function Do-Something
{
    try
    {
        $result = Get-Something -Id $node
    }
    catch
    {
        Write-Verbose "[$result] not valid"
    }

    if ( $null -ne $result )
    {
        Update-Something $result
    }
}

Redirect output to $null

Out-Null

New-Item -Type Directory -Path $path | Out-Null



You can assign the results of a command to $null  for the same effect as using Out-
Null .

PowerShell

Because $null  is a constant value, you can never overwrite it. I don't like the way it
looks in my code but it often performs faster than Out-Null .

You can also use the redirection operator to send output to $null .

PowerShell

If you're dealing with command-line executables that output on the different streams.
You can redirect all output streams to $null  like this:

PowerShell

I covered a lot of ground on this one and I know this article is more fragmented than
most of my deep dives. That is because $null  values can pop up in many different
places in PowerShell and all the nuances are specific to where you find it. I hope you
walk away from this with a better understanding of $null  and an awareness of the more
obscure scenarios you may run into.

Assign to $null

$null = New-Item -Type Directory -Path $path

Redirect to $null

New-Item -Type Directory -Path $path > $null

git status *> $null

Summary



Everything you wanted to know about
ShouldProcess
Article • 09/24/2024

PowerShell functions have several features that greatly improve the way users interact
with them. One important feature that is often overlooked is -WhatIf  and -Confirm
support and it's easy to add to your functions. In this article, we dive deep into how to
implement this feature.

This is a simple feature you can enable in your functions to provide a safety net for the
users that need it. There's nothing scarier than running a command that you know can
be dangerous for the first time. The option to run it with -WhatIf  can make a big
difference.

Before we look at implementing these common parameters, I want to take a quick look
at how they're used.

When a command supports the -WhatIf  parameter, it allows you to see what the
command would have done instead of making changes. it's a good way to test out the
impact of a command, especially before you do something destructive.

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

CommonParameters

Using -WhatIf

PS C:\temp> Get-ChildItem
    Directory: C:\temp
Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a----         4/19/2021   8:59 AM              0 importantfile.txt
-a----         4/19/2021   8:58 AM              0 myfile1.txt
-a----         4/19/2021   8:59 AM              0 myfile2.txt

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://powershellexplained.com/2020-03-15-Powershell-shouldprocess-whatif-confirm-shouldcontinue-everything/
https://powershellexplained.com/2020-03-15-Powershell-shouldprocess-whatif-confirm-shouldcontinue-everything/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


If the command correctly implements ShouldProcess , it should show you all the changes
that it would have made. Here is an example using a wildcard to delete multiple files.

PowerShell

Commands that support -WhatIf  also support -Confirm . This gives you a chance
confirm an action before performing it.

PowerShell

In this case, you have multiple options that allow you to continue, skip a change, or stop
the script. The help prompt describes each of those options like this.

Output

PS C:\temp> Remove-Item -Path .\myfile1.txt -WhatIf
What if: Performing the operation "Remove File" on target 
"C:\Temp\myfile1.txt".

PS C:\temp> Remove-Item -Path * -WhatIf
What if: Performing the operation "Remove File" on target 
"C:\Temp\myfile1.txt".
What if: Performing the operation "Remove File" on target 
"C:\Temp\myfile2.txt".
What if: Performing the operation "Remove File" on target 
"C:\Temp\importantfile.txt".

Using -Confirm

PS C:\temp> Remove-Item .\myfile1.txt -Confirm

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove File" on target "C:\Temp\myfile1.txt".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):

Y - Continue with only the next step of the operation.
A - Continue with all the steps of the operation.
N - Skip this operation and proceed with the next operation.
L - Skip this operation and all subsequent operations.
S - Pause the current pipeline and return to the command prompt. Type "exit" 
to resume the pipeline.
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):



This prompt is localized in PowerShell so the language changes based on the language
of your operating system. This is one more thing that PowerShell manages for you.

Let's take quick moment to look at ways to pass a value to a switch parameter. The main
reason I call this out is that you often want to pass parameter values to functions you
call.

The first approach is a specific parameter syntax that can be used for all parameters but
you mostly see it used for switch parameters. You specify a colon to attach a value to
the parameter.

PowerShell

You can do the same with a variable.

PowerShell

The second approach is to use a hashtable to splat the value.

PowerShell

If you're new to hashtables or splatting, I have another article on that covers everything
you wanted to know about hashtables.

The first step to enable -WhatIf  and -Confirm  support is to specify

SupportsShouldProcess  in the CmdletBinding  of your function.

Localization

Switch parameters

Remove-Item -Path:* -WhatIf:$true

$DoWhatIf = $true
Remove-Item -Path * -WhatIf:$DoWhatIf

$RemoveSplat = @{
    Path = '*'
    WhatIf = $true
}
Remove-Item @RemoveSplat

SupportsShouldProcess



PowerShell

By specifying SupportsShouldProcess  in this way, we can now call our function with -
WhatIf  (or -Confirm ).

PowerShell

Notice that I did not create a parameter called -WhatIf . Specifying
SupportsShouldProcess  automatically creates it for us. When we specify the -WhatIf
parameter on Test-ShouldProcess , some things we call also perform -WhatIf
processing.

There's some danger here trusting that everything you call inherits -WhatIf  values. For
the rest of the examples, I'm going to assume that it doesn't work and be very explicit
when making calls to other commands. I recommend that you do the same.

PowerShell

function Test-ShouldProcess {
    [CmdletBinding(SupportsShouldProcess)]
    param()
    Remove-Item .\myfile1.txt
}

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "Remove File" on target 
"C:\Temp\myfile1.txt".

７ Note

When you use SupportsShouldProcess , PowerShell doesn't add the $WhatIf  variable
to the function. You don't need to check the value of $WhatIf  because the
ShouldProcess()  method takes care of that for you.

Trust but verify

function Test-ShouldProcess {
    [CmdletBinding(SupportsShouldProcess)]
    param()
    Remove-Item .\myfile1.txt -WhatIf:$WhatIfPreference
}



I will revisit the nuances much later once you have a better understanding of all the
pieces in play.

The method that allows you to implement SupportsShouldProcess  is
$PSCmdlet.ShouldProcess . You call $PSCmdlet.ShouldProcess(...)  to see if you should
process some logic and PowerShell takes care of the rest. Let's start with an example:

PowerShell

The call to $PSCmdlet.ShouldProcess($file.Name)  checks for the -WhatIf  (and -Confirm
parameter) then handles it accordingly. The -WhatIf  causes ShouldProcess  to output a
description of the change and return $false :

PowerShell

A call using -Confirm  pauses the script and prompts the user with the option to
continue. It returns $true  if the user selected Y .

PowerShell

An awesome feature of $PSCmdlet.ShouldProcess  is that it doubles as verbose output. I
depend on this often when implementing ShouldProcess .

$PSCmdlet.ShouldProcess

function Test-ShouldProcess {
    [CmdletBinding(SupportsShouldProcess)]
    param()

    $file = Get-ChildItem './myfile1.txt'
    if($PSCmdlet.ShouldProcess($file.Name)){
        $file.Delete()
    }
}

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "Test-ShouldProcess" on target 
"myfile1.txt".

PS> Test-ShouldProcess -Confirm
Confirm
Are you sure you want to perform this action?
Performing the operation "Test-ShouldProcess" on target "myfile1.txt".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):



PowerShell

There are a few different overloads for $PSCmdlet.ShouldProcess  with different
parameters for customizing the messaging. We already saw the first one in the example
above. Let's take a closer look at it.

PowerShell

This produces output that includes both the function name and the target (value of the
parameter).

PowerShell

Specifying a second parameter as the operation uses the operation value instead of the
function name in the message.

PowerShell

The next option is to specify three parameters to fully customize the message. When
three parameters are used, the first one is the entire message. The second two
parameters are still used in the -Confirm  message output.

PowerShell

PS> Test-ShouldProcess -Verbose
VERBOSE: Performing the operation "Test-ShouldProcess" on target 
"myfile1.txt".

Overloads

function Test-ShouldProcess {
    [CmdletBinding(SupportsShouldProcess)]
    param()

    if($PSCmdlet.ShouldProcess('TARGET')){
        # ...
    }
}

What if: Performing the operation "Test-ShouldProcess" on target "TARGET".

## $PSCmdlet.ShouldProcess('TARGET','OPERATION')
What if: Performing the operation "OPERATION" on target "TARGET".



Just in case you came here only to figure out what parameters you should use, here is a
quick reference showing how the parameters change the message in the different -
WhatIf  scenarios.

PowerShell

I tend to use the one with two parameters.

We have a fourth overload that's more advanced than the others. It allows you to get
the reason ShouldProcess  was executed. I'm only adding this here for completeness
because we can just check if $WhatIfPreference  is $true  instead.

PowerShell

We have to pass the $reason  variable into the fourth parameter as a reference variable
with [ref] . ShouldProcess  populates $reason  with the value None  or WhatIf . I didn't
say this was useful and I have had no reason to ever use it.

## $PSCmdlet.ShouldProcess('MESSAGE','TARGET','OPERATION')
What if: MESSAGE

Quick parameter reference

## $PSCmdlet.ShouldProcess('TARGET')
What if: Performing the operation "FUNCTION_NAME" on target "TARGET".

## $PSCmdlet.ShouldProcess('TARGET','OPERATION')
What if: Performing the operation "OPERATION" on target "TARGET".

## $PSCmdlet.ShouldProcess('MESSAGE','TARGET','OPERATION')
What if: MESSAGE

ShouldProcessReason

$reason = ''
if($PSCmdlet.ShouldProcess('MESSAGE','TARGET','OPERATION',[ref]$reason)){
    Write-Output "Some Action"
}
$reason

Where to place it



You use ShouldProcess  to make your scripts safer. So you use it when your scripts are
making changes. I like to place the $PSCmdlet.ShouldProcess  call as close to the change
as possible.

PowerShell

If I'm processing a collection of items, I call it for each item. So the call gets placed
inside the foreach  loop.

PowerShell

The reason why I place ShouldProcess  tightly around the change, is that I want as much
code to execute as possible when -WhatIf  is specified. I want the setup and validation
to run if possible so the user gets to see those errors.

I also like to use this in my Pester tests that validate my projects. If I have a piece of logic
that is hard to mock in pester, I can often wrap it in ShouldProcess  and call it with -
WhatIf  in my tests. It's better to test some of your code than none of it.

The first preference variable we have is $WhatIfPreference . This is $false  by default. If
you set it to $true  then your function executes as if you specified -WhatIf . If you set
this in your session, all commands perform -WhatIf  execution.

When you call a function with -WhatIf , the value of $WhatIfPreference  gets set to
$true  inside the scope of your function.

## general logic and variable work
if ($PSCmdlet.ShouldProcess('TARGET','OPERATION')){
    # Change goes here
}

foreach ($node in $collection){
    # general logic and variable work
    if ($PSCmdlet.ShouldProcess($node,'OPERATION')){
        # Change goes here
    }
}

$WhatIfPreference

ConfirmImpact



Most of my examples are for -WhatIf  but everything so far also works with -Confirm  to
prompt the user. You can set the ConfirmImpact  of the function to high and it prompts
the user as if it was called with -Confirm .

PowerShell

This call to Test-ShouldProcess  is performing the -Confirm  action because of the High
impact.

PowerShell

The obvious issue is that now it's harder to use in other scripts without prompting the
user. In this case, we can pass a $false  to -Confirm  to suppress the prompt.

PowerShell

I'll cover how to add -Force  support in a later section.

$ConfirmPreference  is an automatic variable that controls when ConfirmImpact  asks you
to confirm execution. Here are the possible values for both $ConfirmPreference  and

function Test-ShouldProcess {
    [CmdletBinding(
        SupportsShouldProcess,
        ConfirmImpact = 'High'
    )]
    param()

    if ($PSCmdlet.ShouldProcess('TARGET')){
        Write-Output "Some Action"
    }
}

PS> Test-ShouldProcess

Confirm
Are you sure you want to perform this action?
Performing the operation "Test-ShouldProcess" on target "TARGET".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): y
Some Action

PS> Test-ShouldProcess -Confirm:$false
Some Action

$ConfirmPreference



ConfirmImpact .

High

Medium

Low

None

With these values, you can specify different levels of impact for each function. If you
have $ConfirmPreference  set to a value higher than ConfirmImpact , then you aren't
prompted to confirm execution.

By default, $ConfirmPreference  is set to High  and ConfirmImpact  is Medium . If you want
your function to automatically prompt the user, set your ConfirmImpact  to High .
Otherwise set it to Medium  if its destructive and use Low  if the command is always safe
run in production. If you set it to none , it doesn't prompt even if -Confirm  was specified
(but it still gives you -WhatIf  support).

When calling a function with -Confirm , the value of $ConfirmPreference  gets set to Low
inside the scope of your function.

The $ConfirmPreference  can get picked up by functions that you call. This can create
scenarios where you add a confirm prompt and the function you call also prompts the
user.

What I tend to do is specify -Confirm:$false  on the commands that I call when I have
already handled the prompting.

PowerShell

This brings us back to an earlier warning: There are nuances as to when -WhatIf  is not
passed to a function and when -Confirm  passes to a function. I promise I'll get back to
this later.

Suppressing nested confirm prompts

function Test-ShouldProcess {
    [CmdletBinding(SupportsShouldProcess)]
    param()

    $file = Get-ChildItem './myfile1.txt'
    if($PSCmdlet.ShouldProcess($file.Name)){
        Remove-Item -Path $file.FullName -Confirm:$false
    }
}



If you need more control than ShouldProcess  provides, you can trigger the prompt
directly with ShouldContinue . ShouldContinue  ignores $ConfirmPreference ,
ConfirmImpact , -Confirm , $WhatIfPreference , and -WhatIf  because it prompts every
time it's executed.

At a quick glance, it's easy to confuse ShouldProcess  and ShouldContinue . I tend to
remember to use ShouldProcess  because the parameter is called SupportsShouldProcess
in the CmdletBinding . You should use ShouldProcess  in almost every scenario. That is
why I covered that method first.

Let's take a look at ShouldContinue  in action.

PowerShell

This provides us a simpler prompt with fewer options.

PowerShell

The biggest issue with ShouldContinue  is that it requires the user to run it interactively
because it always prompts the user. You should always be building tools that can be
used by other scripts. The way you do this is by implementing -Force . I'll revisit this idea
later.

This is automatically handled with ShouldProcess  but we have to do a little more work
for ShouldContinue . There's a second method overload where we have to pass in a few

$PSCmdlet.ShouldContinue

function Test-ShouldContinue {
    [CmdletBinding()]
    param()

    if($PSCmdlet.ShouldContinue('TARGET','OPERATION')){
        Write-Output "Some Action"
    }
}

Test-ShouldContinue

Second
TARGET
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is "Y"):

Yes to all



values by reference to control the logic.

PowerShell

I added a foreach  loop and a collection to show it in action. I pulled the ShouldContinue
call out of the if  statement to make it easier to read. Calling a method with four
parameters starts to get a little ugly, but I tried to make it look as clean as I could.

ShouldProcess  and ShouldContinue  need to implement -Force  in different ways. The
trick to these implementations is that ShouldProcess  should always get executed, but
ShouldContinue  should not get executed if -Force  is specified.

If you set your ConfirmImpact  to high , the first thing your users are going to try is to
suppress it with -Force . That's the first thing I do anyway.

PowerShell

function Test-ShouldContinue {
    [CmdletBinding()]
    param()

    $collection = 1..5
    $yesToAll = $false
    $noToAll = $false

    foreach($target in $collection) {

        $continue = $PSCmdlet.ShouldContinue(
                "TARGET_$target",
                'OPERATION',
                [ref]$yesToAll,
                [ref]$noToAll
            )

        if ($continue){
            Write-Output "Some Action [$target]"
        }
    }
}

Implementing -Force

ShouldProcess -Force

Test-ShouldProcess -Force
Error: Test-ShouldProcess: A parameter cannot be found that matches 



If you recall from the ConfirmImpact  section, they actually need to call it like this:

PowerShell

Not everyone realizes they need to do that and -Force  doesn't suppress
ShouldContinue . So we should implement -Force  for the sanity of our users. Take a look
at this full example here:

PowerShell

We add our own -Force  switch as a parameter. The -Confirm  parameter is automatically
added when using SupportsShouldProcess  in the CmdletBinding . However, when you use
SupportsShouldProcess , PowerShell doesn't add the $Confirm  variable to the function. If
you are running in Strict Mode and try to use the $Confirm  variable before it has been
defined, you get an error. To avoid the error you can use $PSBoundParameters  to test if
the parameter was passed by the user.

PowerShell

parameter name 'force'.

Test-ShouldProcess -Confirm:$false

function Test-ShouldProcess {
    [CmdletBinding(
        SupportsShouldProcess,
        ConfirmImpact = 'High'
    )]
    param(
        [switch]$Force
    )

    if ($Force -and -not $PSBoundParameters.ContainsKey('Confirm')) {
        $ConfirmPreference = 'None'
    }

    if ($PSCmdlet.ShouldProcess('TARGET')) {
        Write-Output "Some Action"
    }
}

if ($Force -and -not $PSBoundParameters.ContainsKey('Confirm')) {
    $ConfirmPreference = 'None'
}



If the user specifies -Force  we set $ConfirmPreference  to None  in the local scope. If the
user also specifies -Confirm  then ShoudProcess()  honors the values of the -Confirm
parameter.

PowerShell

If someone specifies both -Force  and -WhatIf , then -WhatIf  needs to take priority. This
approach preserves -WhatIf  processing because ShouldProcess  always gets executed.

Don't add a test for the $Force  value inside the if  statement with the ShouldProcess .
That is an anti-pattern for this specific scenario even though that's what I show you in
the next section for ShouldContinue .

This is the correct way to implement -Force  with ShouldContinue .

PowerShell

By placing the $Force  to the left of the -or  operator, it gets evaluated first. Writing it
this way short circuits the execution of the if  statement. If $Force  is $true , then the
ShouldContinue  is not executed.

PowerShell

if ($PSCmdlet.ShouldProcess('TARGET')){
    Write-Output "Some Action"
}

ShouldContinue -Force

function Test-ShouldContinue {
    [CmdletBinding()]
    param(
        [switch]$Force
    )

    if($Force -or $PSCmdlet.ShouldContinue('TARGET','OPERATION')){
        Write-Output "Some Action"
    }
}

PS> Test-ShouldContinue -Force
Some Action



We don't have to worry about -Confirm  or -WhatIf  in this scenario because they're not
supported by ShouldContinue . This is why it needs to be handled differently than
ShouldProcess .

Using -WhatIf  and -Confirm  are supposed to apply to everything inside your functions
and everything they call. They do this by setting $WhatIfPreference  to $true  or setting
$ConfirmPreference  to Low  in the local scope of the function. When you call another
function, calls to ShouldProcess  use those values.

This actually works correctly most of the time. Anytime you call built-in cmdlet or a
function in your same scope, it works. It also works when you call a script or a function
in a script module from the console.

The one specific place where it doesn't work is when a script or a script module calls a
function in another script module. This may not sound like a big problem, but most of
the modules you create or pull from the PSGallery are script modules.

The core issue is that script modules do not inherit the values for $WhatIfPreference  or
$ConfirmPreference  (and several others) when called from functions in other script
modules.

The best way to summarize this as a general rule is that this works correctly for binary
modules and never trust it to work for script modules. If you aren't sure, either test it or
just assume it doesn't work correctly.

I personally feel this is very dangerous because it creates scenarios where you add -
WhatIf  support to multiple modules that work correctly in isolation, but fail to work
correctly when they call each other.

We do have a GitHub RFC working to get this issue fixed. See Propagate execution
preferences beyond script module scope  for more details.

I have to look up how to use ShouldProcess  every time I need to use it. It took me a
long time to distinguish ShouldProcess  from ShouldContinue . I almost always need to
look up what parameters to use. So don't worry if you still get confused from time to
time. This article will be here when you need it. I'm sure I will reference it often myself.

Scope issues

In closing

https://github.com/PowerShell/PowerShell-RFC/pull/221#issuecomment-592954839
https://github.com/PowerShell/PowerShell-RFC/pull/221#issuecomment-592954839
https://github.com/PowerShell/PowerShell-RFC/pull/221#issuecomment-592954839


If you liked this post, please share your thoughts with me on Twitter using the link
below. I always like hearing from people that get value from my content.



Visualize parameter binding
Article • 05/20/2024

Parameter binding is the process that PowerShell uses to determine which parameter set
is being used and to associate (bind) values to the parameters of a command. These
values can come from the command line and the pipeline.

The parameter binding process starts by binding named and positional command-line
arguments. After binding command-line arguments, PowerShell tries to bind any
pipeline input. There are two ways that values are bound from the pipeline. Parameters
that accept pipeline input have one or both of the following attributes:

ValueFromPipeline - The value from the pipeline is bound to the parameter based
on its type. The type of the argument must match the type of the parameter.
ValueFromPipelineByPropertyName - The value from the pipeline is bound to the
parameter based on its name. The object in the pipeline must have a property that
matches the name of the parameter or one of its aliases. The type of the property
must match or be convertible to the type of the parameter.

For more information about parameter binding, see about_Parameter_Binding.

Troubleshooting parameter binding issues can be challenging. You can use the Trace-
Command cmdlet to visualize the parameter binding process.

Consider the following scenario. You have a directory with two text files, file1.txt  and
[file2].txt .

PowerShell

Use Trace-Command  to visualize parameter
binding

PS> Get-ChildItem

    Directory: D:\temp\test\binding

Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a---           5/17/2024 12:59 PM              0 [file2].txt
-a---           5/17/2024 12:59 PM              0 file1.txt

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#valuefrompipeline-argument
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#valuefrompipelinebypropertyname-argument
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_parameter_binding
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/trace-command?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/trace-command?view=powershell-7.5


You want to delete the files by passing the filenames, through the pipeline, to the
Remove-Item  cmdlet.

PowerShell

Notice that Remove-Item  only deleted file1.txt  and not [file2].txt . The filename
includes square brackets, which is treated as a wildcard expression. Using Trace-
Command , you can see that the filename is being bound to the Path parameter of Remove-
Item .

PowerShell

The output from Trace-Command  can be verbose. Each line of output is prefixed with a
timestamp and trace provider information. For the output of this example, the prefix
information has been removed to make it easier to read.

Output

PS> 'file1.txt', '[file2].txt' | Remove-Item
PS> Get-ChildItem

    Directory: D:\temp\test\binding

Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a---           5/17/2024 12:59 PM              0 [file2].txt

Trace-Command -PSHost -Name ParameterBinding -Expression {
    '[file2].txt' | Remove-Item
}

BIND NAMED cmd line args [Remove-Item]
BIND POSITIONAL cmd line args [Remove-Item]
BIND cmd line args to DYNAMIC parameters.
    DYNAMIC parameter object: 
[Microsoft.PowerShell.Commands.FileSystemProviderRemoveItemDynamicParameters
]
MANDATORY PARAMETER CHECK on cmdlet [Remove-Item]
CALLING BeginProcessing
BIND PIPELINE object to parameters: [Remove-Item]
    PIPELINE object TYPE = [System.String]
    RESTORING pipeline parameter's original values
    Parameter [Path] PIPELINE INPUT ValueFromPipeline NO COERCION
    BIND arg [[file2].txt] to parameter [Path]
        Binding collection parameter Path: argument type [String], parameter 
type [System.String[]],
            collection type Array, element type [System.String], no 
coerceElementType



Using Get-Help , you can see that the Path parameter of Remove-Item  accepts string
objects from the pipeline ByValue  or ByPropertyName . LiteralPath accepts string objects
from the pipeline ByPropertyName .

PowerShell

        Creating array with element type [System.String] and 1 elements
        Argument type String is not IList, treating this as scalar
        Adding scalar element of type String to array position 0
        BIND arg [System.String[]] to param [Path] SUCCESSFUL
    Parameter [Credential] PIPELINE INPUT ValueFromPipelineByPropertyName NO 
COERCION
    Parameter [Credential] PIPELINE INPUT ValueFromPipelineByPropertyName NO 
COERCION
    Parameter [Credential] PIPELINE INPUT ValueFromPipelineByPropertyName 
WITH COERCION
    Parameter [Credential] PIPELINE INPUT ValueFromPipelineByPropertyName 
WITH COERCION
MANDATORY PARAMETER CHECK on cmdlet [Remove-Item]
CALLING ProcessRecord
CALLING EndProcessing

PS> Get-Help Remove-Item -Parameter Path, LiteralPath

-Path <System.String[]>
    Specifies a path of the items being removed. Wildcard characters are 
permitted.

    Required?                    true
    Position?                    0
    Default value                None
    Accept pipeline input?       True (ByPropertyName, ByValue)
    Accept wildcard characters?  true

-LiteralPath <System.String[]>
    Specifies a path to one or more locations. The value of LiteralPath is 
used exactly as it's
    typed. No characters are interpreted as wildcards. If the path includes 
escape characters,
    enclose it in single quotation marks. Single quotation marks tell 
PowerShell not to interpret
    any characters as escape sequences.

    Required?                    true
    Position?                    named
    Default value                None
    Accept pipeline input?       True (ByPropertyName)
    Accept wildcard characters?  false



The output of Trace-Command  shows that parameter binding starts by binding command-
line parameters followed by the pipeline input. You can see that Remove-Item  receives a
string object from the pipeline. That string object is bound to the Path parameter.

Since the Path parameter accepts wildcard characters, the square brackets represent a
wildcard expression. However, that expression doesn't match any files in the directory.
You need to use the LiteralPath parameter to specify the exact path to the file.

Get-Command  shows that the LiteralPath parameter accepts input from the pipeline

ByPropertyName  or ByValue . And, that it has two aliases, PSPath  and LP .

PowerShell

In this next example, Get-Item  is used to retrieve a FileInfo object. That object has a
property named PSPath.

PowerShell

The FileInfo object is then passed to Remove-Item .

PowerShell

BIND PIPELINE object to parameters: [Remove-Item]
    PIPELINE object TYPE = [System.String]
    RESTORING pipeline parameter's original values
    Parameter [Path] PIPELINE INPUT ValueFromPipeline NO COERCION
    BIND arg [[file2].txt] to parameter [Path]
    ...
        BIND arg [System.String[]] to param [Path] SUCCESSFUL

PS> (Get-Command Remove-Item).Parameters.LiteralPath.Attributes |
>> Select-Object ValueFrom*, Alias* | Format-List

ValueFromPipeline               : False
ValueFromPipelineByPropertyName : True
ValueFromRemainingArguments     : False

AliasNames : {PSPath, LP}

PS> Get-Item *.txt | Select-Object PSPath

PSPath
------
Microsoft.PowerShell.Core\FileSystem::D:\temp\test\binding\[file2].txt



For the output of this example, the prefix information has been removed and separated
to show parameter binding for both commands.

In this output, you can see that Get-Item  binds the positional parameter value *.txt  to
the Path parameter.

Output

In the trace output for parameter binding, you can see that Remove-Item  receives a
FileInfo object from the pipeline. Since a FileInfo object isn't a String object, it can't be
bound to the Path parameter.

The PSPath property of the FileInfo object matches an alias for the LiteralPath
parameter. PSPath is also a String object, so it can be bound to the LiteralPath
parameter without type coercion.

Output

Trace-Command -PSHost -Name ParameterBinding -Expression {
    Get-Item *.txt | Remove-Item
}

BIND NAMED cmd line args [Get-Item]
BIND POSITIONAL cmd line args [Get-Item]
    BIND arg [*.txt] to parameter [Path]
        Binding collection parameter Path: argument type [String], parameter 
type [System.String[]],
            collection type Array, element type [System.String], no 
coerceElementType
        Creating array with element type [System.String] and 1 elements
        Argument type String is not IList, treating this as scalar
        Adding scalar element of type String to array position 0
        BIND arg [System.String[]] to param [Path] SUCCESSFUL
BIND cmd line args to DYNAMIC parameters.
    DYNAMIC parameter object: 
[Microsoft.PowerShell.Commands.FileSystemProviderGetItemDynamicParameters]
MANDATORY PARAMETER CHECK on cmdlet [Get-Item]

BIND NAMED cmd line args [Remove-Item]
BIND POSITIONAL cmd line args [Remove-Item]
BIND cmd line args to DYNAMIC parameters.
    DYNAMIC parameter object: 
[Microsoft.PowerShell.Commands.FileSystemProviderRemoveItemDynamicParameters
]
MANDATORY PARAMETER CHECK on cmdlet [Remove-Item]
CALLING BeginProcessing
CALLING BeginProcessing
CALLING ProcessRecord



    BIND PIPELINE object to parameters: [Remove-Item]
        PIPELINE object TYPE = [System.IO.FileInfo]
        RESTORING pipeline parameter's original values
        Parameter [Path] PIPELINE INPUT ValueFromPipeline NO COERCION
        BIND arg [D:\temp\test\binding\[file2].txt] to parameter [Path]
            Binding collection parameter Path: argument type [FileInfo], 
parameter type [System.String[]],
                collection type Array, element type [System.String], no 
coerceElementType
            Creating array with element type [System.String] and 1 elements
            Argument type FileInfo is not IList, treating this as scalar
            BIND arg [D:\temp\test\binding\[file2].txt] to param [Path] 
SKIPPED
        Parameter [Credential] PIPELINE INPUT 
ValueFromPipelineByPropertyName NO COERCION
        Parameter [Path] PIPELINE INPUT ValueFromPipelineByPropertyName NO 
COERCION
        Parameter [Credential] PIPELINE INPUT 
ValueFromPipelineByPropertyName NO COERCION
        Parameter [LiteralPath] PIPELINE INPUT 
ValueFromPipelineByPropertyName NO COERCION
        BIND arg 
[Microsoft.PowerShell.Core\FileSystem::D:\temp\test\binding\[file2].txt] to 
parameter [LiteralPath]
            Binding collection parameter LiteralPath: argument type 
[String], parameter type [System.String[]],
                collection type Array, element type [System.String], no 
coerceElementType
            Creating array with element type [System.String] and 1 elements
            Argument type String is not IList, treating this as scalar
            Adding scalar element of type String to array position 0
            BIND arg [System.String[]] to param [LiteralPath] SUCCESSFUL
        Parameter [Credential] PIPELINE INPUT 
ValueFromPipelineByPropertyName WITH COERCION
    MANDATORY PARAMETER CHECK on cmdlet [Remove-Item]
    CALLING ProcessRecord
CALLING EndProcessing
CALLING EndProcessing

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fdeep-dives%2Fvisualize-parameter-binding%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fdeep-dives%2Fvisualize-parameter-binding.md&documentVersionIndependentId=696c726d-687d-4dc9-0373-c13d462123d6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+dc1ae50c-fc15-0eeb-77c9-d56139588959+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Writing Progress across multiple threads
with ForEach-Object -Parallel
Article • 11/17/2022

Starting in PowerShell 7.0, the ability to work in multiple threads simultaneously is
possible using the Parallel parameter in the ForEach-Object cmdlet. Monitoring the
progress of these threads can be a challenge though. Normally, you can monitor the
progress of a process using Write-Progress. However, since PowerShell uses a separate
runspace for each thread when using Parallel, reporting the progress back to the host
isn't as straight forward as normal use of Write-Progress .

When writing the progress from multiple threads, tracking becomes difficult because
when running parallel processes in PowerShell, each process has it's own runspace. To
get around this, you can use a synchronized hashtable. A synced hashtable is a thread
safe data structure that can be modified by multiple threads simultaneously without
throwing an error.

One of the downsides to this approach is it takes a, somewhat, complex set up to ensure
everything runs without error.

PowerShell

Using a synced hashtable to track progress

Set up

$dataset = @(
    @{
        Id   = 1
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 2
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 3
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 4
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/ForEach-Object
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Write-Progress
https://learn.microsoft.com/en-us/dotnet/api/system.collections.hashtable.synchronized


This section creates three different data structures, for three different purposes.

The $dataSet  variable stores an array of hashtables that is used to coordinate the next
steps without the risk of being modified. If an object collection is modified while
iterating through the collection, PowerShell throws an error. You must keep the object
collection in the loop separate from the objects being modified. The Id  key in each
hashtable is the identifier for a mock process. The Wait  key simulates the workload of
each mock process being tracked.

The $origin  variable stores a nested hashtable with each key being one of the mock
process id's. Then, it is used to hydrate the synchronized hashtable stored in the $sync
variable. The $sync  variable is responsible for reporting the progress back to the parent
runspace, which displays the progress.

This section runs the multi-threaded processes and creates some of the output used to
display progress.

PowerShell

    @{
        Id   = 5
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
)

# Create a hashtable for process.
# Keys should be ID's of the processes
$origin = @{}
$dataset | ForEach-Object {$origin.($_.Id) = @{}}

# Create synced hashtable
$sync = [System.Collections.Hashtable]::Synchronized($origin)

Running the processes

$job = $dataset | ForEach-Object -ThrottleLimit 3 -AsJob -Parallel {
    $syncCopy = $Using:sync
    $process = $syncCopy.$($PSItem.Id)

    $process.Id = $PSItem.Id
    $process.Activity = "Id $($PSItem.Id) starting"
    $process.Status = "Processing"

    # Fake workload start up that takes x amount of time to complete
    Start-Sleep -Milliseconds ($PSItem.Wait*5)

    # Process. update activity
    $process.Activity = "Id $($PSItem.Id) processing"



The mock processes are sent to ForEach-Object  and started as jobs. The ThrottleLimit is
set to 3 to highlight running multiple processes in a queue. The jobs are stored in the
$job  variable and allows us to know when all the processes have finished later on.

When using the Using:  statement to reference a parent scope variable in PowerShell,
you can't use expressions to make it dynamic. For example, if you tried to create the
$process  variable like this, $process = $Using:sync.$($PSItem.Id) , you would get an
error stating you can't use expressions there. So, we create the $syncCopy  variable to be
able to reference and modify the $sync  variable without the risk of it failing.

Next, we build out a hashtable to represent the progress of the process currently in the
loop using the $process  variable by referencing the synchronized hashtable keys. The
Activity and the Status keys are used as parameter values for Write-Progress  to display
the status of a given mock process in the next section.

The foreach  loop is just a way to simulate the process working and is randomized based
on the $dataSet  Wait attribute to set Start-Sleep  using milliseconds. How you
calculate the progress of your process may vary.

Now that the mock processes are running as jobs, we can start to write the processes
progress to the PowerShell window.

PowerShell

    foreach ($percent in 1..100)
    {
        # Update process on status
        $process.Status = "Handling $percent/100"
        $process.PercentComplete = (($percent / 100) * 100)

        # Fake workload that takes x amount of time to complete
        Start-Sleep -Milliseconds $PSItem.Wait
    }

    # Mark process as completed
    $process.Completed = $true
}

Displaying the progress of multiple processes

while($job.State -eq 'Running')
{
    $sync.Keys | ForEach-Object {
        # If key is not defined, ignore
        if(![string]::IsNullOrEmpty($sync.$_.Keys))
        {



The $job  variable contains the parent job and has a child job for each of the mock
processes. While any of the child jobs are still running, the parent job State will remain
"Running". This allows us to use the while  loop to continually update the progress of
every process until all processes are finished.

Within the while loop, we loop through each of the keys in the $sync  variable. Since this
is a synchronized hashtable, it is constantly updated but can still be accessed without
throwing any errors.

There is a check to ensure that the process being reported is actually running using the
IsNullOrEmpty()  method. If the process hasn't been started, the loop won't report on it
and move on to the next until it gets to a process that has been started. If the process is
started, the hashtable from the current key is used to splat the parameters to Write-
Progress .

PowerShell

            # Create parameter hashtable to splat
            $param = $sync.$_

            # Execute Write-Progress
            Write-Progress @param
        }
    }

    # Wait to refresh to not overload gui
    Start-Sleep -Seconds 0.1
}

Full example

# Example workload
$dataset = @(
    @{
        Id   = 1
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 2
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 3
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
    @{
        Id   = 4
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}



    }
    @{
        Id   = 5
        Wait = 3..10 | Get-Random | ForEach-Object {$_*100}
    }
)

# Create a hashtable for process.
# Keys should be ID's of the processes
$origin = @{}
$dataset | ForEach-Object {$origin.($_.Id) = @{}}

# Create synced hashtable
$sync = [System.Collections.Hashtable]::Synchronized($origin)

$job = $dataset | ForEach-Object -ThrottleLimit 3 -AsJob -Parallel {
    $syncCopy = $Using:sync
    $process = $syncCopy.$($PSItem.Id)

    $process.Id = $PSItem.Id
    $process.Activity = "Id $($PSItem.Id) starting"
    $process.Status = "Processing"

    # Fake workload start up that takes x amount of time to complete
    Start-Sleep -Milliseconds ($PSItem.Wait*5)

    # Process. update activity
    $process.Activity = "Id $($PSItem.Id) processing"
    foreach ($percent in 1..100)
    {
        # Update process on status
        $process.Status = "Handling $percent/100"
        $process.PercentComplete = (($percent / 100) * 100)

        # Fake workload that takes x amount of time to complete
        Start-Sleep -Milliseconds $PSItem.Wait
    }

    # Mark process as completed
    $process.Completed = $true
}

while($job.State -eq 'Running')
{
    $sync.Keys | ForEach-Object {
        # If key is not defined, ignore
        if(![string]::IsNullOrEmpty($sync.$_.Keys))
        {
            # Create parameter hashtable to splat
            $param = $sync.$_

            # Execute Write-Progress
            Write-Progress @param
        }
    }



about_Jobs
about_Scopes
about_Splatting

    # Wait to refresh to not overload gui
    Start-Sleep -Seconds 0.1
}

Related Links

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Jobs
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Scopes
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Splatting


Add Credential support to PowerShell
functions
Article • 11/17/2022

This article shows you how to add credential parameters to PowerShell functions and
why you'd want to. A credential parameter is to allow you to run the function or cmdlet
as a different user. The most common use is to run the function or cmdlet as an
elevated user account.

For example, the cmdlet New-ADUser  has a Credential parameter, which you could
provide domain admin credentials to create an account in a domain. Assuming your
normal account running the PowerShell session doesn't have that access already.

The PSCredential object represents a set of security credentials such as a user name and
password. The object can be passed as a parameter to a function that runs as the user
account in that credential object. There are a few ways that you can create a credential
object. The first way to create a credential object is to use the PowerShell cmdlet Get-
Credential . When you run without parameters, it prompts you for a username and
password. Or you can call the cmdlet with some optional parameters.

To specify the domain name and username ahead of time you can use either the
Credential or UserName parameters. When you use the UserName parameter, you're
also required to provide a Message value. The code below demonstrates using the
cmdlet. You can also store the credential object in a variable so that you can use the
credential multiple times. In the example below, the credential object is stored in the
variable $Cred .

PowerShell

７ Note

The original version  of this article appeared on the blog written by
@joshduffney . This article has been edited for inclusion on this site. The
PowerShell team thanks Josh for sharing this content with us. Please check out his
blog at duffney.io .

Creating credential object

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscredential
https://duffney.io/addcredentialstopowershellfunctions/
https://duffney.io/addcredentialstopowershellfunctions/
https://twitter.com/joshduffney
https://twitter.com/joshduffney
https://duffney.io/posts/
https://duffney.io/posts/


Sometimes, you can't use the interactive method of creating credential objects shown in
the previous example. Most automation tools require a non-interactive method. To
create a credential without user interaction, create a secure string containing the
password. Then pass the secure string and user name to the
System.Management.Automation.PSCredential()  method.

Use the following command to create a secure string containing the password:

PowerShell

Both the AsPlainText and Force parameters are required. Without those parameters, you
receive a message warning that you shouldn't pass plain text into a secure string.
PowerShell returns this warning because the plain text password gets recorded in
various logs. Once you have a secure string created, you need to pass it to the
PSCredential()  method to create the credential object. In the following example, the
variable $password  contains the secure string $Cred  contains the credential object.

PowerShell

Now that you know how to create credential objects, you can add credential parameters
to your PowerShell functions.

Just like any other parameter, you start off by adding it in the param  block of your
function. It's recommended that you name the parameter $Credential  because that's
what existing PowerShell cmdlets use. The type of the parameter should be
[System.Management.Automation.PSCredential] .

The following example shows the parameter block for a function called Get-Something . It
has two parameters: $Name  and $Credential .

$Cred = Get-Credential
$Cred = Get-Credential -Credential domain\user
$Cred = Get-Credential -UserName domain\user -Message 'Enter Password'

ConvertTo-SecureString "MyPlainTextPassword" -AsPlainText -Force

$password = ConvertTo-SecureString "MyPlainTextPassword" -AsPlainText -Force
$Cred = New-Object System.Management.Automation.PSCredential ("username", 
$password)

Adding a Credential Parameter



PowerShell

The code in this example is enough to have a working credential parameter, however
there are a few things you can add to make it more robust.

Add the [ValidateNotNull()]  validation attribute to check that the value being
passed to Credential. If the parameter value is null, this attribute prevents the
function from executing with invalid credentials.

Add [System.Management.Automation.Credential()] . This allows you to pass in a
username as a string and have an interactive prompt for the password.

Set a default value for the $Credential  parameter to
[System.Management.Automation.PSCredential]::Empty . Your function you might be
passing this $Credential  object to existing PowerShell cmdlets. Providing a null
value to the cmdlet called inside your function causes an error. Providing an empty
credential object avoids this error.

The following example demonstrates how to use credential parameters. This example
shows a function called Set-RemoteRegistryValue , which is out of The Pester Book .
This function defines the credential parameter using the techniques describe in the
previous section. The function calls Invoke-Command  using the $Credential  variable
created by the function. This allows you to change the user who's running Invoke-
Command . Because the default value of $Credential  is an empty credential, the function
can run without providing credentials.

PowerShell

function Get-Something {
    param(
        $Name,
        [System.Management.Automation.PSCredential]$Credential
    )

 Tip

Some cmdlets that accept a credential parameter do not support
[System.Management.Automation.PSCredential]::Empty  as they should. See the
Dealing with Legacy Cmdlets section for a workaround.

Using credential parameters

https://leanpub.com/the-pester-book
https://leanpub.com/the-pester-book


The following sections show different methods of providing credentials to Set-
RemoteRegistryValue .

Using Get-Credential  in parentheses ()  at run time causes the Get-Credential  to run
first. You are prompted for a username and password. You could use the Credential or
UserName parameters of Get-Credential  to pre-populate the username and domain.
The following example uses a technique called splatting to pass parameters to the Set-
RemoteRegistryValue  function. For more information about splatting, check out the
about_Splatting article.

PowerShell

function Set-RemoteRegistryValue {
    param(
        $ComputerName,
        $Path,
        $Name,
        $Value,
        [ValidateNotNull()]
        [System.Management.Automation.PSCredential]
        [System.Management.Automation.Credential()]
        $Credential = [System.Management.Automation.PSCredential]::Empty
    )
        $null = Invoke-Command -ComputerName $ComputerName -ScriptBlock {
            Set-ItemProperty -Path $Using:Path -Name $Using:Name -Value 
$Using:Value
        } -Credential $Credential
}

Prompting for credentials

$remoteKeyParams = @{
    ComputerName = $Env:COMPUTERNAME
    Path = 'HKLM:\SOFTWARE\Microsoft\WebManagement\Server'
    Name = 'EnableRemoteManagement'
    Value = '1'
}

Set-RemoteRegistryValue @remoteKeyParams -Credential (Get-Credential)

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting


Using (Get-Credential)  seems cumbersome. Normally, when you use the Credential
parameter with only a username, the cmdlet automatically prompts for the password.
The [System.Management.Automation.Credential()]  attribute enables this behavior.

PowerShell

$remoteKeyParams = @{
    ComputerName = $Env:COMPUTERNAME
    Path = 'HKLM:\SOFTWARE\Microsoft\WebManagement\Server'
    Name = 'EnableRemoteManagement'
    Value = '1'
}

Set-RemoteRegistryValue @remoteKeyParams -Credential duffney



You can also populate a credential variable ahead of time and pass it to the Credential
parameter of Set-RemoteRegistryValue  function. Use this method with Continuous
Integration / Continuous Deployment (CI/CD) tools such as Jenkins, TeamCity, and
Octopus Deploy. For an example using Jenkins, check out Hodge's blog post
Automating with Jenkins and PowerShell on Windows - Part 2 .

This example uses the .NET method to create the credential object and a secure string to
pass in the password.

PowerShell

For this example, the secure string is created using a clear text password. All of the
previously mentioned CI/CD have a secure method of providing that password at run
time. When using those tools, replace the plain text password with the variable defined
within the CI/CD tool you use.

Since $Credential  defaults to an empty credential object, you can run the command
without credentials, as shown in this example:

PowerShell

７ Note

To set the registry value shown, these examples assume you have the Web Server
features of Windows installed. Run Install-WindowsFeature Web-Server  and
Install-WindowsFeature web-mgmt-tools  if required.

Provide credentials in a variable

$password = ConvertTo-SecureString "P@ssw0rd" -AsPlainText -Force
$Cred = New-Object System.Management.Automation.PSCredential ("duffney", 
$password)

$remoteKeyParams = @{
    ComputerName = $Env:COMPUTERNAME
    Path = 'HKLM:\SOFTWARE\Microsoft\WebManagement\Server'
    Name = 'EnableRemoteManagement'
    Value = '1'
}

Set-RemoteRegistryValue @remoteKeyParams -Credential $Cred

Run without credentials

https://hodgkins.io/automating-with-jenkins-and-powershell-on-windows-part-2
https://hodgkins.io/automating-with-jenkins-and-powershell-on-windows-part-2


Not all cmdlets support credential objects or allow empty credentials. Instead, the
cmdlet wants username and password parameters as strings. There are a few ways to
work around this limitation.

In this scenario, the cmdlet you want to run doesn't accept an empty credential object.
This example adds the Credential parameter to Invoke-Command  only if it's not empty.
Otherwise, it runs the Invoke-Command  without the Credential parameter.

PowerShell

$remoteKeyParams = @{
    ComputerName = $Env:COMPUTERNAME
    Path = 'HKLM:\SOFTWARE\Microsoft\WebManagement\Server'
    Name = 'EnableRemoteManagement'
    Value = '1'
}

Set-RemoteRegistryValue @remoteKeyParams

Dealing with legacy cmdlets

Using if-else to handle empty credentials

function Set-RemoteRegistryValue {
    param(
        $ComputerName,
        $Path,
        $Name,
        $Value,
        [ValidateNotNull()]
        [System.Management.Automation.PSCredential]
        [System.Management.Automation.Credential()]
        $Credential = [System.Management.Automation.PSCredential]::Empty
    )

    if($Credential -ne [System.Management.Automation.PSCredential]::Empty) {
        Invoke-Command -ComputerName:$ComputerName -Credential:$Credential  
{
            Set-ItemProperty -Path $Using:Path -Name $Using:Name -Value 
$Using:Value
        }
    } else {
        Invoke-Command -ComputerName:$ComputerName {
            Set-ItemProperty -Path $Using:Path -Name $Using:Name -Value 
$Using:Value
        }



This example uses parameter splatting to call the legacy cmdlet. The $Credential  object
is conditionally added to the hash table for splatting and avoids the need to repeat the
Invoke-Command  script block. To learn more about splatting inside functions, see the
Splatting Parameters Inside Advanced Functions  blog post.

PowerShell

The Invoke-Sqlcmd  cmdlet is an example of a cmdlet that accepts a string as a password.
Invoke-Sqlcmd  allows you to run simple SQL insert, update, and delete statements.

Invoke-Sqlcmd  requires a clear-text username and password rather than a more secure
credential object. This example shows how to extract the username and password from
a credential object.

    }
}

Using splatting to handle empty credentials

function Set-RemoteRegistryValue {
    param(
        $ComputerName,
        $Path,
        $Name,
        $Value,
        [ValidateNotNull()]
        [System.Management.Automation.PSCredential]
        [System.Management.Automation.Credential()]
        $Credential = [System.Management.Automation.PSCredential]::Empty
    )

        $Splat = @{
            ComputerName = $ComputerName
        }

        if ($Credential -ne 
[System.Management.Automation.PSCredential]::Empty) {
            $Splat['Credential'] = $Credential
        }

        $null = Invoke-Command -ScriptBlock {
            Set-ItemProperty -Path $Using:Path -Name $Using:Name -Value 
$Using:Value
        } @splat
}

Working with string passwords

https://duffney.io/Splatting-Parameters-Within-AdvancedFunctions
https://duffney.io/Splatting-Parameters-Within-AdvancedFunctions


The Get-AllSQLDatabases  function in this example calls the Invoke-Sqlcmd  cmdlet to
query a SQL server for all its databases. The function defines a Credential parameter
with the same attribute used in the previous examples. Since the username and
password exist within the $Credential  variable, you can extract those values for use with
Invoke-Sqlcmd .

The user name is available from the UserName property of the $Credential  variable. To
obtain the password, you have to use the GetNetworkCredential()  method of the
$Credential  object. The values are extracted into variables that are added to a hash
table used for splatting parameters to Invoke-Sqlcmd .

PowerShell

Creating and storing credential objects securely can be difficult. The following resources
can help you maintain PowerShell credentials.

function Get-AllSQLDatabases {
    param(
        $SQLServer,
        [ValidateNotNull()]
        [System.Management.Automation.PSCredential]
        [System.Management.Automation.Credential()]
        $Credential = [System.Management.Automation.PSCredential]::Empty
    )

        $UserName = $Credential.UserName
        $Password = $Credential.GetNetworkCredential().Password

        $splat = @{
            UserName = $UserName
            Password = $Password
            ServerInstance = 'SQLServer'
            Query = "Select * from Sys.Databases"
        }

        Invoke-Sqlcmd @splat
}

$credSplat = @{
    TypeName = 'System.Management.Automation.PSCredential'
    ArgumentList = 'duffney',('P@ssw0rd' | ConvertTo-SecureString -
AsPlainText -Force)
}
$Credential = New-Object @credSplat

Get-AllSQLDatabases -SQLServer SQL01 -Credential $Credential

Continued learning credential management



BetterCredentials
Azure Key Vault
Vault Project
SecretManagement module

https://www.powershellgallery.com/packages/BetterCredentials/
https://www.powershellgallery.com/packages/BetterCredentials/
https://azure.microsoft.com/services/key-vault/
https://azure.microsoft.com/services/key-vault/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://devblogs.microsoft.com/powershell/secretmanagement-and-secretstore-updates/
https://devblogs.microsoft.com/powershell/secretmanagement-and-secretstore-updates/


Avoid assigning variables in expressions
Article • 11/17/2022

PowerShell allows you to use assignments within expressions by enclosing the
assignment in parentheses () . PowerShell passes the assigned value through. For
example:

PowerShell

The assignment case doesn't always work. When it doesn't work, the assignment is
discarded. If you create an instance of a mutable value type and attempt to both save
the instance in a variable and modify one of its properties in the same expression, the
property assignment is discarded.

PowerShell

# In an `if` conditional
if ($foo = Get-Item $PROFILE) { "$foo exists" }

# Property access
($profileFile = Get-Item $PROFILE).LastWriteTime

# You can even *assign* to such expressions.
($profileFile = Get-Item $PROFILE).LastWriteTime = Get-Date

７ Note

While this syntax is allowed, its use is discouraged. There are cases where this does
not work and the intent of the code author can be confusing to other code
reviewers.

Limitations

# create mutable value type
PS> Add-Type 'public struct Foo { public int x; }'

# Create an instance, store it in a variable, and try to modify its 
property.
# This assignment is effectively IGNORED.
PS> ($var = [Foo]::new()).x = 1
PS> $var.x
0



The difference is that you can't return a reference to the value. Essentially, ($var =
[Foo]::new())  is equivalent to $($var = [Foo]::new(); $var) . You're no longer
performing a member access on the variable you're performing a member access on the
variable's output, which is a copy.

The workaround is to create the instance and save it in a variable first, and then assign
to the property via the variable:

PowerShell

# create mutable value type
PS> Add-Type 'public struct Foo { public int x; }'

# Create an instance and store it in a variable first
# and then modify its property via the variable.
PS> $var = [Foo]::new()
PS> $var.x = 1
PS> $var.x
1

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fdeep-dives%2Favoid-assigning-variables-in-expressions%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fdeep-dives%2Favoid-assigning-variables-in-expressions.md&documentVersionIndependentId=72aa5f35-d63f-7cbe-9fb3-9c4c76bf9c19&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a50984a3-5a1f-dea4-f435-e1fa7f4d79b6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Avoid using Invoke-Expression
Article • 11/17/2022

The Invoke-Expression  cmdlet should only be used as a last resort. In most scenarios,
safer and more robust alternatives are available. Forums like Stack Overflow are filled
with examples of Invoke-Expression  misuse. Also note that PSScriptAnalyzer has a rule
for this. For more information, see AvoidUsingInvokeExpression.

Carefully consider the security implications. When a string from an untrusted source
such as user input is passed directly to Invoke-Expression , arbitrary commands can be
executed. Always consider a different, more robust and secure solution first.

Consider the following usage scenarios:

It's simpler to redirect PowerShell to execute something naturally. For example:

PowerShell

These cases are trivially avoidable. The script or code already exists in file or AST
form, so you should write a script with parameters and invoke it directly instead of
using Invoke-Expression  on a string.

Running a script from a trusted source. For example, running the install script
from the PowerShell repository:

PowerShell

You should only use this interactively. And, while this does make life simpler, this
practice should be discouraged.

Testing for parsing errors. The PowerShell team tests for parse errors in the source
code using Invoke-Expression  because that's the only way to turn a parse-time
error into a runtime one.

Common scenarios

Get-Content ./file.ps1 | Invoke-Expression

Invoke-WebRequest https://aka.ms/install-powershell.ps1 | Invoke-
Expression

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidusinginvokeexpression


Most other scripting languages have a way to evaluate a string as code, and as an
interpreted language, PowerShell must have a way to dynamically run itself. But there's
no good reason to use Invoke-Expression  in a production environment.

Stack Overflow discussion - In what scenario was Invoke-Expression designed to be
used?
PowerShell Blog post - Invoke-Expression Considered Harmful

Conclusion

References

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://stackoverflow.com/a/51252636/45375
https://devblogs.microsoft.com/powershell/invoke-expression-considered-harmful/
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fdeep-dives%2Favoid-using-invoke-expression%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fdeep-dives%2Favoid-using-invoke-expression.md&documentVersionIndependentId=9daadb60-f8d6-dd15-7654-a679d0921344&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0aca6c21-9de0-6b0b-4529-c330da7a1edd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Limitations of PowerShell transcripts
Article • 11/17/2022

Mixing Write-Host  output with the output objects, strings, and PowerShell transcription
is complicated. There is a subtle interaction between the script and how transcription
works with PowerShell pipelines that can have unexpected results.

When you emit objects from your script the formatting of those objects is handled by
Out-Default . But the formatting can occur after the script has completed and
transcription has stopped. This means that the output doesn't get transcribed. Strings
are handled differently. Sometimes string output is passed through formatting, but not
always. Write-Host  makes an immediate write to the host process. Write-Object  is sent
through the formatting system. Combining the output of complex objects with writes to
the host makes it difficult to predict what gets logged in the transcript.

Consider the following script and its output:

PowerShell

Scenario 1 - Output of a structured object at
the end of all of the other operations

PS> Get-Content scenario1.ps1
Start-Transcript scenario1.log -UseMinimalHeader
Write-Host '1'
Write-Output '2'
Get-Location
Write-Host '4'
Write-Output '5'
Stop-Transcript

PS> ./scenario1.ps1
Transcript started, output file is scenario1.log
1
2

4
Path
----
/Users/user1/src/projects/transcript
5
Transcript stopped, output file is 
/Users/user1/src/projects/transcript/scenario1.log



The output to the console shows the output you expect, but not in the order you expect
it. Write-Host 4  is visible before Get-Location  because Write-Host  is optimized to write
directly to the host. There's code in transcription that copies the output to the transcript
file and the console. Then we have the regular output of Get-Location  and Write-Output
5  sent as output of the script.

PowerShell

Since transcription is turned off before the script exits, it's not rendered in the transcript.
The objects were sent to the next consumer in the pipeline. In this case, it's Out-Default ,
which PowerShell inserted automatically. To complicate things further, the output of
strings is also optimized in the formatting system. The first Write-Output 2  gets emitted
and captured by the transcript. But the insertion of the Get-Location  object causes its
output to be pushed into the stack of things that need actual formatting, which sets a
bit of state for any remaining objects that also may need formatting. This is why the
second Write-Output 5  doesn't get added to the transcript.

Consider the following script and its output:

PowerShell

PS> Get-Content scenario1.log
**********************
PowerShell transcript start
Start time: 20191106114858
**********************
Transcript started, output file is s2
1
2

4
**********************
PowerShell transcript end
End time: 20191106114858
**********************

Scenario 2 - Move the object emission to the
beginning

PS> Get-Content scenario2.ps1
Start-Transcript scenario2.log -UseMinimalHeader
Get-Location
Write-Host '1'
Write-Output '2'
Get-Location



We can see that the Write-Host  commands happen before anything, and then the
objects start to come out. The Write-Output  of a string forces the object to be rendered
to the screen, but notice that the transcript contains only the output of Write-Host .
That's because those string objects are piped to Out-Default  for formatting after the
script turned off transcription.

PowerShell

For this scenario, the output of the complex object is at the end of the script.

PowerShell

Write-Host '4'
Write-Output '5'
Stop-Transcript

PS> ./scenario2.ps1
Transcript started, output file is scenario2.log

1
4
Path
----
/Users/user1/src/projects/transcript
2
5
Transcript stopped, output file is 
/Users/user1/src/projects/transcript/scenario2.log

PS> Get-Content scenario2.log
**********************
PowerShell transcript start
Start time: 20220606094609
**********************
Transcript started, output file is s3

1
4
**********************
PowerShell transcript end
End time: 20220606094609
**********************

Scenario 3 - Object emitted at the end of the
script



The string output from both Write-Host  and Write-Object  makes it into the transcript.
However, the output from Get-Location  occurs after transcription has stopped.

This example is a slight variation on the original scenario, but now everything is logged
to the transcript. The original code is wrapped in a script block and the formatter
explicitly invoked via Out-Default .

PS> Get-Content scenario3.ps1
Start-Transcript scenario3.log -UseMinimalHeader
Write-Host '1'
Write-Output '2'
Write-Host '4'
Write-Output '5'
Get-Location
Stop-Transcript

PS> ./scenario3.ps1
Transcript started, output file is scenario3.log
1
2
4
5

Path
----
/Users/user1/src/projects/transcript
Transcript stopped, output file is 
/Users/user1/src/projects/transcript/scenario3.log

**********************
PowerShell transcript start
Start time: 20220606100342
**********************
Transcript started, output file is scenario3.log
1
2
4
5

**********************
PowerShell transcript end
End time: 20220606100342
**********************

A way to ensure full transcription



PowerShell

Notice that the last Write-Host  call is still out of order, that's because of the
optimization in Write-Host  that doesn't go into the output stream.

PowerShell

PS> Get-Content scenario4.ps1
Start-Transcript scenario4.log -UseMinimalHeader
. {
    Write-Host '1'
    Write-Output '2'
    Get-Location
    Write-Host '4'
    Write-Output '5'
} | Out-Default
Stop-Transcript

PS> ./scenario4.ps1
Transcript started, output file is scenario4.log
1
2

4
Path
----
/Users/user1/src/projects/transcript
5

Transcript stopped, output file is 
/Users/user1/src/projects/transcript/scenario4.log

PS> Get-Content scenario4.log
**********************
PowerShell transcript start
Start time: 20220606101038
**********************
Transcript started, output file is s5
1
2

4
Path
----
/Users/user1/src/projects/transcript
5

**********************
PowerShell transcript end
End time: 20220606101038
**********************



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fdeep-dives%2Foutput-missing-from-transcript%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fdeep-dives%2Foutput-missing-from-transcript.md&documentVersionIndependentId=b466b269-0308-bec3-6a2e-2c156c587cf8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f564bd54-7810-41c3-be80-3703f0d7f9ec+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Sample scripts for system
administration
A collection of examples walks through scenarios for administering systems with
PowerShell.

Working with objects

ｃ HOW-TO GUIDE

Viewing object structure

Selecting parts of objects

Removing objects from the pipeline

Sorting objects

Creating .NET and COM objects

Using static classes and methods

Getting WMI objects with Get-CimInstance

Manipulating items directly

Managing computers

ｃ HOW-TO GUIDE

Changing computer state

Collecting information about computers

Creating Get-WinEvent queries with FilterHashtable

Managing processes & services

ｃ HOW-TO GUIDE

Managing processes with process cmdlets

Managing services



Working with printers

Performing networking tasks

Working with software installations

Decode a PowerShell command from a running process

Working with output

ｐ CONCEPT

Redirecting output

Using format commands to change output view

Managing drives & files

ｃ HOW-TO GUIDE

Managing current location

Managing PowerShell drives

Working with files and folders

Working with files folders and registry keys

Working with registry entries

Working with registry keys

Creating UI elements

ｃ HOW-TO GUIDE

Creating a custom input box

Creating a graphical date picker

Multiple selection list boxes

Selecting items from a list box



Viewing object structure
Article • 12/09/2022

Because objects play such a central role in PowerShell, there are several native
commands designed to work with arbitrary object types. The most important one is the
Get-Member  command.

The simplest technique for analyzing the objects that a command returns is to pipe the
output of that command to the Get-Member  cmdlet. The Get-Member  cmdlet shows you
the formal name of the object type and a complete listing of its members. The number
of elements that are returned can sometimes be overwhelming. For example, a process
object can have over 100 members.

The following command allows you to see all the members of a Process object and page
through the output.

PowerShell

Output

We can make this long list of information more usable by filtering for elements we want
to see. The Get-Member  command lets you list only members that are properties. There
are several forms of properties. The cmdlet displays properties of a type using the
MemberType parameter with the value Properties . The resulting list is still very long,
but a more manageable:

PowerShell

Get-Process | Get-Member | Out-Host -Paging

TypeName: System.Diagnostics.Process

Name                           MemberType     Definition
----                           ----------     ----------
Handles                        AliasProperty  Handles = Handlecount
Name                           AliasProperty  Name = ProcessName
NPM                            AliasProperty  NPM = NonpagedSystemMemorySize
PM                             AliasProperty  PM = PagedMemorySize
VM                             AliasProperty  VM = VirtualMemorySize
WS                             AliasProperty  WS = WorkingSet
add_Disposed                   Method         System.Void 
add_Disposed(Event...
...



Output

There are more than 60 properties for a process. By default, PowerShell determines how
to display an object type using information stored in XML files that have names ending
in .format.ps1xml . The formatting definition for process objects is stored in

DotNetTypes.format.ps1xml .

If you need to look at properties other than those that PowerShell displays by default,
you can format the output using the Format-*  cmdlets.

Get-Process | Get-Member -MemberType Properties

   TypeName: System.Diagnostics.Process

Name                       MemberType     Definition
----                       ----------     ----------
Handles                    AliasProperty  Handles = Handlecount
Name                       AliasProperty  Name = ProcessName
...
ExitCode                   Property       System.Int32 ExitCode {get;}
...
Handle                     Property       System.IntPtr Handle {get;}
...
CPU                        ScriptProperty System.Object CPU 
{get=$this.Total...
...
Path                       ScriptProperty System.Object Path 
{get=$this.Main...
...

７ Note

The allowed values of MemberType are AliasProperty, CodeProperty, Property,
NoteProperty, ScriptProperty, Properties, PropertySet, Method, CodeMethod,
ScriptMethod, Methods, ParameterizedProperty, MemberSet, and All.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fviewing-object-structure--get-member-%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FViewing-Object-Structure--Get-Member-.md&documentVersionIndependentId=7cdf6946-49a5-d490-0e19-1655cb1da63c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a648d8dc-4d6c-c1b7-747f-e69d8cded64b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


Selecting parts of objects
Article • 12/09/2022

You can use the Select-Object  cmdlet to create new, custom PowerShell objects that
contain properties selected from the objects you use to create them. Type the following
command to create a new object that includes only the Name and FreeSpace properties
of the Win32_LogicalDisk WMI class:

PowerShell

Output

With Select-Object  you can create calculated properties to display FreeSpace in
gigabytes rather than bytes.

PowerShell

Output

Get-CimInstance -Class Win32_LogicalDisk |
    Select-Object -Property Name, FreeSpace

Name      FreeSpace
----      ---------
C:      50664845312

Get-CimInstance -Class Win32_LogicalDisk |
    Select-Object -Property Name, @{
        Label='FreeSpace'
        Expression={($_.FreeSpace/1GB).ToString('F2')}
    }

Name    FreeSpace
----    ---------
C:      47.18



Removing objects from the pipeline
Article • 12/09/2022

In PowerShell, you often generate and pass along more objects to a pipeline than you
want. You can specify the properties of particular objects to display using the Format-*
cmdlets, but this doesn't help with the problem of removing entire objects from the
display. You may want to filter objects before the end of a pipeline, so you can perform
actions on only a subset of the initially generated objects.

PowerShell includes a Where-Object  cmdlet that allows you to test each object in the
pipeline and only pass it along the pipeline if it meets a particular test condition. Objects
that don't pass the test are removed from the pipeline. You supply the test condition as
the value of the FilterScript parameter.

The value of FilterScript is a script block - one or more PowerShell commands
surrounded by braces ( {} ) - that evaluates to true or false. These script blocks can be
simple, but creating them requires knowing about another PowerShell concept,
comparison operators. A comparison operator compares the items that appear on each
side of it. Comparison operators begin with a hyphen character ( - ) and are followed by
a name. Basic comparison operators work on almost any kind of object. The more
advanced comparison operators might only work on text or arrays.

Due to parsing considerations, symbols such as < , > , and =  aren't used as comparison
operators. Instead, comparison operators are comprised of letters. The basic comparison
operators are listed in the following table.

Comparison Operator Meaning Example (returns true)

-eq is equal to 1 -eq 1

-ne isn't equal to 1 -ne 2

-lt Is less than 1 -lt 2

Performing simple tests with Where-Object

７ Note

By default, PowerShell comparison operators are case-insensitive.

ﾉ Expand table



Comparison Operator Meaning Example (returns true)

-le Is less than or equal to 1 -le 2

-gt Is greater than 2 -gt 1

-ge Is greater than or equal to 2 -ge 1

-like Is like (wildcard comparison for text) "file.doc" -like "f*.do?"

-notlike isn't like (wildcard comparison for text) "file.doc" -notlike "p*.doc"

-contains Contains 1,2,3 -contains 1

-notcontains doesn't contain 1,2,3 -notcontains 4

Where-Object  script blocks use the special variable $_  to refer to the current object in
the pipeline. Here is an example of how it works. If you have a list of numbers, and only
want to return the ones that are less than 3, you can use Where-Object  to filter the
numbers by typing:

Since $_  refers to the current pipeline object, we can access its properties for our tests.

As an example, we can look at the Win32_SystemDriver class in WMI. There might be
hundreds of system drivers on a particular system, but you might only be interested in a
particular set of the system drivers, such as those that are running. For the
Win32_SystemDriver class the relevant property is State. You can filter the system
drivers, selecting only the running ones by typing:

PowerShell

This still produces a long list. You may want to filter to only select the drivers set to start
automatically by testing the StartMode value as well:

1,2,3,4 | Where-Object {$_ -lt 3}
1
2

Filtering based on object properties

Get-CimInstance -Class Win32_SystemDriver |
    Where-Object {$_.State -eq 'Running'}



PowerShell

Output

This gives us a lot of information we no longer need because we know that the drivers
are running. In fact, the only information we probably need at this point are the name
and the display name. The following command includes only those two properties,
resulting in much simpler output:

PowerShell

Output

Get-CimInstance -Class Win32_SystemDriver |
    Where-Object {$_.State -eq "Running"} |
    Where-Object {$_.StartMode -eq "Auto"}

DisplayName : RAS Asynchronous Media Driver
Name        : AsyncMac
State       : Running
Status      : OK
Started     : True

DisplayName : Audio Stub Driver
Name        : audstub
State       : Running
Status      : OK
Started     : True
...

Get-CimInstance -Class Win32_SystemDriver |
    Where-Object {$_.State -eq "Running"} |
    Where-Object {$_.StartMode -eq "Manual"} |
    Format-Table -Property Name,DisplayName

Name              DisplayName
----              -----------
AsyncMac               RAS Asynchronous Media Driver
bindflt                Windows Bind Filter Driver
bowser                 Browser
CompositeBus           Composite Bus Enumerator Driver
condrv                 Console Driver
HdAudAddService        Microsoft 1.1 UAA Function Driver for High Definition 
Audio Service
HDAudBus               Microsoft UAA Bus Driver for High Definition Audio
HidUsb                 Microsoft HID Class Driver
HTTP                   HTTP Service
igfx                   igfx
IntcDAud               Intel(R) Display Audio



There are two Where-Object  elements in the above command, but they can be
expressed in a single Where-Object  element using the -and  logical operator, like this:

PowerShell

The standard logical operators are listed in the following table.

Logical Operator Meaning Example (returns true)

-and Logical and; true if both sides are true (1 -eq 1) -and (2 -eq 2)

-or Logical or; true if either side is true (1 -eq 1) -or (1 -eq 2)

-not Logical not; reverses true and false -not (1 -eq 2)

! Logical not; reverses true and false !(1 -eq 2)

intelppm               Intel Processor Driver
...

Get-CimInstance -Class Win32_SystemDriver |
    Where-Object {($_.State -eq 'Running') -and ($_.StartMode -eq 'Manual')} 
|
    Format-Table -Property Name,DisplayName

ﾉ Expand table

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fremoving-objects-from-the-pipeline--where-object-%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FRemoving-Objects-from-the-Pipeline--Where-Object-.md&documentVersionIndependentId=741fa262-4019-4efe-85bf-fb178e448ab0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d14f6d9f-45a6-cc5e-249e-4018cde4b63a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Sorting objects
Article • 12/09/2022

We can organize displayed data to make it easier to scan using the Sort-Object  cmdlet.
Sort-Object  takes the name of one or more properties to sort on, and returns data
sorted by the values of those properties.

Consider the problem of listing subdirectories and files in the current directory. If we
want to sort by LastWriteTime and then by Name, we can do it by typing:

PowerShell

Output

You can also sort the objects in reverse order by specifying the Descending switch
parameter.

PowerShell

Output

Basic sorting

Get-ChildItem |
    Sort-Object -Property LastWriteTime, Name |
    Format-Table -Property LastWriteTime, Name

LastWriteTime          Name
-------------          ----
11/6/2017 10:10:11 AM  .localization-config
11/6/2017 10:10:11 AM  .openpublishing.build.ps1
11/6/2017 10:10:11 AM  appveyor.yml
11/6/2017 10:10:11 AM  LICENSE
11/6/2017 10:10:11 AM  LICENSE-CODE
11/6/2017 10:10:11 AM  ThirdPartyNotices
11/6/2017 10:10:15 AM  tests
6/6/2018 7:58:59 PM    CONTRIBUTING.md
6/6/2018 7:58:59 PM    README.md
...

Get-ChildItem |
  Sort-Object -Property LastWriteTime, Name -Descending |
  Format-Table -Property LastWriteTime, Name



You can sort different properties in different orders using hash tables in an array. Each
hash table uses an Expression key to specify the property name as string and an
Ascending or Descending key to specify the sort order by $true  or $false . The
Expression key is mandatory. The Ascending or Descending key is optional.

The following example sorts objects in descending LastWriteTime order and ascending
Name order.

PowerShell

Output

LastWriteTime          Name
-------------          ----
12/1/2018 10:13:50 PM  reference
12/1/2018 10:13:50 PM  dsc
...
6/6/2018 7:58:59 PM    README.md
6/6/2018 7:58:59 PM    CONTRIBUTING.md
11/6/2017 10:10:15 AM  tests
11/6/2017 10:10:11 AM  ThirdPartyNotices
11/6/2017 10:10:11 AM  LICENSE-CODE
11/6/2017 10:10:11 AM  LICENSE
11/6/2017 10:10:11 AM  appveyor.yml
11/6/2017 10:10:11 AM  .openpublishing.build.ps1
11/6/2017 10:10:11 AM  .localization-config

Using hash tables

Get-ChildItem |
  Sort-Object -Property @{ Expression = 'LastWriteTime'; Descending = $true 
},
                        @{ Expression = 'Name'; Ascending = $true } |
  Format-Table -Property LastWriteTime, Name

LastWriteTime          Name
-------------          ----
12/1/2018 10:13:50 PM  dsc
12/1/2018 10:13:50 PM  reference
11/29/2018 6:56:01 PM  .openpublishing.redirection.json
11/29/2018 6:56:01 PM  gallery
11/24/2018 10:33:22 AM developer
11/20/2018 7:22:19 PM  .markdownlint.json
...



You can also set a scriptblock to the Expression key. When running the Sort-Object
cmdlet, the scriptblock is executed and the result is used for sorting.

The following example sorts objects in descending order by the time span between
CreationTime and LastWriteTime.

PowerShell

Output

You can omit the Property parameter name as following:

PowerShell

Besides, you can refer to Sort-Object  by its built-in alias, sort :

PowerShell

The keys in the hash tables for sorting can be abbreviated as following:

PowerShell

Get-ChildItem |
    Sort-Object -Property @{ Exp = { $_.LastWriteTime - $_.CreationTime }; 
Desc = $true } |
    Format-Table -Property LastWriteTime, CreationTime

LastWriteTime          CreationTime
-------------          ------------
12/1/2018 10:13:50 PM  11/6/2017 10:10:11 AM
12/1/2018 10:13:50 PM  11/6/2017 10:10:11 AM
11/7/2018 6:52:24 PM   11/6/2017 10:10:11 AM
11/7/2018 6:52:24 PM   11/6/2017 10:10:15 AM
11/3/2018 9:58:17 AM   11/6/2017 10:10:11 AM
10/26/2018 4:50:21 PM  11/6/2017 10:10:11 AM
11/17/2018 1:10:57 PM  11/29/2017 5:48:30 PM
11/12/2018 6:29:53 PM  12/7/2017 7:57:07 PM
...

Tips

Sort-Object LastWriteTime, Name

sort LastWriteTime, Name



In this example, the e stands for Expression, the d stands for Descending, and the a
stands for Ascending.

To improve readability, you can place the hash tables into a separate variable:

PowerShell

Sort-Object @{ e = 'LastWriteTime'; d = $true }, @{ e = 'Name'; a = $true }

$order = @(
  @{ Expression = 'LastWriteTime'; Descending = $true }
  @{ Expression = 'Name'; Ascending = $true }
)

Get-ChildItem |
    Sort-Object $order |
    Format-Table LastWriteTime, Name

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fsorting-objects%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FSorting-Objects.md&documentVersionIndependentId=1e8e7233-1d9e-1dfd-68da-c16ea887828d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d81347e7-e837-66b3-99b6-881872b8c6d5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating .NET and COM objects
Article • 12/09/2022

This sample only runs on Windows platforms.

There are software components with .NET Framework and COM interfaces that enable
you to perform many system administration tasks. PowerShell lets you use these
components, so you aren't limited to the tasks that can be performed by using cmdlets.
Many of the cmdlets in the initial release of PowerShell don't work against remote
computers. We will demonstrate how to get around this limitation when managing
event logs by using the .NET Framework System.Diagnostics.EventLog class directly
from PowerShell.

The .NET Framework Class Library includes a class named System.Diagnostics.EventLog
that can be used to manage event logs. You can create a new instance of a .NET
Framework class by using the New-Object  cmdlet with the TypeName parameter. For
example, the following command creates an event log reference:

PowerShell

Output

Although the command has created an instance of the EventLog class, the instance
doesn't include any data. that's because we didn't specify a particular event log. How do
you get a real event log?

To refer to a specific event log, you need to specify the name of the log. New-Object  has
an ArgumentList parameter. The arguments you pass as values to this parameter are
used by a special startup method of the object. The method is called a constructor

Using New-Object for event log access

New-Object -TypeName System.Diagnostics.EventLog

  Max(K) Retain OverflowAction        Entries Name
  ------ ------ --------------        ------- ----

Using constructors with New-Object



because it's used to construct the object. For example, to get a reference to the
Application log, you specify the string 'Application' as an argument:

PowerShell

Output

You might want to store a reference to an object, so you can use it in the current shell.
Although PowerShell lets you do a lot of work with pipelines, lessening the need for
variables, sometimes storing references to objects in variables makes it more convenient
to manipulate those objects.

The output from any valid PowerShell command can be stored in a variable. Variable
names always begin with $ . If you want to store the Application log reference in a
variable named $AppLog , type the name of the variable, followed by an equal sign and
then type the command used to create the Application log object:

PowerShell

If you then type $AppLog , you can see that it contains the Application log:

PowerShell

New-Object -TypeName System.Diagnostics.EventLog -ArgumentList Application

Max(K) Retain OverflowAction        Entries Name
------ ------ --------------        ------- ----
16,384      7 OverwriteOlder          2,160 Application

７ Note

Since most of the .NET classes are contained in the System namespace, PowerShell
automatically attempts to find classes you specify in the System namespace if it
can't find a match for the typename you specify. This means that you can specify
Diagnostics.EventLog  instead of System.Diagnostics.EventLog .

Storing Objects in Variables

$AppLog = New-Object -TypeName System.Diagnostics.EventLog -ArgumentList 
Application



Output

The commands used in the preceding section target the local computer; the Get-
EventLog  cmdlet can do that. To access the Application log on a remote computer, you
must supply both the log name and a computer name (or IP address) as arguments.

PowerShell

Output

Now that we have a reference to an event log stored in the $RemoteAppLog  variable, what
tasks can we perform on it?

Objects often have methods that can be called to perform tasks. You can use Get-
Member  to display the methods associated with an object. The following command and
selected output show some the methods of the EventLog class:

PowerShell

Output

$AppLog

  Max(K) Retain OverflowAction        Entries Name
  ------ ------ --------------        ------- ----
  16,384      7 OverwriteOlder          2,160 Application

Accessing a remote event log with New-Object

$RemoteAppLog = New-Object -TypeName System.Diagnostics.EventLog 
Application, 192.168.1.81
$RemoteAppLog

  Max(K) Retain OverflowAction        Entries Name
  ------ ------ --------------        ------- ----
     512      7 OverwriteOlder            262 Application

Clearing an event log with object methods

$RemoteAppLog | Get-Member -MemberType Method



The Clear()  method can be used to clear the event log. When calling a method, you
must always follow the method name by parentheses, even if the method doesn't
require arguments. This lets PowerShell distinguish between the method and a potential
property with the same name. Type the following to call the Clear method:

PowerShell

Output

Notice that the event log was cleared and now has 0 entries instead of 262.

You can use New-Object  to work with Component Object Model (COM) components.
Components range from the various libraries included with Windows Script Host (WSH)
to ActiveX applications such as Internet Explorer that are installed on most systems.

   TypeName: System.Diagnostics.EventLog

Name                      MemberType Definition
----                      ---------- ----------
...
Clear                     Method     System.Void Clear()
Close                     Method     System.Void Close()
...
GetType                   Method     System.Type GetType()
...
ModifyOverflowPolicy      Method     System.Void 
ModifyOverflowPolicy(Overfl...
RegisterDisplayName       Method     System.Void RegisterDisplayName(String 
...
...
ToString                  Method     System.String ToString()
WriteEntry                Method     System.Void WriteEntry(String 
message),...
WriteEvent                Method     System.Void WriteEvent(EventInstance 
in...

$RemoteAppLog.Clear()
$RemoteAppLog

  Max(K) Retain OverflowAction        Entries Name
  ------ ------ --------------        ------- ----
     512      7 OverwriteOlder              0 Application

Creating COM objects with New-Object



New-Object  uses .NET Framework Runtime-Callable Wrappers to create COM objects, so
it has the same limitations that .NET Framework does when calling COM objects. To
create a COM object, you need to specify the ComObject parameter with the
Programmatic Identifier or ProgId of the COM class you want to use. A complete
discussion of the limitations of COM use and determining what ProgIds are available on
a system is beyond the scope of this user's guide, but most well-known objects from
environments such as WSH can be used within PowerShell.

You can create the WSH objects by specifying these progids: WScript.Shell,
WScript.Network, Scripting.Dictionary, and Scripting.FileSystemObject. The following
commands create these objects:

PowerShell

Although most of the functionality of these classes is made available in other ways in
Windows PowerShell, a few tasks such as shortcut creation are still easier to do using the
WSH classes.

One task that can be performed quickly with a COM object is creating a shortcut.
Suppose you want to create a shortcut on your desktop that links to the home folder for
PowerShell. You first need to create a reference to WScript.Shell, which we will store in a
variable named $WshShell :

PowerShell

Get-Member  works with COM objects, so you can explore the members of the object by
typing:

PowerShell

Output

New-Object -ComObject WScript.Shell
New-Object -ComObject WScript.Network
New-Object -ComObject Scripting.Dictionary
New-Object -ComObject Scripting.FileSystemObject

Creating a desktop shortcut with WScript.Shell

$WshShell = New-Object -ComObject WScript.Shell

$WshShell | Get-Member



Get-Member  has an optional InputObject parameter you can use instead of piping to
provide input to Get-Member . You would get the same output as shown above if you
instead used the command Get-Member -InputObject $WshShell. If you use
InputObject, it treats its argument as a single item. This means that if you have several
objects in a variable, Get-Member  treats them as an array of objects. For example:

PowerShell

Output

The WScript.Shell CreateShortcut method accepts a single argument, the path to the
shortcut file to create. We could type in the full path to the desktop, but there is an
easier way. The desktop is normally represented by a folder named Desktop inside the
home folder of the current user. Windows PowerShell has a variable $HOME  that contains
the path to this folder. We can specify the path to the home folder by using this variable,
and then add the name of the Desktop folder and the name for the shortcut to create
by typing:

PowerShell

When you use something that looks like a variable name inside double-quotes,
PowerShell tries to substitute a matching value. If you use single-quotes, PowerShell

   TypeName: System.__ComObject#{41904400-be18-11d3-a28b-00104bd35090}

Name                     MemberType            Definition
----                     ----------            ----------
AppActivate              Method                bool AppActivate (Variant, 
Va...
CreateShortcut           Method                IDispatch CreateShortcut 
(str...
...

$a = 1,2,"three"
Get-Member -InputObject $a

TypeName: System.Object[]
Name               MemberType    Definition
----               ----------    ----------
Count              AliasProperty Count = Length
...

$lnk = $WshShell.CreateShortcut("$HOME\Desktop\PSHome.lnk")



doesn't try to substitute the variable value. For example, try typing the following
commands:

PowerShell

Output

PowerShell

Output

We now have a variable named $lnk  that contains a new shortcut reference. If you want
to see its members, you can pipe it to Get-Member . The output below shows the
members we need to use to finish creating our shortcut:

PowerShell

Output

We need to specify the TargetPath, which is the application folder for PowerShell, and
then save the shortcut by calling the Save  method. The PowerShell application folder
path is stored in the variable $PSHOME , so we can do this by typing:

PowerShell

"$HOME\Desktop\PSHome.lnk"

C:\Documents and Settings\aka\Desktop\PSHome.lnk

'$HOME\Desktop\PSHome.lnk'

$HOME\Desktop\PSHome.lnk

$lnk | Get-Member

TypeName: System.__ComObject#{f935dc23-1cf0-11d0-adb9-00c04fd58a0b}
Name             MemberType   Definition
----             ----------   ----------
...
Save             Method       void Save ()
...
TargetPath       Property     string TargetPath () {get} {set}



Many applications, including the Microsoft Office family of applications and Internet
Explorer, can be automated by using COM. The following examples illustrate some of
the typical techniques and issues involved in working with COM-based applications.

You create an Internet Explorer instance by specifying the Internet Explorer ProgId,
InternetExplorer.Application:

PowerShell

This command starts Internet Explorer, but doesn't make it visible. If you type Get-
Process , you can see that a process named iexplore  is running. In fact, if you exit
PowerShell, the process will continue to run. You must reboot the computer or use a
tool like Task Manager to end the iexplore  process.

By typing $ie | Get-Member , you can view properties and methods for Internet Explorer.
To see the Internet Explorer window, set the Visible property to $true  by typing:

PowerShell

You can then navigate to a specific Web address using the Navigate  method:

PowerShell

$lnk.TargetPath = $PSHOME
$lnk.Save()

Using Internet Explorer from PowerShell

$ie = New-Object -ComObject InternetExplorer.Application

７ Note

COM objects that start as separate processes, commonly called ActiveX executables,
may or may not display a user interface window when they start up. If they create a
window but don't make it visible, like Internet Explorer, the focus usually moves to
the Windows desktop. You must make the window visible to interact with it.

$ie.Visible = $true

$ie.Navigate("https://devblogs.microsoft.com/scripting/")



Using other members of the Internet Explorer object model, it's possible to retrieve text
content from the Web page. The following command displays the HTML text in the body
of the current Web page:

PowerShell

To close Internet Explorer from within PowerShell, call its Quit()  method:

PowerShell

The $ie  variable no longer contains a valid reference even though it still appears to be a
COM object. If you attempt to use it, PowerShell returns an automation error:

PowerShell

Output

You can either remove the remaining reference with a command like $ie = $null , or
completely remove the variable by typing:

PowerShell

$ie.Document.Body.InnerText

$ie.Quit()

$ie | Get-Member

Get-Member : Exception retrieving the string representation for property 
"Appli
cation" : "The object invoked has disconnected from its clients. (Exception 
fro
m HRESULT: 0x80010108 (RPC_E_DISCONNECTED))"
At line:1 char:16
+ $ie | Get-Member <<<<

Remove-Variable ie

７ Note

There is no common standard for whether ActiveX executables exit or continue to
run when you remove a reference to one. Depending on circumstances, such as
whether the application is visible, whether an edited document is running in it, and



In some cases, a COM object might have an associated .NET Framework Runtime-
Callable Wrapper (RCW) that's used by New-Object . Since the behavior of the RCW may
be different from the behavior of the normal COM object, New-Object  has a Strict
parameter to warn you about RCW access. If you specify the Strict parameter and then
create a COM object that uses an RCW, you get a warning message:

PowerShell

Output

Although the object is still created, you are warned that it isn't a standard COM object.

even whether PowerShell is still running, the application may or may not exit. For
this reason, you should test termination behavior for each ActiveX executable you
want to use in PowerShell.

Getting warnings about .NET Framework-
wrapped COM objects

$xl = New-Object -ComObject Excel.Application -Strict

New-Object : The object written to the pipeline is an instance of the type 
"Mic
rosoft.Office.Interop.Excel.ApplicationClass" from the component's primary 
interop assembly. If
this type exposes different members than the IDispatch members , scripts 
written to work with this
object might not work if the primary interop assembly isn't installed. At 
line:1 char:17 + $xl =
New-Object <<<< -ComObject Excel.Application -Strict



Using static classes and methods
Article • 12/09/2022

Not all .NET Framework classes can be created using New-Object . For example, if you try
to create a System.Environment or a System.Math object with New-Object , you will get
the following error messages:

PowerShell

Output

PowerShell

Output

These errors occur because there is no way to create a new object from these classes.
These classes are reference libraries of methods and properties that don't change state.
You don't need to create them, you simply use them. Classes and methods such as these
are called static classes because they're not created, destroyed, or changed. To make this
clear we will provide examples that use static classes.

New-Object System.Environment

New-Object : Constructor not found. Cannot find an appropriate constructor 
for
type System.Environment.
At line:1 char:11
+ New-Object  <<<< System.Environment

New-Object System.Math

New-Object : Constructor not found. Cannot find an appropriate constructor 
for
type System.Math.
At line:1 char:11
+ New-Object  <<<< System.Math

Getting environment data with
System.Environment



Usually, the first step in working with an object in Windows PowerShell is to use Get-
Member to find out what members it contains. With static classes, the process is a little
different because the actual class isn't an object.

You can refer to a static class by surrounding the class name with square brackets. For
example, you can refer to System.Environment by typing the name within brackets.
Doing so displays some generic type information:

PowerShell

Output

The System.Environment class contains general information about the working
environment for the current process, which is powershell.exe  when working within
Windows PowerShell.

If you try to view details of this class by typing [System.Environment] | Get-Member,
the object type is reported as being System.RuntimeType , not System.Environment:

PowerShell

Output

Referring to the static System.Environment class

[System.Environment]

IsPublic IsSerial Name                                     BaseType
-------- -------- ----                                     --------
True     False    Environment                              System.Object

７ Note

As we mentioned previously, Windows PowerShell automatically prepends 'System.'
to type names when you use New-Object . The same thing happens when using a
bracketed type name, so you can specify [System.Environment] as [Environment].

[System.Environment] | Get-Member

   TypeName: System.RuntimeType



To view static members with Get-Member, specify the Static parameter:

PowerShell

Output

We can now select properties to view from System.Environment.

[System.Environment] | Get-Member -Static

   TypeName: System.Environment

Name                       MemberType Definition
----                       ---------- ----------
Equals                     Method     static System.Boolean Equals(Object 
ob...
Exit                       Method     static System.Void Exit(Int32 
exitCode)
...
CommandLine                Property   static System.String CommandLine 
{get;}
CurrentDirectory           Property   static System.String CurrentDirectory 
...
ExitCode                   Property   static System.Int32 ExitCode 
{get;set;}
HasShutdownStarted         Property   static System.Boolean 
HasShutdownStart...
MachineName                Property   static System.String MachineName 
{get;}
NewLine                    Property   static System.String NewLine {get;}
OSVersion                  Property   static System.OperatingSystem 
OSVersio...
ProcessorCount             Property   static System.Int32 ProcessorCount 
{get;}
StackTrace                 Property   static System.String StackTrace {get;}
SystemDirectory            Property   static System.String SystemDirectory 
{...
TickCount                  Property   static System.Int32 TickCount {get;}
UserDomainName             Property   static System.String UserDomainName 
{g...
UserInteractive            Property   static System.Boolean UserInteractive 
...
UserName                   Property   static System.String UserName {get;}
Version                    Property   static System.Version Version {get;}
WorkingSet                 Property   static System.Int64 WorkingSet {get;}
TickCount                               ExitCode

Displaying static properties of System.Environment



The properties of System.Environment are also static, and must be specified in a
different way than normal properties. We use ::  to indicate to Windows PowerShell that
we want to work with a static method or property. To see the command that was used
to launch Windows PowerShell, we check the CommandLine property by typing:

PowerShell

Output

To check the operating system version, display the OSVersion property by typing:

PowerShell

Output

We can check whether the computer is in the process of shutting down by displaying
the HasShutdownStarted property:

PowerShell

Output

The System.Math static class is useful for performing some mathematical operations.
The class includes several useful methods, which we can display using Get-Member .

[System.Environment]::CommandLine

"C:\Program Files\Windows PowerShell\v1.0\powershell.exe"

[System.Environment]::OSVersion

           Platform ServicePack         Version             VersionString
           -------- -----------         -------             -------------
            Win32NT Service Pack 2      5.1.2600.131072     Microsoft 
Windows...

[System.Environment]::HasShutdownStarted

False

Doing math with System.Math



Type the following command to list the methods of the System.Math class.

PowerShell

Output

７ Note

System.Math has several methods with the same name, but they're distinguished
by the type of their parameters.

[System.Math] | Get-Member -Static -MemberType Methods

   TypeName: System.Math

Name            MemberType Definition
----            ---------- ----------
Abs             Method     static System.Single Abs(Single value), static 
Sy...
Acos            Method     static System.Double Acos(Double d)
Asin            Method     static System.Double Asin(Double d)
Atan            Method     static System.Double Atan(Double d)
Atan2           Method     static System.Double Atan2(Double y, Double x)
BigMul          Method     static System.Int64 BigMul(Int32 a, Int32 b)
Ceiling         Method     static System.Double Ceiling(Double a), static 
Sy...
Cos             Method     static System.Double Cos(Double d)
Cosh            Method     static System.Double Cosh(Double value)
DivRem          Method     static System.Int32 DivRem(Int32 a, Int32 b, 
Int3...
Equals          Method     static System.Boolean Equals(Object objA, Object 
...
Exp             Method     static System.Double Exp(Double d)
Floor           Method     static System.Double Floor(Double d), static 
Syst...
IEEERemainder   Method     static System.Double IEEERemainder(Double x, 
Doub...
Log             Method     static System.Double Log(Double d), static 
System...
Log10           Method     static System.Double Log10(Double d)
Max             Method     static System.SByte Max(SByte val1, SByte val2), 
...
Min             Method     static System.SByte Min(SByte val1, SByte val2), 
...
Pow             Method     static System.Double Pow(Double x, Double y)
ReferenceEquals Method     static System.Boolean ReferenceEquals(Object 
objA...
Round           Method     static System.Double Round(Double a), static 
Syst...
Sign            Method     static System.Int32 Sign(SByte value), static 



This displays several mathematical methods. Here is a list of commands that
demonstrate how some of the common methods work:

PowerShell

Sys...
Sin             Method     static System.Double Sin(Double a)
Sinh            Method     static System.Double Sinh(Double value)
Sqrt            Method     static System.Double Sqrt(Double d)
Tan             Method     static System.Double Tan(Double a)
Tanh            Method     static System.Double Tanh(Double value)
Truncate        Method     static System.Decimal Truncate(Decimal d), 
static...

[System.Math]::Sqrt(9)
3
[System.Math]::Pow(2,3)
8
[System.Math]::Floor(3.3)
3
[System.Math]::Floor(-3.3)
-4
[System.Math]::Ceiling(3.3)
4
[System.Math]::Ceiling(-3.3)
-3
[System.Math]::Max(2,7)
7
[System.Math]::Min(2,7)
2
[System.Math]::Truncate(9.3)
9
[System.Math]::Truncate(-9.3)
-9



Getting WMI objects with Get-
CimInstance
Article • 10/13/2023

This sample only applies to Windows platforms.

Windows Management Instrumentation (WMI) is a core technology for Windows system
administration because it exposes a wide range of information in a uniform manner.
Because of how much WMI makes possible, the PowerShell cmdlet for accessing WMI
objects, Get-CimInstance , is one of the most useful for doing real work. We're going to
discuss how to use the CIM cmdlets to access WMI objects and then how to use WMI
objects to do specific things.

The first problem most WMI users face is trying to find out what can be done with WMI.
WMI classes describe the resources that can be managed. There are hundreds of WMI
classes, some of which contain dozens of properties.

Get-CimClass  addresses this problem by making WMI discoverable. You can get a list of
the WMI classes available on the local computer by typing:

PowerShell

Output

Listing WMI classes

Get-CimClass -Namespace root/CIMV2 | 
    Where-Object CimClassName -Like Win32* | 
    Select-Object CimClassName

CimClassName
------------
Win32_DeviceChangeEvent
Win32_SystemConfigurationChangeEvent
Win32_VolumeChangeEvent
Win32_SystemTrace
Win32_ProcessTrace
Win32_ProcessStartTrace
Win32_ProcessStopTrace
Win32_ThreadTrace
Win32_ThreadStartTrace



You can retrieve the same information from a remote computer using the
ComputerName parameter, specifying a computer name or IP address:

PowerShell

The class listing returned by remote computers may vary due to the specific operating
system the computer is running and the particular WMI extensions are added by
installed applications.

If you already know the name of a WMI class, you can use it to get information
immediately. For example, one of the WMI classes commonly used for retrieving
information about a computer is Win32_OperatingSystem.

PowerShell

Output

Win32_ThreadStopTrace
...

Get-CimClass -Namespace root/CIMV2 -ComputerName 192.168.1.29

７ Note

When using CIM cmdlets to connect to a remote computer, the remote computer
must be running WMI and the account you are using must be in the local
Administrators group on the remote computer. The remote system doesn't need
to have PowerShell installed. This allows you to administer operating systems that
aren't running PowerShell, but do have WMI available.

Displaying WMI class details

Get-CimInstance -Class Win32_OperatingSystem

SystemDirectory     Organization BuildNumber RegisteredUser SerialNumber       
Version
---------------     ------------ ----------- -------------- ------------       
-------
C:\WINDOWS\system32 Microsoft    22621       USER1          00330-80000-
00000-AA175 10.0.22621



Although we're showing all of the parameters, the command can be expressed in a
more succinct way. The ComputerName parameter isn't necessary when connecting to
the local system. We show it to demonstrate the most general case and remind you
about the parameter. The Namespace defaults to root/CIMV2, and can be omitted as
well. Finally, most cmdlets allow you to omit the name of common parameters. With
Get-CimInstance , if no name is specified for the first parameter, PowerShell treats it as
the Class parameter. This means the last command could have been issued by typing:

PowerShell

The Win32_OperatingSystem class has many more properties than those displayed
here. You can use Get-Member to see all the properties. The properties of a WMI class
are automatically available like other object properties:

PowerShell

Output

Get-CimInstance Win32_OperatingSystem

Get-CimInstance -Class Win32_OperatingSystem | Get-Member -MemberType 
Property

   TypeName: 
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_OperatingSy
stem
Name                                      MemberType Definition
----                                      ---------- ----------
BootDevice                                Property   string BootDevice 
{get;}
BuildNumber                               Property   string BuildNumber 
{get;}
BuildType                                 Property   string BuildType {get;}
Caption                                   Property   string Caption {get;}
CodeSet                                   Property   string CodeSet {get;}
CountryCode                               Property   string CountryCode 
{get;}
CreationClassName                         Property   string 
CreationClassName {get;}
CSCreationClassName                       Property   string 
CSCreationClassName {get;}
CSDVersion                                Property   string CSDVersion 
{get;}
CSName                                    Property   string CSName {get;}
CurrentTimeZone                           Property   int16 CurrentTimeZone 
{get;}
DataExecutionPrevention_32BitApplications Property   bool 
DataExecutionPrevention_32BitApplications {get;}



If you want the information contained in the Win32_OperatingSystem class that isn't
displayed by default, you can display it by using the Format cmdlets. For example, if you
want to display available memory data, type:

PowerShell

Output

The memory data might be more readable if you format it as a list by typing:

PowerShell

Output

DataExecutionPrevention_Available         Property   bool 
DataExecutionPrevention_Available {get;}
...

Displaying non-default properties with Format
cmdlets

Get-CimInstance -Class Win32_OperatingSystem | Format-Table -Property 
TotalVirtualMemorySize, TotalVisibleMemorySize, FreePhysicalMemory, 
FreeVirtualMemory, FreeSpaceInPagingFiles

TotalVirtualMemorySize TotalVisibleMemorySize FreePhysicalMemory 
FreeVirtualMemory FreeSpaceInPagingFiles
---------------------- ---------------------- ------------------ -----------
------ ----------------------
              41787920               16622096            9537952          
33071884               25056628

７ Note

Wildcards work with property names in Format-Table , so the final pipeline element
can be reduced to Format-Table -Property Total*Memory*, Free*

Get-CimInstance -Class Win32_OperatingSystem | Format-List Total*Memory*, 
Free*

TotalVirtualMemorySize : 41787920
TotalVisibleMemorySize : 16622096
FreePhysicalMemory     : 9365296



FreeSpaceInPagingFiles : 25042952
FreeVirtualMemory      : 33013484
Name                   : Microsoft Windows 11 
Pro|C:\Windows|\Device\Harddisk0\Partition2



Manipulating items directly
Article • 11/06/2024

The elements that you see in PowerShell drives, such as the files and folders or registry
keys, are called Items in PowerShell. The cmdlets for working with them item have the
noun Item in their names.

The output of the Get-Command -Noun Item  command shows that there are nine
PowerShell item cmdlets.

PowerShell

Output

To create a new item in the filesystem, use the New-Item  cmdlet. Include the Path
parameter with path to the item, and the ItemType parameter with a value of File  or

Directory .

For example, to create a new directory named New.Directory  in the C:\Temp  directory,
type:

Get-Command -Noun Item

CommandType     Name                            Definition
-----------     ----                            ----------
Cmdlet          Clear-Item                      Clear-Item [-Path] 
<String[]...
Cmdlet          Copy-Item                       Copy-Item [-Path] 
<String[]>...
Cmdlet          Get-Item                        Get-Item [-Path] <String[]> 
...
Cmdlet          Invoke-Item                     Invoke-Item [-Path] 
<String[...
Cmdlet          Move-Item                       Move-Item [-Path] 
<String[]>...
Cmdlet          New-Item                        New-Item [-Path] <String[]> 
...
Cmdlet          Remove-Item                     Remove-Item [-Path] 
<String[...
Cmdlet          Rename-Item                     Rename-Item [-Path] 
<String>...
Cmdlet          Set-Item                        Set-Item [-Path] <String[]> 
...

Creating new items



PowerShell

Output

To create a file, change the value of the ItemType parameter to File . For example, to
create a file named file1.txt  in the New.Directory  directory, type:

PowerShell

Output

You can use the same technique to create a new registry key. In fact, a registry key is
easier to create because the only item type in the Windows registry is a key. (Registry
entries are item properties.) For example, to create a key named _Test  in the
CurrentVersion  subkey, type:

PowerShell

Output

New-Item -Path C:\temp\New.Directory -ItemType Directory

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
d----        2006-05-18  11:29 AM            New.Directory

New-Item -Path C:\temp\New.Directory\file1.txt -ItemType File

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp\New.Directory

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2006-05-18  11:44 AM          0 file1

New-Item -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\_Test

   Hive: 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wi
ndows\CurrentVersion

SKC  VC Name                           Property



When typing a registry path, be sure to include the colon ( : ) in the PowerShell drive
names, HKLM:  and HKCU: . Without the colon, PowerShell doesn't recognize the drive
name in the path.

When you use the Get-ChildItem  cmdlet to find the items in a registry key, you will
never see actual registry entries or their values.

For example, the registry key
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run  usually contains
several registry entries that represent applications that run when the system starts.

However, when you use Get-ChildItem  to look for child items in the key, all you will see
is the OptionalComponents  subkey of the key:

PowerShell

Output

Although it would be convenient to treat registry entries as items, you can't specify a
path to a registry entry in a way that ensures that it's unique. The path notation doesn't
distinguish between the registry subkey named Run and the (Default) registry entry in
the Run subkey. Furthermore, because registry entry names can contain the backslash
character ( \ ), if registry entries were items, then you couldn't use the path notation to
distinguish a registry entry named Windows\CurrentVersion\Run  from the subkey that's
located in that path.

---  -- ----                           --------
  0   0 _Test                          {}

Why registry values aren't items

Get-ChildItem HKLM:\Software\Microsoft\Windows\CurrentVersion\Run

   Hive: 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\Wi
ndows\CurrentVersion\Run
SKC  VC Name                           Property
---  -- ----                           --------
  3   0 OptionalComponents             {}

Renaming existing items



To change the name of a file or folder, use the Rename-Item  cmdlet. The following
command changes the name of the file1.txt  file to fileOne.txt .

PowerShell

The Rename-Item  cmdlet can change the name of a file or a folder, but it can't move an
item. The following command fails because it attempts to move the file from the
New.Directory  directory to the Temp directory.

PowerShell

Output

To move a file or folder, use the Move-Item  cmdlet.

For example, the following command moves the New.Directory directory from the
C:\temp  directory to the root of the C:  drive. To verify that the item was moved, include
the PassThru parameter of the Move-Item  cmdlet. Without PassThru, the Move-Item
cmdlet doesn't display any results.

PowerShell

Output

Rename-Item -Path C:\temp\New.Directory\file1.txt fileOne.txt

Rename-Item -Path C:\temp\New.Directory\fileOne.txt C:\temp\fileOne.txt

Rename-Item : can't rename because the target specified isn't a path.
At line:1 char:12
+ Rename-Item  <<<< -Path C:\temp\New.Directory\fileOne C:\temp\fileOne.txt

Moving items

Move-Item -Path C:\temp\New.Directory -Destination C:\ -PassThru

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
d----        2006-05-18  12:14 PM            New.Directory



If you are familiar with the copy operations in other shells, you might find the behavior
of the Copy-Item  cmdlet in PowerShell to be unusual. When you copy an item from one
location to another, Copy-Item  doesn't copy its contents by default.

For example, if you copy the New.Directory  directory from the C: drive to the C:\temp
directory, the command succeeds, but the files in the New.Directory directory aren't
copied.

PowerShell

If you display the contents of C:\temp\New.Directory , you will find that it contains no
files:

Why doesn't the Copy-Item  cmdlet copy the contents to the new location?

The Copy-Item  cmdlet was designed to be generic; it isn't just for copying files and
folders. Also, even when copying files and folders, you might want to copy only the
container and not the items within it.

To copy all of the contents of a folder, include the Recurse parameter of the Copy-Item
cmdlet in the command. If you have already copied the directory without its contents,
add the Force parameter, which allows you to overwrite the empty folder.

PowerShell

Output

Copying items

Copy-Item -Path C:\New.Directory -Destination C:\temp

PS> Get-ChildItem -Path C:\temp\New.Directory
PS>

Copy-Item -Path C:\New.Directory -Destination C:\temp -Recurse -Force -
PassThru

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
d----        2006-05-18   1:53 PM            New.Directory



To delete files and folders, use the Remove-Item  cmdlet. PowerShell cmdlets, such as

Remove-Item , that can make significant, irreversible changes will often prompt for
confirmation when you enter its commands. For example, if you try to remove the
New.Directory  folder, you will be prompted to confirm the command, because the
folder contains files:

PowerShell

Output

Because Yes  is the default response, to delete the folder and its files, press the Enter

key. To remove the folder without confirming, use the Recurse parameter.

PowerShell

PowerShell uses the Invoke-Item  cmdlet to perform a default action for a file or folder.
This default action is determined by the default application handler in the registry; the
effect is the same as if you double-click the item in File Explorer.

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp\New.Directory

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2006-05-18  11:44 AM          0 file1

Deleting items

Remove-Item C:\temp\New.Directory

Confirm
The item at C:\temp\New.Directory has children and the -Recurse parameter 
was not
specified. If you continue, all children will be removed with the item. Are 
you
 sure you want to continue?
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):

Remove-Item C:\temp\New.Directory -Recurse

Executing items



For example, suppose you run the following command:

PowerShell

An Explorer window that's located in C:\Windows  appears, just as if you had double-
clicked the C:\Windows  folder.

If you invoke the Boot.ini  file on a system prior to Windows Vista:

PowerShell

If the .ini  file type is associated with Notepad, the boot.ini  file opens in Notepad.

Invoke-Item C:\WINDOWS

Invoke-Item C:\boot.ini



Changing computer state
Article • 12/18/2023

This sample only applies to Windows platforms.

To reset a computer in PowerShell, use either a standard command-line tool, WMI, or a
CIM class. Although you are using PowerShell only to run the tool, learning how to
change a computer's power state in PowerShell illustrates some of the important details
about working with external tools in PowerShell.

The only way to lock a computer directly with the standard available tools is to call the
LockWorkstation() function in user32.dll:

PowerShell

This command immediately locks the workstation. It uses rundll32.exe  to call the
LockWorkStation  function in user32.dll .

When you lock a workstation while Fast User Switching is enabled, such as on Windows
XP, the computer displays the user logon screen rather than starting the current user's
screensaver.

To shut down particular sessions on a Terminal Server, use the tsshutdn.exe command-
line tool.

You can use several different techniques to log off of a session on the local system. The
simplest way is to use the Remote Desktop/Terminal Services command-line tool,
logoff.exe (For details, at the PowerShell prompt, type logoff /? ). To log off the current
active session, type logoff  with no arguments.

You can also use the shutdown.exe tool with its logoff option:

PowerShell

Locking a computer

rundll32.exe user32.dll,LockWorkStation

Logging off the current session



Another option is to use WMI. The Win32_OperatingSystem class has a Shutdown
method. Invoking the method with the 0 flag initiates logoff:

For more information, see the Shutdown method of the Win32_OperatingSystem class.

PowerShell

Shutting down and restarting computers are similar tasks. Most command-line tools
support both actions. Windows includes two command-line tools for restarting a
computer. Use either tsshutdn.exe  or shutdown.exe  with appropriate arguments. You
can get detailed usage information from tsshutdn.exe /?  or shutdown.exe /? .

You can also perform shutdown and restart operations directly from PowerShell.

To shut down the computer, use the Stop-Computer  command

PowerShell

To restart the operating system, use the Restart-Computer command

PowerShell

To force an immediate restart of the computer, use the -Force parameter.

PowerShell

shutdown.exe -l

Get-CimInstance -ClassName Win32_OperatingSystem | Invoke-CimMethod -
MethodName Shutdown

Shutting down or restarting a computer

Stop-Computer

Restart-Computer

Restart-Computer -Force

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/shutdown-method-in-class-win32-operatingsystem


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fchanging-computer-state%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FChanging-Computer-State.md&documentVersionIndependentId=2d99e19e-aac8-5c60-eec4-52efcfb7fc14&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9e87d15f-b0e7-aeb4-af25-9afef014a0e1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Collecting information about computers
Article • 12/09/2022

This sample only applies to Windows platforms.

Cmdlets from CimCmdlets module are the most important cmdlets for general system
management tasks. All critical subsystem settings are exposed through WMI.
Furthermore, WMI treats data as objects that are in collections of one or more items.
Because PowerShell also works with objects and has a pipeline that allows you to treat
single or multiple objects in the same way, generic WMI access allows you to perform
some advanced tasks with very little work.

We'll begin with a command that collects information about the desktops on the local
computer.

PowerShell

This returns information for all desktops, whether they're in use or not.

Because most of these metadata properties have names that begin with Cim, you can
filter the properties using Select-Object . Specify the -ExcludeProperty parameter with
"Cim*" as the value. For example:

PowerShell

To filter out the metadata, use a pipeline operator (|) to send the results of the Get-
CimInstance  command to Select-Object -ExcludeProperty "CIM*" .

Listing desktop settings

Get-CimInstance -ClassName Win32_Desktop

７ Note

Information returned by some WMI classes can be very detailed, and often include
metadata about the WMI class.

Get-CimInstance -ClassName Win32_Desktop | Select-Object -ExcludeProperty 
"CIM*"



The WMI Win32_BIOS class returns fairly compact and complete information about the
system BIOS on the local computer:

PowerShell

You can retrieve general processor information by using WMI's Win32_Processor class,
although you will likely want to filter the information:

PowerShell

For a generic description string of the processor family, you can just return the
SystemType property:

PowerShell

Computer model information is also available from Win32_ComputerSystem. The
standard displayed output will not need any filtering to provide OEM data:

PowerShell

Output

Listing BIOS Information

Get-CimInstance -ClassName Win32_BIOS

Listing Processor Information

Get-CimInstance -ClassName Win32_Processor | Select-Object -ExcludeProperty 
"CIM*"

Get-CimInstance -ClassName Win32_ComputerSystem | Select-Object -Property 
SystemType

SystemType
----------
X86-based PC

Listing computer manufacturer and model

Get-CimInstance -ClassName Win32_ComputerSystem



Your output from commands such as this, which return information directly from some
hardware, is only as good as the data you have. Some information isn't correctly
configured by hardware manufacturers and may therefore be unavailable.

You can list all installed hotfixes by using Win32_QuickFixEngineering:

PowerShell

This class returns a list of hotfixes that looks like this:

Output

For more succinct output, you may want to exclude some properties. Although you can
use the Get-CimInstance 's Property parameter to choose only the HotFixID, doing so
will actually return more information, because all the metadata is displayed by default:

PowerShell

Output

Name PrimaryOwnerName Domain    TotalPhysicalMemory Model                   
Manufacturer
---- ---------------- ------    ------------------- -----                   
------------
MyPC Jane Doe         WORKGROUP 804765696           DA243A-ABA 6415cl NA910 
Compaq Presario 06

Listing installed hotfixes

Get-CimInstance -ClassName Win32_QuickFixEngineering

Source Description     HotFixID  InstalledBy   InstalledOn PSComputerName
------ -----------     --------  -----------   ----------- --------------
       Security Update KB4048951 Administrator 12/16/2017  .

Get-CimInstance -ClassName Win32_QuickFixEngineering -Property HotFixID

InstalledOn           :
Caption               :
Description           :
InstallDate           :
Name                  :
Status                :
CSName                :



The additional data is returned, because the Property parameter in Get-CimInstance
restricts the properties returned from WMI class instances, not the object returned to
PowerShell. To reduce the output, use Select-Object :

PowerShell

Output

The Win32_OperatingSystem class properties include version and service pack
information. You can explicitly select only these properties to get a version information
summary from Win32_OperatingSystem:

PowerShell

You can also use wildcards with the Property parameter. Because all the properties
beginning with either Build or ServicePack are important to use here, we can shorten
this to the following form:

PowerShell

FixComments           :
HotFixID              : KB4533002
InstalledBy           :
ServicePackInEffect   :
PSComputerName        :
CimClass              : root/cimv2:Win32_QuickFixEngineering
CimInstanceProperties : {Caption, Description, InstallDate, Name…}
CimSystemProperties   : 
Microsoft.Management.Infrastructure.CimSystemProperties
...

Get-CimInstance -ClassName Win32_QuickFixEngineering -Property HotFixId |
    Select-Object -Property HotFixId

HotFixId
--------
KB4048951

Listing operating system version information

Get-CimInstance -ClassName Win32_OperatingSystem |
  Select-Object -Property 
BuildNumber,BuildType,OSType,ServicePackMajorVersion,ServicePackMinorVersion



Output

General information about local users can be found with a selection of
Win32_OperatingSystem class properties. You can explicitly select the properties to
display like this:

PowerShell

A more succinct version using wildcards is:

PowerShell

To see the disk space and free space for local drives, you can use the Win32_LogicalDisk
class. You need to see only instances with a DriveType of 3, the value WMI uses for fixed
hard disks.

PowerShell

Output

Get-CimInstance -ClassName Win32_OperatingSystem |
    Select-Object -Property Build*,OSType,ServicePack*

BuildNumber             : 18362
BuildType               : Multiprocessor Free
OSType                  : 18
ServicePackMajorVersion : 0
ServicePackMinorVersion : 0

Listing local users and owner

Get-CimInstance -ClassName Win32_OperatingSystem |
    Select-Object -Property NumberOfLicensedUsers, NumberOfUsers, 
RegisteredUser

Get-CimInstance -ClassName Win32_OperatingSystem | Select-Object -Property 
*user*

Getting available disk space

Get-CimInstance -ClassName Win32_LogicalDisk -Filter "DriveType=3"



PowerShell

Output

You can get general information about logon sessions associated with users through the
Win32_LogonSession WMI class:

PowerShell

You can display the user logged on to a particular computer system using
Win32_ComputerSystem. This command returns only the user logged on to the system
desktop:

PowerShell

DeviceID DriveType ProviderName VolumeName Size         FreeSpace   
PSComputerName
-------- --------- ------------ ---------- ----         ---------   --------
------
C:       3                      Local Disk 203912880128 65541357568 .
Q:       3                      New Volume 122934034432 44298250240 .

Get-CimInstance -ClassName Win32_LogicalDisk -Filter "DriveType=3" |
    Measure-Object -Property FreeSpace,Size -Sum |
    Select-Object -Property Property,Sum

Property           Sum
--------           ---
FreeSpace 109839607808
Size      326846914560

Getting logon session information

Get-CimInstance -ClassName Win32_LogonSession

Getting the user logged on to a computer

Get-CimInstance -ClassName Win32_ComputerSystem -Property UserName

Getting local time from a computer



You can retrieve the current local time on a specific computer using the
Win32_LocalTime WMI class.

PowerShell

Output

To view the status of all services on a specific computer, you can locally use the Get-
Service  cmdlet. For remote systems, you can use the Win32_Service WMI class. If you
also use Select-Object  to filter the results to Status, Name, and DisplayName, the
output format is almost identical to that from Get-Service :

PowerShell

To allow the complete display of names for services with long names, use the AutoSize
and Wrap parameters of Format-Table . These parameters optimize column width and
allow long names to wrap instead of being truncated:

PowerShell

Get-CimInstance -ClassName Win32_LocalTime

Day            : 23
DayOfWeek      : 1
Hour           : 8
Milliseconds   :
Minute         : 52
Month          : 12
Quarter        : 4
Second         : 55
WeekInMonth    : 4
Year           : 2019
PSComputerName :

Displaying service status

Get-CimInstance -ClassName Win32_Service |
    Select-Object -Property Status,Name,DisplayName

Get-CimInstance -ClassName Win32_Service |
    Format-Table -Property Status, Name, DisplayName -AutoSize -Wrap



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fcollecting-information-about-computers%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FCollecting-Information-About-Computers.md&documentVersionIndependentId=f6b2ad17-db47-ce18-ec97-ca44466bf534&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+db0d2c60-0cf8-37bd-9cbb-6dc84b8fecb4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating Get-WinEvent queries with
FilterHashtable
Article • 06/28/2023

This sample only applies to Windows platforms.

To read the original June 3, 2014 Scripting Guy blog post, see Use FilterHashTable to
Filter Event Log with PowerShell .

This article is an excerpt of the original blog post and explains how to use the Get-
WinEvent  cmdlet's FilterHashtable parameter to filter event logs. PowerShell's Get-
WinEvent  cmdlet is a powerful method to filter Windows event and diagnostic logs.
Performance improves when a Get-WinEvent  query uses the FilterHashtable parameter.

When you work with large event logs, it's not efficient to send objects down the pipeline
to a Where-Object  command. Prior to PowerShell 6, the Get-EventLog  cmdlet was
another option to get log data. For example, the following commands are inefficient to
filter the Microsoft-Windows-Defrag logs:

PowerShell

The following command uses a hash table that improves the performance:

PowerShell

This article presents information about how to use enumerated values in a hash table.
For more information about enumeration, read these Scripting Guy blog posts. To

Get-EventLog -LogName Application | Where-Object Source -Match defrag

Get-WinEvent -LogName Application | Where-Object { $_.ProviderName -match 
'defrag' }

Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='*defrag'
}

Blog posts about enumeration

https://devblogs.microsoft.com/scripting/use-filterhashtable-to-filter-event-log-with-powershell/
https://devblogs.microsoft.com/scripting/use-filterhashtable-to-filter-event-log-with-powershell/
https://devblogs.microsoft.com/scripting/use-filterhashtable-to-filter-event-log-with-powershell/


create a function that returns the enumerated values, see Enumerations and Values .
For more information, see the Scripting Guy series of blog posts about enumeration .

To build efficient queries, use the Get-WinEvent  cmdlet with the FilterHashtable
parameter. FilterHashtable accepts a hash table as a filter to get specific information
from Windows event logs. A hash table uses key-value pairs. For more information
about hash tables, see about_Hash_Tables.

If the key-value pairs are on the same line, they must be separated by a semicolon. If
each key-value pair is on a separate line, the semicolon isn't needed. For example, this
article places key-value pairs on separate lines and doesn't use semicolons.

This sample uses several of the FilterHashtable parameter's key-value pairs. The
completed query includes LogName, ProviderName, Keywords, Id, and Level.

The accepted key-value pairs are shown in the following table and are included in the
documentation for the Get-WinEvent FilterHashtable parameter.

The following table displays the key names, data types, and whether wildcard characters
are accepted for a data value.

Key name Value data type Accepts wildcard characters?

LogName <String[]> Yes

ProviderName <String[]> Yes

Path <String[]> No

Keywords <Long[]> No

ID <Int32[]> No

Level <Int32[]> No

StartTime <DateTime> No

EndTime <DateTime> No

UserID <SID> No

Data <String[]> No

Hash table key-value pairs

ﾉ Expand table

https://devblogs.microsoft.com/scripting/hey-scripting-guy-weekend-scripter-enumerations-and-values
https://devblogs.microsoft.com/scripting/hey-scripting-guy-weekend-scripter-enumerations-and-values
https://devblogs.microsoft.com/scripting/tag/enum/
https://devblogs.microsoft.com/scripting/tag/enum/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_hash_tables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/Get-WinEvent


Key name Value data type Accepts wildcard characters?

<named-data> <String[]> No

The <named-data>  key represents a named event data field. For example, the Perflib
event 1008 can contain the following event data:

XML

You can query for these events using the following command:

PowerShell

To verify results and troubleshoot problems, it helps to build the hash table one key-
value pair at a time. The query gets data from the Application log. The hash table is
equivalent to Get-WinEvent -LogName Application .

To begin, create the Get-WinEvent  query. Use the FilterHashtable parameter's key-value
pair with the key, LogName, and the value, Application.

PowerShell

Continue to build the hash table with the ProviderName key. Usually, the ProviderName
is the name that appears in the Source field in the Windows Event Viewer. For example,

<EventData>
  <Data Name="Service">BITS</Data>
  <Data Name="Library">C:\Windows\System32\bitsperf.dll</Data>
  <Data Name="Win32Error">2</Data>
</EventData>

Get-WinEvent -FilterHashtable @{LogName='Application'; 'Service'='Bits'}

７ Note

The ability to query for <named-data>  was added in PowerShell 6.

Building a query with a hash table

Get-WinEvent -FilterHashtable @{
   LogName='Application'
}



.NET Runtime  in the following screenshot:

Image of Windows Event Viewer sources

Update the hash table and include the key-value pair with the key, ProviderName, and
the value, .NET Runtime .

PowerShell

If your query needs to get data from archived event logs, use the Path key. The Path
value specifies the full path to the log file. For more information, see the Scripting Guy
blog post, Use PowerShell to Parse Saved Event Logs for Errors .

Keywords is the next key in the hash table. The Keywords data type is an array of the
[long]  value type that holds a large number. Use the following command to find the
maximum value of [long] :

PowerShell

Output

For the Keywords key, PowerShell uses a number, not a string such as Security.
Windows Event Viewer displays the Keywords as strings, but they're enumerated values.
In the hash table, if you use the Keywords key with a string value, an error message is
displayed.

Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
}

７ Note

For some event providers, the correct ProviderName can be obtained by looking
on the Details tab in Event Properties. For example, events where the Source field
shows Defrag , the correct ProviderName is Microsoft-Windows-Defrag .

Using enumerated values in a hash table

[long]::MaxValue

9223372036854775807

https://learn.microsoft.com/en-us/powershell/docs-conceptual/samples/media/creating-get-winevent-queries-with-filterhashtable/providername.png?view=powershell-7.5
https://devblogs.microsoft.com/scripting/use-powershell-to-parse-saved-event-logs-for-errors
https://devblogs.microsoft.com/scripting/use-powershell-to-parse-saved-event-logs-for-errors


Open the Windows Event Viewer and from the Actions pane, click on Filter current log.
The Keywords drop-down menu displays the available keywords, as shown in the
following screenshot:

Image of Windows Event Viewer keywords

Use the following command to display the StandardEventKeywords  property names.

PowerShell

Output

The enumerated values are documented in the .NET Framework. For more information,
see StandardEventKeywords Enumeration.

The Keywords names and enumerated values are as follows:

[System.Diagnostics.Eventing.Reader.StandardEventKeywords] |
    Get-Member -Static -MemberType Property

   TypeName: System.Diagnostics.Eventing.Reader.StandardEventKeywords
Name             MemberType Definition
—-             ———- ———-
AuditFailure     Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
AuditSuccess     Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
CorrelationHint  Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
CorrelationHint2 Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
EventLogClassic  Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
None             Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
ResponseTime     Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
Sqm              Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
WdiContext       Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…
WdiDiagnostic    Property   static 
System.Diagnostics.Eventing.Reader.StandardEventKey…

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/docs-conceptual/samples/media/creating-get-winevent-queries-with-filterhashtable/keywords.png?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventing.reader.standardeventkeywords


Name Value

AuditFailure 4503599627370496

AuditSuccess 9007199254740992

CorrelationHint2 18014398509481984

EventLogClassic 36028797018963968

Sqm 2251799813685248

WdiDiagnostic 1125899906842624

WdiContext 562949953421312

ResponseTime 281474976710656

None 0

Update the hash table and include the key-value pair with the key, Keywords, and the
EventLogClassic enumeration value, 36028797018963968.

PowerShell

The Keywords key is enumerated, but you can use a static property name in the hash
table query. Rather than using the returned string, the property name must be
converted to a value with the value__ property.

For example, the following script uses the value__ property.

PowerShell

Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
   Keywords=36028797018963968
}

Keywords static property value (optional)

$C = 
[System.Diagnostics.Eventing.Reader.StandardEventKeywords]::EventLogClassic
Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
   Keywords=$C.value__
}



To get more specific data, the query's results are filtered by Event Id. The Event Id is
referenced in the hash table as the key Id and the value is a specific Event Id. The
Windows Event Viewer displays the Event Id. This example uses Event Id 1023.

Update the hash table and include the key-value pair with the key, Id and the value,
1023.

PowerShell

To further refine the results and include only events that are errors, use the Level key.
Windows Event Viewer displays the Level as string values, but they're enumerated
values. In the hash table, if you use the Level key with a string value, an error message is
displayed.

Level has values such as Error, Warning, or Informational. Use the following command
to display the StandardEventLevel  property names.

PowerShell

Output

Filtering by Event Id

Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
   Keywords=36028797018963968
   ID=1023
}

Filtering by Level

[System.Diagnostics.Eventing.Reader.StandardEventLevel] |
    Get-Member -Static -MemberType Property

   TypeName: System.Diagnostics.Eventing.Reader.StandardEventLevel

Name          MemberType Definition
----          ---------- ----------
Critical      Property   static 
System.Diagnostics.Eventing.Reader.StandardEventLevel Critical {get;}
Error         Property   static 
System.Diagnostics.Eventing.Reader.StandardEventLevel Error {get;}
Informational Property   static 
System.Diagnostics.Eventing.Reader.StandardEventLevel Informational {get;}
LogAlways     Property   static 



The enumerated values are documented in the .NET Framework. For more information,
see StandardEventLevel Enumeration.

The Level key's names and enumerated values are as follows:

Name Value

Verbose 5

Informational 4

Warning 3

Error 2

Critical 1

LogAlways 0

The hash table for the completed query includes the key, Level, and the value, 2.

PowerShell

The Level key is enumerated, but you can use a static property name in the hash table
query. Rather than using the returned string, the property name must be converted to a
value with the value__ property.

For example, the following script uses the value__ property.

System.Diagnostics.Eventing.Reader.StandardEventLevel LogAlways {get;}
Verbose       Property   static 
System.Diagnostics.Eventing.Reader.StandardEventLevel Verbose {get;}
Warning       Property   static 
System.Diagnostics.Eventing.Reader.StandardEventLevel Warning {get;}

ﾉ Expand table

Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
   Keywords=36028797018963968
   ID=1023
   Level=2
}

Level static property in enumeration (optional)

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.eventing.reader.standardeventlevel


PowerShell

$C = [System.Diagnostics.Eventing.Reader.StandardEventLevel]::Informational
Get-WinEvent -FilterHashtable @{
   LogName='Application'
   ProviderName='.NET Runtime'
   Keywords=36028797018963968
   ID=1023
   Level=$C.value__
}



Managing processes with Process
cmdlets
Article • 12/09/2022

This sample only applies to Windows PowerShell 5.1.

You can use the Process cmdlets in PowerShell to manage local and remote processes in
PowerShell.

To get the processes running on the local computer, run a Get-Process  with no
parameters.

You can get particular processes by specifying their process names or process IDs. The
following command gets the Idle process:

PowerShell

Output

Although it's normal for cmdlets to return no data in some situations, when you specify
a process by its ProcessId, Get-Process  generates an error if it finds no matches,
because the usual intent is to retrieve a known running process. If there is no process
with that ID, it's likely that the ID is incorrect or that the process of interest has already
exited:

PowerShell

Output

Getting processes

Get-Process -Id 0

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
      0       0        0         16     0               0 Idle

Get-Process -Id 99



You can use the Name parameter of the Get-Process  cmdlet to specify a subset of
processes based on the process name. The Name parameter can take multiple names in
a comma-separated list and it supports the use of wildcards, so you can type name
patterns.

For example, the following command gets process whose names begin with "ex."

PowerShell

Output

Because the .NET System.Diagnostics.Process class is the foundation for PowerShell
processes, it follows some of the conventions used by System.Diagnostics.Process. One
of those conventions is that the process name for an executable never includes the .exe
at the end of the executable name.

Get-Process  also accepts multiple values for the Name parameter.

PowerShell

Output

You can use the ComputerName parameter of Get-Process  to get processes on remote
computers. For example, the following command gets the PowerShell processes on the
local computer (represented by "localhost") and on two remote computers.

Get-Process : No process with process ID 99 was found.
At line:1 char:12
+ Get-Process  <<<< -Id 99

Get-Process -Name ex*

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
    234       7     5572      12484   134     2.98   1684 EXCEL
    555      15    34500      12384   134   105.25    728 explorer

Get-Process -Name exp*,power*

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
    540      15    35172      48148   141    88.44    408 explorer
    605       9    30668      29800   155     7.11   3052 powershell



PowerShell

Output

The computer names aren't evident in this display, but they're stored in the
MachineName property of the process objects that Get-Process  returns. The following
command uses the Format-Table  cmdlet to display the process Id, ProcessName and
MachineName (ComputerName) properties of the process objects.

PowerShell

Output

This more complex command adds the MachineName property to the standard Get-
Process  display.

PowerShell

Get-Process -Name powershell -ComputerName localhost, Server01, Server02

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
    258       8    29772      38636   130            3700 powershell
    398      24    75988      76800   572            5816 powershell
    605       9    30668      29800   155     7.11   3052 powershell

Get-Process -Name powershell -ComputerName localhost, Server01, Server01 |
    Format-Table -Property Id, ProcessName, MachineName

  Id ProcessName MachineName
  -- ----------- -----------
3700 powershell  Server01
3052 powershell  Server02
5816 powershell  localhost

Get-Process powershell -ComputerName localhost, Server01, Server02 |
    Format-Table -Property Handles,
        @{Label="NPM(K)";Expression={[int]($_.NPM/1024)}},
        @{Label="PM(K)";Expression={[int]($_.PM/1024)}},
        @{Label="WS(K)";Expression={[int]($_.WS/1024)}},
        @{Label="VM(M)";Expression={[int]($_.VM/1MB)}},
        @{Label="CPU(s)";Expression={if ($_.CPU -ne $())
{$_.CPU.ToString("N")}}},
        Id, ProcessName, MachineName -Auto



Output

PowerShell gives you flexibility for listing processes, but what about stopping a process?

The Stop-Process  cmdlet takes a Name or Id to specify a process you want to stop. Your
ability to stop processes depends on your permissions. Some processes can't be
stopped. For example, if you try to stop the idle process, you get an error:

PowerShell

Output

You can also force prompting with the Confirm parameter. This parameter is particularly
useful if you use a wildcard when specifying the process name, because you may
accidentally match some processes you don't want to stop:

PowerShell

Output

Handles  NPM(K)  PM(K) WS(K) VM(M) CPU(s)  Id ProcessName  MachineName
-------  ------  ----- ----- ----- ------  -- -----------  -----------
    258       8  29772 38636   130         3700 powershell Server01
    398      24  75988 76800   572         5816 powershell localhost
    605       9  30668 29800   155 7.11    3052 powershell Server02

Stopping processes

Stop-Process -Name Idle

Stop-Process : Process 'Idle (0)' cannot be stopped due to the following 
error:
 Access is denied
At line:1 char:13
+ Stop-Process  <<<< -Name Idle

Stop-Process -Name t*,e* -Confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "explorer (408)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):n
Confirm
Are you sure you want to perform this action?



Complex process manipulation is possible by using some of the object filtering cmdlets.
Because a Process object has a Responding property that's true when it's no longer
responding, you can stop all nonresponsive applications with the following command:

PowerShell

You can use the same approach in other situations. For example, suppose a secondary
notification area application automatically runs when users start another application.
You may find that this doesn't work correctly in Terminal Services sessions, but you still
want to keep it in sessions that run on the physical computer console. Sessions
connected to the physical computer desktop always have a session ID of 0, so you can
stop all instances of the process that are in other sessions by using Where-Object  and
the process, SessionId:

PowerShell

The Stop-Process  cmdlet doesn't have a ComputerName parameter. Therefore, to run a
stop process command on a remote computer, you need to use the Invoke-Command
cmdlet. For example, to stop the PowerShell process on the Server01 remote computer,
type:

PowerShell

It may occasionally be useful to be able to stop all running PowerShell sessions other
than the current session. If a session is using too many resources or is inaccessible (it
may be running remotely or in another desktop session), you may not be able to directly
stop it. If you try to stop all running sessions, however, the current session may be
terminated instead.

Performing operation "Stop-Process" on Target "taskmgr (4072)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):n

Get-Process | Where-Object -FilterScript {$_.Responding -eq $false} | Stop-
Process

Get-Process -Name BadApp | Where-Object -FilterScript {$_.SessionId -neq 0} 
| Stop-Process

Invoke-Command -ComputerName Server01 {Stop-Process PowerShell}

Stopping All Other PowerShell Sessions



Each PowerShell session has an environment variable PID that contains the Id of the
Windows PowerShell process. You can check the $PID against the Id of each session and
terminate only Windows PowerShell sessions that have a different Id. The following
pipeline command does this and returns the list of terminated sessions (because of the
use of the PassThru parameter):

PowerShell

Output

PowerShell also comes with cmdlets to start (or restart), debug a process, and wait for a
process to complete before running a command. For information about these cmdlets,
see the cmdlet help topic for each cmdlet.

Get-Process
Stop-Process
Start-Process
Wait-Process
Debug-Process
Invoke-Command

Get-Process -Name powershell | Where-Object -FilterScript {$_.Id -ne $PID} |
    Stop-Process -PassThru

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
    334       9    23348      29136   143     1.03    388 powershell
    304       9    23152      29040   143     1.03    632 powershell
    302       9    20916      26804   143     1.03   1116 powershell
    335       9    25656      31412   143     1.09   3452 powershell
    303       9    23156      29044   143     1.05   3608 powershell
    287       9    21044      26928   143     1.02   3672 powershell

Starting, debugging, and waiting for processes

See also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Stop-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Start-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Wait-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Debug-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Invoke-Command


Managing services
Article • 12/09/2022

This sample only applies to Windows PowerShell 5.1.

There are eight core Service cmdlets, designed for a wide range of service tasks . This
article only looks at listing and changing running state for services. You can get a list of
service cmdlets using Get-Command *-Service . You can find information about each
cmdlet by using Get-Help <Cmdlet-Name> , such as Get-Help New-Service .

You can get the services on a local or remote computer by using the Get-Service
cmdlet. As with Get-Process , using the Get-Service  command without parameters
returns all services. You can filter by name, even using an asterisk as a wildcard:

PowerShell

Because it isn't always apparent what the real name for the service is, you may find you
need to find services by display name. You can search by specific name, use wildcards, or
provide a list of display names:

PowerShell

Getting services

PS> Get-Service -Name se*

Status   Name               DisplayName
------   ----               -----------
Running  seclogon           Secondary Logon
Running  SENS               System Event Notification
Stopped  ServiceLayer       ServiceLayer

PS> Get-Service -DisplayName se*

Status   Name               DisplayName
------   ----               -----------
Running  lanmanserver       Server
Running  SamSs              Security Accounts Manager
Running  seclogon           Secondary Logon
Stopped  ServiceLayer       ServiceLayer
Running  wscsvc             Security Center

PS> Get-Service -DisplayName ServiceLayer, Server



With Windows PowerShell, you can use the ComputerName parameter of the Get-
Service  cmdlet to get the services on remote computers. The ComputerName
parameter accepts multiple values and wildcard characters, so you can get the services
on multiple computers with a single command. For example, the following command
gets the services on the Server01 remote computer.

PowerShell

Starting in PowerShell 6.0, the *-Service  cmdlets don't have the ComputerName
parameter. You can still get services on remote computers with PowerShell remoting. For
example, the following command gets the services on the Server02 remote computer.

PowerShell

You can also manage services with the other *-Service  cmdlets. For more information
on PowerShell remoting, see about_Remote.

The Get-Service cmdlet has two parameters that are very useful in service
administration. The DependentServices parameter gets services that depend on the
service.

The RequiredServices parameter gets services upon which the LanmanWorkstation
service depends.

PowerShell

Status   Name               DisplayName
------   ----               -----------
Running  lanmanserver       Server
Stopped  ServiceLayer       ServiceLayer

Getting remote services

Get-Service -ComputerName Server01

Invoke-Command -ComputerName Server02 -ScriptBlock { Get-Service }

Getting required and dependent services

PS> Get-Service -Name LanmanWorkstation -RequiredServices

Status   Name               DisplayName
------   ----               -----------

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/about/about_Remote


The DependentServices parameter gets that require the LanmanWorkstation service.

PowerShell

The following command gets all services that have dependencies. The Format-Table
cmdlet to display the Status, Name, RequiredServices, and DependentServices
properties of the services.

PowerShell

The Service cmdlets all have the same general form. Services can be specified by
common name or display name, and take lists and wildcards as values. To stop the print
spooler, use:

PowerShell

To start the print spooler after it's stopped, use:

PowerShell

Running  MRxSmb20           SMB 2.0 MiniRedirector
Running  bowser             Bowser
Running  MRxSmb10           SMB 1.x MiniRedirector
Running  NSI                Network Store Interface Service

PS> Get-Service -Name LanmanWorkstation -DependentServices

Status   Name               DisplayName
------   ----               -----------
Running  SessionEnv         Terminal Services Configuration
Running  Netlogon           Netlogon
Stopped  Browser            Computer Browser
Running  BITS               Background Intelligent Transfer Ser...

Get-Service -Name * | Where-Object {$_.RequiredServices -or 
$_.DependentServices} |
  Format-Table -Property Status, Name, RequiredServices, DependentServices -
Auto

Stopping, starting, suspending, and restarting
services

Stop-Service -Name spooler



To suspend the print spooler, use:

PowerShell

The Restart-Service  cmdlet works in the same manner as the other Service cmdlets:

PowerShell

Notice that you get a repeated warning message about the Print Spooler starting up.
When you perform a service operation that takes some time, PowerShell notifies you
that it's still attempting to perform the task.

If you want to restart multiple services, you can get a list of services, filter them, and
then perform the restart:

PowerShell

These Service cmdlets don't have a ComputerName parameter, but you can run them
on a remote computer by using the Invoke-Command  cmdlet. For example, the following
command restarts the Spooler service on the Server01 remote computer.

Start-Service -Name spooler

Suspend-Service -Name spooler

PS> Restart-Service -Name spooler

WARNING: Waiting for service 'Print Spooler (Spooler)' to finish starting...
WARNING: Waiting for service 'Print Spooler (Spooler)' to finish starting...
PS>

PS> Get-Service | Where-Object -FilterScript {$_.CanStop} | Restart-Service

WARNING: Waiting for service 'Computer Browser (Browser)' to finish 
stopping...
WARNING: Waiting for service 'Computer Browser (Browser)' to finish 
stopping...
Restart-Service : can't stop service 'Logical Disk Manager (dmserver)' 
because
 it has dependent services. It can only be stopped if the Force flag is set.
At line:1 char:57
+ Get-Service | Where-Object -FilterScript {$_.CanStop} | Restart-Service 
<<<<
WARNING: Waiting for service 'Print Spooler (Spooler)' to finish starting...
WARNING: Waiting for service 'Print Spooler (Spooler)' to finish starting...



PowerShell

The Set-Service  cmdlet changes the properties of a service on a local or remote
computer. Because the service status is a property, you can use this cmdlet to start, stop,
and suspend a service. The Set-Service cmdlet also has a StartupType parameter that
lets you change the service startup type.

To use Set-Service  on Windows Vista and later versions of Windows, open PowerShell
with the Run as administrator option.

For more information, see Set-Service

about_Remote
Get-Service
Set-Service
Restart-Service
Suspend-Service

Invoke-Command -ComputerName Server01 {Restart-Service Spooler}

Setting service properties

See also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/set-service
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/about/about_Remote
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/get-service
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/set-service
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/restart-service
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/suspend-service


Working with printers in Windows
Article • 12/09/2022

This sample only applies to Windows platforms.

You can use PowerShell to manage printers using WMI and the WScript.Network COM
object from WSH.

The simplest way to list the printers installed on a computer is to use the WMI
Win32_Printer class:

PowerShell

You can also list the printers using the WScript.Network COM object that's typically
used in WSH scripts:

PowerShell

Because this command returns a simple string collection of port names and printer
device names without any distinguishing labels, it isn't easy to interpret.

To add a new network printer, use WScript.Network:

PowerShell

Listing printer connections

Get-CimInstance -Class Win32_Printer

(New-Object -ComObject WScript.Network).EnumPrinterConnections()

Adding a network printer

(New-Object -ComObject 
WScript.Network).AddWindowsPrinterConnection("\\Printserver01\Xerox5")

Setting a default printer



To use WMI to set the default printer, find the printer in the Win32_Printer collection
and then invoke the SetDefaultPrinter method:

PowerShell

WScript.Network is a little simpler to use, because it has a SetDefaultPrinter method
that takes only the printer name as an argument:

PowerShell

To remove a printer connection, use the WScript.Network RemovePrinterConnection
method:

PowerShell

$printer = Get-CimInstance -Class Win32_Printer -Filter "Name='HP LaserJet 
5Si'"
Invoke-CimMethod -InputObject $printer -MethodName SetDefaultPrinter

(New-Object -ComObject WScript.Network).SetDefaultPrinter('HP LaserJet 5Si')

Removing a printer connection

(New-Object -ComObject 
WScript.Network).RemovePrinterConnection("\\Printserver01\Xerox5")

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fworking-with-printers%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FWorking-with-Printers.md&documentVersionIndependentId=8d3d0a16-8189-f97f-b955-386a1f019ba8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2df92b55-9cf1-e7c5-284a-55b0cec250be+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Performing networking tasks
Article • 02/12/2025

This sample only applies to Windows platforms.

Because TCP/IP is the most commonly used network protocol, most low-level network
protocol administration tasks involve TCP/IP. In this section, we use PowerShell and WMI
to do these tasks.

To get all IP addresses in use on the local computer, use the following command:

PowerShell

Since the IPAddress property of a Win32_NetworkAdapterConfiguration object is an
array, you must use the ExpandProperty parameter of Select-Object  to see the entire
list of addresses.

Output

Using the Get-Member  cmdlet, you can see that the IPAddress property is an array:

PowerShell

Listing IP addresses for a computer

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
IPEnabled=$true |
    Select-Object -ExpandProperty IPAddress

10.0.0.1
fe80::60ea:29a7:a233:7cb7
2601:600:a27f:a470:f532:6451:5630:ec8b
2601:600:a27f:a470:e167:477d:6c5c:342d
2601:600:a27f:a470:b021:7f0d:eab9:6299
2601:600:a27f:a470:a40e:ebce:1a8c:a2f3
2601:600:a27f:a470:613c:12a2:e0e0:bd89
2601:600:a27f:a470:444f:17ec:b463:7edd
2601:600:a27f:a470:10fd:7063:28e9:c9f3
2601:600:a27f:a470:60ea:29a7:a233:7cb7
2601:600:a27f:a470::2ec1

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
IPEnabled=$true |



Output

The IPAddress property for each network adapter is actually an array. The braces in the
definition indicate that IPAddress isn't a System.String value, but an array of
System.String values.

To display detailed IP configuration data for each network adapter, use the following
command:

PowerShell

The default display for the network adapter configuration object is a very reduced set of
the available information. For in-depth inspection and troubleshooting, use Select-
Object  or a formatting cmdlet, such as Format-List , to specify the properties to be
displayed.

In modern TCP/IP networks you are probably not interested in IPX or WINS properties.
You can use the ExcludeProperty parameter of Select-Object  to hide properties with
names that begin with "WINS" or "IPX".

PowerShell

This command returns detailed information about DHCP, DNS, routing, and other minor
IP configuration properties.

    Get-Member -Name IPAddress

   TypeName: 
Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_NetworkAdap
terConfiguration

Name      MemberType Definition
----      ---------- ----------
IPAddress Property   string[] IPAddress {get;}

Listing IP configuration data

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
IPEnabled=$true

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
IPEnabled=$true |
    Select-Object -ExcludeProperty IPX*,WINS*



You can perform a simple ping against a computer by using Win32_PingStatus. The
following command performs the ping, but returns lengthy output:

PowerShell

The response from Win32_PingStatus contains 29 properties. You can use Format-Table
to select the properties that are most interesting to you. The AutoSize parameter of
Format-Table  resizes the table columns so that they display properly in PowerShell.

PowerShell

Output

A StatusCode of 0 indicates a successful ping.

You can use an array to ping multiple computers with a single command. Because there
is more than one address, use the ForEach-Object  to ping each address separately:

PowerShell

You can use the same command format to ping all the addresses on a subnet, such as a
private network that uses network number 192.168.1.0 and a standard Class C subnet
mask (255.255.255.0)., Only addresses in the range of 192.168.1.1 through 192.168.1.254
are legitimate local addresses (0 is always reserved for the network number and 255 is a
subnet broadcast address).

Pinging computers

Get-CimInstance -Class Win32_PingStatus -Filter "Address='127.0.0.1'"

Get-CimInstance -Class Win32_PingStatus -Filter "Address='127.0.0.1'" |
    Format-Table -Property Address,ResponseTime,StatusCode -AutoSize

Address   ResponseTime StatusCode
-------   ------------ ----------
127.0.0.1            0          0

'127.0.0.1','localhost','bing.com' |
  ForEach-Object -Process {
    Get-CimInstance -Class Win32_PingStatus -Filter ("Address='$_'") |
      Select-Object -Property Address,ResponseTime,StatusCode
  }



To represent an array of the numbers from 1 through 254 in PowerShell, use the
expression 1..254 . A complete subnet ping can be performed by adding each value in
the range to a partial address in the ping statement:

PowerShell

Note that this technique for generating a range of addresses can be used elsewhere as
well. You can generate a complete set of addresses in this way:

PowerShell

Earlier, we mentioned that you could retrieve general configuration properties using the
Win32_NetworkAdapterConfiguration class. Although not strictly TCP/IP information,
network adapter information such as MAC addresses and adapter types can be useful
for understanding what's going on with a computer. To get a summary of this
information, use the following command:

PowerShell

To assign the DNS domain for automatic name resolution, use the SetDNSDomain
method of the Win32_NetworkAdapterConfiguration. The Query parameter of Invoke-
CimMethod  takes a WQL query string. The cmdlet calls the method specified on each
instance returned by the query.

PowerShell

1..254| ForEach-Object -Process {
  Get-CimInstance -Class Win32_PingStatus -Filter ("Address='192.168.1.$_'") 
} |
    Select-Object -Property Address,ResponseTime,StatusCode

$ips = 1..254 | ForEach-Object -Process {'192.168.1.' + $_}

Retrieving network adapter properties

Get-CimInstance -Class Win32_NetworkAdapter -ComputerName .

Assigning the DNS domain for a network
adapter



Filtering on IPEnabled=True  is necessary, because even on a network that uses only
TCP/IP, several of the network adapter configurations on a computer aren't true TCP/IP
adapters. they're general software elements supporting RAS, VPN, QoS, and other
services for all adapters and thus don't have an address of their own.

Modifying DHCP details involves working with a set of network adapters, just as the DNS
configuration does. There are several distinct actions you can perform using WMI.

To find the DHCP-enabled adapters on a computer, use the following command:

PowerShell

To exclude adapters with IP configuration problems, you can retrieve only IP-enabled
adapters:

PowerShell

Because DHCP-related properties for an adapter generally begin with DHCP , you can use
the Property parameter of Format-Table  to display only those properties:

PowerShell

$wql = 'SELECT * FROM Win32_NetworkAdapterConfiguration WHERE 
IPEnabled=True'
$args = @{ DnsDomain = 'fabrikam.com'}
Invoke-CimMethod -MethodName SetDNSDomain -Arguments $args -Query $wql

Performing DHCP configuration tasks

Finding DHCP-enabled adapters

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
"DHCPEnabled=$true"

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter 
"IPEnabled=$true and DHCPEnabled=$true"

Retrieving DHCP properties

Get-CimInstance -Class Win32_NetworkAdapterConfiguration -Filter  
"IPEnabled=$true and DHCPEnabled=$true" |



To enable DHCP on all adapters, use the following command:

PowerShell

Using the filter statement IPEnabled=True and DHCPEnabled=False  avoids enabling DHCP
where it's already enabled.

Instances of the Win32_NetworkAdapterConfiguration class has ReleaseDHCPLease  and
RenewDHCPLease  methods. Both are used in the same way. In general, use these methods
if you only need to release or renew addresses for an adapter on a specific subnet. The
easiest way to filter adapters on a subnet is to choose only the adapter configurations
that use the gateway for that subnet. For example, the following command releases all
DHCP leases on adapters on the local computer that are obtaining DHCP leases from
192.168.1.254:

PowerShell

The only change for renewing a DHCP lease is to use the RenewDHCPLease  method
instead of the ReleaseDHCPLease  method:

PowerShell

  Format-Table -Property DHCP*

Enabling DHCP on each adapter

$wql = 'SELECT * from Win32_NetworkAdapterConfiguration WHERE IPEnabled=True 
and DHCPEnabled=False'
Invoke-CimMethod -MethodName ReleaseDHCPLease -Query $wql

Releasing and renewing DHCP leases on specific adapters

$wql = 'SELECT * from Win32_NetworkAdapterConfiguration WHERE 
DHCPServer="192.168.1.1"'
Invoke-CimMethod -MethodName ReleaseDHCPLease -Query $wql

$wql = 'SELECT * from Win32_NetworkAdapterConfiguration WHERE 
DHCPServer="192.168.1.1"'
Invoke-CimMethod -MethodName RenewDHCPLease -Query $wql

７ Note



You can perform global DHCP address releases or renewals on all adapters by using the
Win32_NetworkAdapterConfiguration methods, ReleaseDHCPLeaseAll  and

RenewDHCPLeaseAll . However, the command must apply to the WMI class, rather than a
particular adapter, because releasing and renewing leases globally is performed on the
class, not on a specific adapter. The Invoke-CimMethod  cmdlet can call the methods of a
class.

PowerShell

You can use the same command format to invoke the RenewDHCPLeaseAll method:

PowerShell

To create a network share, use the Create  method of Win32_Share:

PowerShell

This is equivalent to the following net share  command on Windows:

PowerShell

When using these methods on a remote computer, be aware that you can lose
access to the remote system if you are connected to it through the adapter with
the released or renewed lease.

Releasing and renewing DHCP leases on all adapters

Invoke-CimMethod -ClassName Win32_NetworkAdapterConfiguration -MethodName 
ReleaseDHCPLeaseAll

Invoke-CimMethod -ClassName Win32_NetworkAdapterConfiguration -MethodName 
RenewDHCPLeaseAll

Creating a network share

Invoke-CimMethod -ClassName Win32_Share -MethodName Create -Arguments @{
    Path = 'C:\temp'
    Name = 'TempShare'
    Type = [uint32]0 #Disk Drive
    MaximumAllowed = [uint32]25
    Description = 'test share of the temp folder'
}



To call a method of a WMI class that takes parameters you must know what parameters
are available and the types of those parameters. For example, you can list the methods
of the Win32_Class with the following commands:

PowerShell

Output

Use the following command to list the parameters of the Create  method.

PowerShell

Output

net share tempshare=C:\temp /users:25 /remark:"test share of the temp 
folder"

(Get-CimClass -ClassName Win32_Share).CimClassMethods

Name          ReturnType Parameters                                   
Qualifiers
----          ---------- ----------                                   ------
----
Create            UInt32 {Access, Description, MaximumAllowed, Name…} 
{Constructor, Implemented, MappingStrings, Stati…
SetShareInfo      UInt32 {Access, Description, MaximumAllowed}        
{Implemented, MappingStrings}
GetAccessMask     UInt32 {}                                           
{Implemented, MappingStrings}
Delete            UInt32 {}                                           
{Destructor, Implemented, MappingStrings}

(Get-CimClass -ClassName Win32_Share).CimClassMethods['Create'].Parameters

Name            CimType Qualifiers                                  
ReferenceClassName
----            ------- ----------                                  --------
----------
Access         Instance {EmbeddedInstance, ID, In, MappingStrings…}
Description      String {ID, In, MappingStrings, Optional}
MaximumAllowed   UInt32 {ID, In, MappingStrings, Optional}
Name             String {ID, In, MappingStrings}
Password         String {ID, In, MappingStrings, Optional}
Path             String {ID, In, MappingStrings}
Type             UInt32 {ID, In, MappingStrings}



You can also read the documentation for Create method of the Win32_Share class.

You can remove a network share with Win32_Share, but the process is slightly different
from creating a share, because you need to retrieve the specific instance to be removed,
rather than the Win32_Share class. The following example deletes the share TempShare:

PowerShell

The New-PSDrive  cmdlet can create a PowerShell drive that's mapped to a network
share.

PowerShell

However, drives created this way are only available to PowerShell session where they're
created. To map a drive that's available outside of PowerShell (or to other PowerShell
sessions), you must use the Persist parameter.

PowerShell

Removing a network share

$wql = 'SELECT * from Win32_Share WHERE Name="TempShare"'
Invoke-CimMethod -MethodName Delete -Query $wql

Connecting a Windows-accessible network
drive

New-PSDrive -Name "X" -PSProvider "FileSystem" -Root "\\Server01\Public"

New-PSDrive -Persist -Name "X" -PSProvider "FileSystem" -Root 
"\\Server01\Public"

７ Note

Persistently mapped drives may not be available when running in an elevated
context. This is the default behavior of Windows UAC. For more information, see
the following article:

Mapped drives aren't available from an elevated prompt when UAC is

configured to Prompt for credentials

https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/create-method-in-class-win32-share
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/mapped-drives-not-available-from-elevated-command
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/mapped-drives-not-available-from-elevated-command




Working with software installations
Article • 03/17/2023

Applications installed with the Windows Installer can be found through WMI's queries,
but not all applications use the Windows Installer. The specific techniques for find
applications installed with other tools depends on the installer software.

For example, applications installed by copying the files to a folder on the computer
usually can't be managed using techniques discussed here. You can manage these
applications as files and folders using the techniques discussed in Working With Files
and Folders.

For software installed using an installer package, the Windows Installer can be found
using the Win32Reg_AddRemovePrograms or the Win32_Product classes. However,
both of these have problems. The Win32Reg_AddRemovePrograms is only available if
you are using System Center Configuration Manager (SCCM). And the Win32_Product
class can be slow and has side effects.

This article provides an alternative method for finding installed software.

Because most standard applications register an uninstaller with Windows, we can work
with those locally by finding them in the Windows registry. There is no guaranteed way
to find every application on a system. However, it's possible to find all programs with
listings displayed in Add or Remove Programs in the following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall .

Ｕ Caution

The Win32_Product class isn't query optimized. Queries that use wildcard filters
cause WMI to use the MSI provider to enumerate all installed products then parse
the full list sequentially to handle the filter. This also initiates a consistency check of
packages installed, verifying and repairing the install. The validation is a slow
process and may result in errors in the event logs. For more information seek KB
article 974524 .

Querying the Uninstall registry key to find
installed software

https://support.microsoft.com/help/974524


We can find the number of installed applications by counting the number of registry
keys:

PowerShell

Output

We can search this list of applications further using a variety of techniques. To display
the values of the registry values in the registry keys under Uninstall , use the
GetValue()  method of the registry keys. The value of the method is the name of the
registry entry. For example, to find the display names of applications in the Uninstall
key, use the following command:

PowerShell

The following example produces output similar to the Win32Reg_AddRemovePrograms
class:

PowerShell

$UninstallPath = 'HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall'
(Get-ChildItem -Path $UninstallPath).Count

459

Get-ChildItem -Path $UninstallPath |
    ForEach-Object -Process { $_.GetValue('DisplayName') } |
    Sort-Object

７ Note

There is no guarantee that the DisplayName values are unique.

Get-ChildItem $UninstallPath |
    ForEach-Object {
        $ProdID = ($_.Name -split '\\')[-1]
        Get-ItemProperty -Path "$UninstallPath\$ProdID" -ea SilentlyContinue 
|
        Select-Object -Property DisplayName, InstallDate, @{n='ProdID'; e=
{$ProdID}}, Publisher, DisplayVersion
} | Select-Object -First 3



For the sake of brevity, this example uses Select-Object  to limit the number of items
returned to three.

Output

DisplayName    : 7-Zip 22.01 (x64)
InstallDate    :
ProdID         : 7-Zip
Publisher      : Igor Pavlov
DisplayVersion : 22.01

DisplayName    : AutoHotkey 1.1.33.10
InstallDate    :
ProdID         : AutoHotkey
Publisher      : Lexikos
DisplayVersion : 1.1.33.10

DisplayName    : Beyond Compare 4.4.6
InstallDate    : 20230310
ProdID         : BeyondCompare4_is1
Publisher      : Scooter Software
DisplayVersion : 4.4.6.27483

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fworking-with-software-installations%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FWorking-with-Software-Installations.md&documentVersionIndependentId=e86062a7-1c61-92b4-407a-293990d30a06&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6302f6fb-6192-f43f-4ba4-85ebd79941b9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Decode a PowerShell command from a
running process
Article • 12/09/2022

This sample only runs on Windows platforms.

At times, you may have a PowerShell process running that's taking up a large amount of
resources. This process could be running in the context of a Task Scheduler job or a SQL
Server Agent job. Where there are multiple PowerShell processes running, it can be
difficult to know which process represents the problem. This article shows how to
decode a script block that a PowerShell process is currently running.

To demonstrate this scenario, open a new PowerShell window and run the following
code. It executes a PowerShell command that outputs a number every minute for 10
minutes.

PowerShell

The body of the command that PowerShell is executing is stored in the CommandLine
property of the Win32_Process class. If the command is an encoded command, the
CommandLine property contains the string "EncodedCommand". Using this
information, the encoded command can be de-obfuscated via the following process.

Start PowerShell as Administrator. It's vital that PowerShell is running as administrator,
otherwise no results are returned when querying the running processes.

Create a long running process

powershell.exe -Command {
    $i = 1
    while ( $i -le 10 )
    {
        Write-Output -InputObject $i
        Start-Sleep -Seconds 60
        $i++
    }
}

View the process

https://learn.microsoft.com/en-us/windows/desktop/TaskSchd/task-scheduler-start-page
https://learn.microsoft.com/en-us/sql/ssms/agent/sql-server-agent
https://learn.microsoft.com/en-us/sql/ssms/agent/sql-server-agent
https://learn.microsoft.com/en-us/windows/desktop/CIMWin32Prov/win32-process


Execute the following command to get all the PowerShell processes that have an
encoded command:

PowerShell

The following command creates a custom PowerShell object that contains the process
ID and the encoded command.

PowerShell

Now the encoded command can be decoded. The following snippet iterates over the
command details object, decodes the encoded command, and adds the decoded
command back to the object for further investigation.

PowerShell

$powerShellProcesses = Get-CimInstance -ClassName Win32_Process -Filter 
'CommandLine LIKE "%EncodedCommand%"'

$commandDetails = $powerShellProcesses | Select-Object -Property ProcessId,
@{
    Name       = 'EncodedCommand'
    Expression = {
        if ( $_.CommandLine -match 'encodedCommand (.*) -inputFormat' )
        {
            return $Matches[1]
        }
    }
}

$commandDetails | ForEach-Object -Process {
    # Get the current process
    $currentProcess = $_

    # Convert the Base 64 string to a Byte Array
    $commandBytes = 
[System.Convert]::FromBase64String($currentProcess.EncodedCommand)

    # Convert the Byte Array to a string
    $decodedCommand = 
[System.Text.Encoding]::Unicode.GetString($commandBytes)

    # Add the decoded command back to the object
    $commandDetails |
        Where-Object -FilterScript { $_.ProcessId -eq 
$currentProcess.ProcessId } |
        Add-Member -MemberType NoteProperty -Name DecodedCommand -Value 
$decodedCommand



The decoded command can now be reviewed by selecting the decoded command
property.

Output

}
$commandDetails[0] | Format-List -Property *

ProcessId      : 8752
EncodedCommand : 
IAAKAAoACgAgAAoAIAAgACAAIAAkAGkAIAA9ACAAMQAgAAoACgAKACAACgAgACAAIAAgAHcAaABp
AGwAZQAgACgAIAAkAGkAIAAtAG
                 
wAZQAgADEAMAAgACkAIAAKAAoACgAgAAoAIAAgACAAIAB7ACAACgAKAAoAIAAKACAAIAAgACAAIA
AgACAAIABXAHIAaQB0AGUALQBP
                 
AHUAdABwAHUAdAAgAC0ASQBuAHAAdQB0AE8AYgBqAGUAYwB0ACAAJABpACAACgAKAAoAIAAKACAA
IAAgACAAIAAgACAAIABTAHQAYQ
                 
ByAHQALQBTAGwAZQBlAHAAIAAtAFMAZQBjAG8AbgBkAHMAIAA2ADAAIAAKAAoACgAgAAoAIAAgAC
AAIAAgACAAIAAgACQAaQArACsA
                 IAAKAAoACgAgAAoAIAAgACAAIAB9ACAACgAKAAoAIAAKAA==
DecodedCommand :
                     $i = 1
                     while ( $i -le 10 )
                     {
                         Write-Output -InputObject $i
                         Start-Sleep -Seconds 60
                         $i++
                     }



Redirecting output
Article • 05/14/2024

PowerShell provides several cmdlets that let you control data output directly. These
cmdlets share two important characteristics.

First, they generally transform data to some form of text. They do this because they
output the data to system components that require text input. This means they need to
represent the objects as text. Therefore, the text is formatted as you see it in the
PowerShell console window.

Second, these cmdlets use the PowerShell verb Out because they send information out
from PowerShell to somewhere else.

By default, PowerShell sends data to the host window, which is exactly what the Out-
Host  cmdlet does. The primary use for the Out-Host  cmdlet is paging. For example, the
following command uses Out-Host  to page the output of the Get-Command  cmdlet:

PowerShell

The host window display is outside of PowerShell. This is important because when data
is sent out of PowerShell, it's actually removed. You can see this if you try to create a
pipeline that pages data to the host window, and then attempt to format it as a list, as
shown here:

PowerShell

You might expect the command to display pages of process information in list format.
Instead, it displays the default tabular list:

Output

Console output

Get-Command | Out-Host -Paging

Get-Process | Out-Host -Paging | Format-List

Handles  NPM(K)    PM(K)      WS(K) VM(M)   CPU(s)     Id ProcessName
-------  ------    -----      ----- -----   ------     -- -----------
    101       5     1076       3316    32     0.05   2888 alg
...



The Out-Host  cmdlet sends the data directly to the console, so the Format-List
command never receives anything to format.

The correct way to structure this command is to put the Out-Host  cmdlet at the end of
the pipeline as shown below. This causes the process data to be formatted in a list
before being paged and displayed.

PowerShell

Output

This applies to all of the Out cmdlets. An Out cmdlet should always appear at the end of
the pipeline.

    618      18    39348      51108   143   211.20    740 explorer
    257       8     9752      16828    79     3.02   2560 explorer
...
<SPACE> next page; <CR> next line; Q quit
...

Get-Process | Format-List | Out-Host -Paging

Id      : 2888
Handles : 101
CPU     : 0.046875
Name    : alg
...

Id      : 740
Handles : 612
CPU     : 211.703125
Name    : explorer

Id      : 2560
Handles : 257
CPU     : 3.015625
Name    : explorer
...
<SPACE> next page; <CR> next line; Q quit
...

７ Note

All the Out cmdlets render output as text, using the formatting in effect for the
console window, including line length limits.



The Out-Null  cmdlet is designed to immediately discard any input it receives. This is
useful for discarding unnecessary data that you get as a side-effect of running a
command. When type the following command, you don't get anything back from the
command:

PowerShell

The Out-Null  cmdlet doesn't discard error output. For example, if you enter the
following command, a message is displayed informing you that PowerShell doesn't
recognize Is-NotACommand :

Out-Printer  is only available on Windows platforms.

You can print data using the Out-Printer  cmdlet. The Out-Printer  cmdlet uses your
default printer if you don't provide a printer name. You can use any Windows-based
printer by specifying its display name. There is no need for any kind of printer port
mapping or even a real physical printer. For example, if you have the Microsoft Office
document imaging tools installed, you can send the data to an image file by typing:

PowerShell

Discarding output

Get-Command | Out-Null

PS> Get-Command Is-NotACommand | Out-Null
Get-Command : 'Is-NotACommand' isn't recognized as a cmdlet, function, 
operable program, or script file.
At line:1 char:12
+ Get-Command  <<<< Is-NotACommand | Out-Null

Printing data

Get-Command -Name Get-* | Out-Printer -Name 'Microsoft Office Document Image 
Writer'

Saving data



You can send output to a file instead of the console window using the Out-File  cmdlet.
The following command line sends a list of processes to the file
C:\temp\processlist.txt :

PowerShell

The results of using the Out-File  cmdlet may not be what you expect if you are used to
traditional output redirection. To understand its behavior, you must be aware of the
context in which the Out-File  cmdlet operates.

On Window PowerShell 5.1, the Out-File  cmdlet creates a Unicode file. Some tools, that
expect ASCII files, don't work correctly with the default output format. You can change
the default output format to ASCII using the Encoding parameter:

PowerShell

Out-File  formats file contents to look like console output. This causes the output to be
truncated just as it's in a console window in most circumstances. For example, if you run
the following command:

PowerShell

The output will look like this:

Output

To get output that doesn't force line wraps to match the screen width, you can use the
Width parameter to specify line width. Because Width is a 32-bit integer parameter, the
maximum value it can have is 2147483647. Type the following to set the line width to
this maximum value:

Get-Process | Out-File -FilePath C:\temp\processlist.txt

Get-Process | Out-File -FilePath C:\temp\processlist.txt -Encoding ascii

Get-Command | Out-File -FilePath C:\temp\output.txt

CommandType     Name                            Definition
-----------     ----                            ----------
Cmdlet          Add-Content                     Add-Content [-Path] 
<String[...
Cmdlet          Add-History                     Add-History [[-InputObject] 
...
...



PowerShell

The Out-File  cmdlet is most useful when you want to save output as it would have
displayed on the console.

Get-Command | Out-File -FilePath C:\temp\output.txt -Width 2147483647



Using Format commands to change
output view
Article • 12/09/2022

PowerShell has a set of cmdlets that allow you to control how properties are displayed
for particular objects. The names of all the cmdlets begin with the verb Format . They let
you select which properties you want to show.

PowerShell

Output

This article describes the Format-Wide , Format-List , and Format-Table  cmdlets.

Each object type in PowerShell has default properties that are used when you don't
select the properties to display. Each cmdlet uses the same Property parameter to
specify which properties you want displayed. Because Format-Wide  only shows a single
property, its Property parameter only takes a single value, but the Property parameter
of Format-List  and Format-Table  accepts a list of property names.

In this example, the default output of Get-Process  cmdlet shows that we've two
instances of Internet Explorer running.

PowerShell

The default format for Process objects displays the properties shown here:

Output

Get-Command -Verb Format -Module Microsoft.PowerShell.Utility

CommandType     Name               Version    Source
-----------     ----               -------    ------
Cmdlet          Format-Custom      6.1.0.0    Microsoft.PowerShell.Utility
Cmdlet          Format-Hex         6.1.0.0    Microsoft.PowerShell.Utility
Cmdlet          Format-List        6.1.0.0    Microsoft.PowerShell.Utility
Cmdlet          Format-Table       6.1.0.0    Microsoft.PowerShell.Utility
Cmdlet          Format-Wide        6.1.0.0    Microsoft.PowerShell.Utility

Get-Process -Name iexplore

 NPM(K)    PM(M)      WS(M)     CPU(s)      Id  SI ProcessName
 ------    -----      -----     ------      --  -- -----------



The Format-Wide  cmdlet, by default, displays only the default property of an object. The
information associated with each object is displayed in a single column:

PowerShell

Output

You can also specify a non-default property:

PowerShell

Output

With the Format-Wide  cmdlet, you can only display a single property at a time. This
makes it useful for displaying large lists in multiple columns.

PowerShell

Output

     32    25.52      10.25      13.11   12808   1 iexplore
     52    11.46      26.46       3.55   21748   1 iexplore

Using Format-Wide for single-item output

Get-Command -Verb Format | Format-Wide

Format-Custom          Format-Hex
Format-List            Format-Table
Format-Wide

Get-Command -Verb Format | Format-Wide -Property Noun

Custom                 Hex
List                   Table
Wide

Controlling Format-Wide display with column

Get-Command -Verb Format | Format-Wide -Property Noun -Column 3



The Format-List  cmdlet displays an object in the form of a listing, with each property
labeled and displayed on a separate line:

PowerShell

Output

You can specify as many properties as you want:

PowerShell

Output

Custom                 Hex                  List
Table                  Wide

Using Format-List for a list view

Get-Process -Name iexplore | Format-List

Id      : 12808
Handles : 578
CPU     : 13.140625
SI      : 1
Name    : iexplore

Id      : 21748
Handles : 641
CPU     : 3.59375
SI      : 1
Name    : iexplore

Get-Process -Name iexplore | Format-List -Property 
ProcessName,FileVersion,StartTime,Id

ProcessName : iexplore
FileVersion : 11.00.18362.1 (WinBuild.160101.0800)
StartTime   : 10/22/2019 11:23:58 AM
Id          : 12808

ProcessName : iexplore
FileVersion : 11.00.18362.1 (WinBuild.160101.0800)
StartTime   : 10/22/2019 11:23:57 AM
Id          : 21748



The Format-List  cmdlet lets you use a wildcard as the value of its Property parameter.
This lets you display detailed information. Often, objects include more information than
you need, which is why PowerShell doesn't show all property values by default. To show
all properties of an object, use the Format-List -Property *  command. The following
command generates more than 60 lines of output for a single process:

PowerShell

Although the Format-List  command is useful for showing detail, if you want an
overview of output that includes many items, a simpler tabular view is often more useful.

If you use the Format-Table  cmdlet with no property names specified to format the
output of the Get-Process  command, you get exactly the same output as you do
without a Format  cmdlet. By default, PowerShell displays Process objects in a tabular
format.

PowerShell

Output

Getting detailed information using Format-List with
wildcards

Get-Process -Name iexplore | Format-List -Property *

Using Format-Table for tabular output

Get-Service -Name win* | Format-Table

Status   Name               DisplayName
------   ----               -----------
Running  WinDefend          Windows Defender Antivirus Service
Running  WinHttpAutoProx... WinHTTP Web Proxy Auto-Discovery Se...
Running  Winmgmt            Windows Management Instrumentation
Running  WinRM              Windows Remote Management (WS-Manag...

７ Note

Get-Service  is only available on Windows platforms.



Although a tabular view is useful for displaying lots of information, it may be difficult to
interpret if the display is too narrow for the data. In the previous example, the output is
truncated. If you specify the AutoSize parameter when you run the Format-Table
command, PowerShell calculates column widths based on the actual data displayed. This
makes the columns readable.

PowerShell

Output

The Format-Table  cmdlet might still truncate data, but it only truncates at the end of the
screen. Properties, other than the last one displayed, are given as much size as they
need for their longest data element to display correctly.

PowerShell

Output

Improving Format-Table output

Get-Service -Name win* | Format-Table -AutoSize

Status  Name                DisplayName
------  ----                -----------
Running WinDefend           Windows Defender Antivirus Service
Running WinHttpAutoProxySvc WinHTTP Web Proxy Auto-Discovery Service
Running Winmgmt             Windows Management Instrumentation
Running WinRM               Windows Remote Management (WS-Management)

Get-Service -Name win* |
    Format-Table -Property Name, Status, StartType, DisplayName, 
DependentServices -AutoSize

Name                 Status StartType DisplayName                              
DependentServi
                                                                               
ces
----                 ------ --------- -----------                              
--------------
WinDefend           Running Automatic Windows Defender Antivirus Service       
{}
WinHttpAutoProxySvc Running    Manual WinHTTP Web Proxy Auto-Discovery 
Service  {NcaSvc, iphl…
Winmgmt             Running Automatic Windows Management Instrumentation       
{vmms, TPHKLO…



The Format-Table  command assumes that properties are listed in order of importance.
The cmdlet attempts to fully display the properties nearest the beginning. If the Format-
Table  command can't display all the properties, it removes some columns from the
display. You can see this behavior in the DependentServices property previous example.

You can force lengthy Format-Table  data to wrap within its display column using the
Wrap parameter. Using the Wrap parameter may not do what you expect, since it uses
default settings if you don't also specify AutoSize:

PowerShell

Output

Using the Wrap parameter by itself doesn't slow down processing very much. However,
using AutoSize to format a recursive file listing of a large directory structure can take a

WinRM               Running Automatic Windows Remote Management (WS-
Management) {}

Wrapping Format-Table output in columns

Get-Service -Name win* |
    Format-Table -Property Name, Status, StartType, DisplayName, 
DependentServices -Wrap

Name                 Status StartType DisplayName                              
DependentServi
                                                                               
ces
----                 ------ --------- -----------                              
--------------
WinDefend           Running Automatic Windows Defender Antivirus Service       
{}
WinHttpAutoProxySvc Running    Manual WinHTTP Web Proxy Auto-Discovery 
Service  {NcaSvc,
                                                                               
iphlpsvc}
Winmgmt             Running Automatic Windows Management Instrumentation       
{vmms,
                                                                               
TPHKLOAD,
                                                                               
SUService,
                                                                               
smstsmgr…}
WinRM               Running Automatic Windows Remote Management (WS-
Management) {}



long time and use lots of memory before displaying the first output items.

If you aren't concerned about system load, then AutoSize works well with the Wrap
parameter. The initial columns still use as much width as needed to display items on one
line, but the final column is wrapped, if necessary.

In the following example, we specify the widest properties first.

PowerShell

Even with wrapping, the final Id column is omitted:

Output

Another useful parameter for tabular output control is GroupBy. Longer tabular listings
in particular may be hard to compare. The GroupBy parameter groups output based on

７ Note

Some columns may not be displayed when you specify the widest columns first. For
best results, specify the smallest data elements first.

Get-Process -Name iexplore |
    Format-Table -Wrap -AutoSize -Property FileVersion, Path, Name, Id

FileVersion                          Path                                      
Nam
                                                                               
e
-----------                          ----                                      
---
11.00.18362.1 (WinBuild.160101.0800) C:\Program Files (x86)\Internet 
Explorer\IEXPLORE.EXE iex
                                                                               
plo
                                                                               
re
11.00.18362.1 (WinBuild.160101.0800) C:\Program Files\Internet 
Explorer\iexplore.exe       iex
                                                                               
plo
                                                                               
re

Organizing table output



a property value. For example, we can group services by StartType for easier inspection,
omitting the StartType value from the property listing:

PowerShell

Output

Get-Service -Name win* | Sort-Object StartType | Format-Table -GroupBy 
StartType

   StartType: Automatic
Status   Name               DisplayName
------   ----               -----------
Running  WinDefend          Windows Defender Antivirus Service
Running  Winmgmt            Windows Management Instrumentation
Running  WinRM              Windows Remote Management (WS-Managem…

   StartType: Manual
Status   Name               DisplayName
------   ----               -----------
Running  WinHttpAutoProxyS… WinHTTP Web Proxy Auto-Discovery Serv…



Managing current location
Article • 12/18/2023

When navigating folder systems in File Explorer, you usually have a specific working
location - namely, the current open folder. Items in the current folder can be
manipulated easily by clicking them. For command-line interfaces such as Cmd.exe,
when you are in the same folder as a particular file, you can access it by specifying a
relatively short name, rather than needing to specify the entire path to the file. The
current directory is called the working directory.

PowerShell uses the noun Location to refer to the working directory, and implements a
family of cmdlets to examine and manipulate your location.

To determine the path of your current directory location, enter the Get-Location
command:

PowerShell

Output

The Get-Location  command is used with the Set-Location  command. The Set-Location
command allows you to specify your current directory location.

PowerShell

Getting your current location (Get-Location)

Get-Location

Path
----
C:\Documents and Settings\PowerUser

７ Note

The Get-Location  cmdlet is similar to the pwd command in the BASH shell. The
Set-Location  cmdlet is similar to the cd command in Cmd.exe.

Setting your current location (Set-Location)



After you enter the command, notice that you don't receive any direct feedback about
the effect of the command. Most PowerShell commands that perform an action produce
little or no output because the output isn't always useful. To verify that a successful
directory change has occurred when you enter the Set-Location  command, include the
PassThru parameter when you enter the Set-Location  command:

PowerShell

Output

The PassThru parameter can be used with many Set commands in PowerShell to return
information about the result for cases in which there is no default output.

You can specify paths relative to your current location in the same way as you would in
most Unix and Windows command shells. In standard notation for relative paths, a
period ( . ) represents your current folder, and a doubled period ( .. ) represents the
parent directory of your current location.

For example, if you are in the C:\Windows  folder, a period ( . ) represents C:\Windows  and
double periods ( .. ) represent C: . You can change from your current location to the
root of the C:  drive by typing:

PowerShell

Output

The same technique works on PowerShell drives that aren't file system drives, such as
HKLM: . You can set your location to the HKLM\Software  key in the registry by typing:

Set-Location -Path C:\Windows

Set-Location -Path C:\Windows -PassThru

Path
----
C:\WINDOWS

Set-Location -Path .. -PassThru

Path
----
C:\



PowerShell

Output

You can then change the directory location to the parent directory, using a relative path:

PowerShell

Output

You can type Set-Location  or use any of the built-in PowerShell aliases for Set-Location
( cd , chdir , sl ). For example:

PowerShell

PowerShell

PowerShell

Set-Location -Path HKLM:\SOFTWARE -PassThru

Path
----
HKLM:\SOFTWARE

Set-Location -Path .. -PassThru

Path
----
HKLM:\

cd -Path C:\Windows

chdir -Path .. -PassThru

sl -Path HKLM:\SOFTWARE -PassThru

Saving and recalling recent locations (Push-
Location and Pop-Location)



When changing locations, it's helpful to keep track of where you have been and to be
able to return to your previous location. The Push-Location  cmdlet in PowerShell creates
an ordered history (a "stack") of directory paths where you have been, and you can step
back through the history of directory paths using the Pop-Location  cmdlet.

For example, PowerShell typically starts in the user's home directory.

PowerShell

To push the current location onto the stack, and then move to the Local Settings folder,
type:

PowerShell

You can then push the Local Settings location onto the stack and move to the Temp
folder by typing:

PowerShell

You can verify that you changed directories by entering the Get-Location  command:

PowerShell

Get-Location

Path
----
C:\Documents and Settings\PowerUser

７ Note

The word stack has a special meaning in many programming settings, including
.NET Framework. Like a physical stack of items, the last item you put onto the stack
is the first item that you can pull off the stack. Adding an item to a stack is
colloquially known as "pushing" the item onto the stack. Pulling an item off the
stack is colloquially known as "popping" the item off the stack.

Push-Location -Path "Local Settings"

Push-Location -Path Temp

Get-Location



Output

You can then pop back into the most recently visited directory by entering the Pop-
Location  command, and verify the change by entering the Get-Location  command:

PowerShell

Output

Just as with the Set-Location  cmdlet, you can include the PassThru parameter when
you enter the Pop-Location  cmdlet to display the directory that you entered:

PowerShell

Output

You can also use the Location cmdlets with network paths. If you have a server named
FS01 with a share named Public, you can change your location by typing

PowerShell

or

PowerShell

Path
----
C:\Documents and Settings\PowerUser\Local Settings\Temp

Pop-Location
Get-Location

Path
----
C:\Documents and Settings\me\Local Settings

Pop-Location -PassThru

Path
----
C:\Documents and Settings\PowerUser

Set-Location \\FS01\Public



You can use the Push-Location  and Set-Location  commands to change the location to
any available drive. For example, if you have a local CD-ROM drive with drive letter D
that contains a data CD, you can change the location to the CD drive by entering the
Set-Location D:  command.

If the drive is empty, you get the following error message:

PowerShell

Output

When you are using a command-line interface, it's not convenient to use File Explorer to
examine the available physical drives. Also, File Explorer would not show you the all the
PowerShell drives. PowerShell provides a set of commands for manipulating PowerShell
drives.

Push-Location \\FS01\Public

Set-Location D:

Set-Location : Cannot find path 'D:\' because it does not exist.



Managing PowerShell drives
Article • 12/19/2023

This sample only applies to Windows platforms.

A PowerShell drive is a data store location that you can access like a filesystem drive in
PowerShell. The PowerShell providers create some drives for you, such as the file system
drives (including C:  and D: ), the registry drives ( HKCU:  and HKLM: ), and the certificate
drive ( Cert: ), and you can create your own PowerShell drives. These drives are useful,
but they're available only within PowerShell. You can't access them using other Windows
tools, such as File Explorer or Cmd.exe .

PowerShell uses the noun, PSDrive, for commands that work with PowerShell drives. For
a list of the PowerShell drives in your PowerShell session, use the Get-PSDrive  cmdlet.

PowerShell

Output

Although the drives in the display vary with the drives on your system, yours should look
similar to the output of the Get-PSDrive  command shown above.

filesystem drives are a subset of the PowerShell drives. You can identify the filesystem
drives by the FileSystem entry in the Provider column. The filesystem drives in
PowerShell are supported by the PowerShell FileSystem provider.

Get-PSDrive

Name       Provider      Root                                   
CurrentLocation
----       --------      ----                                   ------------
---
A          FileSystem    A:\
Alias      Alias
C          FileSystem    C:\                                 ...And 
Settings\me
cert       Certificate   \
D          FileSystem    D:\
Env        Environment
Function   Function
HKCU       Registry      HKEY_CURRENT_USER
HKLM       Registry      HKEY_LOCAL_MACHINE
Variable   Variable



To see the syntax of the Get-PSDrive  cmdlet, type a Get-Command  command with the
Syntax parameter:

PowerShell

Output

The PSProvider parameter lets you display only the PowerShell drives that are
supported by a particular provider. For example, to display only the PowerShell drives
that are supported by the PowerShell FileSystem provider, type a Get-PSDrive  command
with the PSProvider parameter and the FileSystem value:

PowerShell

Output

To view the PowerShell drives that represent registry hives, use the PSProvider
parameter to display only the PowerShell drives that are supported by the PowerShell
Registry provider:

PowerShell

Output

Get-Command -Name Get-PSDrive -Syntax

Get-PSDrive [[-Name] <String[]>] [-Scope <String>] [-PSProvider <String[]>] 
[-V
erbose] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] 
[-
OutVariable <String>] [-OutBuffer <Int32>]

Get-PSDrive -PSProvider FileSystem

Name       Provider      Root                                   
CurrentLocation
----       --------      ----                                   ------------
---
A          FileSystem    A:\
C          FileSystem    C:\                           ...nd 
Settings\PowerUser
D          FileSystem    D:\

Get-PSDrive -PSProvider Registry



You can also use the standard Location cmdlets with the PowerShell drives:

PowerShell

Output

You can add your own PowerShell drives by using the New-PSDrive  command. To get the
syntax for the New-PSDrive  command, enter the Get-Command  command with the Syntax
parameter:

PowerShell

Output

To create a new PowerShell drive, you must supply three parameters:

A name for the drive (you can use any valid PowerShell name)

Name       Provider      Root                                   
CurrentLocation
----       --------      ----                                   ------------
---
HKCU       Registry      HKEY_CURRENT_USER
HKLM       Registry      HKEY_LOCAL_MACHINE

Set-Location HKLM:\SOFTWARE
Push-Location .\Microsoft
Get-Location

Path
----
HKLM:\SOFTWARE\Microsoft

Adding new PowerShell drives

Get-Command -Name New-PSDrive -Syntax

New-[-Description <String>] [-Scope <String>] [-Credential <PSCredential>] 
[-Verbose] [-Debug ]
[-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable 
<St ring>]
[-OutBuffer <Int32>] [-WhatIf] [-Confirm]



The PSProvider - use FileSystem  for filesystem locations and Registry  for registry
locations
The root, that is, the path to the root of the new drive

For example, you can create a drive named Office  that's mapped to the folder that
contains the Microsoft Office applications on your computer, such as C:\Program
Files\MicrosoftOffice\OFFICE11 . To create the drive, type the following command:

PowerShell

Output

A PowerShell drive is accessed using its name followed by a colon ( : ).

A PowerShell drive can make many tasks much simpler. For example, some of the most
important keys in the Windows registry have extremely long paths, making them
cumbersome to access and difficult to remember. Critical configuration information
resides under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion . To view
and change items in the CurrentVersion registry key, you can create a PowerShell drive
that's rooted in that key by typing:

PowerShell

Output

New-PSDrive -Name Office -PSProvider FileSystem -Root "C:\Program 
Files\Microsoft Office\OFFICE11"

Name       Provider      Root                                   
CurrentLocation
----       --------      ----                                   ------------
---
Office     FileSystem    C:\Program Files\Microsoft Offic...

７ Note

In general, paths aren't case-sensitive.

New-PSDrive -Name cvkey -PSProvider Registry -Root 
HKLM\Software\Microsoft\Windows\CurrentVersion

Name       Provider      Root                                   
CurrentLocation



You can then change location to the cvkey: drive as you would any other drive:

PowerShell

or:

PowerShell

Output

The New-PSDrive  cmdlet adds the new drive only to the current PowerShell session. If
you close the PowerShell window, the new drive is lost. To save a PowerShell drive, use
the Export-Console  cmdlet to export the current PowerShell session, and then use the
powershell.exe  PSConsoleFile parameter to import it. Or, add the new drive to your
Windows PowerShell profile.

You can delete drives from PowerShell using the Remove-PSDrive  cmdlet. For example, if
you added the Office:  PowerShell drive, as shown in the New-PSDrive  topic, you can
delete it by typing:

PowerShell

To delete the cvkey:  PowerShell drive, use the following command:

PowerShell

----       --------      ----                                   ------------
---
cvkey      Registry      HKLM\Software\Microsoft\Windows\...

cd cvkey:

Set-Location cvkey: -PassThru

Path
----
cvkey:\

Deleting PowerShell drives

Remove-PSDrive -Name Office



However, you can't delete it while you are in the drive. For example:

PowerShell

Output

PowerShell detects filesystem drives that are added or removed in Windows, including:

network drives that are mapped
USB drives that are attached
Drives that are deleted using the net use  command or from a Windows Script
Host (WSH) script

Remove-PSDrive -Name cvkey

cd office:
Remove-PSDrive -Name Office

Remove-PSDrive : Cannot remove drive 'Office' because it is in use.
At line:1 char:15
+ Remove-PSDrive  <<<< -Name Office

Adding and removing drives outside
PowerShell



Working with files and folders
Article • 10/18/2023

Navigating through PowerShell drives and manipulating the items on them is similar to
manipulating files and folders on Windows disk drives. This article discusses how to deal
with specific file and folder manipulation tasks using PowerShell.

You can get all items directly within a folder using Get-ChildItem . Add the optional
Force parameter to display hidden or system items. For example, this command displays
the direct contents of PowerShell Drive C: .

PowerShell

The command lists only the directly contained items, much like using the dir  command
in cmd.exe  or ls  in a Unix shell. To show items in subfolder, you need to specify the
Recurse parameter. The following command lists everything on the C:  drive:

PowerShell

Get-ChildItem  can filter items with its Path, Filter, Include, and Exclude parameters, but
those are typically based only on name. You can perform complex filtering based on
other properties of items using Where-Object .

The following command finds all executables within the Program Files folder that were
last modified after October 1, 2005 and that are neither smaller than 1 megabyte nor
larger than 10 megabytes:

PowerShell

Listing all files and folders within a folder

Get-ChildItem -Path C:\ -Force

Get-ChildItem -Path C:\ -Force -Recurse

Get-ChildItem -Path $Env:ProgramFiles -Recurse -Include *.exe |
    Where-Object -FilterScript {
        ($_.LastWriteTime -gt '2005-10-01') -and ($_.Length -ge 1mb) -and 
($_.Length -le 10mb)
    }



Copying is done with Copy-Item . The following command backs up your PowerShell
profile script:

PowerShell

The Test-Path  command checks whether the profile script exists.

If the destination file already exists, the copy attempt fails. To overwrite a pre-existing
destination, use the Force parameter:

PowerShell

This command works even when the destination is read-only.

Folder copying works the same way. This command copies the folder C:\temp\test1  to
the new folder C:\temp\DeleteMe  recursively:

PowerShell

You can also copy a selection of items. The following command copies all .txt  files
contained anywhere in C:\data  to C:\temp\text :

PowerShell

You can still run native commands like xcopy.exe  and robocopy.exe  to copy files.

Copying files and folders

if (Test-Path -Path $PROFILE) {
    Copy-Item -Path $PROFILE -Destination $($PROFILE -replace 'ps1$', 'bak')
}

if (Test-Path -Path $PROFILE) {
    Copy-Item -Path $PROFILE -Destination $($PROFILE -replace 'ps1$', 'bak') 
-Force
}

Copy-Item C:\temp\test1 -Recurse C:\temp\DeleteMe

Copy-Item -Filter *.txt -Path C:\data -Recurse -Destination C:\temp\text

Creating files and folders



Creating new items works the same on all PowerShell providers. If a PowerShell provider
has more than one type of item—for example, the FileSystem PowerShell provider
distinguishes between directories and files—you need to specify the item type.

This command creates a new folder C:\temp\New Folder :

PowerShell

This command creates a new empty file C:\temp\New Folder\file.txt

PowerShell

You can remove contained items using Remove-Item , but you will be prompted to
confirm the removal if the item contains anything else. For example, if you attempt to
delete the folder C:\temp\DeleteMe  that contains other items, PowerShell prompts you
for confirmation before deleting the folder:

PowerShell

Output

New-Item -Path 'C:\temp\New Folder' -ItemType Directory

New-Item -Path 'C:\temp\New Folder\file.txt' -ItemType File

） Important

When using the Force switch with the New-Item  command to create a folder, and
the folder already exists, it won't overwrite or replace the folder. It will simply return
the existing folder object. However, if you use New-Item -Force  on a file that
already exists, the file is overwritten.

Removing all files and folders within a folder

Remove-Item -Path C:\temp\DeleteMe

Confirm
The item at C:\temp\DeleteMe has children and the Recurse parameter wasn't
specified. If you continue, all children will be removed with the item. Are 
you
sure you want to continue?



If you don't want to be prompted for each contained item, specify the Recurse
parameter:

PowerShell

You can also map a local folder, using the New-PSDrive  command. The following
command creates a local drive P:  rooted in the local Program Files directory, visible
only from the PowerShell session:

PowerShell

Just as with network drives, drives mapped within PowerShell are immediately visible to
the PowerShell shell. To create a mapped drive visible from File Explorer, use the Persist
parameter. However, only remote paths can be used with Persist.

One of the more common storage formats for text data is in a file with separate lines
treated as distinct data elements. The Get-Content  cmdlet can be used to read an entire
file in one step, as shown here:

PowerShell

Get-Content  treats the data read from the file as an array, with one element per line of
file content. You can confirm this by checking the Length of the returned content:

PowerShell

[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help
(default is "Y"):

Remove-Item -Path C:\temp\DeleteMe -Recurse

Mapping a local folder as a drive

New-PSDrive -Name P -Root $Env:ProgramFiles -PSProvider FileSystem

Reading a text file into an array

Get-Content -Path $PROFILE
# Load modules and change to the PowerShell-Docs repository folder
Import-Module posh-git
Set-Location C:\Git\PowerShell-Docs



This command is most useful for getting lists of information into PowerShell. For
example, you might store a list of computer names or IP addresses in the file
C:\temp\domainMembers.txt , with one name on each line of the file. You can use Get-
Content  to retrieve the file contents and put them in the variable $Computers :

PowerShell

$Computers  is now an array containing a computer name in each element.

PS> (Get-Content -Path $PROFILE).Length
3

$Computers = Get-Content -Path C:\temp\DomainMembers.txt



Working with files, folders and registry
keys
Article • 12/09/2022

This sample only applies to Windows platforms.

PowerShell uses the noun Item to refer to items found on a PowerShell drive. When
dealing with the PowerShell FileSystem provider, an Item might be a file, a folder, or the
PowerShell drive. Listing and working with these items is a critical basic task in most
administrative settings, so we want to discuss these tasks in detail.

Since getting a collection of items from a particular location is such a common task, the
Get-ChildItem  cmdlet is designed specifically to return all items found within a
container such as a folder.

If you want to return all files and folders that are contained directly within the folder
C:\Windows , type:

The listing looks similar to what you would see when you enter the dir  command in

cmd.exe , or the ls  command in a Unix command shell.

You can perform complex listings using parameters of the Get-ChildItem  cmdlet. You
can see the syntax the Get-ChildItem  cmdlet by typing:

PowerShell

Enumerating files, folders, and registry keys

PS> Get-ChildItem -Path C:\Windows
    Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2006-05-16   8:10 AM          0 0.log
-a---        2005-11-29   3:16 PM         97 acc1.txt
-a---        2005-10-23  11:21 PM       3848 actsetup.log
...

Get-Command -Name Get-ChildItem -Syntax



These parameters can be mixed and matched to get highly customized output.

To see both the items inside a Windows folder and any items that are contained within
the subfolders, use the Recurse parameter of Get-ChildItem . The listing displays
everything within the Windows folder and the items in its subfolders. For example:

To display only the names of items, use the Name parameter of Get-ChildItem :

Items that are hidden in File Explorer or cmd.exe  aren't displayed in the output of a Get-
ChildItem  command. To display hidden items, use the Force parameter of Get-
ChildItem . For example:

PowerShell

This parameter is named Force because you can forcibly override the normal behavior of
the Get-ChildItem  command. Force is a widely used parameter that forces an action

Listing all contained items

PS> Get-ChildItem -Path C:\WINDOWS -Recurse

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\WINDOWS
    Directory: Microsoft.PowerShell.Core\FileSystem::C:\WINDOWS\AppPatch
Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2004-08-04   8:00 AM    1852416 AcGenral.dll
...

Filtering items by name

PS> Get-ChildItem -Path C:\WINDOWS -Name
addins
AppPatch
assembly
...

Forcibly listing hidden items

Get-ChildItem -Path C:\Windows -Force



that a cmdlet wouldn't normally perform, although it can't perform any action that
compromises the security of the system.

The Get-ChildItem  command accepts wildcards in the path of the items to list.

Because wildcard matching is handled by the PowerShell engine, all cmdlets that accepts
wildcards use the same notation and have the same matching behavior. The PowerShell
wildcard notation includes:

Asterisk ( * ) matches zero or more occurrences of any character.
Question mark ( ? ) matches exactly one character.
Left bracket ( [ ) character and right bracket ( ] ) character surround a set of
characters to be matched.

Here are some examples of how wildcard specification works.

To find all files in the Windows directory with the suffix .log  and exactly five characters
in the base name, enter the following command:

To find all files that begin with the letter x  in the Windows directory, type:

PowerShell

To find all files whose names begin with "x" or "z", type:

PowerShell

Matching item names with wildcards

PS> Get-ChildItem -Path C:\Windows\?????.log

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows
Mode                LastWriteTime     Length Name
----                -------------     ------ ----
...
-a---        2006-05-11   6:31 PM     204276 ocgen.log
-a---        2006-05-11   6:31 PM      22365 ocmsn.log
...
-a---        2005-11-11   4:55 AM         64 setup.log
-a---        2005-12-15   2:24 PM      17719 VxSDM.log
...

Get-ChildItem -Path C:\Windows\x*



For more information about wildcards, see about_Wildcards.

You can exclude specific items using the Exclude parameter of Get-ChildItem . This lets
you perform complex filtering in a single statement.

For example, suppose you are trying to find the Windows Time Service DLL in the
System32 folder, and all you can remember about the DLL name is that it begins with
"W" and has "32" in it.

An expression like w*32*.dll  will find all DLLs that satisfy the conditions, but you may
want to further filter out the files and omit any win32 files. You can omit these files using
the Exclude parameter with the pattern win* :

You can use several of the parameters of the Get-ChildItem  cmdlet in the same
command. Before you mix parameters, be sure that you understand wildcard matching.
For example, the following command returns no results:

PowerShell

Get-ChildItem -Path C:\Windows\[xz]*

Excluding items

PS> Get-ChildItem -Path C:\WINDOWS\System32\w*32*.dll -Exclude win*

    Directory: C:\WINDOWS\System32

Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a---           3/18/2019  9:43 PM         495616 w32time.dll
-a---           3/18/2019  9:44 PM          35328 w32topl.dll
-a---           1/24/2020  5:44 PM         401920 Wldap32.dll
-a---          10/10/2019  5:40 PM         442704 ws2_32.dll
-a---           3/18/2019  9:44 PM          66048 wsnmp32.dll
-a---           3/18/2019  9:44 PM          18944 wsock32.dll
-a---           3/18/2019  9:44 PM          64792 wtsapi32.dll

Mixing Get-ChildItem parameters

Get-ChildItem -Path C:\Windows\*.dll -Recurse -Exclude [a-y]*.dll

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_wildcards


There are no results, even though there are two DLLs that begin with the letter "z" in the
Windows folder.

No results were returned because we specified the wildcard as part of the path. Even
though the command was recursive, the Get-ChildItem  cmdlet restricted the items to
those that are in the Windows folder with names ending with .dll .

To specify a recursive search for files whose names match a special pattern, use the
Include parameter.

PS> Get-ChildItem -Path C:\Windows -Include *.dll -Recurse -Exclude [a-
y]*.dll

    Directory: 
Microsoft.PowerShell.Core\FileSystem::C:\Windows\System32\Setup

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2004-08-04   8:00 AM       8261 zoneoc.dll

    Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\System32

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
-a---        2004-08-04   8:00 AM     337920 zipfldr.dll



Working with registry entries
Article • 07/31/2024

This sample only applies to Windows platforms.

Because registry entries are properties of keys and, as such, can't be directly browsed,
we need to take a slightly different approach when working with them.

There are many different ways to examine registry entries. The simplest way is to get the
property names associated with a key. For example, to see the names of the entries in
the registry key HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion , use

Get-Item . Registry keys have a property with the generic name of "Property" that's a list
of registry entries in the key. The following command selects the Property property and
expands the items so that they're displayed in a list:

PowerShell

Output

To view the registry entries in a more readable form, use Get-ItemProperty :

PowerShell

Output

Listing registry entries

Get-Item -Path 
Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion |
    Select-Object -ExpandProperty Property

DevicePath
MediaPathUnexpanded
ProgramFilesDir
CommonFilesDir
ProductId

Get-ItemProperty -Path 
Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

ProgramFilesDir          : C:\Program Files
CommonFilesDir           : C:\Program Files\Common Files



The Windows PowerShell-related properties for the key are all prefixed with "PS", such
as PSPath, PSParentPath, PSChildName, and PSProvider.

You can use the *.*  notation for referring to the current location. You can use Set-
Location  to change to the CurrentVersion registry container first:

PowerShell

Alternatively, you can use the built-in HKLM:  PSDrive with Set-Location :

PowerShell

You can then use the .  notation for the current location to list the properties without
specifying a full path:

PowerShell

Output

ProgramFilesDir (x86)    : C:\Program Files (x86)
CommonFilesDir (x86)     : C:\Program Files (x86)\Common Files
CommonW6432Dir           : C:\Program Files\Common Files
DevicePath               : C:\WINDOWS\inf
MediaPathUnexpanded      : C:\WINDOWS\Media
ProgramFilesPath         : C:\Program Files
ProgramW6432Dir          : C:\Program Files
SM_ConfigureProgramsName : Set Program Access and Defaults
SM_GamesName             : Games
PSPath                   : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWA
                           RE\Microsoft\Windows\CurrentVersion
PSParentPath             : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWA
                           RE\Microsoft\Windows
PSChildName              : CurrentVersion
PSDrive                  : HKLM
PSProvider               : Microsoft.PowerShell.Core\Registry

Set-Location -Path 
Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

Set-Location -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion

Get-ItemProperty -Path .

...
DevicePath          : C:\WINDOWS\inf



Path expansion works the same as it does within the filesystem, so from this location
you can get the ItemProperty listing for HKLM:\SOFTWARE\Microsoft\Windows\Help  using
Get-ItemProperty -Path ..\Help .

If you want to retrieve a specific entry in a registry key, you can use one of several
possible approaches. This example finds the value of DevicePath in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion .

Using Get-ItemProperty , use the Path parameter to specify the name of the key, and the
Name parameter to specify the name of the DevicePath entry.

PowerShell

Output

This command returns the standard Windows PowerShell properties as well as the
DevicePath property.

MediaPathUnexpanded : C:\WINDOWS\Media
ProgramFilesDir     : C:\Program Files
...

Getting a single registry entry

Get-ItemProperty -Path HKLM:\Software\Microsoft\Windows\CurrentVersion -Name 
DevicePath

DevicePath   : C:\WINDOWS\inf
PSPath       : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\Wi
ndows\CurrentVersion
PSParentPath : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\Software\Microsoft\Wi
ndows
PSChildName  : CurrentVersion
PSDrive      : HKLM
PSProvider   : Microsoft.PowerShell.Core\Registry

７ Note

Although Get-ItemProperty  has Filter, Include, and Exclude parameters, they can't
be used to filter by property name. These parameters refer to registry keys, which
are item paths and not registry entries, which are item properties.



Another option is to use the reg.exe  command line tool. For help with reg.exe , type
reg.exe /?  at a command prompt. To find the DevicePath entry, use reg.exe  as shown
in the following command:

PowerShell

Output

You can also use the WshShell COM object to find some registry entries, although this
method doesn't work with large binary data or with registry entry names that include
characters such as backslash ( \ ). Append the property name to the item path with a \
separator:

PowerShell

Output

If you want to change a specific entry in a registry key, you can use one of several
possible approaches. This example modifies the Path entry under
HKEY_CURRENT_USER\Environment . The Path entry specifies where to find executable files.

1. Retrieve the current value of the Path entry using Get-ItemProperty .
2. Add the new value, separating it with a ; .
3. Use Set-ItemProperty  with the specified key, entry name, and value to modify the

registry entry.

PowerShell

reg query HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion /v DevicePath

! REG.EXE VERSION 3.0

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
    DevicePath  REG_EXPAND_SZ   %SystemRoot%\inf

(New-Object -ComObject 
WScript.Shell).RegRead("HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Devic
ePath")

%SystemRoot%\inf

Setting a single registry entry



Another option is to use the Reg.exe command line tool. For help with reg.exe, type
reg.exe /?  at a command prompt.

The following example changes the Path entry by removing the path added in the
example above. Get-ItemProperty  is still used to retrieve the current value to avoid
having to parse the string returned from reg query . The SubString and LastIndexOf
methods are used to retrieve the last path added to the Path entry.

PowerShell

Output

To add a new entry named "PowerShellPath" to the CurrentVersion key, use New-
ItemProperty  with the path to the key, the entry name, and the value of the entry. For
this example, we will take the value of the Windows PowerShell variable $PSHOME , which
stores the path to the installation directory for Windows PowerShell.

You can add the new entry to the key using the following command, and the command
also returns information about the new entry:

PowerShell

$value = Get-ItemProperty -Path HKCU:\Environment -Name Path
$newpath = $value.Path += ";C:\src\bin\"
Set-ItemProperty -Path HKCU:\Environment -Name Path -Value $newpath

７ Note

Although Set-ItemProperty  has Filter, Include, and Exclude parameters, they can't
be used to filter by property name. These parameters refer to registry keys—which
are item paths—and not registry entries—which are item properties.

$value = Get-ItemProperty -Path HKCU:\Environment -Name Path
$newpath = $value.Path.SubString(0, $value.Path.LastIndexOf(';'))
reg add HKCU\Environment /v Path /d $newpath /f

The operation completed successfully.

Creating new registry entries



Output

The PropertyType must be the name of a Microsoft.Win32.RegistryValueKind
enumeration member from the following table:

String  - Used for REG_SZ values. Pass a [System.String]  object to the Value
parameter.
ExpandString  - Used for REG_EXPAND_SZ values. Pass a [System.String]  object to
the Value parameter. The string should contain unexpanded references to
environment variables that are expanded when the value is retrieved.
Binary  - Used for REG_BINARY values. Pass a [System.Byte[]]  object to the Value
parameter.
DWord  - Used for REG_DWORD values. Pass a [System.Int32]  object to the Value
parameter.
MultiString  - Used for REG_MULTI_SZ values. Pass a [System.String[]]  object to
the Value parameter.
QWord  - Used for REG_QWORD values. Pass a [System.Int64]  object to the Value
parameter.

You can add a registry entry to multiple locations by specifying an array of values for the
Path parameter:

PowerShell

$newItemPropertySplat = @{
    Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion'
    Name = 'PowerShellPath'
    PropertyType = 'String'
    Value = $PSHOME
}
New-ItemProperty @newItemPropertySplat

PSPath         : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wi
ndows\CurrentVersion
PSParentPath   : 
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Wi
ndows
PSChildName    : CurrentVersion
PSDrive        : HKLM
PSProvider     : Microsoft.PowerShell.Core\Registry
PowerShellPath : C:\Program Files\Windows PowerShell\v1.0

$newItemPropertySplat = @{
    Name = 'PowerShellPath'



You can also overwrite a pre-existing registry entry value by adding the Force parameter
to any New-ItemProperty  command.

The following examples show how to create new registry entries of various types. The
registry values are created in a new key named MySoftwareKey under
HKEY_CURRENT_USER\Software . The $key  variable is used to store the new key object.

PowerShell

Output

You can use the PSPath property of the key object in subsequent commands.

PowerShell

Output

    PropertyType = 'String'
    Value = $PSHOME
    Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion',
           'HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion'
}
New-ItemProperty @newItemPropertySplat

$key = New-Item -Path HKCU:\Software -Name MySoftwareKey
$newItemPropertySplat = @{
    Path = $key.PSPath
    Name = 'DefaultFolders'
    PropertyType = 'MultiString'
    Value = 'Home', 'Temp', 'Publish'
}
New-ItemProperty @newItemPropertySplat

DefaultFolders : {Home, Temp, Publish}
PSPath         : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\MySoftwareKey
PSParentPath   : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software
PSChildName    : MySoftwareKey
PSProvider     : Microsoft.PowerShell.Core\Registry

New-ItemProperty -Path $key.PSPath -Name MaxAllowed -PropertyType QWord -
Value 1024

MaxAllowed   : 1024
PSPath       : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\MySoftwareKey



You can also pipe $key  to New-ItemProperty  to add a value to the key.

PowerShell

Output

Displaying the content of $key  shows the new entries.

PowerShell

Output

The following example shows the value type for each kind of registry entry:

PowerShell

PSParentPath : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software
PSChildName  : MySoftwareKey
PSProvider   : Microsoft.PowerShell.Core\Registry

$date = Get-Date -Format 'dd-MMM-yyyy'
$newItemPropertySplat = @{
    Name = 'BinaryDate'
    PropertyType = 'Binary'
    Value = ([System.Text.Encoding]::UTF8.GetBytes($date))
}
$key | New-ItemProperty @newItemPropertySplat

BinaryDate   : {51, 49, 45, 74…}
PSPath       : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\MySoftwareKey
PSParentPath : 
Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software
PSChildName  : MySoftwareKey
PSProvider   : Microsoft.PowerShell.Core\Registry

$key

    Hive: HKEY_CURRENT_USER\Software

Name                           Property
----                           --------
MySoftwareKey                  DefaultFolders : {Home, Temp, Publish}
                               MaxAllowed     : 1024
                               BinaryDate     : {51, 49, 45, 74…}



Output

To rename the PowerShellPath entry to "PSHome," use Rename-ItemProperty :

PowerShell

To display the renamed value, add the PassThru parameter to the command.

PowerShell

To delete both the PSHome and PowerShellPath registry entries, use Remove-
ItemProperty :

PowerShell

$key.GetValueNames() | Select-Object @{n='ValueName';e={$_}},
     @{n='ValueKind';e={$key.GetValueKind($_)}},
     @{n='Type';e={$key.GetValue($_).GetType()}},
     @{n='Value';e={$key.GetValue($_)}}

ValueName        ValueKind Type            Value
---------        --------- ----            -----
DefaultFolders MultiString System.String[] {Home, Temp, Publish}
MaxAllowed           QWord System.Int64    1024
BinaryDate          Binary System.Byte[]   {51, 49, 45, 74…}

Renaming registry entries

$renameItemPropertySplat = @{
    Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion'
    Name = 'PowerShellPath'
    NewName = 'PSHome'
}
Rename-ItemProperty @renameItemPropertySplat

$renameItemPropertySplat = @{
    Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion'
    Name = 'PowerShellPath'
    NewName = 'PSHome'
    PassThru = $true
}
Rename-ItemProperty @renameItemPropertySplat

Deleting registry entries



Remove-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion -
Name PSHome
Remove-ItemProperty -Path HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion -
Name PowerShellPath



Working with registry keys
Article • 12/09/2022

This sample only applies to Windows platforms.

Because registry keys are items on PowerShell drives, working with them is very similar
to working with files and folders. One critical difference is that every item on a registry-
based PowerShell drive is a container, just like a folder on a file system drive. However,
registry entries and their associated values are properties of the items, not distinct items.

You can show all items directly within a registry key using Get-ChildItem . Add the
optional Force parameter to display hidden or system items. For example, this command
displays the items directly within PowerShell drive HKCU: , which corresponds to the
HKEY_CURRENT_USER  registry hive:

PowerShell

Output

Listing all subkeys of a registry key

Get-ChildItem -Path HKCU:\ | Select-Object Name

   Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

Name
----
HKEY_CURRENT_USER\AppEvents
HKEY_CURRENT_USER\Console
HKEY_CURRENT_USER\Control Panel
HKEY_CURRENT_USER\DirectShow
HKEY_CURRENT_USER\dummy
HKEY_CURRENT_USER\Environment
HKEY_CURRENT_USER\EUDC
HKEY_CURRENT_USER\Keyboard Layout
HKEY_CURRENT_USER\MediaFoundation
HKEY_CURRENT_USER\Microsoft
HKEY_CURRENT_USER\Network
HKEY_CURRENT_USER\Printers
HKEY_CURRENT_USER\Software
HKEY_CURRENT_USER\System
HKEY_CURRENT_USER\Uninstall
HKEY_CURRENT_USER\WXP
HKEY_CURRENT_USER\Volatile Environment



These are the top-level keys visible under HKEY_CURRENT_USER  in the Registry Editor
( regedit.exe ).

You can also specify this registry path by specifying the Registry provider's name,
followed by :: . The Registry provider's full name is
Microsoft.PowerShell.Core\Registry , but this can be shortened to just Registry . Any of
the following commands will list the contents directly under HKCU: .

PowerShell

These commands list only the directly contained items, much like using DIR  in cmd.exe
or ls  in a Unix shell. To show contained items, you need to specify the Recurse
parameter. To list all registry keys in HKCU: , use the following command.

PowerShell

Get-ChildItem  can perform complex filtering capabilities through its Path, Filter,
Include, and Exclude parameters, but those parameters are typically based only on
name. You can perform complex filtering based on other properties of items using the
Where-Object  cmdlet. The following command finds all keys within HKCU:\Software  that
have no more than one subkey and also have exactly four values:

PowerShell

Copying is done with Copy-Item . The following example copies the CurrentVersion
subkey of HKLM:\SOFTWARE\Microsoft\Windows\  and all of its properties to HKCU:\ .

PowerShell

Get-ChildItem -Path Registry::HKEY_CURRENT_USER
Get-ChildItem -Path Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
Get-ChildItem -Path Registry::HKCU
Get-ChildItem -Path Microsoft.PowerShell.Core\Registry::HKCU
Get-ChildItem HKCU:

Get-ChildItem -Path HKCU:\ -Recurse

Get-ChildItem -Path HKCU:\Software -Recurse |
    Where-Object {($_.SubKeyCount -le 1) -and ($_.ValueCount -eq 4) }

Copying keys



If you examine this new key in the registry editor or using Get-ChildItem , you notice
that you don't have copies of the contained subkeys in the new location. In order to
copy all of the contents of a container, you need to specify the Recurse parameter. To
make the preceding copy command recursive, you would use this command:

PowerShell

You can still use other tools you already have available to perform filesystem copies. Any
registry editing tools—including reg.exe , regini.exe , regedit.exe , and COM objects
that support registry editing, such as WScript.Shell and WMI's StdRegProv class can be
used from within PowerShell.

Creating new keys in the registry is simpler than creating a new item in a file system.
Because all registry keys are containers, you don't need to specify the item type. Just
provide an explicit path, such as:

PowerShell

You can also use a provider-based path to specify a key:

PowerShell

Deleting items is essentially the same for all providers. The following commands silently
remove items:

PowerShell

Copy-Item -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion' -
Destination HKCU:

Copy-Item -Path 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion' -
Destination HKCU: -Recurse

Creating keys

New-Item -Path HKCU:\Software_DeleteMe

New-Item -Path Registry::HKCU\Software_DeleteMe

Deleting keys



You can remove contained items using Remove-Item , but you will be prompted to
confirm the removal if the item contains anything else. For example, if we attempt to
delete the HKCU:\CurrentVersion  subkey we created, we see this:

PowerShell

Output

To delete contained items without prompting, specify the Recurse parameter:

PowerShell

If you wanted to remove all items within HKCU:\CurrentVersion  but not
HKCU:\CurrentVersion  itself, you could instead use:

PowerShell

Remove-Item -Path HKCU:\Software_DeleteMe
Remove-Item -Path 'HKCU:\key with spaces in the name'

Removing all keys under a specific key

Remove-Item -Path HKCU:\CurrentVersion

Confirm
The item at HKCU:\CurrentVersion\AdminDebug has children and the Recurse
parameter was not specified. If you continue, all children will be removed 
with
the item. Are you sure you want to continue?
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):

Remove-Item -Path HKCU:\CurrentVersion -Recurse

Remove-Item -Path HKCU:\CurrentVersion\* -Recurse



Creating a custom input box
Article • 12/09/2022

This sample only applies to Windows platforms.

Script a graphical custom input box using Microsoft .NET Framework form-building
features in Windows PowerShell 3.0 and later releases.

Copy and then paste the following into Windows PowerShell ISE, and then save it as a
PowerShell script ( .ps1 ) file.

PowerShell

Create a custom, graphical input box

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form
$form.Text = 'Data Entry Form'
$form.Size = New-Object System.Drawing.Size(300,200)
$form.StartPosition = 'CenterScreen'

$okButton = New-Object System.Windows.Forms.Button
$okButton.Location = New-Object System.Drawing.Point(75,120)
$okButton.Size = New-Object System.Drawing.Size(75,23)
$okButton.Text = 'OK'
$okButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $okButton
$form.Controls.Add($okButton)

$cancelButton = New-Object System.Windows.Forms.Button
$cancelButton.Location = New-Object System.Drawing.Point(150,120)
$cancelButton.Size = New-Object System.Drawing.Size(75,23)
$cancelButton.Text = 'Cancel'
$cancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please enter the information in the space below:'
$form.Controls.Add($label)

$textBox = New-Object System.Windows.Forms.TextBox
$textBox.Location = New-Object System.Drawing.Point(10,40)
$textBox.Size = New-Object System.Drawing.Size(260,20)



The script begins by loading two .NET Framework classes: System.Drawing and
System.Windows.Forms. You then start a new instance of the .NET Framework class
System.Windows.Forms.Form. That provides a blank form or window to which you can
start adding controls.

PowerShell

After you create an instance of the Form class, assign values to three properties of this
class.

Text. This becomes the title of the window.
Size. This is the size of the form, in pixels. The preceding script creates a form
that's 300 pixels wide by 200 pixels tall.
StartingPosition. This optional property is set to CenterScreen in the preceding
script. If you don't add this property, Windows selects a location when the form is
opened. By setting the StartingPosition to CenterScreen, you're automatically
displaying the form in the middle of the screen each time it loads.

PowerShell

Next, create an OK button for your form. Specify the size and behavior of the OK button.
In this example, the button position is 120 pixels from the form's top edge, and 75 pixels
from the left edge. The button height is 23 pixels, while the button length is 75 pixels.
The script uses predefined Windows Forms types to determine the button behaviors.

PowerShell

$form.Controls.Add($textBox)

$form.Topmost = $true

$form.Add_Shown({$textBox.Select()})
$result = $form.ShowDialog()

if ($result -eq [System.Windows.Forms.DialogResult]::OK)
{
    $x = $textBox.Text
    $x
}

$form = New-Object System.Windows.Forms.Form

$form.Text = 'Data Entry Form'
$form.Size = New-Object System.Drawing.Size(300,200)
$form.StartPosition = 'CenterScreen'



Similarly, you create a Cancel button. The Cancel button is 120 pixels from the top, but
150 pixels from the left edge of the window.

PowerShell

Next, provide label text on your window that describes the information you want users
to provide.

PowerShell

Add the control (in this case, a text box) that lets users provide the information you've
described in your label text. There are many other controls you can apply besides text
boxes. For more controls, see System.Windows.Forms Namespace.

PowerShell

Set the Topmost property to $true to force the window to open atop other open
windows and dialog boxes.

$okButton = New-Object System.Windows.Forms.Button
$okButton.Location = New-Object System.Drawing.Point(75,120)
$okButton.Size = New-Object System.Drawing.Size(75,23)
$okButton.Text = 'OK'
$okButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $OKButton
$form.Controls.Add($OKButton)

$cancelButton = New-Object System.Windows.Forms.Button
$cancelButton.Location = New-Object System.Drawing.Point(150,120)
$cancelButton.Size = New-Object System.Drawing.Size(75,23)
$cancelButton.Text = 'Cancel'
$cancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please enter the information in the space below:'
$form.Controls.Add($label)

$textBox = New-Object System.Windows.Forms.TextBox
$textBox.Location = New-Object System.Drawing.Point(10,40)
$textBox.Size = New-Object System.Drawing.Size(260,20)
$form.Controls.Add($textBox)

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms


PowerShell

Next, add this line of code to activate the form, and set the focus to the text box that
you created.

PowerShell

Add the following line of code to display the form in Windows.

PowerShell

Finally, the code inside the if  block instructs Windows what to do with the form after
users provide text in the text box, and then click the OK button or press the Enter key.

PowerShell

GitHub: Dave Wyatt's WinFormsExampleUpdates )
Windows PowerShell Tip of the Week: Creating a Custom Input Box

$form.Topmost = $true

$form.Add_Shown({$textBox.Select()})

$result = $form.ShowDialog()

if ($result -eq [System.Windows.Forms.DialogResult]::OK) {
    $x = $textBox.Text
    $x
}

See also

https://github.com/dlwyatt/WinFormsExampleUpdates
https://github.com/dlwyatt/WinFormsExampleUpdates
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730941(v=technet.10)


Creating a graphical date picker
Article • 12/09/2022

This sample only applies to Windows platforms.

Use Windows PowerShell 3.0 and later releases to create a form with a graphical,
calendar-style control that lets users select a day of the month.

Copy and then paste the following into Windows PowerShell ISE, and then save it as a
PowerShell script ( .ps1 ) file.

PowerShell

Create a graphical date-picker control

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing

$form = New-Object Windows.Forms.Form -Property @{
    StartPosition = [Windows.Forms.FormStartPosition]::CenterScreen
    Size          = New-Object Drawing.Size 243, 230
    Text          = 'Select a Date'
    Topmost       = $true
}

$calendar = New-Object Windows.Forms.MonthCalendar -Property @{
    ShowTodayCircle   = $false
    MaxSelectionCount = 1
}
$form.Controls.Add($calendar)

$okButton = New-Object Windows.Forms.Button -Property @{
    Location     = New-Object Drawing.Point 38, 165
    Size         = New-Object Drawing.Size 75, 23
    Text         = 'OK'
    DialogResult = [Windows.Forms.DialogResult]::OK
}
$form.AcceptButton = $okButton
$form.Controls.Add($okButton)

$cancelButton = New-Object Windows.Forms.Button -Property @{
    Location     = New-Object Drawing.Point 113, 165
    Size         = New-Object Drawing.Size 75, 23
    Text         = 'Cancel'
    DialogResult = [Windows.Forms.DialogResult]::Cancel
}
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)



The script begins by loading two .NET Framework classes: System.Drawing and
System.Windows.Forms. You then start a new instance of the .NET Framework class
Windows.Forms.Form. That provides a blank form or window to which you can start
adding controls.

PowerShell

This example assigns values to four properties of this class by using the Property
property and hashtable.

1. StartPosition: If you don't add this property, Windows selects a location when the
form is opened. By setting this property to CenterScreen, you're automatically
displaying the form in the middle of the screen each time it loads.

2. Size: This is the size of the form, in pixels. The preceding script creates a form
that's 243 pixels wide by 230 pixels tall.

3. Text: This becomes the title of the window.

4. Topmost: By setting this property to $true , you can force the window to open
atop other open windows and dialog boxes.

Next, create and then add a calendar control in your form. In this example, the current
day isn't highlighted or circled. Users can select only one day on the calendar at one
time.

PowerShell

$result = $form.ShowDialog()

if ($result -eq [Windows.Forms.DialogResult]::OK) {
    $date = $calendar.SelectionStart
    Write-Host "Date selected: $($date.ToShortDateString())"
}

$form = New-Object Windows.Forms.Form -Property @{
    StartPosition = [Windows.Forms.FormStartPosition]::CenterScreen
    Size          = New-Object Drawing.Size 243, 230
    Text          = 'Select a Date'
    Topmost       = $true
}

$calendar = New-Object Windows.Forms.MonthCalendar -Property @{
    ShowTodayCircle   = $false
    MaxSelectionCount = 1



Next, create an OK button for your form. Specify the size and behavior of the OK button.
In this example, the button position is 165 pixels from the form's top edge, and 38 pixels
from the left edge. The button height is 23 pixels, while the button length is 75 pixels.
The script uses predefined Windows Forms types to determine the button behaviors.

PowerShell

Similarly, you create a Cancel button. The Cancel button is 165 pixels from the top, but
113 pixels from the left edge of the window.

PowerShell

Add the following line of code to display the form in Windows.

PowerShell

Finally, the code inside the if  block instructs Windows what to do with the form after
users select a day on the calendar, and then click the OK button or press the Enter key.
Windows PowerShell displays the selected date to users.

PowerShell

}
$form.Controls.Add($calendar)

$okButton = New-Object Windows.Forms.Button -Property @{
    Location     = New-Object Drawing.Point 38, 165
    Size         = New-Object Drawing.Size 75, 23
    Text         = 'OK'
    DialogResult = [Windows.Forms.DialogResult]::OK
}
$form.AcceptButton = $okButton
$form.Controls.Add($okButton)

$cancelButton = New-Object Windows.Forms.Button -Property @{
    Location     = New-Object Drawing.Point 113, 165
    Size         = New-Object Drawing.Size 75, 23
    Text         = 'Cancel'
    DialogResult = [Windows.Forms.DialogResult]::Cancel
}
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)

$result = $form.ShowDialog()



GitHub: Dave Wyatt's WinFormsExampleUpdates
Windows PowerShell Tip of the Week: Creating a Graphical Date Picker)

if ($result -eq [Windows.Forms.DialogResult]::OK) {
    $date = $calendar.SelectionStart
    Write-Host "Date selected: $($date.ToShortDateString())"
}

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://github.com/dlwyatt/WinFormsExampleUpdates
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730942(v=technet.10)
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fcreating-a-graphical-date-picker%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FCreating-a-Graphical-Date-Picker.md&documentVersionIndependentId=ed28a8f8-dab6-a58d-2e4f-b695b5e0d70e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+03277f15-e86c-c65f-e5f4-716cd693b859+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Multiple-selection list boxes
Article • 12/09/2022

This sample only applies to Windows platforms.

Use Windows PowerShell 3.0 and later releases to create a multiple-selection list box
control in a custom Windows Form.

Copy and then paste the following into Windows PowerShell ISE, and then save it as a
PowerShell script ( .ps1 ) file.

PowerShell

Create list box controls that allow multiple
selections

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form
$form.Text = 'Data Entry Form'
$form.Size = New-Object System.Drawing.Size(300,200)
$form.StartPosition = 'CenterScreen'

$OKButton = New-Object System.Windows.Forms.Button
$OKButton.Location = New-Object System.Drawing.Point(75,120)
$OKButton.Size = New-Object System.Drawing.Size(75,23)
$OKButton.Text = 'OK'
$OKButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $OKButton
$form.Controls.Add($OKButton)

$CancelButton = New-Object System.Windows.Forms.Button
$CancelButton.Location = New-Object System.Drawing.Point(150,120)
$CancelButton.Size = New-Object System.Drawing.Size(75,23)
$CancelButton.Text = 'Cancel'
$CancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $CancelButton
$form.Controls.Add($CancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please make a selection from the list below:'
$form.Controls.Add($label)

$listBox = New-Object System.Windows.Forms.Listbox



The script begins by loading two .NET Framework classes: System.Drawing and
System.Windows.Forms. You then start a new instance of the .NET Framework class
System.Windows.Forms.Form. That provides a blank form or window to which you can
start adding controls.

PowerShell

After you create an instance of the Form class, assign values to three properties of this
class.

Text. This becomes the title of the window.
Size. This is the size of the form, in pixels. The preceding script creates a form
that's 300 pixels wide by 200 pixels tall.
StartingPosition. This optional property is set to CenterScreen in the preceding
script. If you don't add this property, Windows selects a location when the form is
opened. By setting the StartingPosition to CenterScreen, you're automatically
displaying the form in the middle of the screen each time it loads.

PowerShell

$listBox.Location = New-Object System.Drawing.Point(10,40)
$listBox.Size = New-Object System.Drawing.Size(260,20)

$listBox.SelectionMode = 'MultiExtended'

[void] $listBox.Items.Add('Item 1')
[void] $listBox.Items.Add('Item 2')
[void] $listBox.Items.Add('Item 3')
[void] $listBox.Items.Add('Item 4')
[void] $listBox.Items.Add('Item 5')

$listBox.Height = 70
$form.Controls.Add($listBox)
$form.Topmost = $true

$result = $form.ShowDialog()

if ($result -eq [System.Windows.Forms.DialogResult]::OK)
{
    $x = $listBox.SelectedItems
    $x
}

$form = New-Object System.Windows.Forms.Form

$form.Text = 'Data Entry Form'
$form.Size = New-Object System.Drawing.Size(300,200)



Next, create an OK button for your form. Specify the size and behavior of the OK button.
In this example, the button position is 120 pixels from the form's top edge, and 75 pixels
from the left edge. The button height is 23 pixels, while the button length is 75 pixels.
The script uses predefined Windows Forms types to determine the button behaviors.

PowerShell

Similarly, you create a Cancel button. The Cancel button is 120 pixels from the top, but
150 pixels from the left edge of the window.

PowerShell

Next, provide label text on your window that describes the information you want users
to provide.

PowerShell

Add the control (in this case, a list box) that lets users provide the information you've
described in your label text. There are many other controls you can apply besides text
boxes; for more controls, see System.Windows.Forms Namespace.

PowerShell

$form.StartPosition = 'CenterScreen'

$OKButton = New-Object System.Windows.Forms.Button
$OKButton.Location = New-Object System.Drawing.Size(75,120)
$OKButton.Size = New-Object System.Drawing.Size(75,23)
$OKButton.Text = 'OK'
$OKButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $OKButton
$form.Controls.Add($OKButton)

$CancelButton = New-Object System.Windows.Forms.Button
$CancelButton.Location = New-Object System.Drawing.Point(150,120)
$CancelButton.Size = New-Object System.Drawing.Size(75,23)
$CancelButton.Text = 'Cancel'
$CancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $CancelButton
$form.Controls.Add($CancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please make a selection from the list below:'
$form.Controls.Add($label)

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms


Here's how you specify that you want to allow users to select multiple values from the
list.

PowerShell

In the next section, you specify the values you want the list box to display to users.

PowerShell

Specify the maximum height of the list box control.

PowerShell

Add the list box control to your form, and instruct Windows to open the form atop other
windows and dialog boxes when it's opened.

PowerShell

Add the following line of code to display the form in Windows.

PowerShell

Finally, the code inside the if  block instructs Windows what to do with the form after
users select one or more options from the list box, and then click the OK button or press

$listBox = New-Object System.Windows.Forms.Listbox
$listBox.Location = New-Object System.Drawing.Point(10,40)
$listBox.Size = New-Object System.Drawing.Size(260,20)

$listBox.SelectionMode = 'MultiExtended'

[void] $listBox.Items.Add('Item 1')
[void] $listBox.Items.Add('Item 2')
[void] $listBox.Items.Add('Item 3')
[void] $listBox.Items.Add('Item 4')
[void] $listBox.Items.Add('Item 5')

$listBox.Height = 70

$form.Controls.Add($listBox)
$form.Topmost = $true

$result = $form.ShowDialog()



the Enter key.

PowerShell

Weekend Scripter: Fixing PowerShell GUI Examples
GitHub: Dave Wyatt's WinFormsExampleUpdates
Windows PowerShell Tip of the Week: Multi-Select List Boxes - And More!)

if ($result -eq [System.Windows.Forms.DialogResult]::OK)
{
    $x = $listBox.SelectedItems
    $x
}

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://devblogs.microsoft.com/scripting/weekend-scripter-fixing-powershell-gui-examples/
https://github.com/dlwyatt/WinFormsExampleUpdates
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730950(v=technet.10)
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsamples%2Fmultiple-selection-list-boxes%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsamples%2FMultiple-selection-List-Boxes.md&documentVersionIndependentId=f7747987-0882-6c37-e3bb-9f4d5882f6da&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+69fdabf1-c579-434e-3d7d-9ac094f7fbfb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Selecting items from a list box
Article • 12/09/2022

This sample only applies to Windows platforms.

Use Windows PowerShell 3.0 and later releases to create a dialog box that lets users
select items from a list box control.

Copy and then paste the following into Windows PowerShell ISE, and then save it as a
PowerShell script ( .ps1 ) file.

PowerShell

Create a list box control, and select items from
it

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing

$form = New-Object System.Windows.Forms.Form
$form.Text = 'Select a Computer'
$form.Size = New-Object System.Drawing.Size(300,200)
$form.StartPosition = 'CenterScreen'

$okButton = New-Object System.Windows.Forms.Button
$okButton.Location = New-Object System.Drawing.Point(75,120)
$okButton.Size = New-Object System.Drawing.Size(75,23)
$okButton.Text = 'OK'
$okButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $okButton
$form.Controls.Add($okButton)

$cancelButton = New-Object System.Windows.Forms.Button
$cancelButton.Location = New-Object System.Drawing.Point(150,120)
$cancelButton.Size = New-Object System.Drawing.Size(75,23)
$cancelButton.Text = 'Cancel'
$cancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please select a computer:'
$form.Controls.Add($label)

$listBox = New-Object System.Windows.Forms.ListBox



The script begins by loading two .NET Framework classes: System.Drawing and
System.Windows.Forms. You then start a new instance of the .NET Framework class
System.Windows.Forms.Form. That provides a blank form or window to which you can
start adding controls.

PowerShell

After you create an instance of the Form class, assign values to three properties of this
class.

Text. This becomes the title of the window.
Size. This is the size of the form, in pixels. The preceding script creates a form
that's 300 pixels wide by 200 pixels tall.
StartingPosition. This optional property is set to CenterScreen in the preceding
script. If you don't add this property, Windows selects a location when the form is
opened. By setting the StartingPosition to CenterScreen, you're automatically
displaying the form in the middle of the screen each time it loads.

PowerShell

$listBox.Location = New-Object System.Drawing.Point(10,40)
$listBox.Size = New-Object System.Drawing.Size(260,20)
$listBox.Height = 80

[void] $listBox.Items.Add('atl-dc-001')
[void] $listBox.Items.Add('atl-dc-002')
[void] $listBox.Items.Add('atl-dc-003')
[void] $listBox.Items.Add('atl-dc-004')
[void] $listBox.Items.Add('atl-dc-005')
[void] $listBox.Items.Add('atl-dc-006')
[void] $listBox.Items.Add('atl-dc-007')

$form.Controls.Add($listBox)

$form.Topmost = $true

$result = $form.ShowDialog()

if ($result -eq [System.Windows.Forms.DialogResult]::OK)
{
    $x = $listBox.SelectedItem
    $x
}

Add-Type -AssemblyName System.Windows.Forms
Add-Type -AssemblyName System.Drawing



Next, create an OK button for your form. Specify the size and behavior of the OK button.
In this example, the button position is 120 pixels from the form's top edge, and 75 pixels
from the left edge. The button height is 23 pixels, while the button length is 75 pixels.
The script uses predefined Windows Forms types to determine the button behaviors.

PowerShell

Similarly, you create a Cancel button. The Cancel button is 120 pixels from the top, but
150 pixels from the left edge of the window.

PowerShell

Next, provide label text on your window that describes the information you want users
to provide. In this case, you want users to select a computer.

PowerShell

Add the control (in this case, a list box) that lets users provide the information you've
described in your label text. There are many other controls you can apply besides list
boxes; for more controls, see System.Windows.Forms Namespace.

$form.Text = 'Select a Computer'
$form.Size = New-Object System.Drawing.Size(300,200)
$form.StartPosition = 'CenterScreen'

$okButton = New-Object System.Windows.Forms.Button
$okButton.Location = New-Object System.Drawing.Point(75,120)
$okButton.Size = New-Object System.Drawing.Size(75,23)
$okButton.Text = 'OK'
$okButton.DialogResult = [System.Windows.Forms.DialogResult]::OK
$form.AcceptButton = $okButton
$form.Controls.Add($okButton)

$cancelButton = New-Object System.Windows.Forms.Button
$cancelButton.Location = New-Object System.Drawing.Point(150,120)
$cancelButton.Size = New-Object System.Drawing.Size(75,23)
$cancelButton.Text = 'Cancel'
$cancelButton.DialogResult = [System.Windows.Forms.DialogResult]::Cancel
$form.CancelButton = $cancelButton
$form.Controls.Add($cancelButton)

$label = New-Object System.Windows.Forms.Label
$label.Location = New-Object System.Drawing.Point(10,20)
$label.Size = New-Object System.Drawing.Size(280,20)
$label.Text = 'Please select a computer:'
$form.Controls.Add($label)

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms


PowerShell

In the next section, you specify the values you want the list box to display to users.

PowerShell

Add the list box control to your form, and instruct Windows to open the form atop other
windows and dialog boxes when it's opened.

PowerShell

Add the following line of code to display the form in Windows.

PowerShell

Finally, the code inside the if  block instructs Windows what to do with the form after
users select an option from the list box, and then click the OK button or press the Enter
key.

$listBox = New-Object System.Windows.Forms.ListBox
$listBox.Location = New-Object System.Drawing.Point(10,40)
$listBox.Size = New-Object System.Drawing.Size(260,20)
$listBox.Height = 80

７ Note

The list box created by this script allows only one selection. To create a list box
control that allows multiple selections, specify a value for the SelectionMode
property, similarly to the following: $listBox.SelectionMode = 'MultiExtended' . For
more information, see Multiple-selection List Boxes.

[void] $listBox.Items.Add('atl-dc-001')
[void] $listBox.Items.Add('atl-dc-002')
[void] $listBox.Items.Add('atl-dc-003')
[void] $listBox.Items.Add('atl-dc-004')
[void] $listBox.Items.Add('atl-dc-005')
[void] $listBox.Items.Add('atl-dc-006')
[void] $listBox.Items.Add('atl-dc-007')

$form.Controls.Add($listBox)
$form.Topmost = $true

$result = $form.ShowDialog()



PowerShell

GitHub: Dave Wyatt's WinFormsExampleUpdates
Windows PowerShell Tip of the Week: Selecting Items from a List Box

if ($result -eq [System.Windows.Forms.DialogResult]::OK) {
    $x = $listBox.SelectedItem
    $x
}

See also

https://github.com/dlwyatt/WinFormsExampleUpdates
https://github.com/dlwyatt/WinFormsExampleUpdates
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730949(v=technet.10)


Using Experimental Features in
PowerShell
Article • 01/23/2025

The Experimental Features support in PowerShell provides a mechanism for
experimental features to coexist with existing stable features in PowerShell or
PowerShell modules.

An experimental feature is one where the design isn't finalized. The feature is available
for users to test and provide feedback. Once an experimental feature is finalized, the
design changes become breaking changes.

For more information about enabling or disabling these features, see
about_Experimental_Features.

The Get-ExperimentalFeature cmdlet returns all experimental features available to
PowerShell. Experimental features can come from modules or the PowerShell engine.
Module-based experimental features are only available after you import the module. In
the following example, the PSDesiredStateConfiguration isn't loaded, so the
PSDesiredStateConfiguration.InvokeDscResource  feature isn't available.

PowerShell

Output

Ｕ Caution

Experimental features aren't intended to be used in production since the changes
are allowed to be breaking. Experimental features aren't officially supported.
However, we appreciate any feedback and bug reports. You can file issues in the
GitHub source repository .

Experimental feature lifecycle

Get-ExperimentalFeature

Name                             Enabled Source   Description
----                             ------- ------   -----------
PSCommandNotFoundSuggestion        False PSEngine Recommend potential 
commands based on fuzzy searc…

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-experimentalfeature?view=powershell-7.5
https://github.com/PowerShell/PowerShell/issues/new/choose
https://github.com/PowerShell/PowerShell/issues/new/choose


Use the Enable-ExperimentalFeature and Disable-ExperimentalFeature cmdlets to enable
or disable a feature. You must start a new PowerShell session for this change to be in
effect. Run the following command to enable the PSCommandNotFoundSuggestion  feature:

PowerShell

Output

When an experimental feature becomes mainstream, it's no longer available as an
experimental feature because the functionality is now part of the PowerShell engine or
module. For example, the PSAnsiRenderingFileInfo  feature became mainstream in
PowerShell 7.3. You get the functionality of the feature automatically.

When an experimental feature is discontinued, that feature is no longer available in the
PowerShell. For example, the PSNativePSPathResolution  feature was discontinued in
PowerShell 7.3.

PSCommandWithArgs                  False PSEngine Enable `-CommandWithArgs` 
parameter for pwsh
PSFeedbackProvider                  True PSEngine Replace the hard-coded 
suggestion framework with …
PSLoadAssemblyFromNativeCode       False PSEngine Expose an API to allow 
assembly loading from nati…
PSModuleAutoLoadSkipOfflineFiles    True PSEngine Module discovery will skip 
over files that are ma…
PSSerializeJSONLongEnumAsNumber     True PSEngine Serialize enums based on 
long or ulong as an nume…
PSSubsystemPluginModel              True PSEngine A plugin model for 
registering and un-registering…

Enable-ExperimentalFeature PSCommandNotFoundSuggestion

WARNING: Enabling and disabling experimental features do not take effect 
until next start
of PowerShell.

７ Note

Some features have configuration requirements, such as preference variables, that
must be set to get the desired results from the feature.

Available features

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-experimentalfeature?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/disable-experimentalfeature?view=powershell-7.5


This article describes the experimental features that are available and how to use the
feature.

Legend

The  icon indicates that the experimental feature is available in the version of
PowerShell
The  icon indicates the version of PowerShell where the experimental feature
became mainstream
The  icon indicates the version of PowerShell where the experimental feature was
removed

Name 7.4 7.5 7.6 (preview)

PSCommandNotFoundSuggestion

PSDesiredStateConfiguration.InvokeDscResource

PSSubsystemPluginModel

PSLoadAssemblyFromNativeCode

PSFeedbackProvider

PSModuleAutoLoadSkipOfflineFiles

PSCommandWithArgs

PSNativeWindowsTildeExpansion

PSRedirectToVariable

PSSerializeJSONLongEnumAsNumber

Recommends potential commands based on fuzzy matching search after a
CommandNotFoundException.

PowerShell

ﾉ Expand table

PSCommandNotFoundSuggestion

７ Note

This feature became mainstream in PowerShell 7.5-preview.5.



Output

This feature enables the -CommandWithArgs  parameter for pwsh . This parameter allows
you to execute a PowerShell command with arguments. Unlike -Command , this parameter
populates the $args  built-in variable that can be used by the command.

The first string is the command and subsequent strings delimited by whitespace are the
arguments.

For example:

PowerShell

This example produces the following output:

Output

This feature was added in PowerShell 7.4-preview.2.

PS> get

get: The term 'get' isn't recognized as the name of a cmdlet, function, 
script file,
or operable program. Check the spelling of the name, or if a path was 
included, verify
that the path is correct and try again.

Suggestion [4,General]: The most similar commands are: set, del, ft, gal, 
gbp, gc, gci,
gcm, gdr, gcs.

PSCommandWithArgs

７ Note

This feature became mainstream in PowerShell 7.5-preview.5.

pwsh -CommandWithArgs '$args | % { "arg: $_" }' arg1 arg2

arg: arg1
arg: arg2



Enables compilation to MOF on non-Windows systems and enables the use of Invoke-
DSCResource  without an LCM.

Beginning with PowerShell 7.2, the PSDesiredStateConfiguration module was removed
and this feature is disabled by default. To enable this feature you must install the
PSDesiredStateConfiguration v2.0.5 module from the PowerShell Gallery and enable the
feature.

DSC v3 doesn't have this experimental feature. DSC v3 only supports Invoke-
DSCResource  and doesn't use or support MOF compilation. For more information, see
PowerShell Desired State Configuration v3.

When you enable this feature, PowerShell uses a new feedback provider to give you
feedback when a command can't be found. The feedback provider is extensible, and can
be implemented by third-party modules. The feedback provider can be used by other
subsystems, such as the predictor subsystem, to provide predictive IntelliSense results.

This feature includes two built-in feedback providers:

GeneralCommandErrorFeedback serves the same suggestion functionality existing
today

UnixCommandNotFound, available on Linux, provides feedback similar to bash.

The UnixCommandNotFound serves as both a feedback provider and a predictor.
The suggestion from command-not-found command is used both for providing
the feedback when command can't be found in an interactive run, and for
providing predictive IntelliSense results for the next command line.

This feature was added in PowerShell 7.4-preview.3.

Exposes an API to allow assembly loading from native code.

PSDesiredStateConfiguration.InvokeDscResource

PSFeedbackProvider

PSLoadAssemblyFromNativeCode

PSModuleAutoLoadSkipOfflineFiles

７ Note

https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0&preserve-view=true


With this feature enabled, if a user's PSModulePath contains a folder from a cloud
provider, such as OneDrive, PowerShell no longer triggers the download of all files
contained within that folder. Any file marked as not downloaded are skipped. Users who
use cloud providers to sync their modules between machines should mark the module
folder as Pinned or the equivalent status for providers other than OneDrive. Marking the
module folder as Pinned ensures that the files are always kept on disk.

This feature was added in PowerShell 7.4-preview.1.

When enabled, this feature adds support for redirecting to the Variable: drive. This
feature allows you to redirect data to a variable using the Variable:name  syntax.
PowerShell inspects the target of the redirection and if it uses the Variable provider it
calls Set-Variable  rather than Out-File .

The following example shows how to redirect the output of a command to a Variable:

PowerShell

Output

This feature became mainstream in PowerShell 7.5-preview.5.

PSRedirectToVariable

７ Note

This experimental feature was added in PowerShell 7.5-preview.4.

. {
    "Output 1"
    Write-Warning "Warning, Warning!"
    "Output 2"
} 3> Variable:warnings
$warnings

Output 1
Output 2
WARNING: Warning, Warning!

PSSubsystemPluginModel



This feature enables the subsystem plugin model in PowerShell. The feature makes it
possible to separate components of System.Management.Automation.dll  into individual
subsystems that reside in their own assembly. This separation reduces the disk footprint
of the core PowerShell engine and allows these components to become optional
features for a minimal PowerShell installation.

Currently, only the CommandPredictor subsystem is supported. This subsystem is used
along with the PSReadLine module to provide custom prediction plugins. In future, Job,
CommandCompleter, Remoting and other components could be separated into
subsystem assemblies outside of System.Management.Automation.dll .

The experimental feature includes a new cmdlet, Get-PSSubsystem. This cmdlet is only
available when the feature is enabled. This cmdlet returns information about the
subsystems that are available on the system.

When this feature is enabled, PowerShell expands unquoted tilde ( ~ ) to the user's
current home folder before invoking native commands. The following examples show
how the feature works.

With the feature disabled, the tilde is passed to the native command as a literal string.

PowerShell

With the feature enabled, PowerShell expands the tilde before it's passed to the native
command.

PowerShell

This feature only applies to Windows. On non-Windows platforms, tilde expansion is
handled natively.

This feature was added in PowerShell 7.5-preview.2.

PSNativeWindowsTildeExpansion

PS> cmd.exe /c echo ~
~

PS> cmd.exe /c echo ~
C:\Users\username

PSSerializeJSONLongEnumAsNumber

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-pssubsystem?view=powershell-7.5


This feature enables the cmdlet ConvertTo-Json to serialize any enum values based on
Int64/long  or UInt64/ulong  as a numeric value rather than the string representation of
that enum value. This aligns the behavior of enum serialization with other enum base
types where the cmdlet serializes enums as their numeric value. Use the EnumsAsStrings
parameter to serialize as the string representation.

For example:

PowerShell

# PSSerializeJSONLongEnumAsNumber disabled
@{
    Key = 
[System.Management.Automation.Tracing.PowerShellTraceKeywords]::Cmdlets
} | ConvertTo-Json
# { "Key": "Cmdlets" }

# PSSerializeJSONLongEnumAsNumber enabled
@{
    Key = 
[System.Management.Automation.Tracing.PowerShellTraceKeywords]::Cmdlets
} | ConvertTo-Json
# { "Key": 32 }

# -EnumsAsStrings to revert back to the old behaviour
@{
    Key = 
[System.Management.Automation.Tracing.PowerShellTraceKeywords]::Cmdlets
} | ConvertTo-Json -EnumsAsStrings
# { "Key": "Cmdlets" }

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertto-json?view=powershell-7.5


Using aliases
Article • 07/23/2024

An alias is an alternate name or shorthand name for a cmdlet or for a command
element, such as a function, script, file, or executable file. You can run the command
using the alias instead of the executable name.

PowerShell provides cmdlets for managing command aliases. The following command
shows the cmdlets that manage aliases.

PowerShell

Output

For more information, see about_Aliases.

Use the Get-Alias cmdlet to list the aliases available in your environment. To list the
aliases for a single cmdlet, use the Definition parameter and specify the executable
name.

PowerShell

Output

Managing command aliases

Get-Command -Noun Alias

CommandType Name         Version Source
----------- ----         ------- ------
Cmdlet      Export-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Get-Alias    7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Import-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      New-Alias    7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Remove-Alias 7.0.0.0 Microsoft.PowerShell.Utility
Cmdlet      Set-Alias    7.0.0.0 Microsoft.PowerShell.Utility

Get-Alias -Definition Get-ChildItem

CommandType     Name
-----------     ----
Alias           dir -> Get-ChildItem

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-alias?view=powershell-7.5


To get the definition of a single alias, use the Name parameter.

PowerShell

Output

To create an alias, use the Set-Alias  command. You can create aliases for cmdlets,
functions, scripts, and native executables files.

PowerShell

PowerShell has several aliases that allow Unix and cmd.exe  users to use familiar
commands in Windows. The following table show common commands, the related
PowerShell cmdlet, and the PowerShell alias:

Windows Command
Shell

Unix
command

PowerShell
cmdlet

PowerShell alias

cd , chdir cd Set-Location sl , cd , chdir

cls clear Clear-Host cls  clear

copy cp Copy-Item cpi , cp , copy

del , erase , rd , rmdir rm Remove-Item ri , del , erase , rd , rm ,
rmdir

dir ls Get-ChildItem gci , dir , ls

Alias           gci -> Get-ChildItem
Alias           ls -> Get-ChildItem

Get-Alias -Name gci

CommandType     Name
-----------     ----
Alias           gci -> Get-ChildItem

Set-Alias -Name np -Value Notepad.exe
Set-Alias -Name cmpo  -Value Compare-Object

Compatibility aliases in Windows

ﾉ Expand table



Windows Command
Shell

Unix
command

PowerShell
cmdlet

PowerShell alias

echo echo Write-Output write  echo

md mkdir New-Item ni

move mv Move-Item mi , move , mi

popd popd Pop-Location popd

pwd Get-Location gl , pwd

pushd pushd Push-Location pushd

ren mv Rename-Item rni , ren

type cat Get-Content gc , cat , type

You can assign an alias to a cmdlet, script, function, or executable file. Unlike some Unix
shells, you cannot assign an alias to a command with parameters. For example, you can
assign an alias to the Get-Eventlog  cmdlet, but you cannot assign an alias to the Get-
Eventlog -LogName System  command. You must create a function that contains the
command with parameters.

For more information, see about_Aliases.

PowerShell also provides ways to create shorthand names for parameters. Parameter
aliases are defined using the Alias  attribute when you declare the parameter. These
can't be defined using the *-Alias  cmdlets.

７ Note

The aliases in this table are Windows-specific. Some aliases aren't available on
other platforms. This is to allow the native command to work in a PowerShell
session. For example, ls  isn't defined as a PowerShell alias on macOS or Linux so
that the native command is run instead of Get-ChildItem .

Creating alternate names for commands with
parameters

Parameter aliases and shorthand names

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_aliases#alternate-names-for-commands-with-parameters


For more information, see the Alias attribute documentation.

In addition to parameter aliases, PowerShell lets you specify the parameter name using
the fewest characters needed to uniquely identify the parameter. For example, the Get-
ChildItem  cmdlet has the Recurse and ReadOnly parameters. To uniquely identify the
Recurse parameter you only need to provide -Rec . If you combine that with the
command alias, Get-ChildItem -Recurse  can be shortened to dir -Rec .

Aliases are a convenience feature to be used interactively in the shell. You should always
use the full command and parameter names in your scripts.

Aliases can be deleted or redefined in a profile script
Any aliases you define may not be available to the user of your scripts
Aliases make your code harder to read and maintain

Don't use aliases in scripts

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters#alias-attribute


PowerShell learning resources
Article • 09/20/2022

Additional resources for learning about PowerShell.

Microsoft Learn is a free, online training platform that provides interactive learning for
Microsoft products and more. Our goal is to help you become proficient on our
technologies and learn more skills with fun, guided, hands-on, interactive content that's
specific to your role and goals.

PowerShell modules

In addition to the Help available at the command line, the following resources provide
more information for users who want to run PowerShell.

PowerShell Team Blog . The best resource for learning directly from the
PowerShell product team.
PowerShell Community Blog  articles are scenario-driven. Written by the
community, for the community.
Have questions about using PowerShell? Connect with hundreds of other people
who have similar interests in one of the many community forums listed on the
PowerShell Community page.

The Microsoft Virtual Academy videos have been moved to Channel 9.

Getting Started with Microsoft PowerShell
Advanced Tools & Scripting with PowerShell 3.0 Jump Start
Testing PowerShell with Pester
Getting Started with PowerShell Desired State Configuration (DSC)
Advanced PowerShell DSC and Custom Resources
SharePoint Automation with DSC

Learn modules

Blogs and community

Microsoft Virtual Academy

Resources for PowerShell Developers

https://learn.microsoft.com/en-us/training/browse/?terms=PowerShell
https://devblogs.microsoft.com/powershell/
https://devblogs.microsoft.com/powershell-community/
https://learn.microsoft.com/en-us/powershell/scripting/community/community-support
https://learn.microsoft.com/en-us/shows/getting-started-with-microsoft-powershell/
https://learn.microsoft.com/en-us/shows/advanced-tools-and-scripting-with-powershell-3.0-jump-start/
https://learn.microsoft.com/en-us/shows/testing-powershell-with-pester/
https://learn.microsoft.com/en-us/shows/getting-started-with-powershell-dsc/
https://learn.microsoft.com/en-us/shows/advanced-powershell-dsc-and-custom-resources/
https://learn.microsoft.com/en-us/shows/sharepoint-automation-with-dsc/


The following resources provide resources to help developers create their own
PowerShell modules, functions, cmdlets, providers, and hosting applications.

PowerShell SDK
PowerShell SDK API Browser

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fmore-powershell-learning%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2Fmore-powershell-learning.md&documentVersionIndependentId=3120d3c6-4491-9df1-99be-e2283adbb877&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+aa9b6675-e2e7-275b-1c88-b5ffd3390539+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PowerShell Glossary
Article • 04/10/2024

This article lists common terms used to talk about PowerShell.

A PowerShell module whose root module is a binary ( .dll ) file. A binary module may or
may not include a module manifest.

A parameter that's added to all cmdlets, advanced functions, and workflows by the
PowerShell engine.

In PowerShell, to start a command by typing a dot and a space before the command.
Commands that are dot sourced run in the current scope instead of in a new scope. Any
variables, aliases, functions, or drives that command creates are created in the current
scope and are available to users when the command is completed.

A module that exists only in memory. The New-Module  and Import-PSSession  cmdlets
create dynamic modules.

A parameter that's added to a PowerShell cmdlet, function, or script under certain
conditions. Cmdlets, functions, providers, and scripts can add dynamic parameters.

B

binary module

C

CommonParameter

D

dot source

dynamic module

dynamic parameter



A PowerShell XML file that has the .format.ps1xml  extension and that defines how
PowerShell displays an object based on its .NET Framework type.

The session state that contains the data that's accessible to the user of a PowerShell
session.

The interface that the PowerShell engine uses to communicate with the user. For
example, the host specifies how prompts are handled between PowerShell and the user.

A program that loads the PowerShell engine into its process and uses it to perform
operations.

A method that a cmdlet can use to process the records it receives as input. The input
processing methods include the BeginProcessing  method, the ProcessRecord  method,
the EndProcessing  method, and the StopProcessing  method.

F

format file

G

global session state

H

Host

host application

I

input processing method

M



A PowerShell module that has a manifest and whose RootModule key is empty.

A PowerShell convenience feature to automatically enumerate items in a collection when
using the member-access operator ( . ).

A self-contained reusable unit that allows you to partition, organize, and abstract your
PowerShell code. A module can contain cmdlets, providers, functions, variables, and
other types of resources that can be imported as a single unit.

A PowerShell data file ( .psd1 ) that describes the contents of a module and that controls
how a module is processed.

The session state that contains the public and private data of a PowerShell module. The
private data in this session state isn't available to the user of a PowerShell session.

An error that doesn't stop PowerShell from continuing to process the command. See
also, terminating error.

The word that follows the hyphen in a PowerShell cmdlet name. The noun describes the
resources upon which the cmdlet acts.

manifest module

member-access enumeration

module

module manifest

module session state

N

non-terminating error

noun

P



A group of parameters that can be used in the same command to perform a specific
action.

In PowerShell, to send the results of the preceding command as input to the next
command in the pipeline.

A series of commands connected by pipeline operators ( | ). Each pipeline operator
sends the results of the preceding command as input to the next command.

A single command that participates in the pipeline semantics of PowerShell. This
includes binary (C#) cmdlets, advanced script functions, CDXML, and Workflows.

The elements in a pipeline that cause an action to be carried out. PowerShell commands
are either typed at the keyboard or invoked programmatically.

A text file that has the .psd1  file extension. PowerShell uses data files for various
purposes such as storing module manifest data and storing translated strings for script
internationalization.

A virtual drive that provides direct access to a data store. It can be defined by a
PowerShell provider or created at the command line. Drives created at the command
line are session-specific drives and are lost when the session is closed.

parameter set

pipe

pipeline

PowerShell cmdlet

PowerShell command

PowerShell data file

PowerShell drive

provider



A Microsoft .NET Framework-based program that makes the data in a specialized data
store available in PowerShell so that you can view and manage it.

A type of PowerShell session that's created, managed, and closed by the user.

The module specified in the RootModule key in a module manifest.

In PowerShell, the operating environment in which each command in a pipeline is
executed.

In PowerShell, a scalar value is any value type that is not enumerable. This includes the
.NET primitive types, such as booleans and numbers, and other value types such as
String, DateTime and Guid.

For a list of .NET primitive types, see the Remarks section of System.Type.IsPrimitive
Property.

In the PowerShell programming language, a collection of statements or expressions that
can be used as a single unit. A script block can accept arguments and return values.

A file that has the .ps1  extension and contains a script written in the PowerShell
language.

PSSession

R

root module

runspace

S

scalar value

script block

script file

https://learn.microsoft.com/en-us/dotnet/api/system.type.isprimitive#remarks
https://learn.microsoft.com/en-us/dotnet/api/system.type.isprimitive#remarks


A PowerShell module whose root module is a script module ( .psm1 ) file. A script module
may include a module manifest. The script defines the members that the script module
exports.

The command interpreter that's used to pass commands to the operating system.

A parameter that doesn't take an argument. The value of a switch parameter defaults to
$false . When a switch parameter is used, its value becomes $true .

An error that stops PowerShell from processing the command. See also, non-
terminating error.

An atomic unit of work. The work in a transaction must be completed as a whole. If any
part of the transaction fails, the entire transaction fails.

A PowerShell XML file that has the .types.ps1xml  extension and that extends the
properties of Microsoft .NET Framework types in PowerShell.

The word that precedes the hyphen in a PowerShell cmdlet name. The verb describes
the action that the cmdlet performs.

script module

shell

switch parameter

T

terminating error

transaction

type file

V

verb



The Integrated Scripting Environment (ISE) - A Windows PowerShell host application
that enables you to run commands and to write, test, and debug scripts in a friendly,
syntax-colored, Unicode-compliant environment.

A resource that defines a set of cmdlets, providers, and Microsoft .NET Framework types
that can be added to the Windows PowerShell environment. PowerShell snap-ins have
been replaced by modules.

A workflow is a sequence of programmed, connected steps that perform long-running
tasks or require the coordination of multiple steps across multiple devices or managed
nodes. Windows PowerShell Workflow lets IT pros and developers author sequences of
multi-device management activities, or single tasks within a workflow, as workflows.
Windows PowerShell Workflow lets you adapt and run both PowerShell scripts and
XAML files as workflows. Windows PowerShell Workflow is built on the Windows
Workflow Foundation, which has been deprecated.

W

Windows PowerShell ISE

Windows PowerShell snap-in

Windows PowerShell Workflow

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Flearn%2Fglossary%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Flearn%2FGlossary.md&documentVersionIndependentId=2ab6f248-246a-5866-dd5b-a56ef468159d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f3950e54-f09f-a1b7-46dc-907e5c70df7b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Overview of what's new in PowerShell
A collection of release notes and documentation about the new features available in
new versions of PowerShell.

What's new in PowerShell 7

ｈ WHAT'S NEW

What's new in PowerShell 7.6 (preview)

What's new in PowerShell 7.5 (RC)

What's new in PowerShell 7.4 (LTS)

Differences between Windows PowerShell 5.1 and PowerShell 7

PowerShell differences on non-Windows platforms

What's new in PowerShell 5.1

ｈ WHAT'S NEW

What is Windows PowerShell?

Differences between Windows PowerShell 5.1 and PowerShell 7

Migrating from Windows PowerShell 5.1 to PowerShell 7

History & Compatibility

ｈ WHAT'S NEW

Release history of modules and cmdlets

Module compatibility

Previous versions of PowerShell

https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/overview?view=powershell-7.5
https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/overview


What's New in PowerShell 7.6
Article • 02/24/2025

PowerShell 7.6-preview.3 includes the following features, updates, and breaking
changes. PowerShell 7.6 is built on .NET 9.0.101 GA release.

For a complete list of changes, see the CHANGELOG  in the GitHub repository.

PowerShell 7.6-preview.3 includes the following updated modules:

Microsoft.PowerShell.PSResourceGet v1.1.0
PSReadLine v2.3.6

Remove trailing space from event source name (#24192 ) (Thanks @MartinGC94!)

Update Named and Statement block type inference to not consider
AssignmentStatements and Increment/decrement operators as part of their
output (#21137 ) (Thanks @MartinGC94!)
Add -PropertyType  argument completer for New-ItemProperty  (#21117 ) (Thanks
@ArmaanMcleod!)
Add completion single/double quote support for -Noun  parameter for Get-Command
(#24977 ) (Thanks @ArmaanMcleod!)
Add completion single/double quote support for -PSEdition  parameter for Get-
Module  (#24971 ) (Thanks @ArmaanMcleod!)
Convert InvalidCommandNameCharacters in AnalysisCache to
SearchValues<char>  for more efficient char searching (#24880 ) (Thanks
@ArmaanMcleod!)
Convert s_charactersRequiringQuotes in Completion Completers to
SearchValues<char>  for more efficient char searching (#24879 ) (Thanks
@ArmaanMcleod!)
Update IndexOfAny()  calls with invalid path/filename to SearchValues<char>  for
more efficient char searching ([#24896][24896]) (Thanks @ArmaanMcleod!)

Updated modules

Breaking Changes

Tab completion improvements

https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/preview.md
https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/preview.md
https://github.com/PowerShell/PowerShell/pull/24192
https://github.com/PowerShell/PowerShell/pull/24192
https://github.com/PowerShell/PowerShell/pull/21137
https://github.com/PowerShell/PowerShell/pull/21137
https://github.com/PowerShell/PowerShell/pull/21117
https://github.com/PowerShell/PowerShell/pull/21117
https://github.com/PowerShell/PowerShell/pull/24977
https://github.com/PowerShell/PowerShell/pull/24977
https://github.com/PowerShell/PowerShell/pull/24971
https://github.com/PowerShell/PowerShell/pull/24971
https://github.com/PowerShell/PowerShell/pull/24880
https://github.com/PowerShell/PowerShell/pull/24880
https://github.com/PowerShell/PowerShell/pull/24879
https://github.com/PowerShell/PowerShell/pull/24879


Replace char[]  array in CompletionRequiresQuotes  with cached
SearchValues<char>  (#24907 ) (Thanks @ArmaanMcleod!)
Add quote handling in Verb , StrictModeVersion , Scope  and PropertyType
Argument Completers with single helper method (#24839 ) (Thanks
@ArmaanMcleod!)

Add -ExcludeModule  parameter to Get-Command  (#18955 ) (Thanks
@MartinGC94!)
Return correct FileName property for Get-Item  when listing alternate data streams
(#18019 ) (Thanks @kilasuit!)
Fix Get-ItemProperty  to report non-terminating error for cast exception
(#21115 ) (Thanks @ArmaanMcleod!)
Fix a bug in how q handles XmlNode object (#24669 ) (Thanks @brendandburns!)
Error when New-Item -Force  is passed an invalid directory name (#24936 )
(Thanks @kborowinski!)
Allow Start-Transcript  to use $Transcript  which is a PSObject  wrapped string to
specify the transcript path (#24963 ) (Thanks @kborowinski!)
Improve Start-Process -Wait  polling efficiency (#24711 ) (Thanks @jborean93!)
Add completion of modules by their shortname (#20330 ) (Thanks
@MartinGC94!)

Added the AIShell module to telemetry collection list (#24747 )
Added helper in EnumSingleTypeConverter  to get enum names as array (#17785 )
(Thanks @fflaten!)
Update DnsNameList for X509Certificate2 to use
X509SubjectAlternativeNameExtension.EnumerateDnsNames()  Method (#24714 )
(Thanks @ArmaanMcleod!)
Stringify ErrorRecord with empty exception message to empty string (#24949 )
(Thanks @MatejKafka!)

The following experimental features are included in PowerShell 7.6-preview.3:

Cmdlet improvements

Engine improvements

Experimental features

https://github.com/PowerShell/PowerShell/pull/24907
https://github.com/PowerShell/PowerShell/pull/24907
https://github.com/PowerShell/PowerShell/pull/24839
https://github.com/PowerShell/PowerShell/pull/24839
https://github.com/PowerShell/PowerShell/pull/18955
https://github.com/PowerShell/PowerShell/pull/18955
https://github.com/PowerShell/PowerShell/pull/18019
https://github.com/PowerShell/PowerShell/pull/18019
https://github.com/PowerShell/PowerShell/pull/21115
https://github.com/PowerShell/PowerShell/pull/21115
https://github.com/PowerShell/PowerShell/pull/24669
https://github.com/PowerShell/PowerShell/pull/24669
https://github.com/PowerShell/PowerShell/pull/24936
https://github.com/PowerShell/PowerShell/pull/24936
https://github.com/PowerShell/PowerShell/pull/24963
https://github.com/PowerShell/PowerShell/pull/24963
https://github.com/PowerShell/PowerShell/pull/24711
https://github.com/PowerShell/PowerShell/pull/24711
https://github.com/PowerShell/PowerShell/pull/20330
https://github.com/PowerShell/PowerShell/pull/20330
https://github.com/PowerShell/PowerShell/pull/24747
https://github.com/PowerShell/PowerShell/pull/24747
https://github.com/PowerShell/PowerShell/pull/17785
https://github.com/PowerShell/PowerShell/pull/17785
https://github.com/PowerShell/PowerShell/pull/24714
https://github.com/PowerShell/PowerShell/pull/24714
https://github.com/PowerShell/PowerShell/pull/24949
https://github.com/PowerShell/PowerShell/pull/24949


PSNativeWindowsTildeExpansion - Add tilde expansion for Windows-native
executables
PSRedirectToVariable - Allow redirecting to a variable
PSSerializeJSONLongEnumAsNumber - ConvertTo-Json  now treats large enums as
numbers



What's New in PowerShell 7.5
Article • 01/29/2025

PowerShell 7.5.0 includes the following features, updates, and breaking changes.
PowerShell 7.5 is built on .NET 9.0.1 GA release.

For a complete list of changes, see the CHANGELOG  in the GitHub repository. For
more information about .NET 9, see [What's new in .NET 9][07].

Fix -OlderThan  and -NewerThan  parameters for Test-Path  when using PathType
and date range (#20942 ) (Thanks @ArmaanMcleod!)

Previously -OlderThan  would be ignored if specified together
Change New-FileCatalog -CatalogVersion  default to 2 (#20428 ) (Thanks
@ThomasNieto!)
Block getting help from network locations in restricted remoting sessions
(#20593 )
The Windows installer now remembers installation options used and uses them to
initialize options for the next installation (#20420 ) (Thanks @reduckted!)
ConvertTo-Json  now serializes BigInteger  as a number (#21000 ) (Thanks
@jborean93!)
.NET 9 removed the BinaryFormatter  implementation causing a regression in the
Out-GridView  cmdlet. The search feature of Out-GridView  doesn't work in
PowerShell 7.5. This problem is tracked in Issue #24749 .

PowerShell 7.5.0 includes the following updated modules:

Microsoft.PowerShell.PSResourceGet v1.1.0
PSReadLine v2.3.6

Many thanks to @ArmaanMcleod and others for all their work to improve tab
completion.

Breaking Changes

Updated modules

Tab completion improvements

https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.5.md
https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.5.md
https://github.com/PowerShell/PowerShell/pull/20942
https://github.com/PowerShell/PowerShell/pull/20942
https://github.com/PowerShell/PowerShell/pull/20428
https://github.com/PowerShell/PowerShell/pull/20428
https://github.com/PowerShell/PowerShell/pull/20593
https://github.com/PowerShell/PowerShell/pull/20593
https://github.com/PowerShell/PowerShell/pull/20420
https://github.com/PowerShell/PowerShell/pull/20420
https://github.com/PowerShell/PowerShell/pull/21000
https://github.com/PowerShell/PowerShell/pull/21000
https://github.com/PowerShell/PowerShell/issues/24749
https://github.com/PowerShell/PowerShell/issues/24749


Fall back to type inference when hashtable key-value cannot be retrieved from safe
expression (#21184 ) (Thanks @MartinGC94!)
Fix the regression when doing type inference for $_  (#21223 ) (Thanks
@MartinGC94!)
Expand ~  to $HOME  on Windows with tab completion (#21529 )
Don't complete when declaring parameter name and class member (#21182 )
(Thanks @MartinGC94!)
Prevent fallback to file completion when tab completing type names (#20084 )
(Thanks @MartinGC94)
Add argument completer to -Version  for Set-StrictMode  (#20554 ) (Thanks
@ArmaanMcleod!)
Add -Verb  argument completer for Get-Verb / Get-Command  and refactor Get-Verb
(#20286 ) (Thanks @ArmaanMcleod)
Add -Verb  argument completer for Start-Process  (#20415 ) (Thanks
@ArmaanMcleod)
Add -Scope  argument completer for *-Variable , *-Alias  & *-PSDrive  commands
(#20451 ) (Thanks @ArmaanMcleod)
Add -Module  completion for Save-Help / Update-Help  commands (#20678 )
(Thanks @ArmaanMcleod)

Add ConvertTo-CliXml  and ConvertFrom-CliXml  cmdlets (#21063 ) (Thanks
@ArmaanMcleod!)

Fix to allow -PassThru  and -Outfile  work together (#24086 )
Add OutFile  property in WebResponseObject  (#24047 )
Show filename in Invoke-WebRequest -OutFile -Verbose  (#24041 )
Fix WebCmdlets when -Body  is specified but ContentType  is not (#23952 )
(Thanks @CarloToso!)
Fix Invoke-WebRequest  to report correct size when -Resume  is specified (#20207 )
(Thanks @LNKLEO!)
Fix Web Cmdlets to allow WinForm  apps to work correctly (#20606 )

New cmdlets

Web cmdlets improvements

Other cmdlet improvements

https://github.com/PowerShell/PowerShell/pull/21184
https://github.com/PowerShell/PowerShell/pull/21184
https://github.com/PowerShell/PowerShell/pull/21223
https://github.com/PowerShell/PowerShell/pull/21223
https://github.com/PowerShell/PowerShell/pull/21529
https://github.com/PowerShell/PowerShell/pull/21529
https://github.com/PowerShell/PowerShell/pull/21182
https://github.com/PowerShell/PowerShell/pull/21182
https://github.com/PowerShell/PowerShell/pull/20084
https://github.com/PowerShell/PowerShell/pull/20084
https://github.com/PowerShell/PowerShell/pull/20554
https://github.com/PowerShell/PowerShell/pull/20554
https://github.com/PowerShell/PowerShell/pull/20286
https://github.com/PowerShell/PowerShell/pull/20286
https://github.com/PowerShell/PowerShell/pull/20415
https://github.com/PowerShell/PowerShell/pull/20415
https://github.com/PowerShell/PowerShell/pull/20451
https://github.com/PowerShell/PowerShell/pull/20451
https://github.com/PowerShell/PowerShell/pull/20678
https://github.com/PowerShell/PowerShell/pull/20678
https://github.com/PowerShell/PowerShell/pull/21063
https://github.com/PowerShell/PowerShell/pull/21063
https://github.com/PowerShell/PowerShell/pull/24086
https://github.com/PowerShell/PowerShell/pull/24086
https://github.com/PowerShell/PowerShell/pull/24047
https://github.com/PowerShell/PowerShell/pull/24047
https://github.com/PowerShell/PowerShell/pull/24041
https://github.com/PowerShell/PowerShell/pull/24041
https://github.com/PowerShell/PowerShell/pull/23952
https://github.com/PowerShell/PowerShell/pull/23952
https://github.com/PowerShell/PowerShell/pull/20207
https://github.com/PowerShell/PowerShell/pull/20207
https://github.com/PowerShell/PowerShell/pull/20606
https://github.com/PowerShell/PowerShell/pull/20606


Enable -NoRestart  to work with Register-PSSessionConfiguration  (#23891 )
Add IgnoreComments  and AllowTrailingCommas  options to Test-Json  cmdlet
(#23817 ) (Thanks @ArmaanMcleod!)
Get-Help may report parameters with ValueFromRemainingArguments  attribute as
pipeline-able (#23871 )
Change type of LineNumber  to ulong  in Select-String  (#24075 ) (Thanks
@Snowman-25!)
Get-Process : Remove admin requirement for -IncludeUserName  (#21302 )
(Thanks @jborean93!)
Fix Test-Path -IsValid  to check for invalid path and filename characters
(#21358 )
Add RecommendedAction  to ConciseView  of the error reporting (#20826 ) (Thanks
@JustinGrote!)
Added progress bar for Remove-Item  cmdlet (#20778 ) (Thanks
@ArmaanMcleod!)
Fix Test-Connection  due to .NET 8 changes (#20369 )
Fix Get-Service  non-terminating error message to include category (#20276 )
Add -Empty  and -InputObject  parameters to New-Guid  (#20014 ) (Thanks
@CarloToso!)
Add the alias r  to the parameter -Recurse  for the Get-ChildItem  command
(#20100 ) (Thanks @kilasuit!)
Add LP  to LiteralPath  aliases for functions still missing it (#20820 )
Add implicit localization fallback to Import-LocalizedData  (#19896 ) (Thanks
@chrisdent-de!)
Add Aliases  to the properties shown up when formatting the help content of the
parameter returned by Get-Help  (#20994 )
Add HelpUri  to Remove-Service  (#20476 )
Fix completion crash for the SCCM provider (#20815, #20919, #20915) (Thanks
@MartinGC94!)
Fix regression in Get-Content  when -Tail 0  and -Wait  are used together
(#20734 ) (Thanks @CarloToso!)
Fix Start-Process -PassThru  to make sure the ExitCode  property is accessible for
the returned Process  object (#20749 ) (Thanks @CodeCyclone!)
Fix Group-Object  to use current culture for its output (#20608 )
Fix Group-Object  output using interpolated strings (#20745 ) (Thanks
@mawosoft!)
Fix rendering of DisplayRoot  for network PSDrive  (#20793 )
Fix Copy-Item  progress to only show completed when all files are copied
(#20517 )

https://github.com/PowerShell/PowerShell/pull/23891
https://github.com/PowerShell/PowerShell/pull/23891
https://github.com/PowerShell/PowerShell/pull/23817
https://github.com/PowerShell/PowerShell/pull/23817
https://github.com/PowerShell/PowerShell/pull/23871
https://github.com/PowerShell/PowerShell/pull/23871
https://github.com/PowerShell/PowerShell/pull/24075
https://github.com/PowerShell/PowerShell/pull/24075
https://github.com/PowerShell/PowerShell/pull/21302
https://github.com/PowerShell/PowerShell/pull/21302
https://github.com/PowerShell/PowerShell/pull/21358
https://github.com/PowerShell/PowerShell/pull/21358
https://github.com/PowerShell/PowerShell/pull/20826
https://github.com/PowerShell/PowerShell/pull/20826
https://github.com/PowerShell/PowerShell/pull/20778
https://github.com/PowerShell/PowerShell/pull/20778
https://github.com/PowerShell/PowerShell/pull/20369
https://github.com/PowerShell/PowerShell/pull/20369
https://github.com/PowerShell/PowerShell/pull/20276
https://github.com/PowerShell/PowerShell/pull/20276
https://github.com/PowerShell/PowerShell/pull/20014
https://github.com/PowerShell/PowerShell/pull/20014
https://github.com/PowerShell/PowerShell/pull/20100
https://github.com/PowerShell/PowerShell/pull/20100
https://github.com/PowerShell/PowerShell/pull/20820
https://github.com/PowerShell/PowerShell/pull/20820
https://github.com/PowerShell/PowerShell/pull/19896
https://github.com/PowerShell/PowerShell/pull/19896
https://github.com/PowerShell/PowerShell/pull/20994
https://github.com/PowerShell/PowerShell/pull/20994
https://github.com/PowerShell/PowerShell/pull/20476
https://github.com/PowerShell/PowerShell/pull/20476
https://github.com/PowerShell/PowerShell/pull/20734
https://github.com/PowerShell/PowerShell/pull/20734
https://github.com/PowerShell/PowerShell/pull/20749
https://github.com/PowerShell/PowerShell/pull/20749
https://github.com/PowerShell/PowerShell/pull/20608
https://github.com/PowerShell/PowerShell/pull/20608
https://github.com/PowerShell/PowerShell/pull/20745
https://github.com/PowerShell/PowerShell/pull/20745
https://github.com/PowerShell/PowerShell/pull/20793
https://github.com/PowerShell/PowerShell/pull/20793
https://github.com/PowerShell/PowerShell/pull/20517
https://github.com/PowerShell/PowerShell/pull/20517


Fix UNC path completion regression (#20419 ) (Thanks @MartinGC94!)
Report error if invalid -ExecutionPolicy  is passed to pwsh  (#20460 )
Add WinGetCommandNotFound and CompletionPredictor modules to track
usage (#21040 )
Add DateKind parameter to ConvertFrom-Json  (#20925 ) (Thanks @jborean93!)
Add DirectoryInfo to the OutputType for New-Item (#21126 ) (Thanks
@MartinGC94!)
Fix Get-Error  serialization of array values (#21085 ) (Thanks @jborean93!)
Fix Test-ModuleManifest  so it can use a UNC path (#24115 )
Fix Get-TypeData  to write to the pipeline immediately instead of collecting data
first (#24236 ) (Thanks @MartinGC94)
Add -Force  parameter to Resolve-Path  and Convert-Path  cmdlets to support
wildcard hidden files #20981  (Thanks @ArmaanMcleod!)

Explicitly start and stop ANSI Error Color (#24065 ) (Thanks @JustinGrote!)
Improve .NET overload definition of generic methods (#21326 ) (Thanks
@jborean93!)
Optimize the +=  operation for a collection when it's an object array (#23901 )
(Thanks @jborean93!)
Add telemetry to check for specific tags when importing a module (#20371 )
Add PSAdapter  and ConsoleGuiTools  to module load telemetry allowlist
(#20641 )
Add WinGet module to track usage (#21040 )
Ensure the filename is not null when logging WDAC ETW events (#20910 )
(Thanks @jborean93!)
Fix four regressions introduced by the WDAC logging feature (#20913 )
Leave the input, output, and error handles unset when they are not redirected
(#20853 )
Fix implicit remoting proxy cmdlets to act on common parameters (#20367 )
Include the module version in error messages when module is not found
(#20144 ) (Thanks @ArmaanMcleod!)
Fix unixmode  to handle setuid  and sticky  when file is not an executable
(#20366 )
Fix using assembly to use Path.Combine when constructing assembly paths
(#21169 )
Validate the value for using namespace during semantic checks to prevent
declaring invalid namespaces (#21162 )

Engine improvements

https://github.com/PowerShell/PowerShell/pull/20419
https://github.com/PowerShell/PowerShell/pull/20419
https://github.com/PowerShell/PowerShell/pull/20460
https://github.com/PowerShell/PowerShell/pull/20460
https://github.com/PowerShell/PowerShell/pull/21040
https://github.com/PowerShell/PowerShell/pull/21040
https://github.com/PowerShell/PowerShell/pull/20925
https://github.com/PowerShell/PowerShell/pull/20925
https://github.com/PowerShell/PowerShell/pull/21126
https://github.com/PowerShell/PowerShell/pull/21126
https://github.com/PowerShell/PowerShell/pull/21085
https://github.com/PowerShell/PowerShell/pull/21085
https://github.com/PowerShell/PowerShell/pull/24115
https://github.com/PowerShell/PowerShell/pull/24115
https://github.com/PowerShell/PowerShell/pull/24236
https://github.com/PowerShell/PowerShell/pull/24236
https://github.com/PowerShell/PowerShell/pull/20981
https://github.com/PowerShell/PowerShell/pull/20981
https://github.com/PowerShell/PowerShell/pull/24065
https://github.com/PowerShell/PowerShell/pull/24065
https://github.com/PowerShell/PowerShell/pull/21326
https://github.com/PowerShell/PowerShell/pull/21326
https://github.com/PowerShell/PowerShell/pull/23901
https://github.com/PowerShell/PowerShell/pull/23901
https://github.com/PowerShell/PowerShell/pull/20371
https://github.com/PowerShell/PowerShell/pull/20371
https://github.com/PowerShell/PowerShell/pull/20641
https://github.com/PowerShell/PowerShell/pull/20641
https://github.com/PowerShell/PowerShell/pull/21040
https://github.com/PowerShell/PowerShell/pull/21040
https://github.com/PowerShell/PowerShell/pull/20910
https://github.com/PowerShell/PowerShell/pull/20910
https://github.com/PowerShell/PowerShell/pull/20913
https://github.com/PowerShell/PowerShell/pull/20913
https://github.com/PowerShell/PowerShell/pull/20853
https://github.com/PowerShell/PowerShell/pull/20853
https://github.com/PowerShell/PowerShell/pull/20367
https://github.com/PowerShell/PowerShell/pull/20367
https://github.com/PowerShell/PowerShell/pull/20144
https://github.com/PowerShell/PowerShell/pull/20144
https://github.com/PowerShell/PowerShell/pull/20366
https://github.com/PowerShell/PowerShell/pull/20366
https://github.com/PowerShell/PowerShell/pull/21169
https://github.com/PowerShell/PowerShell/pull/21169
https://github.com/PowerShell/PowerShell/pull/21162
https://github.com/PowerShell/PowerShell/pull/21162


Handle global tool specially when prepending $PSHOME  to PATH (#24228 )

The following experimental features were converted to mainstream features in
PowerShell 7.5-rc.1:

PSCommandNotFoundSuggestion
PSCommandWithArgs
PSModuleAutoLoadSkipOfflineFiles

The following experimental features are included in PowerShell 7.5-rc.1:

PSRedirectToVariable - Allow redirecting to a variable (#20381 )
PSNativeWindowsTildeExpansion - Add tilde expansion for Windows-native
executables (#20402 ) (Thanks @domsleee!)
PSSerializeJSONLongEnumAsNumber - ConvertTo-Json  now treats large enums as
numbers (#20999 ) (Thanks @jborean93!)

PowerShell 7.5-rc.1 included PR#23901  from @jborean93 that improves the
performance of the +=  operation for an array of objects.

The following example measures the performance for different methods of adding
elements to an array.

PowerShell

Experimental features

Performance improvements

$tests = @{
    'Direct Assignment' = {
        param($count)

    $result = foreach($i in 1..$count) {
            $i
        }
    }
    'List<T>.Add(T)' = {
        param($count)

        $result = [Collections.Generic.List[int]]::new()
        foreach($i in 1..$count) {
            $result.Add($i)
        }
    }
    'Array+= Operator' = {

https://github.com/PowerShell/PowerShell/pull/24228
https://github.com/PowerShell/PowerShell/pull/24228
https://github.com/PowerShell/PowerShell/pull/20381
https://github.com/PowerShell/PowerShell/pull/20381
https://github.com/PowerShell/PowerShell/pull/20402
https://github.com/PowerShell/PowerShell/pull/20402
https://github.com/PowerShell/PowerShell/pull/20999
https://github.com/PowerShell/PowerShell/pull/20999
https://github.com/PowerShell/PowerShell/pull/23901
https://github.com/PowerShell/PowerShell/pull/23901


When you run the script in PowerShell 7.4.6, you see that using the +=  operator is the
slowest method.

Output

        param($count)

        $result = @()
        foreach($i in 1..$count) {
            $result += $i
        }
    }
}

5kb, 10kb | ForEach-Object {
    $groupResult = foreach($test in $tests.GetEnumerator()) {
        $ms = (Measure-Command { & $test.Value -Count $_ 
}).TotalMilliseconds

        [pscustomobject]@{
            CollectionSize    = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms, 2)
        }

        [GC]::Collect()
            [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
        $groupResult | Select-Object *, @{
            Name       = 'RelativeSpeed'
            Expression = {
                $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
                $speed = [Math]::Round($relativeSpeed, 2).ToString() + 'x'
                if ($speed -eq '1x') { $speed } else { $speed + ' slower' }
            }
        } | Format-Table -AutoSize
}

CollectionSize Test                TotalMilliseconds RelativeSpeed
-------------- ----                ----------------- -------------
          5120 Direct Assignment                4.17 1x
          5120 List<T>.Add(T)                  90.79 21.77x slower
          5120 Array+= Operator               342.58 82.15x slower

CollectionSize Test                TotalMilliseconds RelativeSpeed
-------------- ----                ----------------- -------------
         10240 Direct Assignment                0.64 1x



When you run the script in PowerShell 7.5-rc.1, you see that using the +=  operator is
much faster than PowerShell 7.4.6. Now, it's also faster than using the List<T>.Add(T)
method.

Output

[07]: /dotnet/core/whats-new/dotnet-9/overview)

         10240 List<T>.Add(T)                 184.10 287.66x slower
         10240 Array+= Operator              1668.13 2606.45x slower

CollectionSize Test                TotalMilliseconds RelativeSpeed
-------------- ----                ----------------- -------------
          5120 Direct Assignment                4.71 1x
          5120 Array+= Operator                40.42 8.58x slower
          5120 List<T>.Add(T)                  92.17 19.57x slower

CollectionSize Test                TotalMilliseconds RelativeSpeed
-------------- ----                ----------------- -------------
         10240 Direct Assignment                1.76 1x
         10240 Array+= Operator               104.73 59.51x slower
         10240 List<T>.Add(T)                 173.00 98.3x slower



What's New in PowerShell 7.4
Article • 01/23/2025

PowerShell 7.4.7 includes the following features, updates, and breaking changes.
PowerShell 7.4.7 is built on .NET 8.0.12.

For a complete list of changes, see the CHANGELOG  in the GitHub repository.

Nano server docker images aren't available for this release
Added the ProgressAction parameter to the Common Parameters
Update some PowerShell APIs to throw ArgumentException instead of
ArgumentNullException when the argument is an empty string (#19215 )
(Thanks @xtqqczze!)
Remove code related to #Requires -PSSnapin  (#19320 )
Test-Json  now uses JsonSchema.NET instead of Newtonsoft.Json.Schema.

With this change, Test-Json  no longer supports the older Draft 4 schemas.
(#18141 ) (Thanks @gregsdennis!). For more information about JSON
schemas, see JSON Schema  documentation. This also breaks Test-Json  for
JSON and JSONC files with comments.
ConvertFrom-Json  support still uses Newtonsoft.Json.Schema so it can convert
JSON files with comments.

Output from Test-Connection  now includes more detailed information about TCP
connection tests
.NET introduced changes that affected Test-Connection . The cmdlet now returns
an error about the need to use sudo  on Linux platforms when using a custom
buffer size (#20369 )
Experimental feature PSNativeCommandPreserveBytePipe is now mainstream.
PowerShell now preserves the byte-stream data when redirecting the stdout
stream of a native command to a file or when piping byte-stream data to the stdin
stream of a native command.
Change how relative paths in Resolve-Path  are handled when using the
RelativeBasePath parameter (#19755 ) (Thanks @MartinGC94!)
Remove unused PSv2 code - removes TabExpansion function (#18337 )

Breaking changes

Installer updates

https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.4.md
https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.4.md
https://github.com/PowerShell/PowerShell/pull/19215
https://github.com/PowerShell/PowerShell/pull/19215
https://github.com/PowerShell/PowerShell/pull/19320
https://github.com/PowerShell/PowerShell/pull/19320
https://github.com/PowerShell/PowerShell/pull/18141
https://github.com/PowerShell/PowerShell/pull/18141
https://json-schema.org/understanding-json-schema/reference/schema
https://json-schema.org/understanding-json-schema/reference/schema
https://github.com/PowerShell/PowerShell/pull/20369
https://github.com/PowerShell/PowerShell/pull/20369
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommanduseerroractionpreference
https://github.com/PowerShell/PowerShell/pull/19755
https://github.com/PowerShell/PowerShell/pull/19755
https://github.com/PowerShell/PowerShell/pull/18337
https://github.com/PowerShell/PowerShell/pull/18337


The Windows MSI package now provides an option to disable PowerShell telemetry
during installation. For more information, see Install the msi package from the command
line.

PowerShell 7.4 includes Microsoft.PowerShell.PSResourceGet v1.0.1. This module is
installed side-by-side with PowerShellGet v2.2.5 and PackageManagement v1.4.8.1. For
more information, see the documentation for Microsoft.PowerShell.PSResourceGet.

PowerShell 7.4 now includes PSReadLine v2.3.4. For more information, see the
documentation for PSReadLine.

Many thanks to @MartinGC94 and others for all their work to improve tab completion.

Fix issue when completing the first command in a script with an empty array
expression (#18355 )
Fix positional argument completion (#17796 )
Prioritize the default parameter set when completing positional arguments
(#18755 )
Improve pseudo binding for dynamic parameters (#18030 )
Improve type inference of hashtable keys (#17907 )
Fix type inference error for empty return statements (#18351 )
Improve type inference for Get-Random (#18972 )
Fix type inference for all scope variables (#18758 )
Improve enumeration of inferred types in pipeline (#17799 )
Add completion for values in comparisons when comparing Enums (#17654 )
Add property assignment completion for enums (#19178 )
Fix completion for PSCustomObject variable properties (#18682 )
Fix member completion in attribute argument (#17902 )
Exclude redundant parameter aliases from completion results (#19382 )
Fix class member completion for classes with base types (#19179 )
Add completion for the using  keyword (#16514 )
Fix TabExpansion2 variable leak when completing variables (#18763 )
Enable completion of variables across ScriptBlock scopes (#19819 )
Fix completion of the foreach statement variable (#19814 )
Fix variable type inference precedence (#18691 )

Updated versions of PSResourceGet and
PSReadLine

Tab completion improvements

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.psresourceget
https://learn.microsoft.com/en-us/powershell/module/psreadline
https://github.com/PowerShell/PowerShell/pull/18355
https://github.com/PowerShell/PowerShell/pull/18355
https://github.com/PowerShell/PowerShell/pull/17796
https://github.com/PowerShell/PowerShell/pull/17796
https://github.com/PowerShell/PowerShell/pull/18755
https://github.com/PowerShell/PowerShell/pull/18755
https://github.com/PowerShell/PowerShell/pull/18030
https://github.com/PowerShell/PowerShell/pull/18030
https://github.com/PowerShell/PowerShell/pull/17907
https://github.com/PowerShell/PowerShell/pull/17907
https://github.com/PowerShell/PowerShell/pull/18351
https://github.com/PowerShell/PowerShell/pull/18351
https://github.com/PowerShell/PowerShell/pull/18972
https://github.com/PowerShell/PowerShell/pull/18972
https://github.com/PowerShell/PowerShell/pull/18758
https://github.com/PowerShell/PowerShell/pull/18758
https://github.com/PowerShell/PowerShell/pull/17799
https://github.com/PowerShell/PowerShell/pull/17799
https://github.com/PowerShell/PowerShell/pull/17654
https://github.com/PowerShell/PowerShell/pull/17654
https://github.com/PowerShell/PowerShell/pull/19178
https://github.com/PowerShell/PowerShell/pull/19178
https://github.com/PowerShell/PowerShell/pull/18682
https://github.com/PowerShell/PowerShell/pull/18682
https://github.com/PowerShell/PowerShell/pull/17902
https://github.com/PowerShell/PowerShell/pull/17902
https://github.com/PowerShell/PowerShell/pull/19382
https://github.com/PowerShell/PowerShell/pull/19382
https://github.com/PowerShell/PowerShell/pull/19179
https://github.com/PowerShell/PowerShell/pull/19179
https://github.com/PowerShell/PowerShell/pull/18758
https://github.com/PowerShell/PowerShell/pull/18758
https://github.com/PowerShell/PowerShell/pull/18763
https://github.com/PowerShell/PowerShell/pull/18763
https://github.com/PowerShell/PowerShell/pull/19819
https://github.com/PowerShell/PowerShell/pull/19819
https://github.com/PowerShell/PowerShell/pull/19814
https://github.com/PowerShell/PowerShell/pull/19814
https://github.com/PowerShell/PowerShell/pull/18691
https://github.com/PowerShell/PowerShell/pull/18691


Fix member completion for PowerShell Enum class (#19740 )
Fix parsing for array literals in index expressions in method calls (#19224 )
Improve path completion (#19489 )
Fix an indexing out of bound error in CompleteInput for empty script input
(#19501 )
Improve variable completion performance (#19595 )
Improve Hashtable key completion for type constrained variable assignments,
nested Hashtables and more (#17660 )
Infer external application output as strings (#19193 )
Update parameter completion for enums to exclude values not allowed by
ValidateRange  attributes (#17750 ) (Thanks @fflaten!).
Fix dynamic parameter completion (#19510 )
Add completion for variables assigned by the data  statement (#19831 )
Fix expanding tilde ( ~ ) on Windows systems to $HOME  to prevent breaking use
cases with native commands (#21529 )

Many thanks to @CarloToso and others for all the work on improving web cmdlets.

Fix decompression in web cmdlets to include Brotli (#17955 ) (Thanks
@iSazonov!)
Webcmdlets add 308 to redirect codes and small cleanup (#18536 )
Complete the progress bar rendering in Invoke-WebRequest when downloading is
complete or cancelled (#18130 )
Web cmdlets get Retry-After interval from response headers if the status code is
429 (#18717 )
Web cmdlets set default charset encoding to UTF8 (#18219 )
Preserve WebSession.MaximumRedirection from changes (#19190 )
WebCmdlets parse XML declaration to get encoding value, if present. (#18748 )
Fix using xml -Body in webcmdlets without an encoding (#19281 )
Adjust PUT method behavior to POST one for default content type in WebCmdlets
(#19152 )
Take into account ContentType from Headers in WebCmdlets (#19227 )
Allow to preserve the original HTTP method by adding -
PreserveHttpMethodOnRedirect to Web cmdlets (#18894 )
Webcmdlets display an error on https to http redirect (#18595 )
Add AllowInsecureRedirect switch to Web cmdlets (#18546 )
Improve verbose message in web cmdlets when content length is unknown
(#19252 )

Web cmdlet improvements

https://github.com/PowerShell/PowerShell/pull/19740
https://github.com/PowerShell/PowerShell/pull/19740
https://github.com/PowerShell/PowerShell/pull/19224
https://github.com/PowerShell/PowerShell/pull/19224
https://github.com/PowerShell/PowerShell/pull/19489
https://github.com/PowerShell/PowerShell/pull/19489
https://github.com/PowerShell/PowerShell/pull/19501
https://github.com/PowerShell/PowerShell/pull/19501
https://github.com/PowerShell/PowerShell/pull/19595
https://github.com/PowerShell/PowerShell/pull/19595
https://github.com/PowerShell/PowerShell/pull/17660
https://github.com/PowerShell/PowerShell/pull/17660
https://github.com/PowerShell/PowerShell/pull/19193
https://github.com/PowerShell/PowerShell/pull/19193
https://github.com/PowerShell/PowerShell/pull/17750
https://github.com/PowerShell/PowerShell/pull/17750
https://github.com/PowerShell/PowerShell/pull/19510
https://github.com/PowerShell/PowerShell/pull/19510
https://github.com/PowerShell/PowerShell/pull/19831
https://github.com/PowerShell/PowerShell/pull/19831
https://github.com/PowerShell/PowerShell/pull/21529
https://github.com/PowerShell/PowerShell/pull/21529
https://github.com/PowerShell/PowerShell/pull/17955
https://github.com/PowerShell/PowerShell/pull/17955
https://github.com/PowerShell/PowerShell/pull/18536
https://github.com/PowerShell/PowerShell/pull/18536
https://github.com/PowerShell/PowerShell/pull/18130
https://github.com/PowerShell/PowerShell/pull/18130
https://github.com/PowerShell/PowerShell/pull/18717
https://github.com/PowerShell/PowerShell/pull/18717
https://github.com/PowerShell/PowerShell/pull/18219
https://github.com/PowerShell/PowerShell/pull/18219
https://github.com/PowerShell/PowerShell/pull/19190
https://github.com/PowerShell/PowerShell/pull/19190
https://github.com/PowerShell/PowerShell/pull/18748
https://github.com/PowerShell/PowerShell/pull/18748
https://github.com/PowerShell/PowerShell/pull/19281
https://github.com/PowerShell/PowerShell/pull/19281
https://github.com/PowerShell/PowerShell/pull/19152
https://github.com/PowerShell/PowerShell/pull/19152
https://github.com/PowerShell/PowerShell/pull/19227
https://github.com/PowerShell/PowerShell/pull/19227
https://github.com/PowerShell/PowerShell/pull/18894
https://github.com/PowerShell/PowerShell/pull/18894
https://github.com/PowerShell/PowerShell/pull/18595
https://github.com/PowerShell/PowerShell/pull/18595
https://github.com/PowerShell/PowerShell/pull/18546
https://github.com/PowerShell/PowerShell/pull/18546
https://github.com/PowerShell/PowerShell/pull/19252
https://github.com/PowerShell/PowerShell/pull/19252


Build the relative URI for links from the response in Invoke-WebRequest  (#19092 )
Fix redirection for -CustomMethod POST  in WebCmdlets (#19111 )
Dispose previous response in Webcmdlets (#19117 )
Improve Invoke-WebRequest  xml and json errors format (#18837 )
Add ValidateNotNullOrEmpty to OutFile and InFile parameters of WebCmdlets
(#19044 )
HttpKnownHeaderNames update headers list (#18947 )
Invoke-RestMethod -FollowRelLink  fix links containing commas (#18829 )
Fix bug with managing redirection and KeepAuthorization in Web cmdlets
(#18902 )
Add StatusCode to HttpResponseException (#18842 )
Support HTTP persistent connections in Web Cmdlets (#19249 ) (Thanks
@stevenebutler!)
Small cleanup Invoke-RestMethod  (#19490 )
Improve the verbose message of WebCmdlets to show correct HTTP version
(#19616 )
Add FileNameStar to MultipartFileContent in WebCmdlets (#19467 )
Fix HTTP status from 409 to 429 for WebCmdlets to get retry interval from Retry-
After header. (#19622 ) (Thanks @mkht!)
Change -TimeoutSec  to -ConnectionTimeoutSeconds  and add -
OperationTimeoutSeconds  to web cmdlets (#19558 ) (Thanks @stevenebutler!)
Other cmdlets
Support Ctrl+c when connection hangs while reading data in WebCmdlets
(#19330 ) (Thanks @stevenebutler!)
Support Unix domain socket in WebCmdlets (#19343 )

Test-Connection  now returns error about the need to use sudo  on Linux platforms
when using a custom buffer size (#20369 )
Add output types to Format commands (#18746 ) (Thanks @MartinGC94!)
Add output type attributes for Get-WinEvent  (#17948 ) (Thanks @MartinGC94!)
Add Path and LiteralPath parameters to Test-Json  cmdlet (#19042 ) (Thanks
@ArmaanMcleod!)
Add NoHeader parameter to ConvertTo-Csv  and Export-Csv  cmdlets (#19108 )
(Thanks @ArmaanMcleod!)
Add Confirm and WhatIf parameters to Stop-Transcript (#18731 ) (Thanks
@JohnLBevan!)
Add FuzzyMinimumDistance parameter to Get-Command  (#18261 )

Other cmdlet improvements

https://github.com/PowerShell/PowerShell/pull/19092
https://github.com/PowerShell/PowerShell/pull/19092
https://github.com/PowerShell/PowerShell/pull/19111
https://github.com/PowerShell/PowerShell/pull/19111
https://github.com/PowerShell/PowerShell/pull/19117
https://github.com/PowerShell/PowerShell/pull/19117
https://github.com/PowerShell/PowerShell/pull/18837
https://github.com/PowerShell/PowerShell/pull/18837
https://github.com/PowerShell/PowerShell/pull/19044
https://github.com/PowerShell/PowerShell/pull/19044
https://github.com/PowerShell/PowerShell/pull/18947
https://github.com/PowerShell/PowerShell/pull/18947
https://github.com/PowerShell/PowerShell/pull/18829
https://github.com/PowerShell/PowerShell/pull/18829
https://github.com/PowerShell/PowerShell/pull/18902
https://github.com/PowerShell/PowerShell/pull/18902
https://github.com/PowerShell/PowerShell/pull/18842
https://github.com/PowerShell/PowerShell/pull/18842
https://github.com/PowerShell/PowerShell/pull/19249
https://github.com/PowerShell/PowerShell/pull/19249
https://github.com/PowerShell/PowerShell/pull/19490
https://github.com/PowerShell/PowerShell/pull/19490
https://github.com/PowerShell/PowerShell/pull/19616
https://github.com/PowerShell/PowerShell/pull/19616
https://github.com/PowerShell/PowerShell/pull/19467
https://github.com/PowerShell/PowerShell/pull/19467
https://github.com/PowerShell/PowerShell/pull/19622
https://github.com/PowerShell/PowerShell/pull/19622
https://github.com/PowerShell/PowerShell/pull/19558
https://github.com/PowerShell/PowerShell/pull/19558
https://github.com/PowerShell/PowerShell/pull/19330
https://github.com/PowerShell/PowerShell/pull/19330
https://github.com/PowerShell/PowerShell/pull/19343
https://github.com/PowerShell/PowerShell/pull/19343
https://github.com/PowerShell/PowerShell/pull/20369
https://github.com/PowerShell/PowerShell/pull/20369
https://github.com/PowerShell/PowerShell/pull/18746
https://github.com/PowerShell/PowerShell/pull/18746
https://github.com/PowerShell/PowerShell/pull/17948
https://github.com/PowerShell/PowerShell/pull/17948
https://github.com/PowerShell/PowerShell/pull/19042
https://github.com/PowerShell/PowerShell/pull/19042
https://github.com/PowerShell/PowerShell/pull/19108
https://github.com/PowerShell/PowerShell/pull/19108
https://github.com/PowerShell/PowerShell/pull/18731
https://github.com/PowerShell/PowerShell/pull/18731
https://github.com/PowerShell/PowerShell/pull/18261
https://github.com/PowerShell/PowerShell/pull/18261


Make Encoding parameter able to take ANSI  encoding in PowerShell (#19298 )
(Thanks @CarloToso!)
Add progress to Copy-Item  (#18735 )
Update-Help  now reports an error when using implicit culture on non-US systems.
(#17780 ) (Thanks @dkaszews!)
Don't require activity when creating a completed progress record (#18474 )
(Thanks @MartinGC94!)
Disallow negative values for Get-Content  cmdlet parameters -Head  and -Tail
(#19715 ) (Thanks @CarloToso!)
Make Update-Help  throw proper error when current culture isn't associated with a
language (#19765 ) (Thanks @josea!)
Allow combining of -Skip  and -SkipLast  parameters in Select-Object  cmdlet.
(#18849 ) (Thanks @ArmaanMcleod!)
Add Get-SecureRandom  cmdlet (#19587 )
Set-Clipboard -AsOSC52  for remote usage (#18222 ) (Thanks @dkaszews!)
Speed up Resolve-Path  relative path resolution (#19171 ) (Thanks
@MartinGC94!)
Added the switch parameter -CaseInsensitive  to Select-Object  and Get-Unique
cmdlets (#19683 ) (Thanks @ArmaanMcleod!)
Restart-Computer  and Stop-Computer  should fail with error when not running via
sudo on Unix (#19824 )

Updates to $PSStyle

Adds Dim and DimOff properties (#18653 )
Added static methods to the PSStyle class that map foreground and background
ConsoleColor values to ANSI escape sequences (#17938 )
Table headers for calculated fields are formatted in italics by default
Add support of respecting $PSStyle.OutputRendering  on the remote host
(#19601 )
Updated telemetry data to include use of CrescendoBuilt  modules (#20371 )

Other Engine updates

Make PowerShell class not affiliate with Runspace when declaring the
NoRunspaceAffinity  attribute (#18138 )
Add the ValidateNotNullOrWhiteSpace  attribute (#17191 ) (Thanks @wmentha!)
Add sqlcmd  to the list for legacy argument passing (#18559 )

Engine improvements

https://github.com/PowerShell/PowerShell/pull/19298
https://github.com/PowerShell/PowerShell/pull/19298
https://github.com/PowerShell/PowerShell/pull/18735
https://github.com/PowerShell/PowerShell/pull/18735
https://github.com/PowerShell/PowerShell/pull/17780
https://github.com/PowerShell/PowerShell/pull/17780
https://github.com/PowerShell/PowerShell/pull/18474
https://github.com/PowerShell/PowerShell/pull/18474
https://github.com/PowerShell/PowerShell/pull/19715
https://github.com/PowerShell/PowerShell/pull/19715
https://github.com/PowerShell/PowerShell/pull/19765
https://github.com/PowerShell/PowerShell/pull/19765
https://github.com/PowerShell/PowerShell/pull/18849
https://github.com/PowerShell/PowerShell/pull/18849
https://github.com/PowerShell/PowerShell/pull/19587
https://github.com/PowerShell/PowerShell/pull/19587
https://github.com/PowerShell/PowerShell/pull/18222
https://github.com/PowerShell/PowerShell/pull/18222
https://github.com/PowerShell/PowerShell/pull/19171
https://github.com/PowerShell/PowerShell/pull/19171
https://github.com/PowerShell/PowerShell/pull/19683
https://github.com/PowerShell/PowerShell/pull/19683
https://github.com/PowerShell/PowerShell/pull/19824
https://github.com/PowerShell/PowerShell/pull/19824
https://github.com/PowerShell/PowerShell/pull/18653
https://github.com/PowerShell/PowerShell/pull/18653
https://github.com/PowerShell/PowerShell/pull/17938
https://github.com/PowerShell/PowerShell/pull/17938
https://github.com/PowerShell/PowerShell/pull/19601
https://github.com/PowerShell/PowerShell/pull/19601
https://github.com/PowerShell/PowerShell/pull/20371
https://github.com/PowerShell/PowerShell/pull/20371
https://github.com/PowerShell/PowerShell/pull/18138
https://github.com/PowerShell/PowerShell/pull/18138
https://github.com/PowerShell/PowerShell/pull/17191
https://github.com/PowerShell/PowerShell/pull/17191
https://github.com/PowerShell/PowerShell/pull/18559
https://github.com/PowerShell/PowerShell/pull/18559


Add the function cd~  (#18308 ) (Thanks @GigaScratch!)
Fix array type parsing in generic types (#19205 ) (Thanks @MartinGC94!)
Fix wildcard globbing in root of device paths (#19442 ) (Thanks @MartinGC94!)
Add a public API for getting locations of PSModulePath elements (#19422 )
Fix incorrect string to type conversion (#19560 ) (Thanks @MartinGC94!)
Fix slow execution when many breakpoints are used (#14953 ) (Thanks
@nohwnd!)
Remove code related to #Requires -PSSnapin  (#19320 )

PowerShell 7.4 introduces the following experimental features:

PSFeedbackProvider - Replaces the hard-coded suggestion framework with an
extensible feedback provider.

This feature also adds the FeedbackName, FeedbackText, and FeedbackAction
properties to $PSStyle.Formatting  that allow you to change the formatting of
feedback messages.

PSModuleAutoLoadSkipOfflineFiles - Module discovery now skips over files that
are marked by cloud providers as not fully on disk.
PSCommandWithArgs - Add support for passing arguments to commands as a
single string

The following experimental features became mainstream:

PSConstrainedAuditLogging
PSCustomTableHeaderLabelDecoration
PSNativeCommandErrorActionPreference
PSNativeCommandPreserveBytePipe
PSWindowsNativeCommandArgPassing

PowerShell 7.4 changed the following experimental features:

PSCommandNotFoundSuggestion - This feature now uses an extensible feedback
provider rather than hard-coded suggestions (#18726 )

For more information about the Experimental Features, see Using Experimental Features.

Experimental Features

https://github.com/PowerShell/PowerShell/pull/18308
https://github.com/PowerShell/PowerShell/pull/18308
https://github.com/PowerShell/PowerShell/pull/19205
https://github.com/PowerShell/PowerShell/pull/19205
https://github.com/PowerShell/PowerShell/pull/19442
https://github.com/PowerShell/PowerShell/pull/19442
https://github.com/PowerShell/PowerShell/pull/19422
https://github.com/PowerShell/PowerShell/pull/19422
https://github.com/PowerShell/PowerShell/pull/19560
https://github.com/PowerShell/PowerShell/pull/19560
https://github.com/PowerShell/PowerShell/pull/14953
https://github.com/PowerShell/PowerShell/pull/14953
https://github.com/PowerShell/PowerShell/pull/19320
https://github.com/PowerShell/PowerShell/pull/19320
https://learn.microsoft.com/en-us/powershell/scripting/security/application-control?view=powershell-7.5#wdac-policy-auditing
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommanduseerroractionpreference
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_redirection?view=powershell-7.4&preserve-view=true#redirecting-output-from-native-commands
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommandargumentpassing
https://github.com/PowerShell/PowerShell/pull/18726
https://github.com/PowerShell/PowerShell/pull/18726


What's New in PowerShell 7.3
Article • 01/23/2025

PowerShell 7.3 is the next stable release, built on .NET 7.0.

PowerShell 7.3 includes the following features, updates, and breaking changes.

In this release, Windows APIs were updated or removed for compliance, which
means that PowerShell 7.3 doesn't run on Windows 7. While Windows 7 is no
longer supported, previous builds could run on Windows 7.
PowerShell Direct for Hyper-V is only supported on Windows 10, version 1809 and
higher.
Test-Connection  is broken due to an intentional breaking change  in .NET 7. It's
tracked by #17018
Add clean  block to script block as a peer to begin , process , and end  to allow easy
resource cleanup (#15177 )
Change default for $PSStyle.OutputRendering  to Host
Make Out-String  and Out-File  keep string input unchanged (#17455 )
Move the type data definition of System.Security.AccessControl.ObjectSecurity to
the Microsoft.PowerShell.Security module (#16355 ) (Thanks @iSazonov!)

Before this change, a user doesn't need to explicitly import the
Microsoft.PowerShell.Security module to use the code properties defined for
an instance of System.Security.AccessControl.ObjectSecurity.
After this change, a user needs to explicitly import
Microsoft.PowerShell.Security module in order to use those code properties
and code methods.

PowerShell 7.3 includes PSReadLine 2.2.6, which enables Predictive IntelliSense by
default. For more information, see about_PSReadLine.
Fix tab completion within the script block specified for the
ValidateScriptAttribute . (#14550 ) (Thanks @MartinGC94!)
Added tab completion for loop labels after break / continue  (#16438 ) (Thanks
@MartinGC94!)
Improve Hashtable completion in multiple scenarios (#16498 ) (Thanks
@MartinGC94!)

Breaking Changes and Improvements

Tab completion improvements

https://github.com/dotnet/runtime/issues/66746
https://github.com/dotnet/runtime/issues/66746
https://github.com/PowerShell/PowerShell/issues/17018
https://github.com/PowerShell/PowerShell/issues/17018
https://github.com/PowerShell/PowerShell/pull/15177
https://github.com/PowerShell/PowerShell/pull/15177
https://github.com/PowerShell/PowerShell/pull/17455
https://github.com/PowerShell/PowerShell/pull/17455
https://github.com/PowerShell/PowerShell/pull/16355
https://github.com/PowerShell/PowerShell/pull/16355
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline#psreadline-release-history
https://github.com/PowerShell/PowerShell/pull/14550
https://github.com/PowerShell/PowerShell/pull/14550
https://github.com/PowerShell/PowerShell/pull/16438
https://github.com/PowerShell/PowerShell/pull/16438
https://github.com/PowerShell/PowerShell/pull/16498
https://github.com/PowerShell/PowerShell/pull/16498


Parameter splatting
Arguments parameter for Invoke-CimMethod
FilterHashtable parameter for Get-WinEvent
Property parameter for the CIM cmdlets
Removes duplicates from member completion scenarios

Support forward slashes in network share (UNC path) completion (#17111 )
(Thanks @sba923!)
Improve member autocompletion (#16504 ) (Thanks @MartinGC94!)
Prioritize ValidateSet completions over Enums for parameters (#15257 ) (Thanks
@MartinGC94!)
Add type inference support for generic methods with type parameters (#16951 )
(Thanks @MartinGC94!)
Improve type inference and completions (#16963 ) (Thanks @MartinGC94!)

Allows methods to be shown in completion results for ForEach-Object -
MemberName

Prevents completion on expressions that return void like ([void](""))
Allows non-default Class constructors to show up when class completion is
based on the AST

Improve type inference for $_  (#17716 ) (Thanks @MartinGC94!)
Fix type inference for ICollection (#17752 ) (Thanks @MartinGC94!)
Prevent braces from being removed when completing variables (#17751 )
(Thanks @MartinGC94!)
Add completion for index expressions for dictionaries (#17619 ) (Thanks
@MartinGC94!)
Fix type completion for attribute tokens (#17484 ) (Thanks @MartinGC94!)
Improve dynamic parameter tab completion (#17661 ) (Thanks @MartinGC94!)
Avoid binding positional parameters when completing parameter in front of value
(#17693 ) (Thanks @MartinGC94!)

Set $?  correctly for command expression with redirections (#16046 )
Fix a casting error when using $PSNativeCommandUseErrorActionPreference
(#15993 )
Make the native command error handling optionally honor ErrorActionPreference
(#15897 )
Specify the executable path as TargetObject  for non-zero exit code ErrorRecord
(#16108 ) (Thanks @rkeithhill!)

Improved error handling

https://github.com/PowerShell/PowerShell/pull/17111
https://github.com/PowerShell/PowerShell/pull/17111
https://github.com/PowerShell/PowerShell/pull/16504
https://github.com/PowerShell/PowerShell/pull/16504
https://github.com/PowerShell/PowerShell/pull/15257
https://github.com/PowerShell/PowerShell/pull/15257
https://github.com/PowerShell/PowerShell/pull/16951
https://github.com/PowerShell/PowerShell/pull/16951
https://github.com/PowerShell/PowerShell/pull/16963
https://github.com/PowerShell/PowerShell/pull/16963
https://github.com/PowerShell/PowerShell/pull/17716
https://github.com/PowerShell/PowerShell/pull/17716
https://github.com/PowerShell/PowerShell/pull/17752
https://github.com/PowerShell/PowerShell/pull/17752
https://github.com/PowerShell/PowerShell/pull/17751
https://github.com/PowerShell/PowerShell/pull/17751
https://github.com/PowerShell/PowerShell/pull/17619
https://github.com/PowerShell/PowerShell/pull/17619
https://github.com/PowerShell/PowerShell/pull/17484
https://github.com/PowerShell/PowerShell/pull/17484
https://github.com/PowerShell/PowerShell/pull/17661
https://github.com/PowerShell/PowerShell/pull/17661
https://github.com/PowerShell/PowerShell/pull/17693
https://github.com/PowerShell/PowerShell/pull/17693
https://github.com/PowerShell/PowerShell/pull/16046
https://github.com/PowerShell/PowerShell/pull/16046
https://github.com/PowerShell/PowerShell/pull/15993
https://github.com/PowerShell/PowerShell/pull/15993
https://github.com/PowerShell/PowerShell/pull/15897
https://github.com/PowerShell/PowerShell/pull/15897
https://github.com/PowerShell/PowerShell/pull/16108
https://github.com/PowerShell/PowerShell/pull/16108


Add -Options  to the PSRP over SSH commands to allow passing OpenSSH options
directly (#12802 ) (Thanks @BrannenGH!)
Add -ConfigurationFile  parameter to pwsh  to allow starting a new process with
the session configuration defined in a .pssc  file (#17447 )
Add support for using New-PSSessionConfigurationFile  on non-Windows
platforms (#17447 )

Add -HttpVersion  parameter to web cmdlets (#15853 ) (Thanks @hayhay27!)
Add support to web cmdlets for open-ended input tags (#16193 ) (Thanks
@farmerau!)
Fix ConvertTo-Json -Depth  to allow 100 at maximum (#16197 ) (Thanks
@KevRitchie!)
Improve variable handling when calling Invoke-Command  with the $Using:
expression (#16113 ) (Thanks @dwtaber!)
Add -StrictMode  to Invoke-Command  to allow specifying strict mode when invoking
command locally (#16545 ) (Thanks @Thomas-Yu!)
Add clean  block to script block as a peer to begin , process , and end  to allow easy
resource cleanup (#15177 )
Add -Amended  switch to Get-CimClass  cmdlet (#17477 ) (Thanks @iSazonov)
Changed ConvertFrom-Json -AsHashtable  to use ordered hashtable (#17405 )
Removed ANSI escape sequences in strings before sending to Out-GridView
(#17664 )
Added the Milliseconds parameter to New-TimeSpan  (#17621 ) (Thanks
@NoMoreFood!)
Show optional parameters when displaying method definitions and overloads
(#13799 ) (Thanks @eugenesmlv!)
Allow commands to still be executed even if the current working directory no
longer exists (#17579 )
Add support for HTTPS with Set-AuthenticodeSignature -TimeStampServer
(#16134 ) (Thanks @Ryan-Hutchison-USAF!)
Render decimal numbers in a table using current culture (#17650 )
Add type accelerator ordered for OrderedDictionary (#17804 ) (Thanks @fflaten!)
Add find.exe  to legacy argument binding behavior for Windows (#17715 )
Add -NoProfileLoadTime  switch to pwsh (#17535 ) (Thanks @rkeithhill!)

Session and remoting improvements

Updated cmdlets

https://github.com/PowerShell/PowerShell/pull/12802
https://github.com/PowerShell/PowerShell/pull/12802
https://github.com/PowerShell/PowerShell/pull/17447
https://github.com/PowerShell/PowerShell/pull/17447
https://github.com/PowerShell/PowerShell/pull/17447
https://github.com/PowerShell/PowerShell/pull/17447
https://github.com/PowerShell/PowerShell/pull/15853
https://github.com/PowerShell/PowerShell/pull/15853
https://github.com/PowerShell/PowerShell/pull/16193
https://github.com/PowerShell/PowerShell/pull/16193
https://github.com/PowerShell/PowerShell/pull/16197
https://github.com/PowerShell/PowerShell/pull/16197
https://github.com/PowerShell/PowerShell/pull/16113
https://github.com/PowerShell/PowerShell/pull/16113
https://github.com/PowerShell/PowerShell/pull/16545
https://github.com/PowerShell/PowerShell/pull/16545
https://github.com/PowerShell/PowerShell/pull/15177
https://github.com/PowerShell/PowerShell/pull/15177
https://github.com/PowerShell/PowerShell/pull/17477
https://github.com/PowerShell/PowerShell/pull/17477
https://github.com/PowerShell/PowerShell/pull/17405
https://github.com/PowerShell/PowerShell/pull/17405
https://github.com/PowerShell/PowerShell/pull/17664
https://github.com/PowerShell/PowerShell/pull/17664
https://github.com/PowerShell/PowerShell/pull/17621
https://github.com/PowerShell/PowerShell/pull/17621
https://github.com/PowerShell/PowerShell/pull/13799
https://github.com/PowerShell/PowerShell/pull/13799
https://github.com/PowerShell/PowerShell/pull/17579
https://github.com/PowerShell/PowerShell/pull/17579
https://github.com/PowerShell/PowerShell/pull/16134
https://github.com/PowerShell/PowerShell/pull/16134
https://github.com/PowerShell/PowerShell/pull/17650
https://github.com/PowerShell/PowerShell/pull/17650
https://github.com/PowerShell/PowerShell/pull/17804
https://github.com/PowerShell/PowerShell/pull/17804
https://github.com/PowerShell/PowerShell/pull/17715
https://github.com/PowerShell/PowerShell/pull/17715
https://github.com/PowerShell/PowerShell/pull/17535
https://github.com/PowerShell/PowerShell/pull/17535


For a complete list of changes, see the Change Log  in the GitHub repository.

In PowerShell 7.3, following experimental features became mainstream:

PSAnsiRenderingFileInfo  - This feature adds the $PSStyle.FileInfo  member and
enables coloring of specific file types.

PSCleanBlock  - Adds clean  block to script block as a peer to begin , process , and
end  to allow easy resource cleanup.

PSAMSIMethodInvocationLogging  - Extends the data sent to AMSI for inspection to
include all invocations of .NET method members.

PSNativeCommandArgumentPassing - PowerShell now uses the ArgumentList
property of the StartProcessInfo object rather than the old mechanism of
reconstructing a string when invoking a native executable.

PowerShell 7.3.1 adds sqlcmd.exe  to the list of native commands in Windows that
use the Legacy  style of argument passing.

PSExec  - Adds the new Switch-Process  cmdlet (alias exec ) to provide exec
compatibility for non-Windows systems.

PowerShell 7.3.1 changed the exec  alias to a function that wraps Switch-Process .
The function allows you to pass parameters to the native command that might
have erroneously bound to the WithCommand parameter.

PowerShell 7.3 introduces the following experimental features:

PSNativeCommandErrorActionPreference - Adds the
$PSNativeCommandUseErrorActionPreference  variable to enable errors produced by
native commands to be PowerShell errors.

PowerShell 7.3 removed the following experimental features:

PSNativePSPathResolution  experimental feature is no longer supported.
PSStrictModeAssignment  experimental feature is no longer supported.

For more information about the Experimental Features, see Using Experimental Features.

Experimental Features

https://github.com/PowerShell/PowerShell/releases/tag/v7.3.0
https://github.com/PowerShell/PowerShell/releases/tag/v7.3.0
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommandargumentpassing
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommanduseerroractionpreference


What's New in PowerShell 7.2
Article • 01/23/2025

PowerShell 7.2 is the next Long Term Servicing (LTS) release is built on .NET 6.0.

PowerShell 7.2 includes the following features, updates, and breaking changes.

New universal installer packages for most supported Linux distributions
Microsoft Update support on Windows
2 new experimental features

Improved native command argument passing support
ANSI FileInfo color support

Improved Tab Completions
PSReadLine 2.1 with Predictive IntelliSense
7 experimental features promoted to mainstream and 1 removed
Separating DSC from PowerShell 7 to enable future improvements
Several breaking changes to improve usability

For a complete list of changes, see the Change Log  in the GitHub repository.

Check the installation instructions for your preferred operating system:

Windows
macOS
Linux

Additionally, PowerShell 7.2 supports ARM64 versions of Windows and macOS and
ARM32 and ARM64 versions of Debian and Ubuntu.

For up-to-date information about supported operating systems and support lifecycle,
see the PowerShell Support Lifecycle.

Previously, we created separate installer packages for each supported version of CentOS,
RHEL, Debian, and Ubuntu. The universal installer package combines eight different
packages into one, making installation on Linux simpler. The universal package installs
the necessary dependencies for the target distribution and creates the platform-specific
changes to make PowerShell work.

Installation updates

New universal install packages for Linux distributions

https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.2.md
https://github.com/PowerShell/PowerShell/blob/master/CHANGELOG/7.2.md
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-windows
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-macos
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux
https://learn.microsoft.com/en-us/powershell/scripting/powershell-support-lifecycle


PowerShell 7.2 add support for Microsoft Update. When you enable this feature, you'll
get the latest PowerShell 7 updates in your traditional Windows Update (WU)
management flow, whether that's with Windows Update for Business, WSUS, SCCM, or
the interactive WU dialog in Settings.

The PowerShell 7.2 MSI package includes following command-line options:

USE_MU  - This property has two possible values:
1  (default) - Opts into updating through Microsoft Update or WSUS

0  - don't opt into updating through Microsoft Update or WSUS
ENABLE_MU

1  (default) - Opts into using Microsoft Update the Automatic Updates or
Windows Update
0  - don't opt into using Microsoft Update the Automatic Updates or Windows
Update

The following experimental features are now mainstream features in this release:

Microsoft.PowerShell.Utility.PSImportPSDataFileSkipLimitCheck  - see Import-
PowerShellDataFile
Microsoft.PowerShell.Utility.PSManageBreakpointsInRunspace

PSAnsiRendering  - see about_ANSI_Terminals
PSAnsiProgress  - see about_ANSI_Terminals
PSCultureInvariantReplaceOperator

PSNotApplyErrorActionToStderr

PSUnixFileStat

The following experimental feature was added in this release:

PSNativeCommandArgumentPassing - When this experimental feature is enabled
PowerShell uses the ArgumentList property of the StartProcessInfo object rather
than our current mechanism of reconstructing a string when invoking a native
executable. This feature adds a new automatic variable
$PSNativeCommandArgumentPassing  that allows you to select the behavior at runtime.

PSAnsiRenderingFileInfo - Allow ANSI color customization of file information.

Microsoft Update support for Windows

Experimental Features

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-powershelldatafile
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-powershelldatafile
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables#psnativecommandargumentpassing
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals#psstyle


PSLoadAssemblyFromNativeCode - Exposes an API to allow assembly loading from
native code.

For more information about the Experimental Features, see Using Experimental Features.

PowerShell 7.2 includes several improvements to Tab Completion. These changes
include bugfixes and improve usability.

Fix tab completion for unlocalized about* topics (#15265) (Thanks @MartinGC94)
Fix splatting being treated as positional parameter in completions (#14623)
(Thanks @MartinGC94)
Add completions for comment-based help keywords (#15337) (Thanks
@MartinGC94)
Add completion for Requires statements (#14596) (Thanks @MartinGC94)
Added tab completion for View parameter of Format-* cmdlets (#14513) (Thanks
@iSazonov)

PSReadLine 2.1 introduced CommandPrediction  APIs that establish a framework for
providing predictions for command-line completion. The API enables users to discover,
edit, and execute full commands based on matching predictions from the user's history.

Predictive IntelliSense is disabled by default. To enable predictions, run the following
command:

PowerShell

The PSDesiredStateConfiguration module was removed from the PowerShell 7.2
package and is now published to the PowerShell Gallery. This allows the
PSDesiredStateConfiguration module to be developed independently of PowerShell and
users can mix and match versions of PowerShell and PSDesiredStateConfiguration for

Improved Tab Completions

PSReadLine 2.1 Predictive IntelliSense

Set-PSReadLineOption -PredictionSource History

Separating DSC from PowerShell 7 to enable
future improvements



their environment. To install PSDesiredStateConfiguration 2.0.5 from the PowerShell
Gallery:

PowerShell

Add LoadAssemblyFromNativeMemory  function to load assemblies in memory from a
native PowerShell host by awakecoding · Pull Request #14652

The PSDesiredStateConfiguration was removed from the PowerShell 7.2 package
Make PowerShell Linux deb and RPM packages universal (#15109)
Experimental feature PSNativeCommandArgumentPassing : Use ArgumentList for native
executable invocation (#14692)
Ensure -PipelineVariable  is set for all output from script cmdlets (#12766)
Emit warning if ConvertTo-Json  exceeds -Depth value (#13692)
Remove alias D of -Directory switch CL-General #15171
Improve detection of mutable value types (#12495)
Restrict New-Object  in NoLanguage mode under lock down (#14140)
Enforce AppLocker Deny configuration before Execution Policy Bypass
configuration (#15035)
Change FileSystemInfo.Target  from a CodeProperty to an AliasProperty that
points to FileSystemInfo.LinkTarget  (#16165)

Install-Module -Name PSDesiredStateConfiguration -Repository PSGallery -
MaximumVersion 2.99

） Important

Be sure to include the parameter MaximumVersion or you could install version 3 (or
higher) of PSDesireStateConfiguration that contains significant differences.

Engine updates

Breaking Changes and Improvements



Migrating from Windows PowerShell 5.1
to PowerShell 7
Article • 04/02/2024

Designed for cloud, on-premises, and hybrid environments, PowerShell 7 is packed with
enhancements and new features.

Installs and runs side-by-side with Windows PowerShell
Improved compatibility with existing Windows PowerShell modules
New language features, like ternary operators and ForEach-Object -Parallel
Improved performance
SSH-based remoting
Cross-platform interoperability
Support for Docker containers

PowerShell 7 works side-by-side with Windows PowerShell letting you easily test and compare
between editions before deployment. Migration is simple, quick, and safe.

PowerShell 7 is supported on the following Windows operating systems:

Windows 10, and 11
Windows Server 2016, 2019, and 2022

PowerShell 7 also runs on macOS and several Linux distributions. For a list of supported
operating systems and information about the support lifecycle, see the PowerShell Support
Lifecycle.

For flexibility and to support the needs of IT, DevOps engineers, and developers, there are
several options available to install PowerShell 7. In most cases, the installation options can be
reduced to the following methods:

Deploy PowerShell using the MSI package
Deploy PowerShell using the ZIP package

Installing PowerShell 7

７ Note

The MSI package can be deployed and updated with management products such as
Microsoft Configuration Manager. Download the packages from GitHub Release
page .

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-70?view=powershell-7.5
https://learn.microsoft.com/en-us/configmgr/apps/
https://github.com/PowerShell/PowerShell/releases
https://github.com/PowerShell/PowerShell/releases
https://github.com/PowerShell/PowerShell/releases


Deploying the MSI package requires Administrator permission. The ZIP package can be
deployed by any user. The ZIP package is the easiest way to install PowerShell 7 for testing,
before committing to a full installation.

You may also install PowerShell 7 via the Windows Store or winget . For more information
about both of these methods, see the detailed instructions in Installing PowerShell on
Windows.

PowerShell 7 is designed to coexist with Windows PowerShell 5.1. The following features
ensure that your investment in PowerShell is protected and your migration to PowerShell 7 is
simple.

Separate installation path and executable name
Separate PSModulePath
Separate profiles for each version
Improved module compatibility
New remoting endpoints
Group policy support
Separate Event logs

PowerShell 7.4 is built on .NET 8.0. Windows PowerShell 5.1 is built on .NET Framework 4.x. The
differences between the .NET versions might affect the behavior of your scripts, especially if
you are calling .NET method directly. For more information, Differences between Windows
PowerShell 5.1 and PowerShell 7.x.

PowerShell 7 installs to a new directory, enabling side-by-side execution with Windows
PowerShell 5.1.

Install locations by version:

Windows PowerShell 5.1: $Env:windir\System32\WindowsPowerShell\v1.0
PowerShell 6.x: $Env:ProgramFiles\PowerShell\6
PowerShell 7: $Env:ProgramFiles\PowerShell\7

The new location is added to your PATH allowing you to run both Windows PowerShell 5.1 and
PowerShell 7. If you're migrating from PowerShell 6.x to PowerShell 7, PowerShell 6 is removed
and the PATH replaced.

Using PowerShell 7 side-by-side with Windows
PowerShell 5.1

Differences in .NET versions

Separate installation path and executable name



In Windows PowerShell, the PowerShell executable is named powershell.exe . In version 6 and
above, the executable is named pwsh.exe . The new name makes it easy to support side-by-
side execution of both versions.

By default, Windows PowerShell and PowerShell 7 store modules in different locations.
PowerShell 7 combines those locations in the $Env:PSModulePath  environment variable. When
importing a module by name, PowerShell checks the location specified by $Env:PSModulePath .
This allows PowerShell 7 to load both Core and Desktop modules.

Install
Scope

Windows PowerShell 5.1 PowerShell 7.0

PowerShell
modules

$Env:windir\system32\WindowsPowerShell\v1.0\Modules $Env:ProgramFiles\PowerShell\7\Modules

User
installed
AllUsers
scope

$Env:ProgramFiles\WindowsPowerShell\Modules $Env:ProgramFiles\PowerShell\Modules

User
installed
CurrentUser
scope

$HOME\Documents\WindowsPowerShell\Modules $HOME\Documents\PowerShell\Modules

The following examples show the default values of $Env:PSModulePath  for each version.

For Windows PowerShell 5.1:

PowerShell

Output

For PowerShell 7:

PowerShell

Separate PSModulePath

ﾉ Expand table

$Env:PSModulePath -split (';')

C:\Users\<user>\Documents\WindowsPowerShell\Modules
C:\Program Files\WindowsPowerShell\Modules
C:\WINDOWS\System32\WindowsPowerShell\v1.0\Modules



Output

Notice that PowerShell 7 includes the Windows PowerShell paths and the PowerShell 7 paths
to provide autoloading of modules.

For more information, see about_PSModulePath.

For more information about Modules, see about_Modules.

A PowerShell profile is a script that executes when PowerShell starts. This script customizes
your environment by adding commands, aliases, functions, variables, modules, and PowerShell
drives. The profile script makes these customizations available in every session without having
to manually recreate them.

The path to the location of the profile has changed in PowerShell 7.

In Windows PowerShell 5.1, the location of the profile is
$HOME\Documents\WindowsPowerShell .
In PowerShell 7, the location of the profile is $HOME\Documents\PowerShell .

The profile filenames have also changed:

PowerShell

Output

$Env:PSModulePath -split (';')

C:\Users\<user>\Documents\PowerShell\Modules
C:\Program Files\PowerShell\Modules
C:\Program Files\PowerShell\7\Modules
C:\Program Files\WindowsPowerShell\Modules
C:\WINDOWS\System32\WindowsPowerShell\v1.0\Modules

７ Note

Additional paths may exist if you have changed the PSModulePath environment variable
or installed custom modules or applications.

Separate profiles

$PROFILE | Select-Object *Host* | Format-List

 AllUsersAllHosts       : C:\Program Files\PowerShell\7\profile.ps1
 AllUsersCurrentHost    : C:\Program 
Files\PowerShell\7\Microsoft.PowerShell_profile.ps1

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Modules


For more information about_Profiles.

Most of the modules you use in Windows PowerShell 5.1 already work with PowerShell 7,
including Azure PowerShell and Active Directory. We're continuing to work with other teams to
add native PowerShell 7 support for more modules including Microsoft Graph, Office 365, and
others. For the current list of supported modules, see PowerShell 7 module compatibility.

PowerShell remoting lets you run any PowerShell command on one or more remote
computers. You can establish persistent connections, start interactive sessions, and run scripts
on remote computers.

Windows PowerShell 5.1 and below use the WS-Management (WSMAN) protocol for
connection negotiation and data transport. Windows Remote Management (WinRM) uses the
WSMAN protocol. If WinRM has been enabled, PowerShell 7 uses the existing Windows
PowerShell 5.1 endpoint named Microsoft.PowerShell  for remoting connections. To update
PowerShell 7 to include its own endpoint, run the Enable-PSRemoting  cmdlet. For information
about connecting to specific endpoints, see WS-Management Remoting in PowerShell

To use Windows PowerShell remoting, the remote computer must be configured for remote
management. For more information, including instructions, see About Remote Requirements.

For more information about working with remoting, see About Remote

 CurrentUserAllHosts    : C:\Users\<user>\Documents\PowerShell\profile.ps1
 CurrentUserCurrentHost : C:\Users\
<user>\Documents\PowerShell\Microsoft.PowerShell_profile.ps1

PowerShell 7 compatibility with Windows PowerShell 5.1
modules

７ Note

On Windows, we've also added a UseWindowsPowerShell switch to Import-Module  to
ease the transition to PowerShell 7 for those using incompatible modules. For more
information on this functionality, see about_Windows_PowerShell_Compatibility.

PowerShell Remoting

WS-Management remoting

SSH-based remoting

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_windows_powershell_compatibility


SSH-based remoting was added in PowerShell 6.x to support other operating systems that
can't use Windows native components like WinRM. SSH remoting creates a PowerShell host
process on the target computer as an SSH subsystem. For details and examples on setting up
SSH-based remoting on Windows or Linux, see: PowerShell remoting over SSH.

The New-PSSession , Enter-PSSession , and Invoke-Command  cmdlets have new parameter sets to
support SSH connections.

PowerShell

To create a remote session, specify the target computer with the HostName parameter and
provide the user name with UserName. When running the cmdlets interactively, you're
prompted for a password.

PowerShell

Alternatively, when using the HostName parameter, provide the username information
followed by the at sign ( @ ), followed by the computer name.

PowerShell

You may set up SSH key authentication using a private key file with the KeyFilePath parameter.
For more information, see OpenSSH Key Management.

PowerShell includes Group Policy settings to help you define consistent option values for
servers in an enterprise environment. These settings include:

Console session configuration: Sets a configuration endpoint in which PowerShell is run.
Turn on Module Logging: Sets the LogPipelineExecutionDetails property of modules.

７ Note

The PowerShell Gallery (PSGallery) contains a module and cmdlet that automatically
configures SSH-based remoting. Install the Microsoft.PowerShell.RemotingTools  module
from the PSGallery  and run the Enable-SSH  cmdlet.

[-HostName <string>]  [-UserName <string>]  [-KeyFilePath <string>]

Enter-PSSession -HostName <Computer> -UserName <Username>

Enter-PSSession -HostName <Username>@<Computer>

Group Policy supported

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://www.powershellgallery.com/packages/Microsoft.PowerShell.RemotingTools
https://www.powershellgallery.com/packages/Microsoft.PowerShell.RemotingTools


Turn on PowerShell Script Block Logging: Enables detailed logging of all PowerShell
scripts.
Turn on Script Execution: Sets the PowerShell execution policy.
Turn on PowerShell Transcription: enables capturing of input and output of PowerShell
commands into text-based transcripts.
Set the default source path for Update-Help: Sets the source for Updatable Help to a
directory, not the Internet.

For more information, see about_Group_Policy_Settings.

PowerShell 7 includes Group Policy templates and an installation script in $PSHOME .

Group Policy tools use administrative template files ( .admx , .adml ) to populate policy settings
in the user interface. This allows administrators to manage registry-based policy settings. The
InstallPSCorePolicyDefinitions.ps1  script installs PowerShell Administrative Templates on the
local machine.

PowerShell

Output

Windows PowerShell and PowerShell 7 log events to separate event logs. Use the following
command to get a list of the PowerShell logs.

PowerShell

For more information, see about_Logging_Windows.

Get-ChildItem -Path $PSHOME -Filter *Core*Policy*

    Directory: C:\Program Files\PowerShell\7

Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a---           2/27/2020 12:38 AM          15861 
InstallPSCorePolicyDefinitions.ps1
-a---           2/27/2020 12:28 AM           9675 
PowerShellCoreExecutionPolicy.adml
-a---           2/27/2020 12:28 AM           6201 
PowerShellCoreExecutionPolicy.admx

Separate Event Logs

Get-WinEvent -ListLog *PowerShell*

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows


Visual Studio Code (VSCode)  with the PowerShell Extension  is the supported scripting
environment for PowerShell 7. The Windows PowerShell Integrated Scripting Environment (ISE)
only supports Windows PowerShell.

The updated PowerShell extension includes:

New ISE compatibility mode
PSReadLine in the Integrated Console, including syntax highlighting, multi-line editing,
and back search
Stability and performance improvements
New CodeLens integration
Improved path autocompletion

To make the transition to Visual Studio Code easier, use the Enable ISE Mode function
available in the Command Palette. This function switches VSCode into an ISE-style layout. The
ISE-style layout gives you all the new features and capabilities of PowerShell in a familiar user
experience.

To switch to the new ISE layout, press Ctrl + Shift + P  to open the Command Palette, type
PowerShell  and select PowerShell: Enable ISE Mode.

To set the layout to the original layout, open the Command Palette, select PowerShell: Disable
ISE Mode (restore to defaults).

For details about customizing the VSCode layout to ISE, see How to Replicate the ISE
Experience in Visual Studio Code

Armed with the knowledge to effectively migrate, install PowerShell 7 now!

Improved editing experience with Visual Studio
Code

７ Note

There are no plans to update the ISE with new features. In the latest versions of Windows
10 or Windows Server 2019 and higher, the ISE is now a user-uninstallable feature. There
are no plans to permanently remove the ISE. The PowerShell Team and its partners are
focused on improving the scripting experience in the PowerShell extension for Visual
Studio Code.

Next Steps

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/languages/powershell
https://code.visualstudio.com/docs/languages/powershell


Differences between Windows
PowerShell 5.1 and PowerShell 7.x
Article • 04/02/2024

Windows PowerShell 5.1 is built on top of the .NET Framework v4.5. With the release of
PowerShell 6.0, PowerShell became an open source project built on .NET Core 2.0.
Moving from the .NET Framework to .NET Core allowed PowerShell to become a cross-
platform solution. PowerShell runs on Windows, macOS, and Linux.

There are few differences in the PowerShell language between Windows PowerShell and
PowerShell. The most notable differences are in the availability and behavior of
PowerShell cmdlets between Windows and non-Windows platforms and the changes
that stem from the differences between the .NET Framework and .NET Core.

This article summarizes the significant differences and breaking changes between
Windows PowerShell and the current version of PowerShell. This summary does not
include new features or cmdlets that have been added. Nor does this article discuss
what changed between versions. The goal of this article is to present the current state of
PowerShell and how that is different from Windows PowerShell. For a detailed
discussion of changes between versions and the addition of new features, see the
What's New articles for each version.

What's new in PowerShell 7.5
What's new in PowerShell 7.4
What's new in PowerShell 7.3
What's new in PowerShell 7.2
What's new in PowerShell 7.1
What's new in PowerShell 7.0
What's new in PowerShell 6.x

PowerShell on Linux and macOS uses .NET core, which is a subset of the full .NET
Framework on Microsoft Windows. This is significant because PowerShell provides direct
access to the underlying framework types and methods. As a result, scripts that run on
Windows may not run on non-Windows platforms because of the differences in the
frameworks. For more information about changes in .NET Core, see Breaking changes
for migration from .NET Framework to .NET Core.

.NET Framework vs .NET Core

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/whats-new/what-s-new-in-powershell-71
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-70?view=powershell-7.5
https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/whats-new/what-s-new-in-powershell-core-62?view=powershell-6&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/core/compatibility/fx-core
https://learn.microsoft.com/en-us/dotnet/core/compatibility/fx-core


Each new release of PowerShell is built on a newer version of .NET. There can be
breaking changes in .NET that affect PowerShell.

PowerShell 7.5 - Built on .NET 9.0
PowerShell 7.4 - Built on .NET 8.0
PowerShell 7.3 - Built on .NET 7.0
PowerShell 7.2 (LTS-current) - Built on .NET 6.0 (LTS-current)
PowerShell 7.1 - Built on .NET 5.0
PowerShell 7.0 (LTS) - Built on .NET Core 3.1 (LTS)
PowerShell 6.2 - Built on .NET Core 2.1
PowerShell 6.1 - Built on .NET Core 2.1
PowerShell 6.0 - Built on .NET Core 2.0

With the advent of .NET Standard 2.0 , PowerShell can load many traditional Windows
PowerShell modules without modification. Additionally, PowerShell 7 includes a
Windows PowerShell Compatibility feature that allows you to use Windows PowerShell
modules that still require the full framework.

For more information see:

about_Windows_PowerShell_Compatibility
PowerShell 7 module compatibility

While .NET method changes are not specific to PowerShell, they can affect your scripts,
especially if you are calling .NET methods directly. Also, there might be new overloads
for constructors. This can have an impact on how you create objects using New-Object
or the [type]::new()  method.

For example, .NET added overloads to the [System.String]::Split()  method that aren't
available in .NET Framework 4.5. The following list shows the overloads for the Split()
method available in Windows PowerShell 5.1:

PowerShell

Be aware of .NET method changes

PS> "".Split

OverloadDefinitions
-------------------
string[] Split(Params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char[] separator, System.StringSplitOptions options)
string[] Split(char[] separator, int count, System.StringSplitOptions 
options)

https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_windows_powershell_compatibility
https://aka.ms/PSModuleCompat
https://aka.ms/PSModuleCompat


The following list shows the overloads for the Split()  method available in PowerShell 7:

PowerShell

In Windows PowerShell 5.1, you could pass a character array ( char[] ) to the Split()
method as a string . The method splits the target string at any occurrence of a
character in the array. The following command splits the target string in Windows
PowerShell 5.1, but not in PowerShell 7:

PowerShell

Output

To bind to the correct overload, you must typecast the string to a character array:

PowerShell

string[] Split(string[] separator, System.StringSplitOptions options)
string[] Split(string[] separator, int count, System.StringSplitOptions 
options)

"".Split

OverloadDefinitions
-------------------
string[] Split(char separator, System.StringSplitOptions options)
string[] Split(char separator, int count, System.StringSplitOptions options)
string[] Split(Params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char[] separator, System.StringSplitOptions options)
string[] Split(char[] separator, int count, System.StringSplitOptions 
options)
string[] Split(string separator, System.StringSplitOptions options)
string[] Split(string separator, int count, System.StringSplitOptions 
options)
string[] Split(string[] separator, System.StringSplitOptions options)
string[] Split(string[] separator, int count, System.StringSplitOptions 
options)

# PowerShell 7 example
"1111p2222q3333".Split('pq')

1111p2222q3333

# PowerShell 7 example
"1111p2222q3333".Split([char[]]'pq')



Output

For various compatibility reasons, the following modules are no longer included in
PowerShell.

ISE
Microsoft.PowerShell.LocalAccounts
Microsoft.PowerShell.ODataUtils
Microsoft.PowerShell.Operation.Validation
PSScheduledJob
PSWorkflow
PSWorkflowUtility

PowerShell Workflow is a feature in Windows PowerShell that builds on top of Windows
Workflow Foundation (WF) that enables the creation of robust runbooks for long-
running or parallelized tasks.

Due to the lack of support for Windows Workflow Foundation in .NET Core, we removed
PowerShell Workflow from PowerShell.

In the future, we would like to enable native parallelism/concurrency in the PowerShell
language without the need for PowerShell Workflow.

If there is a need to use checkpoints to resume a script after the OS restarts, we
recommend using Task Scheduler to run a script on OS startup, but the script would
need to maintain its own state (like persisting it to a file).

For the modules that are included in PowerShell, the following cmdlets were removed
from PowerShell for various compatibility reasons or the use of unsupported APIs.

CimCmdlets

1111
2222
3333

Modules no longer shipped with PowerShell

PowerShell Workflow

Cmdlets removed from PowerShell

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/components/workflows-guide
https://learn.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/
https://learn.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/


Export-BinaryMiLog

Microsoft.PowerShell.Core

Add-PSSnapin

Export-Console

Get-PSSnapin

Remove-PSSnapin

Resume-Job

Suspend-Job

Microsoft.PowerShell.Diagnostics

Export-Counter

Import-Counter

Microsoft.PowerShell.Management

Add-Computer

Checkpoint-Computer

Clear-EventLog

Complete-Transaction

Disable-ComputerRestore

Enable-ComputerRestore

Get-ComputerRestorePoint

Get-ControlPanelItem

Get-EventLog

Get-Transaction

Get-WmiObject

Invoke-WmiMethod

Limit-EventLog

New-EventLog

New-WebServiceProxy

Register-WmiEvent

Remove-Computer

Remove-EventLog

Remove-WmiObject

Reset-ComputerMachinePassword

Restore-Computer

Set-WmiInstance



Show-ControlPanelItem

Show-EventLog

Start-Transaction

Test-ComputerSecureChannel

Undo-Transaction

Use-Transaction

Write-EventLog

Microsoft.PowerShell.Utility

Convert-String

ConvertFrom-String

PSDesiredStateConfiguration

Disable-DscDebug

Enable-DscDebug

Get-DscConfiguration

Get-DscConfigurationStatus

Get-DscLocalConfigurationManager

Publish-DscConfiguration

Remove-DscConfigurationDocument

Restore-DscConfiguration

Set-DscLocalConfigurationManager

Start-DscConfiguration

Stop-DscConfiguration

Test-DscConfiguration

Update-DscConfiguration

The following WMI v1 cmdlets were removed from PowerShell:

Register-WmiEvent

Set-WmiInstance

Invoke-WmiMethod

Get-WmiObject

Remove-WmiObject

The CimCmdlets module (aka WMI v2) cmdlets perform the same function and provide
new functionality and a redesigned syntax.

WMI v1 cmdlets



.NET Core does not support the Windows Communication Framework, which provide
services for using the SOAP protocol. This cmdlet was removed because it requires
SOAP.

These cmdlets had very limited usage. The decision was made to discontinue support
for them.

Complete-Transaction

Get-Transaction

Start-Transaction

Undo-Transaction

Use-Transaction

Due to the use of unsupported APIs, the *-EventLog  cmdlets have been removed from
PowerShell. Get-WinEvent  and New-WinEvent  are available to get and create events on
Windows.

.NET Core 3.1 added support for WPF, so the release of PowerShell 7.0 restored the
following Windows-specific features:

The Show-Command  cmdlet
The Out-GridView  cmdlet
The ShowWindow parameter of Get-Help

Invoke-DscResource  was restored as an experimental feature in PowerShell 7.0.

Beginning with PowerShell 7.2, the PSDesiredStateConfiguration module has been
removed from PowerShell and has been published to the PowerShell Gallery. For more
information, see the announcement  in the PowerShell Team blog.

New-WebServiceProxy  cmdlet removed

*-Transaction  cmdlets removed

*-EventLog  cmdlets

Cmdlets that use the Windows Presentation Framework
(WPF)

PowerShell Desired State Configuration (DSC) changes

https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/
https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/


The binary name for PowerShell has been changed from powershell(.exe)  to
pwsh(.exe) . This change provides a deterministic way for users to run PowerShell on
machines and support side-by-side installations of Windows PowerShell and PowerShell.

Additional changes to pwsh(.exe)  from powershell.exe :

Changed the first positional parameter from -Command  to -File . This change fixes
the usage of #!  (aka as a shebang) in PowerShell scripts that are being executed
from non-PowerShell shells on non-Windows platforms. It also means that you can
run commands like pwsh foo.ps1  or pwsh fooScript  without specifying -File .
However, this change requires that you explicitly specify -c  or -Command  when
trying to run commands like pwsh.exe -Command Get-Command .
pwsh  accepts the -i  (or -Interactive ) switch to indicate an interactive shell. This
allows PowerShell to be used as a default shell on Unix platforms.
Removed parameters -ImportSystemModules  and -PSConsoleFile  from pwsh.exe .
Changed pwsh -Version  and built-in help for pwsh.exe  to align with other native
tools.
Invalid argument error messages for -File  and -Command  and exit codes consistent
with Unix standards
Added -WindowStyle  parameter on Windows. Similarly, package-based
installations updates on non-Windows platforms are in-place updates.

The shortened name is also consistent with naming of shells on non-Windows
platforms.

Previously, using pwsh.exe  to execute a PowerShell script using -File  provided no way
to pass $true / $false  as parameter values. Support for $true / $false  as parsed values
to parameters was added. Switch values are also supported.

PowerShell executable changes

Renamed powershell.exe  to pwsh.exe

Support running a PowerShell script with bool parameter

Improved backwards compatibility with
Windows PowerShell



For Windows, a new switch parameter UseWindowsPowerShell is added to Import-
Module . This switch creates a proxy module in PowerShell 7 that uses a local Windows
PowerShell process to implicitly run any cmdlets contained in that module. For more
information, see Import-Module.

For more information on which Microsoft modules work with PowerShell 7.0, see the
Module Compatibility Table .

PowerShell 7.2 added support for Microsoft Update. When you enable this feature, you'll
get the latest PowerShell 7 updates in your traditional Windows Update (WU)
management flow, whether that's with Windows Update for Business, WSUS, SCCM, or
the interactive WU dialog in Settings.

The PowerShell 7.2 MSI package includes following command-line options:

USE_MU  - This property has two possible values:

1  (default) - Opts into updating through Microsoft Update or WSUS
0  - Do not opt into updating through Microsoft Update or WSUS

ENABLE_MU

1  (default) - Opts into using Microsoft Update the Automatic Updates or
Windows Update
0  - Do not opt into using Microsoft Update the Automatic Updates or Windows
Update

On Unix, it is a convention for shells to accept -i  for an interactive shell and many tools
expect this behavior ( script  for example, and when setting PowerShell as the default
shell) and calls the shell with the -i  switch. This change is breaking in that -i
previously could be used as short hand to match -InputFormat , which now needs to be

-in .

PowerShell snap-ins are a predecessor to PowerShell modules that do not have
widespread adoption in the PowerShell community.

Microsoft Update support for Windows

Engine changes

Support PowerShell as a default Unix shell

Custom snap-ins

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module
https://aka.ms/PSModuleCompat
https://aka.ms/PSModuleCompat
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pssnapins


Due to the complexity of supporting snap-ins and their lack of usage in the community,
we no longer support custom snap-ins in PowerShell.

PowerShell 6.2 enabled support for Experimental Features. This allows PowerShell
developers to deliver new features and get feedback before the design is complete. This
way we avoid making breaking changes as the design evolves.

Use Get-ExperimentalFeature  to get a list of available experimental features. You can
enable or disable these features with Enable-ExperimentalFeature  and Disable-
ExperimentalFeature .

Previously, when a binary module has the module assembly in GAC, we loaded the
assembly from GAC before trying to load it from module base path.

For the Mandatory  parameter and ValidateNotNull  and ValidateNotNullOrEmpty
attributes, skip the null-element check if the collection's element type is value type.

This PR alters the way we compile subpipelines (...) , subexpressions $(...)  and array
expressions @()  so that $?  is not automatically true. Instead the value of $?  depends
on the result of the pipeline or statements executed.

$?  is not set to $false  when native command writes to stderr . It is common for native
commands to write to stderr  without intending to indicate a failure. $?  is set to $false
only when the native command has a non-zero exit code.

Experimental feature flags

Load assembly from module base path before trying to
load from the GAC

Skip null-element check for collections with a value-type
element type

Preserve $?  for ParenExpression, SubExpression and
ArrayExpression

Fix $?  to not be $false  when native command writes to
stderr

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Experimental_Features


It is common for native commands to write to stderr  without intending to indicate a
failure. With this change, stderr  output is still captured in ErrorRecord objects, but the
runtime no longer applies $ErrorActionPreference  if the ErrorRecord comes from a
native command.

The previous encoding, ASCII (7-bit), would result in incorrect alteration of the output in
some cases. Making UTF-8 NoBOM  the default preserves Unicode output with an
encoding supported by most tools and operating systems.

The -Encoding  value Byte  has been removed from the FileSystem provider cmdlets. A
new parameter, -AsByteStream , is now used to specify that a byte stream is required as
input or that the output is a stream of bytes.

Previously, New-ModuleManifest  creates psd1  manifests in UTF-16 with BOM, creating a
problem for Linux tools. This breaking change changes the encoding of New-
ModuleManifest  to be UTF (no BOM) in non-Windows platforms.

To speed up scope creation, AllScope  was removed from most default aliases. AllScope
was left for a few frequently used aliases where the lookup was faster.

Make $ErrorActionPreference  not affect stderr  output of
native commands

Change $OutputEncoding  to use UTF-8 NoBOM  encoding
rather than ASCII

Unify cmdlets with parameter -Encoding  to be of type
System.Text.Encoding

Change New-ModuleManifest  encoding to UTF8NoBOM  on
non-Windows platforms

Remove AllScope  from most default aliases

-Verbose  and -Debug  no longer overrides
$ErrorActionPreference



Previously, if -Verbose  or -Debug  were specified, it overrode the behavior of
$ErrorActionPreference . With this change, -Verbose  and -Debug  no longer affect the
behavior of $ErrorActionPreference .

Also, the -Debug  parameter sets $DebugPreference  to Continue instead of Inquire.

In Windows PowerShell, the current culture value is cached, which can allow the value to
get out of sync with the culture is change after session-startup. This caching behavior is
fixed in PowerShell core.

With this change, the named parameters from splatting are moved to the end of the
parameter list so that they are bound after all explicitly specified named parameters are
bound. Parameter binding for simple functions doesn't throw an error when a specified
named parameter cannot be found. Unknown named parameters are bound to the
$args  parameter of the simple function. Moving splatting to the end of the argument
list changes the order the parameters appears in $args .

For example:

PowerShell

In the previous behavior, MyPath is not bound to -Path  because it's the third argument
in the argument list. ## So it ends up being stuffed into '$args' along with Blah =
"World"

PowerShell

Make $PSCulture  consistently reflect in-session culture
changes

Allow explicitly specified named parameter to supersede
the same one from hashtable splatting

function SimpleTest {
    param(
        $Name,
        $Path
    )
    "Name: $Name; Path: $Path; Args: $args"
}

PS> $hash = @{ Name = "Hello"; Blah = "World" }
PS> SimpleTest @hash "MyPath"



With this change, the arguments from @hash  are moved to the end of the argument list.
MyPath becomes the first argument in the list, so it is bound to -Path .

PowerShell

The null-coalescing operator ??  returns the value of its left-hand operand if it isn't null.
Otherwise, it evaluates the right-hand operand and returns its result. The ??  operator
doesn't evaluate its right-hand operand if the left-hand operand evaluates to non-null.

PowerShell

Output

In the following example, the right-hand operand won't be evaluated.

PowerShell

Output

Name: Hello; Path: ; Args: -Blah: World MyPath

PS> SimpleTest @hash "MyPath"
Name: Hello; Path: MyPath; Args: -Blah: World

Language changes

Null-coalescing operator ??

$x = $null
$x ?? 100

100

[string] $todaysDate = '1/10/2020'
$todaysDate ?? (Get-Date).ToShortDateString()

1/10/2020

Null-coalescing assignment operator ??=



The null-coalescing assignment operator ??=  assigns the value of its right-hand
operand to its left-hand operand only if the left-hand operand evaluates to null. The ??
=  operator doesn't evaluate its right-hand operand if the left-hand operand evaluates to
non-null.

PowerShell

Output

In the following example, the right-hand operand won't be evaluated.

PowerShell

Output

A null-conditional operator applies a member access, ?. , or element access, ?[] ,
operation to its operand only if that operand evaluates to non-null; otherwise, it returns
null.

Since PowerShell allows ?  to be part of the variable name, formal specification of the
variable name is required for using these operators. So it is required to use {}  around
the variable names like ${a}  or when ?  is part of the variable name ${a?} .

In the following example, the value of PropName is returned.

$x = $null
$x ??= 100
$x

100

[string] $todaysDate = '1/10/2020'
$todaysDate ??= (Get-Date).ToShortDateString()

1/10/2020

Null-conditional operators

７ Note

This feature was moved from experimental to mainstream in PowerShell 7.1.



PowerShell

Output

The following example will return null, without trying to access the member name
PropName.

PowerShell

Similarly, the value of the element will be returned.

PowerShell

Output

And when the operand is null, the element isn't accessed and null is returned.

PowerShell

$a = @{ PropName = 100 }
${a}?.PropName

100

$a = $null
${a}?.PropName

$a = 1..10
${a}?[0]

1

$a = $null
${a}?[0]

７ Note

The variable name syntax of ${<name>}  should not be confused with the $()
subexpression operator. For more information, see Variable name section of
about_Variables.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Variables#variable-names-that-include-special-characters


Putting &  at the end of a pipeline causes the pipeline to be run as a PowerShell job.
When a pipeline is backgrounded, a job object is returned. Once the pipeline is running
as a job, all of the standard *-Job  cmdlets can be used to manage the job. Variables
(ignoring process-specific variables) used in the pipeline are automatically copied to the
job so Copy-Item $foo $bar &  just works. The job is also run in the current directory
instead of the user's home directory.

We've added new methods and properties to PSCustomObject . PSCustomObject  now
includes a Count / Length  property like other objects.

PowerShell

Output

PowerShell

Output

This work also includes ForEach  and Where  methods that allow you to operate and filter
on PSCustomObject  items:

PowerShell

Output

Added &  operator for job control

New methods/properties on PSCustomObject

$PSCustomObject = [pscustomobject]@{foo = 1}

$PSCustomObject.Length

1

$PSCustomObject.Count

1

$PSCustomObject.ForEach({$_.foo + 1})



PowerShell

Output

You can convert a PSMethod  into a delegate. This allows you to do things like passing
PSMethod  [M]::DoubleStrLen  as a delegate value into [M]::AggregateString :

PowerShell

PowerShell 7.1 is built on .NET 5.0, which introduced the following breaking change:

Behavior changes when comparing strings on .NET 5+

As of .NET 5.0, culture invariant string comparisons ignore non-printing control
characters.

For example, the following two strings are considered to be identical:

2

$PSCustomObject.Where({$_.foo -gt 0})

foo
---
  1

Conversions from PSMethod to Delegate

class M {
    static [int] DoubleStrLen([string] $value) { return 2 * $value.Length }

    static [long] AggregateString([string[]] $values, [Func[string, int]] 
$selector) {
        [long] $res = 0
        foreach($s in $values){
            $res += $selector.Invoke($s)
        }
        return $res
    }
}

[M]::AggregateString((gci).Name, [M]::DoubleStrLen)

String comparison behavior changed in PowerShell 7.1

https://learn.microsoft.com/en-us/dotnet/standard/base-types/string-comparison-net-5-plus


PowerShell

Output

The Get-Uptime cmdlet returns the time elapsed since the last boot of the operating
system. The cmdlet was introduced in PowerShell 6.0.

The Remove-Alias cmdlet removes an alias from the current PowerShell session. The
cmdlet was introduced in PowerShell 6.0.

The Remove-Service cmdlet removes a Windows service in the registry and in the service
database. The Remove-Service  cmdlet was introduced in PowerShell 6.0.

Markdown is a standard for creating readable plaintext documents with basic formatting
that can be rendered into HTML.

The following cmdlets were added in PowerShell 6.1:

ConvertFrom-Markdown - Convert the contents of a string or a file to a
MarkdownInfo object.
Get-MarkdownOption - Returns the current colors and styles used for rendering
Markdown content in the console.
Set-MarkdownOption - Sets the colors and styles used for rendering Markdown
content in the console.
Show-Markdown - Displays Markdown content in the console or as HTML

# Escape sequence "`a" is Ctrl-G or [char]7
'Food' -eq "Foo`ad"

True

New cmdlets

New Get-Uptime cmdlet

New Remove-Alias cmdlet

New cmdlet Remove-Service

New Markdown cmdlets

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-Uptime
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Remove-Alias
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Remove-Service
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/ConvertFrom-Markdown
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-MarkdownOption
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-MarkdownOption
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Show-Markdown


The Test-Json cmdlet tests whether a string is a valid JavaScript Object Notation (JSON)
document and can optionally verify that JSON document against a provided schema.

This cmdlet was introduced in PowerShell 6.1

The following cmdlets were added in PowerShell 6.2 to support Experimental Features.

Disable-ExperimentalFeature
Enable-ExperimentalFeature
Get-ExperimentalFeature

The Join-String cmdlet combines objects from the pipeline into a single string. This
cmdlet was added in PowerShell 6.2.

PowerShell 7.0 enhances the display of error messages to improve the readability of
interactive and script errors with a new default view, ConciseView. The views are user-
selectable through the preference variable $ErrorView .

With ConciseView, if an error is not from a script or parser error, then it's a single line
error message:

PowerShell

Output

If the error occurs during script execution or is a parsing error, PowerShell returns a
multiline error message that contains the error, a pointer, and an error message showing
where the error is in that line. If the terminal doesn't support ANSI color escape
sequences (VT100), then colors are not displayed.

New Test-Json cmdlet

New cmdlets to support Experimental Features

New Join-String cmdlet

New view ConciseView and cmdlet Get-Error

Get-ChildItem -Path C:\NotReal

Get-ChildItem: Cannot find path 'C:\NotReal' because it does not exist

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Test-Json
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Disable-ExperimentalFeature
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Enable-ExperimentalFeature
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-ExperimentalFeature
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Join-String


The default view in PowerShell 7 is ConciseView. The previous default view was
NormalView and you can select this by setting the preference variable $ErrorView .

PowerShell

The new Get-Error cmdlet provides a complete detailed view of the fully qualified error
when desired. By default the cmdlet displays the full details, including inner exceptions,
of the last error that occurred.

The Get-Error  cmdlet supports input from the pipeline using the built-in variable
$Error . Get-Error  displays all piped errors.

PowerShell

The Get-Error  cmdlet supports the Newest parameter, allowing you to specify how
many errors from the current session you wish displayed.

PowerShell

For more information, see Get-Error.

Beginning in PowerShell 7.0, the ForEach-Object  cmdlet, which iterates items in a
collection, now has built-in parallelism with the new Parallel parameter.

$ErrorView = 'NormalView' # Sets the error view to NormalView
$ErrorView = 'ConciseView' # Sets the error view to ConciseView

７ Note

A new property ErrorAccentColor is added to $Host.PrivateData  to support
changing the accent color of the error message.

$Error | Get-Error

Get-Error -Newest 3 # Displays the lst three errors that occurred in the 
session

Cmdlet changes

Parallel execution added to ForEach-Object

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-error


By default, parallel script blocks use the current working directory of the caller that
started the parallel tasks.

This example retrieves 50,000 log entries from 5 system logs on a local Windows
machine:

PowerShell

The Parallel parameter specifies the script block that is run in parallel for each input log
name.

The new ThrottleLimit parameter limits the number of script blocks running in parallel
at a given time. The default is 5.

Use the $_  variable to represent the current input object in the script block. Use the
Using:  scope modifier to pass variable references to the running script block.

For more information, see ForEach-Object.

In the Windows 10 1809 update and Windows Server 2019, we updated a number of
built-in PowerShell modules to mark them as compatible with PowerShell.

When PowerShell starts up, it automatically includes $windir\System32  as part of the
PSModulePath  environment variable. However, it only exposes modules to Get-Module
and Import-Module  if its CompatiblePSEdition  is marked as compatible with Core .

You can override this behavior to show all modules using the -SkipEditionCheck  switch
parameter. We've also added a PSEdition  property to the table output.

$logNames = 'Security','Application','System','Windows 
PowerShell','Microsoft-Windows-Store/Operational'

$logEntries = $logNames | ForEach-Object -Parallel {
    Get-WinEvent -LogName $_ -MaxEvents 10000
} -ThrottleLimit 5

$logEntries.Count

50000

Check system32  for compatible built-in modules on
Windows

-lp  alias for all -LiteralPath  parameters

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object


We created a standard parameter alias -lp  for all the built-in PowerShell cmdlets that
have a -LiteralPath  parameter.

Previously, -LiteralPath  given a wildcard would treat it the same as -Path  and if the
wildcard found no files, it would silently exit. Correct behavior should be that -
LiteralPath  is literal so if the file doesn't exist, it should error. Change is to treat
wildcards used with -Literal  as literal.

The Start-Job  cmdlet now uses the current directory as the working directory for the
new job.

Due to issues with RPC remoting in CoreFX (particularly on non-Windows platforms) and
ensuring a consistent remoting experience in PowerShell, the -Protocol  parameter was
removed from the \*-Computer  cmdlets. DCOM is no longer supported for remoting.
The following cmdlets only support WSMAN remoting:

Rename-Computer

Restart-Computer

Stop-Computer

In order to encourage the consistent use of PSRP, the -ComputerName  parameter was
removed from *-Service  cmdlets.

Previously, the output while using Get-Content -Delimiter  was inconsistent and
inconvenient as it required further processing of the data to remove the delimiter. This
change removes the delimiter in returned lines.

Fix Get-Item -LiteralPath a*b  if a*b  doesn't actually exist
to return error

Set working directory to current directory in Start-Job

Remove -Protocol  from *-Computer  cmdlets

Remove -ComputerName  from *-Service  cmdlets

Fix Get-Content -Delimiter  to not include the delimiter in
the returned lines



The -Raw  parameter is now a "no-op" (in that it does nothing). Going forward all output
is displayed with a true representation of numbers that includes all of the bytes for its
type. This is what the -Raw  parameter was doing prior to this change.

BiosSerialNumber  was misspelled as BiosSeralNumber  and has been changed to the
correct spelling.

This change is that some hash algorithms are not supported by CoreFX, therefore they
are no longer available:

MACTripleDES

RIPEMD160

Passing $null  to any of the following now throws an error:

Get-Credential -UserName

Get-Event -SourceIdentifier

Get-EventSubscriber -SourceIdentifier

Get-Help -Name

Get-PSBreakpoint -Script

Get-PSProvider -PSProvider

Get-PSSessionConfiguration -Name

Get-Runspace -Name

Get-RunspaceDebug -RunspaceName

Get-Service -Name

Get-TraceSource -Name

Get-Variable -Name

Changes to Format-Hex

Typo fix in Get-ComputerInfo property name

Add Get-StringHash  and Get-FileHash  cmdlets

Add validation on Get-*  cmdlets where passing $null
returns all objects instead of error

Add support for the W3C Extended Log File Format in
Import-Csv



Previously, the Import-Csv  cmdlet cannot be used to directly import the log files in W3C
extended log format and additional action would be required. With this change, W3C
extended log format is supported.

Previously, objects exported using Export-Csv  with TypeInformation  imported with
ConvertFrom-Csv  were not retaining the type information. This change adds the type
information to pstypenames  member if available from the CSV file.

Previously, the Export-Csv  cmdlet would output a comment as the first line containing
the type name of the object. The change excludes the type information by default
because it's not understood by most CSV tools. This change was made to address
customer feedback.

Use -IncludeTypeInformation  to retain the previous behavior.

Previously, -LiteralPath  given a wildcard would treat it the same as -Path  and if the
wildcard found no files, it would silently exit. Correct behavior should be that -
LiteralPath  is literal so if the file doesn't exist, it should error. Change is to treat
wildcards used with -Literal  as literal.

As part of the performance improvement, Group-Object  now returns a sorted listing of
the groups. Although you should not rely on the order, you could be broken by this
change if you wanted the first group. We decided that this performance improvement
was worth the change since the impact of being dependent on previous behavior is low.

The output from Measure-Object  now includes a StandardDeviation  property.

PowerShell

Import-Csv  applies pstypenames  upon import when type
information is present in the CSV

-NoTypeInformation  is the default on Export-Csv

Allow *  to be used in registry path for Remove-Item

Group-Object now sorts the groups

Standard deviation in Measure-Object



Output

Get-PfxCertificate  now has the Password  parameter, which takes a SecureString . This
allows you to use it non-interactively:

PowerShell

In the past, PowerShell shipped a function on Windows called more  that wrapped

more.com . That function has now been removed.

Also, the help  function changed to use more.com  on Windows, or the system's default
pager specified by $Env:PAGER  on non-Windows platforms.

Previously, using Set-Location  or cd  to return to a PSDrive sent users to the default
location for that drive. Users are now sent to the last known current working directory
for that session.

Get-Process | Measure-Object -Property CPU -AllStats

Count             : 308
Average           : 31.3720576298701
Sum               : 9662.59375
Maximum           : 4416.046875
Minimum           :
StandardDeviation : 264.389544720926
Property          : CPU

Get-PfxCertificate -Password

$certFile = '\\server\share\pwd-protected.pfx'
$certPass = Read-Host -AsSecureString -Prompt 'Enter the password for 
certificate: '

$certThumbPrint = (Get-PfxCertificate -FilePath $certFile -Password 
$certPass ).ThumbPrint

Removal of the more  function

cd DriveName:  now returns users to the current working
directory in that drive



PowerShell

Or on Linux:

ShellSession

Also, cd  and cd --  change to $HOME .

By popular demand, Update-Help  no longer needs to be run as an administrator.
Update-Help  now defaults to saving help to a user-scoped folder.

With the addition of -Not  parameter to Where-Object , can filter an object at the pipeline
for the non-existence of a property, or a null/empty property value.

For example, this command returns all services that don't have any dependent services
defined:

PowerShell

The underlying .NET API of the Web Cmdlets has been changed to
System.Net.Http.HttpClient . This change provides many benefits. However, this change
along with a lack of interoperability with Internet Explorer have resulted in several
breaking changes within Invoke-WebRequest  and Invoke-RestMethod .

cd -  returns to previous directory

C:\Windows\System32> cd C:\
C:\> cd -
C:\Windows\System32>

PS /etc> cd /usr/bin
PS /usr/bin> cd -
PS /etc>

Update-Help  as non-admin

Where-Object -Not

Get-Service | Where-Object -Not DependentServices

Changes to Web Cmdlets



Invoke-WebRequest  now supports basic HTML Parsing only. Invoke-WebRequest
always returns a BasicHtmlWebResponseObject  object. The ParsedHtml  and Forms
properties have been removed.
BasicHtmlWebResponseObject.Headers  values are now String[]  instead of String .
BasicHtmlWebResponseObject.BaseResponse  is now a

System.Net.Http.HttpResponseMessage  object.
The Response  property on Web Cmdlet exceptions is now a
System.Net.Http.HttpResponseMessage  object.
Strict RFC header parsing is now default for the -Headers  and -UserAgent
parameter. This can be bypassed with -SkipHeaderValidation .

file://  and ftp://  URI schemes are no longer supported.
System.Net.ServicePointManager  settings are no longer honored.
There is currently no certificate based authentication available on macOS.
Use of -Credential  over an http://  URI will result in an error. Use an https://
URI or supply the -AllowUnencryptedAuthentication  parameter to suppress the
error.
-MaximumRedirection  now produces a terminating error when redirection attempts
exceed the provided limit instead of returning the results of the last redirection.
In PowerShell 6.2, a change was made to default to UTF-8 encoding for JSON
responses. When a charset is not supplied for a JSON response, the default
encoding should be UTF-8 per RFC 8259.
Default encoding set to UTF-8 for application-json  responses
Added -SkipHeaderValidation  parameter to allow Content-Type  headers that
aren't standards-compliant
Added -Form  parameter to support simplified multipart/form-data  support
Compliant, case-insensitive handling of relation keys
Added -Resume  parameter for web cmdlets

When an API returns just null , Invoke-RestMethod  was serializing this as the string
"null"  instead of $null . This change fixes the logic in Invoke-RestMethod  to properly
serialize a valid single value JSON null  literal as $null .

Invoke-RestMethod returns useful info when no data is
returned

Web Cmdlets warn when -Credential  is sent over
unencrypted connections



When using HTTP, content including passwords are sent as clear-text. This change is to
not allow this by default and return an error if credentials are being passed insecurely.
Users can bypass this by using the -AllowUnencryptedAuthentication  switch.

Beginning in PowerShell 7.1, the OutFile parameter of the web cmdlets works like
LiteralPath and does not process wildcards.

The AddTypeCommandBase  class was removed from Add-Type  to improve performance.
This class is only used by the Add-Type  cmdlet and should not impact users.

In the past, you could compile Visual Basic code using the Add-Type  cmdlet. Visual Basic
was rarely used with Add-Type . We removed this feature to reduce the size of
PowerShell.

Previously, when creating a PowerShell runspace programmatically using the API, you
could use the legacy RunspaceConfiguration or the newer InitialSessionState classes.
This change removed support for RunspaceConfiguration  and only supports
InitialSessionState .

An incorrect position of a parameter resulted in the args passed as input instead of as
args.

Make -OutFile  parameter in web cmdlets to work like -
LiteralPath

API changes

Remove AddTypeCommandBase  class

Removed VisualBasic  as a supported language in Add-
Type

Removed RunspaceConfiguration  support

CommandInvocationIntrinsics.InvokeScript  bind
arguments to $input  instead of $args

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.runspaceconfiguration
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.initialsessionstate


The ClrVersion  property of $PSVersionTable  is not useful with CoreCLR. End users
should not be using that value to determine compatibility.

The BuildVersion  property was tied to the Windows build version, which is not available
on non-Windows platforms. Use the GitCommitId  property to retrieve the exact build
version of PowerShell.

`u####  or `u{####}  is converted to the corresponding Unicode character. To output a
literal `u , escape the backtick: ``u .

ValueFromRemainingArguments  now returns the values as an array instead of a single
value which itself is an array.

Clean up code related to the uses of CommandTypes.Workflow  and WorkflowInfo  in
System.Management.Automation.

These minor breaking changes mainly affect help provider code.

Change the public constructors of WorkflowInfo  to internal. We don't support
workflow anymore, so it makes sense to not allow people to create Workflow
instances.
Remove the type System.Management.Automation.DebugSource since it's only
used for workflow debugging.
Remove the overload of SetParent  from the abstract class Debugger that is only
used for workflow debugging.
Remove the same overload of SetParent  from the derived class
RemotingJobDebugger.

Remove ClrVersion  and BuildVersion  properties from
$PSVersionTable

Implement Unicode escape parsing

Parameter binding problem with
ValueFromRemainingArguments  in PS functions

Cleaned up uses of CommandTypes.Workflow  and
WorkflowInfoCleaned



When a ScriptBlock  is converted to a delegate type to be used in C# context, wrapping
the result in a PSObject  brings unneeded troubles:

When the value is converted to the delegate return type, the PSObject  essentially
gets unwrapped. So the PSObject  is unneeded.
When the delegate return type is object , it gets wrapped in a PSObject  making it
hard to work with in C# code.

After this change, the returned object is the underlying object.

PowerShell Remoting (PSRP) using WinRM on Unix platforms requires NTLM/Negotiate
or Basic Auth over HTTPS. PSRP on macOS only supports Basic Auth over HTTPS.
Kerberos-based authentication is not supported for non-Windows platforms.

PowerShell also supports PowerShell Remoting (PSRP) over SSH on all platforms
(Windows, macOS, and Linux). For more information, see SSH remoting in PowerShell.

PowerShell Direct  is a feature of PowerShell and Hyper-V that allows you to connect
to a Hyper-V VM or Container without network connectivity or other remote
management services.

In the past, PowerShell Direct connected using the built-in Windows PowerShell instance
on the Container. Now, PowerShell Direct first attempts to connect using any available
pwsh.exe  on the PATH  environment variable. If pwsh.exe  isn't available, PowerShell
Direct falls back to use powershell.exe .

Enable-PSRemoting  now creates two remoting session configurations:

One for the major version of PowerShell. For example, PowerShell.6 . This endpoint
that can be relied upon across minor version updates as the "system-wide"
PowerShell 6 session configuration

Do not wrap return result in PSObject  when converting a
ScriptBlock  to a delegate

Remoting Support

PowerShell Direct for Containers tries to use pwsh  first

Enable-PSRemoting  now creates separate remoting
endpoints for preview versions

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/SSH-Remoting-in-PowerShell-Core
https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/
https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/


One version-specific session configuration, for example: PowerShell.6.1.0

This behavior is useful if you want to have multiple PowerShell 6 versions installed and
accessible on the same machine.

Additionally, preview versions of PowerShell now get their own remoting session
configurations after running the Enable-PSRemoting  cmdlet:

PowerShell

Your output may be different if you haven't set up WinRM before.

Output

Then you can see separate PowerShell session configurations for the preview and stable
builds of PowerShell 6, and for each specific version.

PowerShell

Output

C:\WINDOWS\system32> Enable-PSRemoting

WinRM is already set up to receive requests on this computer.
WinRM is already set up for remote management on this computer.

Get-PSSessionConfiguration

Name          : PowerShell.6.2-preview.1
PSVersion     : 6.2
StartupScript :
RunAsUser     :
Permission    : NT AUTHORITY\INTERACTIVE AccessAllowed, 
BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management Users 
AccessAllowed

Name          : PowerShell.6-preview
PSVersion     : 6.2
StartupScript :
RunAsUser     :
Permission    : NT AUTHORITY\INTERACTIVE AccessAllowed, 
BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management Users 
AccessAllowed

Name          : powershell.6
PSVersion     : 6.1
StartupScript :
RunAsUser     :



SSH clients typically support a connection string in the format user@host:port . With the
addition of SSH as a protocol for PowerShell Remoting, we've added support for this
format of connection string:

Enter-PSSession -HostName fooUser@ssh.contoso.com:2222

PowerShell sends basic telemetry data to Microsoft when it is launched. The data
includes the OS name, OS version, and PowerShell version. This data allows us to better
understand the environments where PowerShell is used and enables us to prioritize new
features and fixes.

To opt-out of this telemetry, set the environment variable POWERSHELL_TELEMETRY_OPTOUT
to true , yes , or 1 . We no longer support deletion of the file

DELETE_ME_TO_DISABLE_CONSOLEHOST_TELEMETRY  to disable telemetry.

Permission    : NT AUTHORITY\INTERACTIVE AccessAllowed, 
BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management Users 
AccessAllowed

Name          : powershell.6.1.0
PSVersion     : 6.1
StartupScript :
RunAsUser     :
Permission    : NT AUTHORITY\INTERACTIVE AccessAllowed, 
BUILTIN\Administrators AccessAllowed, BUILTIN\Remote Management Users 
AccessAllowed

user@host:port  syntax supported for SSH

Telemetry can only be disabled with an
environment variable



PowerShell differences on non-Windows
platforms
Article • 07/18/2024

PowerShell strives to provide feature parity across all supported platforms. However,
some features behave differently or aren't available due to differences in .NET Core and
platform-specific differences. Other changes were made to improve the interoperability
of PowerShell on non-Windows platforms.

PowerShell on Linux and macOS uses .NET Core, a subset of the full .NET Framework on
Microsoft Windows. As a result, scripts that run on Windows might not run on non-
Windows platforms because of the differences in the frameworks.

For more information about changes in .NET Core, see Breaking changes for migration
from .NET Framework to .NET Core.

Added support for native command globbing on Unix platforms. This means you
can use wildcards with native commands like ls *.txt .
The more  functionality respects the Linux $PAGER  and defaults to less .
Trailing backslash is automatically escaped when dealing with native command
arguments.
Fixed ConsoleHost to honor NoEcho  on Unix platforms.
Don't add PATHEXT  environment variable on Unix.
A powershell  man-page is included in the package.

PowerShell ignores execution policies when running on non-Windows platforms. Get-
ExecutionPolicy  returns Unrestricted on Linux and macOS. Set-ExecutionPolicy  does
nothing on Linux and macOS.

.NET Framework vs .NET Core

General Unix interoperability changes

Execution policy

Case-sensitivity in PowerShell

https://learn.microsoft.com/en-us/dotnet/core/compatibility/fx-core
https://learn.microsoft.com/en-us/dotnet/core/compatibility/fx-core


Historically, PowerShell has been uniformly case-insensitive, with few exceptions. On
Unix-like operating systems, the file system is predominantly case-sensitive, and
PowerShell adheres to the standard of the file system.

You must use the correct case when a filename in specified in PowerShell.
If a script tries to load a module and the module name isn't cased correctly, then
the module load fails. This behavior might cause a problem with existing scripts if
the name referenced by the module doesn't match the proper case of the actual
filename.
While names in the filesystem are case-sensitive, tab-completion of filenames isn't
case-sensitive. Tab-completion cycles through the list of names using case-
insensitive matching.
Get-Help  supports case-insensitive pattern matching on Unix platforms.
Import-Module  is case insensitive when used with a filename to determine the
module name.

Paths given to cmdlets are now slash-agnostic (both /  and \  work as directory
separators)
XDG Base Directory Specification is now respected and used by default:

The Linux/macOS profile path is located at ~/.config/powershell/profile.ps1
The history save path is located at
~/.local/share/powershell/PSReadLine/ConsoleHost_history.txt

The user module path is located at ~/.local/share/powershell/Modules
Support for file and folder names containing the colon character on Unix.
Support for script names or full paths that have commas.
Detect when the LiteralPath parameter is used to suppress wildcard expansion for
navigation cmdlets.
Updated Get-ChildItem  to work more like the *nix ls -R  and the Windows DIR /S
native commands. Get-ChildItem  now returns the symbolic links encountered
during a recursive search and doesn't search the directories that those links target.

PowerShell scripts must end in .ps1  for the interpreter to understand how to load and
run them in the current process. Running scripts in the current process is the expected
usual behavior for PowerShell. You can add the #!  magic number to a script that
doesn't have a .ps1  extension, but this causes the script to be run in a new PowerShell

Filesystem support for Linux and macOS

.PS1 File Extensions



instance, preventing the script from working correctly when interchanging objects. This
behavior might be desirable when executing a PowerShell script from Bash or another
shell.

PowerShell provides a set of aliases on Windows that map to Linux command names for
user convenience. On Linux and macOS, the "convenience aliases" for the basic
commands ls , cp , mv , rm , cat , man , mount , and ps  were removed to allow the native
executable to run without specifying a path.

On macOS, PowerShell uses the native os_log  APIs to log to Apple's unified logging
system . On Linux, PowerShell uses Syslog , a ubiquitous logging solution.

There's no Unix-style job-control support in PowerShell on Linux or macOS. The fg  and
bg  commands aren't available. However, you can use PowerShell jobs that work on all
platforms.

Putting &  at the end of a pipeline causes the pipeline to be run as a PowerShell job.
When a pipeline is backgrounded, a job object is returned. Once the pipeline is running
as a job, all *-Job  cmdlets can be used to manage the job. Variables (ignoring process-
specific variables) used in the pipeline are automatically copied to the job so Copy-Item
$foo $bar &  just works. The job runs in the current directory instead of the user's home
directory.

PowerShell Remoting (PSRP) using WinRM on Unix platforms requires NTLM/Negotiate
or Basic Auth over HTTPS. PSRP on macOS only supports Basic Auth over HTTPS.
Kerberos-based authentication isn't supported.

PowerShell supports PowerShell Remoting (PSRP) over SSH on all platforms (Windows,
Linux, and macOS). For more information, see SSH remoting in PowerShell.

Convenience aliases removed

Logging

Job Control

Remoting Support

Just-Enough-Administration (JEA) Support

https://developer.apple.com/documentation/os/logging
https://developer.apple.com/documentation/os/logging
https://developer.apple.com/documentation/os/logging
https://en.wikipedia.org/wiki/Syslog
https://en.wikipedia.org/wiki/Syslog
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/SSH-Remoting-in-PowerShell-Core


PowerShell on Linux or macOS doesn't allow you to create constrained administration
(JEA) remoting endpoints.

Because PowerShell runs most commands in memory (like Python or Ruby), you can't
use sudo  directly with PowerShell built-ins. You can run pwsh  from sudo . If it's necessary
to run a PowerShell cmdlet from within PowerShell with sudo , for example, sudo Set-
Date 8/18/2016 , then you would use sudo pwsh Set-Date 8/18/2016 .

For non-Windows platforms, PowerShell includes the following modules:

Microsoft.PowerShell.Archive
Microsoft.PowerShell.Core
Microsoft.PowerShell.Host
Microsoft.PowerShell.Management
Microsoft.PowerShell.Security
Microsoft.PowerShell.Utility
PackageManagement
PowerShellGet
PSReadLine
ThreadJob

A large number of the commands (cmdlets) commonly available in PowerShell aren't
available on Linux or macOS. Often, these commands don't apply to these platforms. For
example, commands for Windows-specific features like the registry or services aren't
available. Other commands, like Set-ExecutionPolicy , are present but not functional.

For a comprehensive list of modules and cmdlets and the platforms they support, see
Release history of modules and cmdlets.

For various compatibility reasons, the following modules are no longer included in
PowerShell.

ISE
Microsoft.PowerShell.LocalAccounts
Microsoft.PowerShell.ODataUtils

sudo , exec , and PowerShell

Modules included on non-Windows platforms

Modules no longer shipped with PowerShell



Microsoft.PowerShell.Operation.Validation
PSScheduledJob
PSWorkflow
PSWorkflowUtility

The following Windows-specific modules aren't included in PowerShell for Linux or
macOS.

CimCmdlets
Microsoft.PowerShell.Diagnostics
Microsoft.WSMan.Management
PSDiagnostics

Some cmdlets were removed from PowerShell. Others aren't available or might work
differently on non-Windows platforms. For a comprehensive list of cmdlets removed
from PowerShell, see Cmdlets removed from PowerShell.

The following cmdlets aren't available on Linux or macOS:

Disable-PSRemoting

Enable-PSRemoting

Connect-PSSession

Disconnect-PSSession

Receive-PSSession

Get-PSSessionCapability

Disable-PSSessionConfiguration

Enable-PSSessionConfiguration

Get-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Unregister-PSSessionConfiguration

Test-PSSessionConfigurationFile

The ShowWindow parameter of Get-Help  isn't available for non-Windows platforms.
PowerShell 7.3 added the Switch-Process  cmdlet and the exec  function for Linux and

Cmdlets not available on non-Windows
platforms

Microsoft.PowerShell.Core



macOS. These commands aren't available on Windows.

The following cmdlets aren't available on Linux or macOS:

Get-Acl

Set-Acl

Get-AuthenticodeSignature

Set-AuthenticodeSignature

New-FileCatalog

Test-FileCatalog

These cmdlets are only available beginning in PowerShell 7.1.

Get-CmsMessage

Protect-CmsMessage

Unprotect-CmsMessage

The following cmdlets aren't available on Linux and macOS:

Rename-Computer

Get-ComputerInfo

Get-HotFix

Clear-RecycleBin

Get-Service

New-Service

Remove-Service

Restart-Service

Resume-Service

Set-Service

Start-Service

Stop-Service

Suspend-Service

Set-TimeZone

The following cmdlets are available with limitations:

Get-Clipboard  - available in PowerShell 7.0+

Microsoft.PowerShell.Security cmdlets

Microsoft.PowerShell.Management cmdlets



Set-Clipboard  - available in PowerShell 7.0+
Restart-Computer  - available for Linux and macOS in PowerShell 7.1+
Stop-Computer  - available for Linux and macOS in PowerShell 7.1+

The following cmdlets aren't available on Linux and macOS:

Convert-String

ConvertFrom-String

ConvertFrom-SddlString

Out-GridView

Out-Printer

Show-Command

The following table lists the aliases available for Windows that aren't available on non-
Windows platforms. These aliases aren't available because the alias conflicts with a
native command on those platforms.

Alias Cmdlet

ac Add-Content

cat Get-Content

clear Clear-Host

compare Compare-Object

cp Copy-Item

cpp Copy-ItemProperty

diff Compare-Object

kill Stop-Process

ls Get-ChildItem

man help

Microsoft.PowerShell.Utility cmdlets

Aliases not available on Linux or macOS

ﾉ Expand table



Alias Cmdlet

mount New-PSDrive

mv Move-Item

ps Get-Process

rm Remove-Item

rmdir Remove-Item

sleep Start-Sleep

sort Sort-Object

start Start-Process

tee Tee-Object

write Write-Output

The table doesn't include aliases unavailable for cmdlets that don't exist on non-
Windows platforms.

Beginning with PowerShell 7.2, the PSDesiredStateConfiguration module was removed
from PowerShell and is published in the PowerShell Gallery. For more information, see
the announcement  on the PowerShell Team blog. For more information about using
DSC on Linux, see Get started with DSC for Linux. DSC v1.1 and v2.x aren't supported on
macOS. DSC v3 is supported on Windows, Linux, and macOS, but it's still in early
development.

PowerShell Desired State Configuration (DSC)

https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/
https://devblogs.microsoft.com/powershell/announcing-psdesiredstateconfiguration-on-powershell-gallery/
https://learn.microsoft.com/en-us/powershell/scripting/dsc/getting-started/lnxgettingstarted


Release history of modules and cmdlets
Article • 01/17/2025

This article lists the modules and cmdlets that are included in various versions of
PowerShell. This is a summary of information found in the release notes. More detailed
information can be found in the release notes:

What's new in PowerShell 7.5
What's new in PowerShell 7.4
What's new in PowerShell 7.3
What's new in PowerShell 7.2
What's new in PowerShell 7.1
What's new in PowerShell 7.0

This is a work in progress. Please help us keep this information fresh.

ModuleName / PSVersion 5.1 7.4 7.5 7.6 Note

CimCmdlets Windows only

ISE (introduced in 2.0) Windows only

Microsoft.PowerShell.Archive

Microsoft.PowerShell.Core

Microsoft.PowerShell.Diagnostics Windows only

Microsoft.PowerShell.Host

Microsoft.PowerShell.LocalAccounts Windows only (64-bit
only)

Microsoft.PowerShell.Management

Microsoft.PowerShell.ODataUtils Windows only

Microsoft.PowerShell.Operation.Validation Windows only

Microsoft.PowerShell.PSResourceGet New versions
available from the
Gallery

Module release history

ﾉ Expand table

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/whats-new/what-s-new-in-powershell-71
https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/whats-new/what-s-new-in-powershell-70


ModuleName / PSVersion 5.1 7.4 7.5 7.6 Note

Microsoft.PowerShell.Security

Microsoft.PowerShell.Utility

Microsoft.WsMan.Management Windows only

PackageManagement

PowerShellGet 1.1 Must upgrade to v2.x

PowerShellGet 2.x New versions
available from the
Gallery

PSDesiredStateConfiguration 1.1 Removed in 7.2 -
available from the
Gallery

PSDesiredStateConfiguration 2.x Removed in 7.2 -
available from the
Gallery

PSDesiredStateConfiguration 3.x Preview available
from the Gallery

PSDiagnostics Windows only

PSReadLine v1.x v2.3.4 v2.3.4 v2.3.6 New versions
available from the
Gallery

PSScheduledJob Windows only

PSWorkflow Windows only

PSWorkflowUtility Windows only

ThreadJob Can be installed in
PowerShell 5.1

Cmdlet release history

CimCmdlets

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Export-BinaryMiLog Windows only

Get-CimAssociatedInstance Windows only

Get-CimClass Windows only

Get-CimInstance Windows only

Get-CimSession Windows only

Import-BinaryMiLog Windows only

Invoke-CimMethod Windows only

New-CimInstance Windows only

New-CimSession Windows only

New-CimSessionOption Windows only

Register-CimIndicationEvent Windows only

Remove-CimInstance Windows only

Remove-CimSession Windows only

Set-CimInstance Windows only

This modules is only available in Windows PowerShell.

Cmdlet name 5.1 Note

Get-IseSnippet

Import-IseSnippet

New-IseSnippet

ISE (introduced in 2.0)

ﾉ Expand table

Microsoft.PowerShell.Archive

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Compress-Archive

Expand-Archive

Cmdlet name 5.1 7.4 7.5 7.6 Note

Add-History

Add-PSSnapin Windows only

Clear-History

Clear-Host

Connect-PSSession Windows only

Debug-Job

Disable-ExperimentalFeature Added in 6.2

Disable-PSRemoting Windows only

Disable-PSSessionConfiguration Windows only

Disconnect-PSSession Windows only

Enable-ExperimentalFeature Added in 6.2

Enable-PSRemoting Windows only

Enable-PSSessionConfiguration Windows only

Enter-PSHostProcess Added Linux support in 6.2

Enter-PSSession

Exit-PSHostProcess Added Linux support in 6.2

Exit-PSSession

Export-Console Windows only

Export-ModuleMember

ForEach-Object

Microsoft.PowerShell.Core

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Get-Command

Get-ExperimentalFeature Added in 6.2

Get-Help

Get-History

Get-Job

Get-Module

Get-PSHostProcessInfo Added Linux support in 6.2

Get-PSSession

Get-PSSessionCapability

Get-PSSessionConfiguration

Get-PSSnapin Windows only

Get-Verb Moved to Microsoft.PowerShell.Utility
6.0+

Import-Module

Invoke-Command

Invoke-History

New-Module

New-ModuleManifest

New-PSRoleCapabilityFile

New-PSSession

New-PSSessionConfigurationFile Added Linux support in 7.3

New-PSSessionOption

New-PSTransportOption

Out-Default

Out-Host

Out-Null

Receive-Job



Cmdlet name 5.1 7.4 7.5 7.6 Note

Receive-PSSession Windows only

Register-ArgumentCompleter

Register-PSSessionConfiguration Windows only

Remove-Job

Remove-Module

Remove-PSSession

Remove-PSSnapin Windows only

Resume-Job

Save-Help

Set-PSDebug

Set-PSSessionConfiguration Windows only

Set-StrictMode

Start-Job

Stop-Job

Switch-Process Linux and macOS only

Suspend-Job Windows only

Test-ModuleManifest

Test-PSSessionConfigurationFile Windows only

Unregister-
PSSessionConfiguration

Windows only

Update-Help

Wait-Job

Where-Object

Microsoft.PowerShell.Diagnostics

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Export-Counter Windows only

Get-Counter Windows only

Get-WinEvent Windows only

Import-Counter Windows only

New-WinEvent Windows only

Cmdlet name 5.1 7.4 7.5 7.6 Note

Start-Transcript

Stop-Transcript

This modules is only available in Windows PowerShell.

Cmdlet name 5.1 Note

Add-LocalGroupMember

Disable-LocalUser

Enable-LocalUser

Get-LocalGroup

Get-LocalGroupMember

Get-LocalUser

New-LocalGroup

New-LocalUser

Remove-LocalGroup

Microsoft.PowerShell.Host

ﾉ Expand table

Microsoft.PowerShell.LocalAccounts (64-bit only)

ﾉ Expand table



Cmdlet name 5.1 Note

Remove-LocalGroupMember

Remove-LocalUser

Rename-LocalGroup

Rename-LocalUser

Set-LocalGroup

Set-LocalUser

Cmdlet name 5.1 7.4 7.5 7.6 Note

Add-Computer Windows only

Add-Content

Checkpoint-Computer Windows only

Clear-Content

Clear-EventLog Windows only

Clear-Item

Clear-ItemProperty

Clear-RecycleBin Windows only

Complete-Transaction Windows only

Convert-Path

Copy-Item

Copy-ItemProperty

Debug-Process

Disable-ComputerRestore Windows only

Enable-ComputerRestore Windows only

Get-ChildItem

Microsoft.PowerShell.Management

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Get-Clipboard

Get-ComputerInfo Windows only

Get-ComputerRestorePoint Windows only

Get-Content

Get-ControlPanelItem Windows only

Get-EventLog Windows only

Get-HotFix Windows only

Get-Item

Get-ItemProperty

Get-ItemPropertyValue

Get-Location

Get-Process

Get-PSDrive

Get-PSProvider

Get-Service Windows only

Get-TimeZone Windows only

Get-Transaction Windows only

Get-WmiObject Windows only

Invoke-Item

Invoke-WmiMethod Windows only

Join-Path

Limit-EventLog Windows only

Move-Item

Move-ItemProperty

New-EventLog Windows only

New-Item



Cmdlet name 5.1 7.4 7.5 7.6 Note

New-ItemProperty

New-PSDrive

New-Service Windows only

New-WebServiceProxy Windows only

Pop-Location

Push-Location

Register-WmiEvent Windows only

Remove-Computer Windows only

Remove-EventLog Windows only

Remove-Item

Remove-ItemProperty

Remove-PSDrive

Remove-Service Windows only

Remove-WmiObject Windows only

Rename-Computer Windows only

Rename-Item

Rename-ItemProperty

Reset-ComputerMachinePassword Windows only

Resolve-Path

Restart-Computer Added Linux/macOS support in 7.1

Restart-Service Windows only

Restore-Computer Windows only

Resume-Service Windows only

Set-Clipboard

Set-Content

Set-Item



Cmdlet name 5.1 7.4 7.5 7.6 Note

Set-ItemProperty

Set-Location

Set-Service Windows only

Set-TimeZone Windows only

Set-WmiInstance Windows only

Show-ControlPanelItem Windows only

Show-EventLog Windows only

Split-Path

Start-Process

Start-Service Windows only

Start-Transaction Windows only

Stop-Computer Added Linux/macOS support in 7.1

Stop-Process

Stop-Service Windows only

Suspend-Service Windows only

Test-ComputerSecureChannel Windows only

Test-Connection

Test-Path

Undo-Transaction Windows only

Use-Transaction Windows only

Wait-Process

Write-EventLog Windows only

This modules is only available in Windows PowerShell.

Microsoft.PowerShell.ODataUtils

ﾉ Expand table



Cmdlet name 5.1 Note

Export-ODataEndpointProxy

This modules is only available in Windows PowerShell.

Cmdlet name 5.1 Note

Get-OperationValidation

Invoke-OperationValidation

Cmdlet name 7.4 7.5 7.6 Note

Compress-PSResource Added in v1.1.0 of the module

Find-PSResource

Get-InstalledPSResource

Get-PSResource

Get-PSResourceRepository

Get-PSScriptFileInfo

Import-PSGetRepository

Install-PSResource

New-PSScriptFileInfo

Publish-PSResource

Register-PSResourceRepository

Save-PSResource

Set-PSResourceRepository

Microsoft.PowerShell.Operation.Validation

ﾉ Expand table

Microsoft.PowerShell.PSResourceGet

ﾉ Expand table



Cmdlet name 7.4 7.5 7.6 Note

Test-PSScriptFileInfo

Uninstall-PSResource

Unregister-PSResourceRepository

Update-PSModuleManifest

Update-PSResource

Update-PSScriptFileInfo

Cmdlet name 5.1 7.4 7.5 7.6 Note

ConvertFrom-SecureString

ConvertTo-SecureString

Get-Acl Windows only

Get-AuthenticodeSignature Windows only

Get-CmsMessage Support for Linux/macOS added in 7.1

Get-Credential

Get-ExecutionPolicy Returns Unrestricted on Linux/macOS

Get-PfxCertificate

New-FileCatalog Windows only

Protect-CmsMessage Support for Linux/macOS added in 7.1

Set-Acl Windows only

Set-AuthenticodeSignature Windows only

Set-ExecutionPolicy Does nothing on Linux/macOS

Test-FileCatalog Windows only

Unprotect-CmsMessage Support for Linux/macOS added in 7.1

Microsoft.PowerShell.Security

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Add-Member

Add-Type

Clear-Variable

Compare-Object

Convert-String

ConvertFrom-CliXml Added in 7.5

ConvertFrom-Csv

ConvertFrom-Json

ConvertFrom-Markdown Added in 6.1

ConvertFrom-SddlString Windows only

ConvertFrom-String

ConvertFrom-StringData

ConvertTo-CliXml Added in 7.5

ConvertTo-Csv

ConvertTo-Html

ConvertTo-Json

ConvertTo-Xml

Debug-Runspace

Disable-PSBreakpoint

Disable-RunspaceDebug

Enable-PSBreakpoint

Enable-RunspaceDebug

Export-Alias

Export-Clixml

Microsoft.PowerShell.Utility

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Export-Csv

Export-FormatData

Export-PSSession

Format-Custom

Format-Hex

Format-List

Format-Table

Format-Wide

Get-Alias

Get-Culture

Get-Date

Get-Error

Get-Event No event sources available on Linux/macOS

Get-EventSubscriber

Get-FileHash

Get-FormatData

Get-Host

Get-MarkdownOption Added in 6.1

Get-Member

Get-PSBreakpoint

Get-PSCallStack

Get-Random

Get-Runspace

Get-RunspaceDebug

Get-SecureRandom Added in 7.4

Get-TraceSource



Cmdlet name 5.1 7.4 7.5 7.6 Note

Get-TypeData

Get-UICulture

Get-Unique

Get-Uptime

Get-Variable

Get-Verb Moved from Microsoft.PowerShell.Core

Group-Object

Import-Alias

Import-Clixml

Import-Csv

Import-LocalizedData

Import-PowerShellDataFile

Import-PSSession

Invoke-Expression

Invoke-RestMethod

Invoke-WebRequest

Join-String

Measure-Command

Measure-Object

New-Alias

New-Event No event sources available on Linux/macOS

New-Guid

New-Object

New-TemporaryFile

New-TimeSpan

New-Variable



Cmdlet name 5.1 7.4 7.5 7.6 Note

Out-File

Out-GridView Windows only

Out-Printer Windows only

Out-String

Read-Host

Register-EngineEvent No event sources available on Linux/macOS

Register-ObjectEvent

Remove-Alias

Remove-Event No event sources available on Linux/macOS

Remove-PSBreakpoint

Remove-TypeData

Remove-Variable

Select-Object

Select-String

Select-Xml

Send-MailMessage

Set-Alias

Set-Date

Set-MarkdownOption Added in 6.1

Set-PSBreakpoint

Set-TraceSource

Set-Variable

Show-Command Windows only

Show-Markdown Added in 6.1

Sort-Object

Start-Sleep



Cmdlet name 5.1 7.4 7.5 7.6 Note

Tee-Object

Test-Json

Trace-Command

Unblock-File Added support for macOS in 7.0

Unregister-Event No event sources available on Linux/macOS

Update-FormatData

Update-List

Update-TypeData

Wait-Debugger

Wait-Event

Write-Debug

Write-Error

Write-Host

Write-Information

Write-Output

Write-Progress

Write-Verbose

Write-Warning

Cmdlet name 5.1 7.4 7.5 7.6 Note

Connect-WSMan Windows only

Disable-WSManCredSSP Windows only

Disconnect-WSMan Windows only

Enable-WSManCredSSP Windows only

Microsoft.WsMan.Management

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Get-WSManCredSSP Windows only

Get-WSManInstance Windows only

Invoke-WSManAction Windows only

New-WSManInstance Windows only

New-WSManSessionOption Windows only

Remove-WSManInstance Windows only

Set-WSManInstance Windows only

Set-WSManQuickConfig Windows only

Test-WSMan Windows only

Cmdlet name 5.1 7.4 7.5 7.6 Note

Find-Package

Find-PackageProvider

Get-Package

Get-PackageProvider

Get-PackageSource

Import-PackageProvider

Install-Package

Install-PackageProvider

Register-PackageSource

Save-Package

Set-PackageSource

Uninstall-Package

Unregister-PackageSource

PackageManagement

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Find-Command

Find-DscResource

Find-Module

Find-RoleCapability

Find-Script

Get-CredsFromCredentialProvider

Get-InstalledModule

Get-InstalledScript

Get-PSRepository

Install-Module

Install-Script

New-ScriptFileInfo

Publish-Module

Publish-Script

Register-PSRepository

Save-Module

Save-Script

Set-PSRepository

Test-ScriptFileInfo

Uninstall-Module

Uninstall-Script

Unregister-PSRepository

Update-Module

Update-ModuleManifest

PowerShellGet 2.x

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Update-Script

Update-ScriptFileInfo

This modules is only available from in Windows PowerShell.

Cmdlet name 5.1 Note

Configuration

Disable-DscDebug

Enable-DscDebug

Get-DscConfiguration

Get-DscConfigurationStatus

Get-DscLocalConfigurationManager

Get-DscResource

Invoke-DscResource

New-DSCCheckSum

Publish-DscConfiguration

Remove-DscConfigurationDocument

Restore-DscConfiguration

Set-DscLocalConfigurationManager

Start-DscConfiguration

Stop-DscConfiguration

Test-DscConfiguration

Update-DscConfiguration

PSDesiredStateConfiguration v1.1

ﾉ Expand table

PSDesiredStateConfiguration v2.0.5



This modules is only available from the PowerShell Gallery.

Cmdlet name 2.0.5 Note

Configuration

Get-DscResource

Invoke-DscResource Experimental

New-DSCCheckSum

This modules is only available from the PowerShell Gallery.

Cmdlet name 3.0 (preview) Note

Configuration

ConvertTo-DscJsonSchema

Get-DscResource

Invoke-DscResource

New-DscChecksum

Cmdlet name 5.1 7.4 7.5 7.6 Note

Disable-PSTrace Windows only

Disable-PSWSManCombinedTrace Windows only

Disable-WSManTrace Windows only

Enable-PSTrace Windows only

Enable-PSWSManCombinedTrace Windows only

ﾉ Expand table

PSDesiredStateConfiguration v3.x - Preview

ﾉ Expand table

PSDiagnostics

ﾉ Expand table



Cmdlet name 5.1 7.4 7.5 7.6 Note

Enable-WSManTrace Windows only

Get-LogProperties Windows only

Set-LogProperties Windows only

Start-Trace Windows only

Stop-Trace Windows only

Cmdlet name 5.1 7.4 7.5 7.6 Note

Get-PSReadLineKeyHandler

Get-PSReadLineOption

PSConsoleHostReadLine

Remove-PSReadLineKeyHandler

Set-PSReadLineKeyHandler

Set-PSReadLineOption

This modules is only available in Windows PowerShell.

Cmdlet name 5.1 Note

Add-JobTrigger

Disable-JobTrigger

Disable-ScheduledJob

Enable-JobTrigger

Enable-ScheduledJob

PSReadLine

ﾉ Expand table

PSScheduledJob

ﾉ Expand table



Cmdlet name 5.1 Note

Get-JobTrigger

Get-ScheduledJob

Get-ScheduledJobOption

New-JobTrigger

New-ScheduledJobOption

Register-ScheduledJob

Remove-JobTrigger

Set-JobTrigger

Set-ScheduledJob

Set-ScheduledJobOption

Unregister-ScheduledJob

This modules is only available in Windows PowerShell.

Cmdlet name 5.1 Note

New-PSWorkflowExecutionOption

New-PSWorkflowSession

Invoke-AsWorkflow

Cmdlet name 5.1 7.4 7.5 7.6 Note

Start-ThreadJob Can be installed in PowerShell 5.1

PSWorkflow & PSWorkflowUtility

ﾉ Expand table

ThreadJob

ﾉ Expand table



PowerShell 7 module compatibility
Article • 06/28/2023

This article contains a partial list of PowerShell modules published by Microsoft.

The PowerShell team is working with the various feature teams that create PowerShell
modules to help them produce modules that work in PowerShell 7. These modules are
not owned by the PowerShell team.

The following modules are known to support PowerShell 7.

The Az PowerShell module is a set of cmdlets for managing Azure resources directly
from PowerShell. PowerShell 7.0.6 LTS or higher is the recommended version of
PowerShell for use with the Azure Az PowerShell module on all platforms.

For more information, see Introducing the Azure Az PowerShell module.

The Microsoft Graph SDKs are designed to simplify building high-quality, efficient, and
resilient applications that access Microsoft Graph. PowerShell 7 and later is the
recommended PowerShell version for use with the Microsoft Graph PowerShell SDK.

For more information, see Install the Microsoft Graph PowerShell SDK.

The Windows management modules provide management and support for various
Windows features and services. Most of these modules have been updated to work
natively with PowerShell 7, or tested for compatibility with PowerShell 7.

These modules are installed in different ways depending on the Edition of Windows, and
how the module is packaged for that Edition.

For more information about installation and compatibility, see PowerShell 7 module
compatibility in the Windows documentation.

Azure PowerShell

MSGraph PowerShell SDK

Windows management modules

Exchange Online Management 2.0

https://learn.microsoft.com/en-us/powershell/azure/new-azureps-module-az
https://learn.microsoft.com/en-us/graph/powershell/installation#supported-powershell-versions
https://learn.microsoft.com/en-us/powershell/windows/module-compatibility


The Exchange Online PowerShell V2 module (EXO V2) connects to all Exchange-related
PowerShell environments in Microsoft 365: Exchange Online PowerShell, Security &
Compliance PowerShell, and standalone Exchange Online Protection (EOP) PowerShell.

EXO v2.0.4 or later is supported in PowerShell 7.0.3 or later.

For more information, see About the Exchange Online PowerShell V2 module.

There are two SQL Server PowerShell modules:

SqlServer: This module includes new cmdlets to support the latest SQL features,
including updated versions of the cmdlets in SQLPS.
SQLPS: The SQLPS is the module used by SQL Agent to run agent jobs in agent job
steps using the PowerShell subsystem.

The SqlServer modules require PowerShell version 5.0 or greater.

For more information, see Install the SQL Server PowerShell module.

You can find a complete list of modules using the PowerShell Module Browser. Using the
Module Browser, you can find documentation for other PowerShell modules to
determine their PowerShell version requirements.

PowerShell modules for SQL Server

Finding the status of other modules

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/exchange/exchange-online-powershell-v2
https://learn.microsoft.com/en-us/sql/powershell/download-sql-server-ps-module
https://learn.microsoft.com/en-us/powershell/module
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fwhats-new%2Fmodule-compatibility%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fwhats-new%2Fmodule-compatibility.md&documentVersionIndependentId=94bd5dcb-ffbb-57b9-9b5e-a66ff4a5dd4e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8f3782d9-a8e3-ffe1-852c-cd9fc6ca8b9a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


The Windows PowerShell ISE
Article • 03/27/2025

The Windows PowerShell Integrated Scripting Environment (ISE) is a host application for
Windows PowerShell. In the ISE, you can run commands and write, test, and debug
scripts in a single Windows-based graphic user interface. The ISE provides multiline
editing, tab completion, syntax coloring, selective execution, context-sensitive help, and
support for right-to-left languages. Menu items and keyboard shortcuts are mapped to
many of the same tasks that you would do in the Windows PowerShell console. For
example, when you debug a script in the ISE, you can right-click on a line of code in the
edit pane to set a breakpoint.

The ISE was first introduced with Windows PowerShell V2 and was re-designed with
PowerShell V3. The ISE is supported in all supported versions of Windows PowerShell up
to and including Windows PowerShell V5.1.

Key features in Windows PowerShell ISE include:

Multiline editing: To insert a blank line under the current line in the Command
pane, press SHIFT + ENTER .
Selective execution: To run part of a script, select the text you want to run, and
then click the Run Script button. Or, press F5 .
Context-sensitive help: Type Invoke-Item , and then press F1 . The Help file opens
to the article for the Invoke-Item  cmdlet.

Support

７ Note

The PowerShell ISE is no longer in active feature development. As a shipping
component of Windows, it continues to be officially supported for security and
high-priority servicing fixes. We currently have no plans to remove the ISE from
Windows.

There is no support for the ISE in PowerShell v6 and beyond. Users looking for
replacement for the ISE should use Visual Studio Code  with the PowerShell
Extension .

Key Features

https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell


The Windows PowerShell ISE lets you customize some aspects of its appearance. It also
has its own Windows PowerShell profile script.

Click Start, select Windows PowerShell, and then click Windows PowerShell ISE.
Alternately, you can type powershell_ise.exe  in any command shell or in the Run box.

On the Help menu, click Windows PowerShell Help. Or, press F1 . The file that opens
describes Windows PowerShell ISE and Windows PowerShell, including all the help
available from the Get-Help  cmdlet.

To start the Windows PowerShell ISE

To get Help in the Windows PowerShell ISE



Exploring the Windows PowerShell ISE
Article • 03/27/2025

You can use the Windows PowerShell Integrated Scripting Environment (ISE) to create,
run, and debug commands and scripts.

The Windows PowerShell ISE consists of the menu bar, Windows PowerShell tabs, the
toolbar, script tabs, a Script Pane, a Console Pane, a status bar, a text-size slider and
context-sensitive Help.

The menu bar contains the File, Edit, View, Tools, Debug, Add-ons, and Help menus.

The buttons on the menus allow you to perform tasks related to writing and running
scripts and running commands in the Windows PowerShell ISE. Additionally, an add-on
tool may be placed on the menu bar by running scripts that use the The ISE Object
Model Hierarchy.

Menu Bar



The following buttons are located on the toolbar.

Button Function

New Opens a new script.

Open Opens an existing script or file.

Save Saves a script or file.

Cut Cuts the selected text and copies it to the clipboard.

Copy Copies the selected text to the clipboard.

Paste Pastes the contents of the clipboard at the cursor location.

Clear Console Pane Clears all content in the Console Pane.

Undo Reverses the action that was just performed.

Redo Performs the action that was just undone.

Run Script Runs a script.

Run Selection Runs a selected portion of a script.

Stop Operation Stops a script that's running.

New Remote
PowerShell Tab

Creates a new PowerShell Tab that establishes a session on a remote
computer. A dialog box appears and prompts you to enter details required
to establish the remote connection.

Start
powershell.exe

Opens a PowerShell Console.

Show Script Pane
Top

Moves the Script Pane to the top in the display.

Show Script Pane
Right

Moves the Script Pane to the right in the display.

Show Script Pane Maximizes the Script Pane.

Toolbar

ﾉ Expand table



Button Function

Maximized

Show Command
Window

Shows the Commands Pane for installed Modules, as a separate Window.

Show Command
Add-on

Shows the Commands Pane for installed Modules, as a sidebar Add-on.

A Windows PowerShell tab is the environment in which a Windows PowerShell script
runs. You can open new Windows PowerShell tabs in the Windows PowerShell ISE to
create separate environments on your local computer or on remote computers. You may
have a maximum of eight PowerShell tabs simultaneously open.

For more information, see How to Create a PowerShell Tab in Windows PowerShell ISE.

Displays the name of the script you are editing. You can click a script tab to select the
script you want to edit.

When you point to the script tab, the fully qualified path to the script file appears in a
tooltip.

Windows PowerShell Tabs

Script Tab

Script Pane



Allows you to create and run scripts. You can open, edit and run existing scripts in the
Script Pane. For more information, see How to Write and Run Scripts in the Windows
PowerShell ISE.

Displays the results of the commands and scripts you have run. You can run commands
in the Console pane. You can also copy and clear the contents in the Console Pane.

For more information, see the following articles:

How to Use the Console Pane in the Windows PowerShell ISE
How to Debug Scripts in Windows PowerShell ISE
How to Use Tab Completion in the Script Pane and Console Pane

Allows you to see whether the commands and scripts that you run are complete. The
status bar is at the bottom of the window. Selected portions of error messages are
displayed on the status bar.

Increases or decreases the size of the text on the screen.

Console Pane

Status Bar

Text-Size Slider



Help for Windows PowerShell ISE is available on Microsoft Learn. You can open the Help
by clicking Windows PowerShell ISE Help on the Help menu or by pressing the F1  key
anywhere except when the cursor is on a cmdlet name in either the Script Pane or the
Console Pane. From the Help menu you can also run the Update-Help  cmdlet, and
display the Command Window, which assists you in constructing commands by showing
you all the parameters for a cmdlet and enabling you to fill in the parameters in an easy-
to-use form.

Introducing the Windows PowerShell ISE
How to Use Profiles in Windows PowerShell ISE
Accessibility in Windows PowerShell ISE
Keyboard Shortcuts for the Windows PowerShell ISE

Help

See Also



How to Create a PowerShell Tab in
Windows PowerShell ISE
Article • 03/27/2025

Tabs in the Windows PowerShell Integrated Scripting Environment (ISE) allow you to
simultaneously create and use several execution environments within the same
application. Each PowerShell tab corresponds to a separate execution environment or
session.

Use the following steps to open or close a tab in Windows PowerShell. To rename a tab,
set the DisplayName property on the Windows PowerShell Tab scripting object.

On the File menu, click New PowerShell Tab. The new PowerShell tab always opens as
the active window. PowerShell tabs are incrementally numbered in the order that they're
opened. Each tab is associated with its own Windows PowerShell console window. You
can have up to 32 PowerShell tabs with their own session open at a time (this is limited
to 8 on Windows PowerShell ISE 2.0.)

Note that clicking the New or Open icons on the toolbar doesn't create a new tab with a
separate session. Instead, those buttons open a new or existing script file on the
currently active tab with a session. You can have multiple script files open with each tab
and session. The script tabs for a session only appear below the session tabs when the
associated session is active.

To make a PowerShell tab active, click the tab. To select from all PowerShell tabs that are
open, on the View menu, click the PowerShell tab you want to use.

７ Note

Variables, functions, and aliases that you create in one tab don't carry over to
another. They are different Windows PowerShell sessions.

To create and use a new PowerShell Tab

To create and use a new Remote PowerShell
tab



On the File menu, click New Remote PowerShell Tab to establish a session on a remote
computer. A dialog box appears and prompts you to enter details required to establish
the remote connection. The remote tab functions just like a local PowerShell tab, but the
commands and scripts are run on the remote computer.

To close a tab, you can use any of the following techniques:

Click the tab that you want to close.

On the File menu, click Close PowerShell Tab, or click the Close button (X) on an
active tab to close the tab.

If you have unsaved files open in the PowerShell tab that you are closing, you are
prompted to save or discard them. For more information about how to save a script, see
How to Save a Script.

Introducing the Windows PowerShell ISE
How to Use the Console Pane in the Windows PowerShell ISE

To close a PowerShell Tab

See Also



How to Debug Scripts in Windows
PowerShell ISE
Article • 03/27/2025

This article describes how to debug scripts on a local computer by using the Windows
PowerShell Integrated Scripting Environment (ISE) visual debugging features.

A breakpoint is a designated spot in a script where you would like operation to pause so
that you can examine the current state of the variables and the environment in which
your script is running. Once your script is paused by a breakpoint, you can run
commands in the Console Pane to examine the state of your script. You can output
variables or run other commands. You can even modify the value of any variables that
are visible to the context of the currently running script. After you have examined what
you want to see, you can resume operation of the script.

You can set three types of breakpoints in the Windows PowerShell debugging
environment:

1. Line breakpoint. The script pauses when the designated line is reached during the
operation of the script

2. Variable breakpoint. The script pauses whenever the designated variable's value
changes.

3. Command breakpoint. The script pauses whenever the designated command is
about to be run during the operation of the script. It can include parameters to
further filter the breakpoint to only the operation you want. The command can
also be a function you created.

Of these, in the Windows PowerShell ISE debugging environment, only line breakpoints
can be set by using the menu or the keyboard shortcuts. The other two types of
breakpoints can be set, but they are set from the Console Pane by using the Set-
PSBreakpoint cmdlet. This section describes how you can perform debugging tasks in
Windows PowerShell ISE by using the menus where available, and perform a wider range
of commands from the Console Pane by using scripting.

How to manage breakpoints

To set a breakpoint

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-PSBreakpoint


A breakpoint can be set in a script only after it has been saved. Right-click the line where
you want to set a line breakpoint, and then click Toggle Breakpoint. Or, click the line
where you want to set a line breakpoint, and press F9  or, on the Debug menu, click
Toggle Breakpoint.

The following script is an example of how you can set a variable breakpoint from the
Console Pane by using the Set-PSBreakpoint cmdlet.

PowerShell

Displays all breakpoints in the current Windows PowerShell session.

On the Debug menu, click List Breakpoints. The following script is an example of how
you can list all breakpoints from the Console Pane by using the Get-PSBreakpoint
cmdlet.

PowerShell

Removing a breakpoint deletes it.

If you think you might want to use it again later, consider Disable a Breakpoint it
instead. Right-click the line where you want to remove a breakpoint, and then click
ToggleBreakpoint. Or, click the line where you want to remove a breakpoint, and on the
Debug menu, click Toggle Breakpoint. The following script is an example of how to
remove a breakpoint with a specified ID from the Console Pane by using the Remove-
PSBreakpoint cmdlet.

PowerShell

# This command sets a breakpoint on the Server variable in the Sample.ps1 
script.
Set-PSBreakpoint -Script sample.ps1 -Variable Server

List all breakpoints

# This command lists all breakpoints in the current session.
Get-PSBreakpoint

Remove a breakpoint

# This command deletes the breakpoint with breakpoint ID 2.
Remove-PSBreakpoint -Id 2

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Remove-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Remove-PSBreakpoint


To remove all breakpoints defined in the current session, on the Debug menu, click
Remove All Breakpoints.

The following script is an example of how to remove all breakpoints from the Console
Pane by using the Remove-PSBreakpoint cmdlet.

PowerShell

Disabling a breakpoint doesn't remove it. It turns it off until it's enabled. To disable a
specific line breakpoint, right-click the line where you want to disable a breakpoint, and
then click Disable Breakpoint.

Or, click the line where you want to disable a breakpoint, and press F9  or, on the
Debug menu, click Disable Breakpoint. The following script is an example of how you
can remove a breakpoint with a specified ID from the Console Pane using the Disable-
PSBreakpoint cmdlet.

PowerShell

Disabling a breakpoint doesn't remove it; it turns it off until it's enabled. To disable all
breakpoints in the current session, on the Debug menu, click Disable all Breakpoints.
The following script is an example of how you can disable all breakpoints from the
Console Pane by using the Disable-PSBreakpoint cmdlet.

PowerShell

Remove All Breakpoints

# This command deletes all of the breakpoints in the current session.
Get-PSBreakpoint | Remove-PSBreakpoint

Disable a Breakpoint

# This command disables the breakpoint with breakpoint ID 0.
Disable-PSBreakpoint -Id 0

Disable All Breakpoints

# This command disables all breakpoints in the current session.
# You can abbreviate this command as: "gbp | dbp".
Get-PSBreakpoint | Disable-PSBreakpoint

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Remove-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Disable-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Disable-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Disable-PSBreakpoint


To enable a specific breakpoint, right-click the line where you want to enable a
breakpoint, and then click Enable Breakpoint. Or, click the line where you want to
enable a breakpoint, and then press F9  or, on the Debug menu, click Enable
Breakpoint. The following script is an example of how you can enable specific
breakpoints from the Console Pane by using the Enable-PSBreakpoint cmdlet.

PowerShell

To enable all breakpoints defined in the current session, on the Debug menu, click
Enable all Breakpoints. The following script is an example of how you can enable all
breakpoints from the Console Pane by using the Enable-PSBreakpoint cmdlet.

PowerShell

Before you start debugging, you must set one or more breakpoints. You can't set a
breakpoint unless the script that you want to debug is saved. For directions on of how
to set a breakpoint, see How to manage breakpoints or Set-PSBreakpoint. After you
start debugging, you can't edit a script until you stop debugging. A script that has one
or more breakpoints set is automatically saved before it's run.

Press F5  or, on the toolbar, click the Run Script icon, or on the Debug menu click
Run/Continue. The script runs until it encounters the first breakpoint. It pauses
operation there and highlights the line on which it paused.

Enable a Breakpoint

# This command enables breakpoints with breakpoint IDs 0, 1, and 5.
Enable-PSBreakpoint -Id 0, 1, 5

Enable All Breakpoints

# This command enables all breakpoints in the current session.
# You can abbreviate the command by using their aliases: "gbp | ebp".
Get-PSBreakpoint | Enable-PSBreakpoint

How to manage a debugging session

To start debugging

To continue debugging

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Enable-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Enable-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-PSBreakpoint


Press F5  or, on the toolbar, click the Run Script icon, or on the Debug menu, click
Run/Continue or, in the Console Pane, type C  and then press ENTER . This causes the
script to continue running to the next breakpoint or to the end of the script if no further
breakpoints are encountered.

The call stack displays the current run location in the script. If the script is running in a
function that was called by a different function, then that's represented in the display by
additional rows in the output. The bottom-most row displays the original script and the
line in it in which a function was called. The next line up shows that function and the line
in it in which another function might have been called. The top-most row shows the
current context of the current line on which the breakpoint is set.

While paused, to see the current call stack, press CTRL + SHIFT + D  or, on the Debug
menu, click Display Call Stack or, in the Console Pane, type K  and then press ENTER .

Press SHIFT + F5  or, on the Debug menu, click Stop Debugger, or, in the Console Pane,
type Q  and then press ENTER .

Stepping is the process of running one statement at a time. You can stop on a line of
code, and examine the values of variables and the state of the system. The following
table describes common debugging tasks such as stepping over, stepping into, and
stepping out.

Debugging
Task

Description How to accomplish it in
PowerShell ISE

Step Into Executes the current statement and then stops at
the next statement. If the current statement is a
function or script call, then the debugger steps
into that function or script, otherwise it stops at
the next statement.

Press F11  or, on the Debug
menu, click Step Into, or in the
Console Pane, type S  and
press ENTER .

To view the call stack

To stop debugging

How to step over, step into, and step out while
debugging

ﾉ Expand table



Debugging
Task

Description How to accomplish it in
PowerShell ISE

Step Over Executes the current statement and then stops at
the next statement. If the current statement is a
function or script call, then the debugger
executes the whole function or script, and it
stops at the next statement after the function
call.

Press F10  or, on the Debug
menu, click Step Over, or in
the Console Pane, type V  and
press ENTER .

Step Out Steps out of the current function and up one
level if the function is nested. If in the main body,
the script is executed to the end, or to the next
breakpoint. The skipped statements are
executed, but not stepped through.

Press SHIFT + F11 , or on the
Debug menu, click Step Out,
or in the Console Pane, type O
and press ENTER .

Continue Continues execution to the end, or to the next
breakpoint. The skipped functions and
invocations are executed, but not stepped
through.

Press F5  or, on the Debug
menu, click Run/Continue, or
in the Console Pane, type C
and press ENTER .

You can display the current values of variables in the script as you step through the
code.

Use one of the following methods:

In the Script Pane, hover over the variable to display its value as a tool tip.

In the Console Pane, type the variable name and press ENTER .

All panes in ISE are always in the same scope. Therefore, while you are debugging a
script, the commands that you type in the Console Pane run in script scope. This allows
you to use the Console Pane to find the values of variables and call functions that are
defined only in the script.

You can use the preceding method to display the value of almost all variables while you
are debugging a script. However, these methods don't work for the following automatic

How to display the values of variables while
debugging

To display the values of standard variables

To display the values of automatic variables



variables.

$_

$input

$MyInvocation

$PSBoundParameters

$args

If you try to display the value of any of these variables, you get the value of that variable
for in an internal pipeline the debugger uses, not the value of the variable in the script.
You can work around this for a few variables ( $_ , $input , $MyInvocation ,
$PSBoundParameters , and $args ) by using the following method:

1. In the script, assign the value of the automatic variable to a new variable.

2. Display the value of the new variable, either by hovering over the new variable in
the Script Pane, or by typing the new variable in the Console Pane.

For example, to display the value of the $MyInvocation  variable, in the script, assign the
value to a new variable, such as $scriptName , and then hover over or type the

$scriptName  variable to display its value.

PowerShell

PowerShell

Output

Exploring the Windows PowerShell ISE

# In C:\ps-test\MyScript.ps1
$scriptName = $MyInvocation.PSCommandPath

# In the Console Pane:
.\MyScript.ps1
$scriptName

C:\ps-test\MyScript.ps1

See Also



How to Use Profiles in Windows
PowerShell ISE
Article • 03/27/2025

This article explains how to use Profiles in Windows PowerShell® Integrated Scripting
Environment (ISE). We recommend that before performing the tasks in this section, you
review about_Profiles, or in the Console Pane, type, Get-Help about_Profiles  and press
ENTER .

A profile is a Windows PowerShell ISE script that runs automatically when you start a
new session. You can create one or more Windows PowerShell profiles for Windows
PowerShell ISE and use them to add the configure the Windows PowerShell or Windows
PowerShell ISE environment, preparing it for your use, with variables, aliases, functions,
and color and font preferences that you want available. A profile affects every Windows
PowerShell ISE session that you start.

Windows PowerShell ISE supports profiles for the current user and all users. It also
supports the Windows PowerShell profiles that apply to all hosts.

The profile that you use is determined by how you use Windows PowerShell and
Windows PowerShell ISE.

If you use only Windows PowerShell ISE to run Windows PowerShell, then save all
your items in one of the ISE-specific profiles, such as the CurrentUserCurrentHost
profile for Windows PowerShell ISE or the AllUsersCurrentHost profile for
Windows PowerShell ISE.

If you use multiple host programs to run Windows PowerShell, save your functions,
aliases, variables, and commands in a profile that affects all host programs, such as

７ Note

The Windows PowerShell execution policy determines whether you can run scripts
and load a profile. The default execution policy, "Restricted," prevents all scripts
from running, including profiles. If you use the "Restricted" policy, the profile can't
load. For more information about execution policy, see about_Execution_Policies.

Selecting a profile to use in the Windows
PowerShell ISE

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies


the CurrentUserAllHosts or the AllUsersAllHosts profile, and save ISE-specific
features, like color and font customization in the CurrentUserCurrentHost profile
for Windows PowerShell ISE profile or the AllUsersCurrentHost profile for
Windows PowerShell ISE.

The following are profiles that can be created and used in Windows PowerShell ISE. Each
profile is saved to its own specific path.

Profile Type Profile Path

Current user, PowerShell ISE $PROFILE.CurrentUserCurrentHost , or $PROFILE

All users, PowerShell ISE $PROFILE.AllUsersCurrentHost

Current user, All hosts $PROFILE.CurrentUserAllHosts

All users, All hosts $PROFILE.AllUsersAllHosts

To create a new "Current user, Windows PowerShell ISE" profile, run this command:

PowerShell

To create a new "All users, Windows PowerShell ISE" profile, run this command:

PowerShell

To create a new "Current user, All Hosts" profile, run this command:

PowerShell

ﾉ Expand table

To create a new profile

if (!(Test-Path -Path $PROFILE )) {
    New-Item -Type File -Path $PROFILE -Force
}

if (!(Test-Path -Path $PROFILE.AllUsersCurrentHost)) {
    New-Item -Type File -Path $PROFILE.AllUsersCurrentHost -Force
}

if (!(Test-Path -Path $PROFILE.CurrentUserAllHosts)) {
    New-Item -Type File -Path $PROFILE.CurrentUserAllHosts -Force
}



To create a new "All users, All Hosts" profile, type:

PowerShell

1. To open the profile, run the command psEdit  with the variable that specifies the
profile you want to edit. For example, to open the "Current user, Windows
PowerShell ISE" profile, type: psEdit $PROFILE

2. Add some items to your profile. The following are a few examples to get you
started:

To change the default background color of the Console Pane to blue, in the
profile file type: $psISE.Options.OutputPaneBackground = 'blue'  . For more
information about the $psISE  variable, see Windows PowerShell ISE Object
Model Reference.

To change font size to 20, in the profile file type: $psISE.Options.FontSize
=20

3. To save your profile file, on the File menu, click Save. Next time you open the
Windows PowerShell ISE, your customizations are applied.

about_Profiles
Introducing the Windows PowerShell ISE

if (!(Test-Path -Path $PROFILE.AllUsersAllHosts)) {
    New-Item -Type File -Path $PROFILE.AllUsersAllHosts -Force
}

To edit a profile

See Also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles


How to Use Tab Completion in the
Script Pane and Console Pane
Article • 03/27/2025

Tab completion provides automatic help when you are typing in the Script Pane or in the
Command Pane. Use the following steps to take advantage of this feature:

In the Command Pane or Script Pane, type a few characters of a command and then
press TAB  to select the desired completion text. If multiple items begin with the text
that you initially typed, then continue pressing TAB  until the item you want appears. Tab
completion can help with typing a cmdlet name, parameter name, variable name, object
property name, or a file path.

In the Command Pane or Script pane, type a cmdlet followed by a dash and then press
TAB .

For example, type Get-Process -  and then press TAB  multiple times to display each of
the parameters for the cmdlet in turn.

Introducing the Windows PowerShell ISE
How to Create a PowerShell Tab

To automatically complete a command entry

７ Note

In the Script Pane, pressing TAB  will automatically complete a command only when
you are editing .ps1 , .psd1 , or .psm1  files. Tab completion works any time when
you are typing in the Command Pane.

To automatically complete a cmdlet parameter
entry

See Also



How to Use the Console Pane in the
Windows PowerShell ISE
Article • 03/27/2025

The Console pane in the Windows PowerShell Integrated Scripting Environment (ISE)
operates exactly like the stand-alone Windows PowerShell ISE console window.

To run a command in the Console Pane, type a command, and then press ENTER . To
enter multiple commands that you want to execute in sequence, type SHIFT + ENTER

between commands. See How to Use Tab Completion in the Script Pane and Console
Pane for help in typing commands.

To stop a command, on the toolbar, click Stop Operation, or press CTRL + BREAK . You can
also use CTRL + C  to stop a command if the context is unambiguous. For example, if
some text has been selected in the current Pane, then CTRL + C  maps to the copy
operation.

Beginning in Windows PowerShell v3, the Output pane was combined with the Console
pane. This has the benefit of behaving like the stand-alone Windows PowerShell console
and eliminates the differences in procedures that were needed when they were
separate. You can:

Select and copy text from the Console pane to the Clipboard for pasting in any
other window. To select text, click and hold the mouse in the output pane while
dragging the mouse over the text you want to capture. You can also use the cursor
arrow keys while holding SHIFT  to select text. Then press CTRL + C  or click the
Copy icon in the toolbar.

Paste the selected text at a current cursor position. Click the Paste icon on the
toolbar.

Clear all the text in the Console pane. To clear the Console pane, you can click the
Clear Console Pane icon on the toolbar, or run the command Clear-Host  or its
alias, cls .

Introducing the Windows PowerShell ISE

See Also



How to Write and Run Scripts in the
Windows PowerShell ISE
Article • 03/27/2025

This article describes how to create, edit, run, and save scripts in the Script Pane.

You can open and edit Windows PowerShell files in the Script Pane. Specific file types of
interest in Windows PowerShell are script files ( .ps1 ), script data files ( .psd1 ), and script
module files ( .psm1 ). These file types are syntax colored in the Script Pane editor. Other
common file types you may open in the Script Pane are configuration files ( .ps1xml ),
XML files, and text files.

On the toolbar, click New, or on the File menu, click New. The created file appears in a
new file tab under the current PowerShell tab. Remember that the PowerShell tabs are
only visible when there are more than one. By default a file of type script ( .ps1 ) is
created, but it can be saved with a new name and extension. Multiple script files can be
created in the same PowerShell tab.

On the toolbar, click Open, or on the File menu, click Open. In the Open dialog box,
select the file you want to open. The opened file appears in a new tab.

How to create and run scripts

７ Note

The Windows PowerShell execution policy determines whether you can run scripts
and load Windows PowerShell profiles and configuration files. The default
execution policy, Restricted, prevents all scripts from running, and prevents loading
profiles. To change the execution policy to allow profiles to load and be used, see
Set-ExecutionPolicy and about_Signing.

To create a new script file

To open an existing script

To close a script tab

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing


Click the Close icon (X) of the file tab you want to close or select the File menu and click
Close.

If the file has been altered since it was last saved, you're prompted to save or discard it.

On the file tab, point to the file name. The fully qualified path to the script file appears in
a tooltip.

On the toolbar, click Run Script, or on the File menu, click Run.

1. In the Script Pane, select a portion of a script.
2. On the File menu, click Run Selection, or on the toolbar, click Run Selection.

There are several ways to stop a running script.

Click Stop Operation on the toolbar
Press CTRL + BREAK

Select the File menu and click Stop Operation.

Pressing CTRL + C  also works unless some text is currently selected, in which case CTRL

+ C  maps to the copy function for the selected text.

You can copy, cut, paste, find, and replace text in the Script Pane. You can also undo and
redo the last action you just performed. The keyboard shortcuts for these actions are the
same shortcuts used for all Windows applications.

1. Move the cursor to the Script Pane by clicking anywhere in the Script Pane, or by
clicking Go to Script Pane in the View menu.

To display the file path

To run a script

To run a portion of a script

To stop a running script

How to write and edit text in the Script Pane

To enter text in the Script Pane



2. Create a script. Syntax coloring and tab completion provide a richer editing
experience in Windows PowerShell ISE.

3. See How to Use Tab Completion in the Script Pane and Console Pane for details
about using the tab completion feature to help in typing.

1. To find text anywhere, press CTRL + F  or, on the Edit menu, click Find in Script.
2. To find text after the cursor, press F3  or, on the Edit menu, click Find Next in

Script.
3. To find text before the cursor, press SHIFT + F3  or, on the Edit menu, click Find

Previous in Script.

Press CTRL + H  or, on the Edit menu, click Replace in Script. Enter the text you want to
find and the replacement text, then press ENTER .

1. In the Script Pane, press CTRL + G  or, on the Edit menu, click Go to Line.

2. Enter a line number.

1. In the Script Pane, select the text that you want to copy.

2. Press CTRL + C  or, on the toolbar, click the Copy icon, or on the Edit menu, click
Copy.

1. In the Script Pane, select the text that you want to cut.
2. Press CTRL + X  or, on the toolbar, click the Cut icon, or on the Edit menu, click Cut.

Press CTRL + V  or, on the toolbar, click the Paste icon, or on the Edit menu, click Paste.

To find text in the Script Pane

To find and replace text in the Script Pane

To go to a particular line of text in the Script Pane

To copy text in the Script Pane

To cut text in the Script Pane

To paste text into the Script Pane



Press CTRL + Z  or, on the toolbar, click the Undo icon, or on the Edit menu, click Undo.

Press CTRL + Y  or, on the toolbar, click the Redo icon, or on the Edit menu, click Redo.

An asterisk appears next to the script name to mark a file that hasn't been saved since it
was changed. The asterisk disappears when the file is saved.

Press CTRL + S  or, on the toolbar, click the Save icon, or on the File menu, click Save.

1. On the File menu, click Save As. The Save As dialog box will appear.
2. In the File name box, enter a name for the file.
3. In the Save as type box, select a file type. For example, in the Save as type box,

select 'PowerShell Scripts ( *.ps1 )'.
4. Click Save.

By default, Windows PowerShell ISE saves new script files ( .ps1 ), script data files
( .psd1 ), and script module files ( .psm1 ) as Unicode (BigEndianUnicode). To save a script
in another encoding, such as ASCII (ANSI), use the Save or SaveAs methods on the
$psISE.CurrentFile object.

The following command saves a new script as MyScript.ps1 with ASCII encoding.

PowerShell

The following command replaces the current script file with a file with the same name,
but with ASCII encoding.

To undo an action in the Script Pane

To redo an action in the Script Pane

How to save a script

To save a script

To save and name a script

To save a script in ASCII encoding

$psISE.CurrentFile.SaveAs("MyScript.ps1", [System.Text.Encoding]::ASCII)



PowerShell

The following command gets the encoding of the current file.

PowerShell

Windows PowerShell ISE supports the following encoding options: ASCII,
BigEndianUnicode, Unicode, UTF32, UTF7, UTF8, and Default. The value of the Default
option varies with the system.

Windows PowerShell ISE doesn't change the encoding of script files when you use the
Save or Save As commands.

Exploring the Windows PowerShell ISE

$psISE.CurrentFile.Save([System.Text.Encoding]::ASCII)

$psISE.CurrentFile.encoding

See Also



Keyboard Shortcuts for the Windows
PowerShell ISE
Article • 03/27/2025

Use the following keyboard shortcuts to perform actions in Windows PowerShell
Integrated Scripting Environment (ISE). Windows PowerShell ISE is available as part of
the Windows Server and Windows client operating systems.

You can use the following keyboard shortcuts when you edit text.

Action Keyboard
Shortcuts

Use in

Help F1 Script Pane Important: You can specify that F1  help comes
from Microsoft Learn or downloaded Help (see Update-Help ). To
select, click Tools, Options, then on the General Settings tab,
set or clear Use local help content instead of online content.

Select All CTRL + A Script Pane

Copy CTRL + C Script Pane, Command Pane, Output Pane

Cut CTRL + X Script Pane, Command Pane

Expand or
Collapse
Outlining

CTRL + M Script Pane

Find in Script CTRL + F Script Pane

Find Next in
Script

F3 Script Pane

Find Previous
in Script

SHIFT + F3 Script Pane

Find Matching
Brace

CTRL + ] Script Pane

Paste CTRL + V Script Pane, Command Pane

Keyboard shortcuts for editing text

ﾉ Expand table



Action Keyboard
Shortcuts

Use in

Make
Lowercase

CTRL + U Script Pane, Command Pane

Make
Uppercase

CTRL +
SHIFT + U

Script Pane, Command Pane

Redo CTRL + Y Script Pane, Command Pane

Replace in
Script

CTRL + H Script Pane

Save CTRL + S Script Pane

Select All CTRL + A Script Pane, Command Pane, Output Pane

Show Snippets CTRL + J Script Pane, Command Pane

Undo CTRL + Z Script Pane, Command Pane

Show
Intellisense
Help

CTRL +
Space

Script Pane

Delete word to
left

CTRL +
Backspace

Script Pane

Delete word to
right

CTRL +
Delete

Script Pane

You can use the following keyboard shortcuts when you run scripts in the Script Pane.

Action Keyboard Shortcut

New CTRL + N

Open CTRL + O

Run F5

Run Selection F8

Keyboard shortcuts for running scripts

ﾉ Expand table



Action Keyboard Shortcut

Stop
Execution

CTRL + BREAK . CTRL + C  can be used when the context is unambiguous (when
there is no text selected).

Tab (to next
script)

CTRL + TAB  Note: Tab to next script works only when you have a single
Windows PowerShell tab open, or when you have more than one Windows
PowerShell tab open, but the focus is in the Script Pane.

Tab (to
previous
script)

CTRL + SHIFT + TAB  Note: Tab to previous script works when you have only one
Windows PowerShell tab open, or if you have more than one Windows
PowerShell tab open, and the focus is in the Script Pane.

You can use the following keyboard shortcuts to customize the view in Windows
PowerShell ISE. They are accessible from all the panes in the application.

Action Keyboard Shortcut

Go to Command (v2) or Console (v3 and later) Pane CTRL + D

Go to Output Pane (v2 only) CTRL + SHIFT + O

Go to Script Pane CTRL + I

Show Script Pane CTRL + R

Hide Script Pane CTRL + R

Move Script Pane Up CTRL + 1

Move Script Pane Right CTRL + 2

Maximize Script Pane CTRL + 3

Zoom In CTRL + +

Zoom Out CTRL + -

You can use the following keyboard shortcuts when you debug scripts.

Keyboard shortcuts for customizing the view

ﾉ Expand table

Keyboard shortcuts for debugging scripts



Action Keyboard Shortcut Use in

Run/Continue F5 Script Pane, when debugging a script

Step Into F11 Script Pane, when debugging a script

Step Over F10 Script Pane, when debugging a script

Step Out SHIFT + F11 Script Pane, when debugging a script

Display Call Stack CTRL + SHIFT + D Script Pane, when debugging a script

List Breakpoints CTRL + SHIFT + L Script Pane, when debugging a script

Toggle Breakpoint F9 Script Pane, when debugging a script

Remove All Breakpoints CTRL + SHIFT + F9 Script Pane, when debugging a script

Stop Debugger SHIFT + F5 Script Pane, when debugging a script

Action Keyboard
Shortcut

Use in

Continue C Console Pane, when debugging
a script

Step Into S Console Pane, when debugging
a script

Step Over V Console Pane, when debugging
a script

Step Out O Console Pane, when debugging
a script

Repeat Last Command (for Step Into or
Step Over)

ENTER Console Pane, when debugging
a script

ﾉ Expand table

７ Note

You can also use the keyboard shortcuts designed for the Windows PowerShell
console when you debug scripts in Windows PowerShell ISE. To use these shortcuts,
you must type the shortcut in the Command Pane and press ENTER .

ﾉ Expand table



Action Keyboard
Shortcut

Use in

Display Call Stack K Console Pane, when debugging
a script

Stop Debugging Q Console Pane, when debugging
a script

List the Script L Console Pane, when debugging
a script

Display Console Debugging Commands H  or ? Console Pane, when debugging
a script

You can use the following keyboard shortcuts when you use Windows PowerShell tabs.

Action Keyboard Shortcut

Close PowerShell Tab CTRL + W

New PowerShell Tab CTRL + T

Previous PowerShell
tab

CTRL + SHIFT + TAB . This shortcut works only when no files are open
on any Windows PowerShell tab.

Next Windows
PowerShell tab

CTRL + TAB . This shortcut works only when no files are open on any
Windows PowerShell tab.

You can use the following keyboard shortcuts to exit the Windows PowerShell ISE or to
start a new Windows PowerShell session outside of the ISE.

Action Keyboard Shortcut

Exit ALT + F4  closes the ISE.

Keyboard shortcuts for Windows PowerShell
tabs

ﾉ Expand table

Keyboard shortcuts for starting and exiting

ﾉ Expand table



Action Keyboard Shortcut

Start
powershell.exe

CTRL + SHIFT + P  opens a new Windows PowerShell session outside of
the ISE.

PowerShell Magazine: The Complete List of Windows PowerShell ISE Keyboard
Shortcuts

See Also

https://www.powershellmagazine.com/2013/01/29/the-complete-list-of-powershell-ise-3-0-keyboard-shortcuts/
https://www.powershellmagazine.com/2013/01/29/the-complete-list-of-powershell-ise-3-0-keyboard-shortcuts/
https://www.powershellmagazine.com/2013/01/29/the-complete-list-of-powershell-ise-3-0-keyboard-shortcuts/


Accessibility in Windows PowerShell ISE
Article • 03/27/2025

This topic describes the accessibility features of Windows PowerShell Integrated
Scripting Environment (ISE) that you might find helpful.

How to change the size and location of the Console and Script Panes
Keyboard shortcuts for editing text
Keyboard shortcuts for running scripts
Keyboard shortcuts for customizing the view
Keyboard shortcuts for debugging scripts
Keyboard shortcuts for Windows PowerShell tabs
Keyboard shortcuts for starting and exiting
Breakpoint management with cmdlets

Microsoft is committed to making its products and services easier for everyone to use.
The following topics provide information about the features, products, and services that
make Windows PowerShell ISE more accessible for people with disabilities.

In addition to accessibility features and utilities in Microsoft Windows, the following
features make Windows PowerShell ISE more accessible for people with disabilities:

Keyboard Shortcuts

Syntax Coloring Table and the ability to modify several other color settings using
the $psISE.Options scripting object.

Text Size Change

You can use the following steps to change the size and location of the Console Pane and
the Script Pane. When you open the Windows PowerShell ISE again, the size and
location changes you made will be retained.

1. Pause the pointer on the split line between the Script Pane and Console Pane.

How to change the size and location of the
Console and Script Panes

To resize the Script Pane and Console Pane



2. When the mouse pointer changes to a two-headed arrow, drag the border to
change the size of the pane.

Do one of the following:

To move the Script Pane above the Console Pane, press CTRL + 1  or, on the
toolbar, click the Show Script Pane Top icon, or in the View menu, click Show
Script Pane Top.

To move the Script Pane to the right of the Console Pane, press CTRL + 2  or, on the
toolbar, click the Show Script Pane Right icon, or in the View menu, click Show
Script Pane Right.

To maximize the Script Pane, press CTRL + 3  or, on the toolbar, click the Show
Script Pane Maximized icon, or in the View menu, click Show Script Pane
Maximized.

To maximize the Console Pane and hide the Script Pane, on the far right edge of
the row of tabs, click the Hide Script Pane icon, in the View menu, click to deselect
the Show Script Pane menu option.

To display the Script Pane when the Console Pane is maximized, on the far right
edge of the row of tabs, click the Show Script Pane icon, or in the View menu, click
to select the Show Script Pane menu option.

You can use the following keyboard shortcuts when you edit text.

Action Keyboard Shortcuts Use in

Copy CTRL + C Script Pane, Console Pane

Cut CTRL + X Script Pane, Console Pane

Find in Script CTRL + F Script Pane

Find Next in Script F3 Script Pane

Find Previous in Script SHIFT + F3 Script Pane

To move the Script Pane and Console Pane

Keyboard shortcuts for editing text

ﾉ Expand table



Action Keyboard Shortcuts Use in

Paste CTRL + V Script Pane, Console Pane

Redo CTRL + Y Script Pane, Console Pane

Replace in Script CTRL + H Script Pane

Save CTRL + S Script Pane

Select All CTRL + A Script Pane, Console Pane

Undo CTRL + Z Script Pane, Console Pane

You can use the following keyboard shortcuts when you run scripts in the Script Pane.

Action Keyboard Shortcut

New CTRL + N

Open CTRL + O

Run F5

Run Selection F8

Stop
Execution

CTRL + BREAK . CTRL + C  can be used when the context is unambiguous (when
there is no text selected).

Tab (to next
script)

CTRL + TAB  Note: Tab to next script works only when you have a single
PowerShell tab open, or when you have more than one PowerShell tab open, but
the focus is in the Script Pane.

Tab (to
previous
script)

CTRL + SHIFT + TAB  Note: Tab to previous script works when you have only one
PowerShell tab open, or if you have more than one PowerShell tab open, and the
focus is in the Script Pane.

You can use the following keyboard shortcuts to customize the view in Windows
PowerShell ISE. They are accessible from all the panes in the application.

Keyboard shortcuts for running scripts

ﾉ Expand table

Keyboard shortcuts for customizing the view



Action Keyboard Shortcut

Go to Console Pane CTRL + D

Go to Script Pane CTRL + I

Show Script Pane CTRL + R

Hide Script Pane CTRL + R

Move Script Pane Up CTRL + 1

Move Script Pane Right CTRL + 2

Maximize Script Pane CTRL + 3

Zoom In CTRL + PLUS

Zoom Out CTRL + MINUS

You can use the following keyboard shortcuts when you debug scripts.

Action Keyboard Shortcut Use in

Run/Continue F5 Script Pane, when debugging a script

Step Into F11 Script Pane, when debugging a script

Step Over F10 Script Pane, when debugging a script

Step Out SHIFT + F11 Script Pane, when debugging a script

Display Call Stack CTRL + SHIFT + D Script Pane, when debugging a script

List Breakpoints CTRL + SHIFT + L Script Pane, when debugging a script

Toggle Breakpoint F9 Script Pane, when debugging a script

Remove All Breakpoints CTRL + SHIFT + F9 Script Pane, when debugging a script

Stop Debugger SHIFT + F5 Script Pane, when debugging a script

ﾉ Expand table

Keyboard shortcuts for debugging scripts

ﾉ Expand table



Action Keyboard
Shortcut

Use in

Continue C Console Pane, when debugging a
script

Step Into S Console Pane, when debugging a
script

Step Over V Console Pane, when debugging a
script

Step Out O Console Pane, when debugging a
script

Repeat Last Command(Step
Into/Over)

ENTER Console Pane, when debugging a
script

Display Call Stack K Console Pane, when debugging a
script

Stop Debugging Q Console Pane, when debugging a
script

List the Script L Console Pane, when debugging a
script

Display Console Debugging
Commands

H  or ? Console Pane, when debugging a
script

You can use the following keyboard shortcuts when you use Windows PowerShell tabs.

７ Note

You can also use the keyboard shortcuts designed for the Windows PowerShell
console when you debug scripts in Windows PowerShell ISE. To use these shortcuts,
you must type the shortcut in the Console Pane and press ENTER .

ﾉ Expand table

Keyboard shortcuts for Windows PowerShell
tabs

ﾉ Expand table



Action Keyboard Shortcut

Close PowerShell Tab CTRL + W

New PowerShell Tab CTRL + T

Previous PowerShell tab CTRL + SHIFT + TAB  (Only when no files are open on any
PowerShell tab)

Next Windows PowerShell
tab

CTRL + TAB  (Only when no files are open on any PowerShell tab)

You can use the following keyboard shortcuts to start the Windows PowerShell console
( powershell.exe ) or to exit Windows PowerShell ISE.

Action Keyboard Shortcut

Exit ALT + F4

Start powershell.exe (Windows PowerShell console) CTRL + SHIFT + P

For the visually impaired, breakpoint information is available through the cmdlets for
managing breakpoints, such as Get-PSBreakpoint and Set-PSBreakpoint. For more
information please see 'How to manage breakpoints' in How to Debug Scripts in the
Windows PowerShell ISE.

Introducing the Windows PowerShell ISE

Keyboard shortcuts for starting and exiting

ﾉ Expand table

Breakpoint Management

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-PSBreakpoint
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Set-PSBreakpoint


Purpose of the Windows PowerShell ISE
Scripting Object Model
Article • 03/27/2025

Objects are associated with the form and function of Windows PowerShell Integrated
Scripting Environment (ISE). The object model reference provides details about the
member properties and methods that these objects expose. Examples are provided to
show how you can use scripts to directly access these methods and properties. The
scripting object model makes the following range of tasks easier.

You can use the object model to modify the application settings and options. For
example, you can modify them as follows:

Change the color of errors, warnings, verbose outputs, and debug outputs.
Get or set the background colors for the Command pane, the Output pane, and
the Script pane.
Set the foreground color for the Output pane.
Set the font name and font size for Windows PowerShell ISE.
Configure warnings. This setting includes warnings that are issued when a file is
opened in multiple PowerShell tabs or when a script in the file is run before the file
has been saved.
Switch between a view where the Script pane and the Output pane are side-by-
side and a view where the Script pane is on top of the Output pane.
Dock the Command pane to the bottom or the top of the Output pane.

You can use the object model to enhance the functionality of Windows PowerShell ISE.
For example, you can:

Add and modify the instance of Windows PowerShell ISE itself. For example, to
change the menus, you can add new menu items and map the new menu items to
scripts.

Customizing the appearance of Windows
PowerShell ISE

Enhancing the functionality of Windows
PowerShell ISE



Create scripts that perform some of the tasks that you can perform by using the
menu commands and buttons in Windows PowerShell ISE. For example, you can
add, remove, or select a PowerShell tab.
Complement tasks that can be performed by using menu commands and buttons.
For example, you can rename a PowerShell tab.
Manipulate text buffers for the Command pane, the Output pane, and the Script
pane that are associated with a file. For example, you can:

Get or set all text.
Get or set a text selection.
Run a script or run a selected portion of a script.
Scroll a line into view.
Insert text at a caret position.
Select a block of text.
Get the last line number.

Perform file operations. For example, you can:
Open a file, save a file, or save a file by using a different name.
Determine whether a file has been changed after it was last saved.
Get the file name.
Select a file.

You can use the scripting object model to create keyboard shortcuts for frequent
operations.

The ISE Object Model Hierarchy

Automating tasks

See also



The ISE Object Model Hierarchy
Article • 03/27/2025

This article shows the hierarchy of objects that are part of Windows PowerShell
Integrated Scripting Environment (ISE). Windows PowerShell ISE is included in Windows
PowerShell 3.0, 4.0, and 5.1. Click an object to take you to the reference documentation
for the class that defines the object.

The $psISE  object is the root object of the Windows PowerShell ISE object hierarchy.
Located at the top level, it makes the following objects available for scripting:

The $psISE.CurrentFile  object is an instance of the ISEFile class.

The $psISE.CurrentPowerShellTab  object is an instance of the PowerShellTab class.

The $psISE.CurrentVisibleHorizontalTool  object is an instance of the ISEAddOnTool
class. It represents the installed add-on tool that's currently docked to the top edge of
the Windows PowerShell ISE window.

The $psISE.CurrentVisibleHorizontalTool  object is an instance of the ISEAddOnTool
class. It represents the installed add-on tool that's currently docked to the right-hand
edge of the Windows PowerShell ISE window.

The $psISE.Options  object is an instance of the ISEOptions class. The ISEOptions object
represents various settings for Windows PowerShell ISE. It's an instance of the

$psISE Object

$psISE.CurrentFile

$psISE.CurrentPowerShellTab

$psISE.CurrentVisibleHorizontalTool

$psISE.CurrentVisibleVerticalTool

$psISE.Options



Microsoft.PowerShell.Host.ISE.ISEOptions class.

The $psISE.PowerShellTabs  object is an instance of the PowerShellTabCollection class.
It's a collection of all the currently open PowerShell tabs that represent the available
Windows PowerShell run environments on the local computer or on connected remote
computers. Each member in the collection is an instance of the PowerShellTab class.

Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

$psISE.PowerShellTabs

See Also



The ObjectModelRoot Object
Article • 03/27/2025

The $psISE  object, which is the principal root object in Windows PowerShell Integrated
Scripting Environment (ISE) is an instance of the
Microsoft.PowerShell.Host.ISE.ObjectModelRoot class. This topic describes the
properties of the ObjectModelRoot object.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the file, which is associated with this host object that
currently has the focus.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the PowerShell tab that has the focus.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the currently visible Windows PowerShell ISE add-on
tool that's located in the horizontal tool pane at the bottom of the editor.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the currently visible Windows PowerShell ISE add-on
tool that's located in the vertical tool pane on the right side of the editor.

Properties

CurrentFile

CurrentPowerShellTab

CurrentVisibleHorizontalTool

CurrentVisibleVerticalTool



Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the various options that can change settings in
Windows PowerShell ISE.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the collection of the PowerShell tabs, which are open
in Windows PowerShell ISE. By default, this object contains one PowerShell tab.
However, you can add more PowerShell tabs to this object by using scripts or by using
the menus in Windows PowerShell ISE.

Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

Options

PowerShellTabs

See Also



The ISEAddOnToolCollection Object
Article • 03/27/2025

The ISEAddOnToolCollection object is a collection of ISEAddOnTool objects. An
example is the $psISE.CurrentPowerShellTab.VerticalAddOnTools  object.

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Adds a new add-on tool to the collection. It returns the newly added add-on tool.
Before you run this command, you must install the add-on tool on the local computer
and load the assembly.

Name - String - Specifies the display name of the add-on tool that's added to
Windows PowerShell ISE.
ControlType - Type - Specifies the control that's added.
[IsVisible] - optional Boolean - If set to $true , the add-on tool is immediately
visible in the associated tool pane.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Removes the specified add-on tool from the collection.

Item - Microsoft.PowerShell.Host.ISE.ISEAddOnTool - Specifies the object to be
removed from Windows PowerShell ISE.

PowerShell

Methods

Add( Name, ControlType, [IsVisible] )

# Load a DLL with an add-on and then add it to the ISE
[Reflection.Assembly]::LoadFile("C:testISESimpleSolutionISESimpleSolution.dl
l")
$psISE.CurrentPowerShellTab.VerticalAddOnTools.Add("Solutions", 
[ISESimpleSolution.Solution], $true)

Remove(Item)



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Selects the PowerShell tab that the psTab parameter specifies.

psTab - Microsoft.PowerShell.Host.ISE.PowerShellTab -The PowerShell tab to select.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Removes the PowerShell tab that the psTab parameter specifies.

psTab - Microsoft.PowerShell.Host.ISE.PowerShellTab - The PowerShell tab to
remove.

PowerShell

The PowerShellTab Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Load a DLL with an add-on and then add it to the ISE
[Reflection.Assembly]::LoadFile("C:\test\ISESimpleSolution\ISESimpleSolution
.dll")
$psISE.CurrentPowerShellTab.VerticalAddOnTools.Add("Solutions", 
[ISESimpleSolution.Solution], $true)

SetSelectedPowerShellTab(psTab)

$newTab = $psISE.PowerShellTabs.Add()
# Change the DisplayName of the new PowerShell tab.
$newTab.DisplayName = 'Brand New Tab'

Remove(psTab)

$newTab = $psISE.PowerShellTabs.Add()
Change the DisplayName of the new PowerShell tab.
$newTab.DisplayName = 'This tab will go away in 5 seconds'
sleep 5
$psISE.PowerShellTabs.Remove($newTab)

See Also



The ISEAddOnTool Object
Article • 03/27/2025

An ISEAddonTool object represents an installed add-on tool that provides additional
functionality to Windows PowerShell ISE. An example is the Commands tool that you
can display by clicking View, then Show Command Add-on. This tool is then accessible
to you by manipulating the various available ISEAddOnTool objects.

Each add-on tool can be associated with either the vertical pane or the horizontal pane.
The vertical pane is docked to the right edge of Windows PowerShell ISE. The horizontal
pane is docked to the bottom edge.

Each PowerShell tab in Windows PowerShell ISE can have its own set of add-on tools
installed. See $psISE.CurrentPowerShellTab.HorizontalAddOnTools and
$psISE.CurrentPowerShellTab.VerticalAddOnTools to access the collection of tools
available to the currently selected tab or the same properties on any of the
PowerShellTab objects in the $psISE.PowerShellTabs collection object.

There are no Windows PowerShell ISE-specific methods available for objects of this
class.

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The Control property provides read access to many of the details of the Commands
add-on tool.

PowerShell

Output

Methods

Properties

Control

# View the properties of the Commands add-on tool.
# (assumes that it's visible in the vertical pane)
$psISE.CurrentVisibleVerticalTool.Control



HostObject                  : Microsoft.PowerShell.Host.ISE.ObjectModelRoot
Content                     :
HasContent                  :
ContentTemplate             :
ContentTemplateSelector     :
ContentStringFormat         :
BorderBrush                 :
BorderThickness             :
Background                  :
Foreground                  :
FontFamily                  :
FontSize                    :
FontStretch                 :
FontStyle                   :
FontWeight                  :
HorizontalContentAlignment  :
VerticalContentAlignment    :
TabIndex                    :
IsTabStop                   :
Padding                     :
Template                    : System.Windows.Controls.ControlTemplate
Style                       :
OverridesDefaultStyle       :
UseLayoutRounding           :
Triggers                    : {}
TemplatedParent             :
Resources                   : {System.Windows.Controls.TabItem}
DataContext                 :
BindingGroup                :
Language                    :
Name                        :
Tag                         :
InputScope                  :
ActualWidth                 : 370.75
ActualHeight                : 676.559097412109
LayoutTransform             :
Width                       :
MinWidth                    :
MaxWidth                    :
Height                      :
MinHeight                   :
MaxHeight                   :
FlowDirection               : LeftToRight
Margin                      :
HorizontalAlignment         :
VerticalAlignment           :
FocusVisualStyle            :
Cursor                      :
ForceCursor                 :
IsInitialized               : True
IsLoaded                    :
ToolTip                     :
ContextMenu                 :
Parent                      :



HasAnimatedProperties       :
InputBindings               :
CommandBindings             :
AllowDrop                   :
DesiredSize                 : 227.66,676.559097412109
IsMeasureValid              : True
IsArrangeValid              : True
RenderSize                  : 370.75,676.559097412109
RenderTransform             :
RenderTransformOrigin       :
IsMouseDirectlyOver         : False
IsMouseOver                 : False
IsStylusOver                : False
IsKeyboardFocusWithin       : False
IsMouseCaptured             :
IsMouseCaptureWithin        : False
IsStylusDirectlyOver        : False
IsStylusCaptured            :
IsStylusCaptureWithin       : False
IsKeyboardFocused           : False
IsInputMethodEnabled        :
Opacity                     :
OpacityMask                 :
BitmapEffect                :
Effect                      :
BitmapEffectInput           :
CacheMode                   :
Uid                         :
Visibility                  : Visible
ClipToBounds                : False
Clip                        :
SnapsToDevicePixels         : False
IsFocused                   :
IsEnabled                   :
IsHitTestVisible            :
IsVisible                   : True
Focusable                   :
PersistId                   : 1
IsManipulationEnabled       :
AreAnyTouchesOver           : False
AreAnyTouchesDirectlyOver   :
AreAnyTouchesCapturedWithin : False
AreAnyTouchesCaptured       :
TouchesCaptured             : {}
TouchesCapturedWithin       : {}
TouchesOver                 : {}
TouchesDirectlyOver         : {}
DependencyObjectType        : System.Windows.DependencyObjectType
IsSealed                    : False
Dispatcher                  : System.Windows.Threading.Dispatcher

IsVisible



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The Boolean property that indicates whether the add-on tool is currently visible in its
assigned pane. If it's visible, you can set the IsVisible property to $false  to hide the
tool, or set the IsVisible property to $true  to make an add-on tool visible on its
PowerShell tab. Note that after an add-on tool is hidden, it's no longer accessible
through the CurrentVisibleHorizontalTool or CurrentVisibleVerticalTool objects, and
therefore can't be made visible by using this property on that object.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that gets the name of the add-on tool.

PowerShell

Output

The ISEAddOnToolCollection Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Hide the current tool in the vertical tool pane
$psISE.CurrentVisibleVerticalTool.IsVisible = $false
# Show the first tool on the currently selected PowerShell tab
$psISE.CurrentPowerShellTab.VerticalAddOnTools[0].IsVisible = $true

Name

# Gets the name of the visible vertical pane add-on tool.
$psISE.CurrentVisibleVerticalTool.Name

Commands

See Also



The ISEEditor Object
Article • 03/27/2025

An ISEEditor object is an instance of the Microsoft.PowerShell.Host.ISE.ISEEditor class.
The Console pane is an ISEEditor object. Each ISEFile object has an associated ISEEditor
object. The following sections list the methods and properties of an ISEEditor object.

Supported in Windows PowerShell ISE 2.0 and later.

Clears the text in the editor.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Scrolls the editor so that the line that corresponds to the specified lineNumber
parameter value is visible. It throws an exception if the specified line number is outside
the range of 1,last line number, which defines the valid line numbers.

lineNumber - The number of the line that's to be made visible.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Sets the focus to the editor.

Methods

Clear()

# Clears the text in the Console pane.
$psISE.CurrentPowerShellTab.ConsolePane.Clear()

EnsureVisible(int lineNumber)

# Scrolls the text in the Script pane so that the fifth line is in view.
$psISE.CurrentFile.Editor.EnsureVisible(5)

Focus()



PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Gets the line length as an integer for the line that's specified by the line number.

lineNumber - The number of the line of which to get the length.
Returns - The line length for the line at the specified line number.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Moves the caret to the matching character if the CanGoToMatch property of the editor
object is $true , which occurs when the caret is immediately before an opening
parenthesis, bracket, or brace

( , [ , {  - or immediately after a closing parenthesis, bracket, or brace - ) , ] , } . The
caret is placed before an opening character or after a closing character. If the
CanGoToMatch property is $false , then this method does nothing.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Replaces the selection with text or inserts text at the current caret position.

text - String - The text to insert.

# Sets focus to the Console pane.
$psISE.CurrentPowerShellTab.ConsolePane.Focus()

GetLineLength(int lineNumber )

# Gets the length of the first line in the text of the Command pane.
$psISE.CurrentPowerShellTab.ConsolePane.GetLineLength(1)

GoToMatch()

# Goes to the matching character if CanGoToMatch() is $true
$psISE.CurrentPowerShellTab.ConsolePane.GoToMatch()

InsertText( text )



See the Scripting Example later in this topic.

Supported in Windows PowerShell ISE 2.0 and later.

Selects the text from the startLine, startColumn, endLine, and endColumn parameters.

startLine - Integer - The line where the selection starts.
startColumn - Integer - The column within the start line where the selection starts.
endLine - Integer - The line where the selection ends.
endColumn - Integer - The column within the end line where the selection ends.

See the Scripting Example later in this topic.

Supported in Windows PowerShell ISE 2.0 and later.

Selects the entire line of text that currently contains the caret.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Sets the caret position at the line number and the column number. It throws an
exception if either the caret line number or the caret column number are out of their
respective valid ranges.

lineNumber - Integer - The caret line number.
columnNumber - Integer - The caret column number.

PowerShell

Select( startLine, startColumn, endLine, endColumn )

SelectCaretLine()

# First, set the caret position on line 5.
$psISE.CurrentFile.Editor.SetCaretPosition(5,1)
# Now select that entire line of text
$psISE.CurrentFile.Editor.SelectCaretLine()

SetCaretPosition( lineNumber, columnNumber )

# Set the CaretPosition.
$psISE.CurrentFile.Editor.SetCaretPosition(5,1)



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Causes all the outline sections to expand or collapse.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only Boolean property to indicate whether the caret is next to a parenthesis,
bracket, or brace - () , [] , {} . If the caret is immediately before the opening character
or immediately after the closing character of a pair, then this property value is $true .
Otherwise, it's $false .

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the column number that corresponds to the position
of the caret.

PowerShell

ToggleOutliningExpansion()

# Toggle the outlining expansion
$psISE.CurrentFile.Editor.ToggleOutliningExpansion()

Properties

CanGoToMatch

# Test to see if the caret is next to a parenthesis, bracket, or brace
$psISE.CurrentFile.Editor.CanGoToMatch

CaretColumn

# Get the CaretColumn.
$psISE.CurrentFile.Editor.CaretColumn

CaretLine



Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the number of the line that contains the caret.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the complete line of text that contains the caret.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the line count from the editor.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the selected text from the editor.

See the Scripting Example later in this topic.

Supported in Windows PowerShell ISE 2.0 and later.

# Get the CaretLine.
$psISE.CurrentFile.Editor.CaretLine

CaretLineText

# Get all of the text on the line that contains the caret.
$psISE.CurrentFile.Editor.CaretLineText

LineCount

# Get the LineCount.
$psISE.CurrentFile.Editor.LineCount

SelectedText

Text



The read/write property that gets or sets the text in the editor.

See the Scripting Example later in this topic.

PowerShell

The ISEFile Object
The PowerShellTab Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

Scripting Example

# This illustrates how you can use the length of a line to
# select the entire line and shows how you can make it lowercase.
# You must run this in the Console pane. It will not run in the Script pane.
# Begin by getting a variable that points to the editor.
$myEditor = $psISE.CurrentFile.Editor
# Clear the text in the current file editor.
$myEditor.Clear()

# Make sure the file has five lines of text.
$myEditor.InsertText("LINE1 `n")
$myEditor.InsertText("LINE2 `n")
$myEditor.InsertText("LINE3 `n")
$myEditor.InsertText("LINE4 `n")
$myEditor.InsertText("LINE5 `n")

# Use the GetLineLength method to get the length of the third line.
$endColumn = $myEditor.GetLineLength(3)
# Select the text in the first three lines.
$myEditor.Select(1, 1, 3, $endColumn + 1)
$selection = $myEditor.SelectedText
# Clear all the text in the editor.
$myEditor.Clear()
# Add the selected text back, but in lower case.
$myEditor.InsertText($selection.ToLower())

See Also



The ISEFileCollection Object
Article • 03/27/2025

The ISEFileCollection object is a collection of ISEFile objects. An example is the
$psISE.CurrentPowerShellTab.Files  collection.

Supported in Windows PowerShell ISE 2.0 and later.

Creates and returns a new untitled file and adds it to the collection. The IsUntitled
property of the newly created file is $true .

[FullPath] - Optional string - The fully specified path of the file. An exception is
generated if you include the FullPath parameter and a relative path, or if you use a
file name instead of the full path.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Removes a specified file from the current PowerShell tab.

File - String The ISEFile file that you want to remove from the collection. If the file hasn't
been saved, this method throws an exception. Use the Force switch parameter to force
the removal of an unsaved file.

[Force] - optional Boolean If set to $true , grants permission to remove the file even if it
hasn't been saved after last use. The default is $false .

Methods

Add( [FullPath] )

# Adds a new untitled file to the collection of files in the current 
PowerShell tab.
$newFile = $psISE.CurrentPowerShellTab.Files.Add()

# Adds a file specified by its full path to the collection of files in the 
current
# PowerShell tab.
$psISE.CurrentPowerShellTab.Files.Add("$PSHOME\Examples\profile.ps1")

Remove( File, [Force] )



PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Selects the file that's specified by the SelectedFile parameter.

SelectedFile - Microsoft.PowerShell.Host.ISE.ISEFile The ISEFile file that you want to
select.

PowerShell

The ISEFile Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Removes the first opened file from the file collection associated with the 
current
# PowerShell tab.  If the file hasn't yet been saved, then an exception is 
generated.
$firstfile = $psISE.CurrentPowerShellTab.Files[0]
$psISE.CurrentPowerShellTab.Files.Remove($firstfile)

# Removes the first opened file from the file collection associated with the 
current
# PowerShell tab, even if it hasn't been saved.
$firstfile = $psISE.CurrentPowerShellTab.Files[0]
$psISE.CurrentPowerShellTab.Files.Remove($firstfile, $true)

SetSelectedFile( selectedFile )

# Selects the specified file.
$firstfile = $psISE.CurrentPowerShellTab.Files[0]
$psISE.CurrentPowerShellTab.Files.SetSelectedFile($firstfile)

See Also



The ISEFile Object
Article • 03/27/2025

An ISEFile object represents a file in Windows PowerShell Integrated Scripting
Environment (ISE). It's an instance of the Microsoft.PowerShell.Host.ISE.ISEFile class.
This topic lists its member methods and member properties. The $psISE.CurrentFile
and the files in the Files collection in a PowerShell tab are all instances of the
Microsoft.PowerShell.Host.ISE.ISEFile class.

Supported in Windows PowerShell ISE 2.0 and later.

Saves the file to disk.

[saveEncoding]  - optional System.Text.Encoding An optional character encoding
parameter to be used for the saved file. The default value is UTF8.

System.IO.IOException: The file couldn't be saved.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Saves the file with the specified file name and encoding.

Methods

Save( [saveEncoding] )

Exceptions

# Save the file using the default encoding (UTF8)
$psISE.CurrentFile.Save()

# Save the file as ASCII.
$psISE.CurrentFile.Save([System.Text.Encoding]::ASCII)

# Gets the current encoding.
$myfile = $psISE.CurrentFile
$myfile.Encoding

SaveAs(filename, [saveEncoding])

https://learn.microsoft.com/en-us/dotnet/api/system.text.encoding


filename - String The name to be used to save the file.

[saveEncoding]  - optional System.Text.Encoding An optional character encoding
parameter to be used for the saved file. The default value is UTF8.

System.ArgumentNullException: The filename parameter is null.
System.ArgumentException: The filename parameter is empty.
System.IO.IOException: The file couldn't be saved.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the string that contains the display name of this file.
The name is shown on the File tab at the top of the editor. The presence of an asterisk
( * ) at the end of the name indicates that the file has changes that haven't been saved.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the editor object that's used for the specified file.

PowerShell

Exceptions

# Save the file with a full path and name.
$fullpath = "C:\temp\newname.txt"
$psISE.CurrentFile.SaveAs($fullPath)
# Save the file with a full path and name and explicitly as UTF8.
$psISE.CurrentFile.SaveAs($fullPath, [System.Text.Encoding]::UTF8)

Properties

DisplayName

# Shows the display name of the file.
$psISE.CurrentFile.DisplayName

Editor

https://learn.microsoft.com/en-us/dotnet/api/system.text.encoding


Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the original file encoding. This is a
System.Text.Encoding object.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the string that specifies the full path of the opened file.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only Boolean property that returns $true  if the file has been saved after it was
last modified.

PowerShell

# Gets the editor and the text.
$psISE.CurrentFile.Editor.Text

Encoding

# Shows the encoding for the file.
$psISE.CurrentFile.Encoding

FullPath

# Shows the full path for the file.
$psISE.CurrentFile.FullPath

IsSaved

# Determines whether the file has been saved since it was last modified.
$myfile = $psISE.CurrentFile
$myfile.IsSaved

IsUntitled



Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that returns $true  if the file has never been given a title.

PowerShell

The ISEFileCollectionObject
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Determines whether the file has never been given a title.
$psISE.CurrentFile.IsUntitled
$psISE.CurrentFile.SaveAs("temp.txt")
$psISE.CurrentFile.IsUntitled

See Also



The ISEMenuItemCollection Object
Article • 03/27/2025

An ISEMenuItemCollection object is a collection of ISEMenuItem objects. It's an
instance of the Microsoft.PowerShell.Host.ISE.ISEMenuItemCollection class. An
example is the $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus  object that's used to
customize the Add-On menu in Windows PowerShell® Integrated Scripting
Environment (ISE).

Supported in Windows PowerShell ISE 2.0 and later.

Adds a menu item to the collection.

DisplayName - String - The display name of the menu to be added.
Action - System.Management.Automation.ScriptBlock - The object that specifies
the action that's associated with this menu item.
Shortcut - System.Windows.Input.KeyGesture - The keyboard shortcut for the
action.
Returns - The ISEMenuItem object that was just added.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Removes all submenus from the menu item.

PowerShell

Method

Add(DisplayName, Action, Shortcut )

# Create an Add-ons menu with a fast access key and a shortcut.
# Note the use of "_"  as opposed to the "&" for mapping to the fast access 
key
# letter for the menu item.
$menuAdded = $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process',
    {Get-Process}, 'Alt+P')

Clear()



The ISEMenuItem Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Remove all custom submenu items from the AddOns menu
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()

See Also



The ISEMenuItem Object
Article • 03/27/2025

An ISEMenuItem object is an instance of the
Microsoft.PowerShell.Host.ISE.ISEMenuItem class. All menu objects on the Add-ons
menu are instances of the Microsoft.PowerShell.Host.ISE.ISEMenuItem class.

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the display name of the menu item.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the block of script. It invokes the action when you click
the menu item.

PowerShell

Properties

DisplayName

# Get the display name of the Add-ons menu item
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process', {Get-
Process}, 'Alt+P')
$psISE.CurrentPowerShellTab.AddOnsMenu.DisplayName

Action

# Get the action associated with the first submenu item.
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process', {Get-
Process}, 'Alt+P')
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0].Action

# Invoke the script associated with the first submenu item
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0].Action.Invoke()

Shortcut



Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the Windows input keyboard shortcut for the menu
item.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the list of submenus of the menu item.

PowerShell

To better understand the use of the Add-ons menu and its scriptable properties, read
through the following scripting example.

PowerShell

# Get the shortcut for the first submenu item.
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process', {Get-
Process}, 'Alt+P')
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0].Shortcut

Submenus

# List the submenus of the Add-ons menu
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process', {Get-
Process}, 'Alt+P')
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus

Scripting example

# This is a scripting example that shows the use of the Add-ons menu.
# Clear the Add-ons menu if any entries currently exist
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()

# Add an Add-ons menu item with a shortcut and fast access key.
# Note the use of "_"  as opposed to the "&" for mapping to the fast access 
key letter
# for the menu item.
$menuAdded = $psISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Add('_Process',
    {Get-Process}, 'Alt+P')
# Add a nested menu - a parent and a child submenu item.
$parentAdded = $psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('Parent', 



The ISEMenuItemCollection Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

$null, $null)
$parentAdded.SubMenus.Add('_Dir', {dir}, 'Alt+D')

See Also



The ISEOptions Object
Article • 03/27/2025

The ISEOptions object represents various settings for Windows PowerShell ISE. It's an
instance of the Microsoft.PowerShell.Host.ISE.ISEOptions class.

The ISEOptions object provides the following methods and properties.

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Restores the default values of the token colors in the Console pane.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Restores the default values of all options settings in the Console pane. It also resets the
behavior of various warning messages that provide the standard check box to prevent
the message from being shown again.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Methods

RestoreDefaultConsoleTokenColors()

# Changes the color of the commands in the Console pane to red and then 
restores
# it to its default value.
$psISE.Options.ConsoleTokenColors["Command"] = 'red'
$psISE.Options.RestoreDefaultConsoleTokenColors()

RestoreDefaults()

# Changes the background color in the Console pane and then restores it to 
its default value.
$psISE.Options.ConsolePaneBackgroundColor = 'orange'
$psISE.Options.RestoreDefaults()

RestoreDefaultTokenColors()



Restores the default values of the token colors in the Script pane.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Restores the default values of the token colors for XML elements that are displayed in
Windows PowerShell ISE. Also see XmlTokenColors.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the number of minutes between automatic save operations of your files by
Windows PowerShell ISE. The default value is 2 minutes. The value is an integer.

PowerShell

This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE. For later versions, see ConsolePaneBackgroundColor.

# Changes the color of the comments in the Script pane to red and then 
restores it
# to its default value.
$psISE.Options.TokenColors["Comment"] = 'red'
$psISE.Options.RestoreDefaultTokenColors()

RestoreDefaultXmlTokenColors()

# Changes the color of the comments in XML data to red and then restores it
# to its default value.
$psISE.Options.XmlTokenColors["Comment"] = 'red'
$psISE.Options.RestoreDefaultXmlTokenColors()

Properties

AutoSaveMinuteInterval

# Changes the number of minutes between automatic save operations to every 3 
minutes.
$psISE.Options.AutoSaveMinuteInterval = 3

CommandPaneBackgroundColor



Specifies the background color for the Command pane. It's an instance of the
System.Windows.Media.Color class.

PowerShell

This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE.

Specifies whether the Command pane is located above the Output pane.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the background color for the Console pane. It's an instance of the
System.Windows.Media.Color class.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the foreground color of the text in the Console pane.

PowerShell

# Changes the background color of the Command pane to orange.
$psISE.Options.CommandPaneBackgroundColor = 'orange'

CommandPaneUp

# Moves the Command pane to the top of the screen.
$psISE.Options.CommandPaneUp  = $true

ConsolePaneBackgroundColor

# Changes the background color of the Console pane to red.
$psISE.Options.ConsolePaneBackgroundColor = 'red'

ConsolePaneForegroundColor

# Changes the foreground color of the text in the Console pane to yellow.
$psISE.Options.ConsolePaneForegroundColor  = 'yellow'



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the background color of the text in the Console pane.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the colors of the IntelliSense tokens in the Windows PowerShell ISE Console
pane. This property is a dictionary object that contains name/value pairs of token types
and colors for the Console pane. To change the colors of the IntelliSense tokens in the
Script pane, see TokenColors. To reset the colors to the default values, see
RestoreDefaultConsoleTokenColors. Token colors can be set for the following: Attribute,
Command, CommandArgument, CommandParameter, Comment, GroupEnd, GroupStart,
Keyword, LineContinuation, LoopLabel, Member, NewLine, Number, Operator, Position,
StatementSeparator, String, Type, Unknown, Variable.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the background color for the debug text that appears in the Console pane. It's
an instance of the System.Windows.Media.Color class.

PowerShell

ConsolePaneTextBackgroundColor

# Changes the background color of the Console pane text to pink.
$psISE.Options.ConsolePaneTextBackgroundColor = 'pink'

ConsoleTokenColors

# Sets the color of commands to green.
$psISE.Options.ConsoleTokenColors["Command"] = 'green'
# Sets the color of keywords to magenta.
$psISE.Options.ConsoleTokenColors["Keyword"] = 'magenta'

DebugBackgroundColor

# Changes the background color for the debug text that appears in the 
Console pane



Supported in Windows PowerShell ISE 2.0 and later.

Specifies the foreground color for the debug text that appears in the Console pane. It's
an instance of the System.Windows.Media.Color class.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

A collection of properties that specify the default values to be used when the Reset
methods are used.

PowerShell

Output

# to blue.
$psISE.Options.DebugBackgroundColor = '#0000FF'

DebugForegroundColor

# Changes the foreground color for the debug text that appears in the 
Console
# pane to yellow.
$psISE.Options.DebugForegroundColor = 'yellow'

DefaultOptions

# Displays the name of the default options. This example is from ISE 4.0.
$psISE.Options.DefaultOptions

SelectedScriptPaneState                   : Top
ShowDefaultSnippets                       : True
ShowToolBar                               : True
ShowOutlining                             : True
ShowLineNumbers                           : True
TokenColors                               : {[Attribute, #FF00BFFF], 
[Command, #FF0000FF], [CommandArgument, #FF8A2BE2], [CommandParameter, 
#FF000080]...}
ConsoleTokenColors                        : {[Attribute, #FFB0C4DE], 
[Command, #FFE0FFFF], [CommandArgument, #FFEE82EE], [CommandParameter, 
#FFFFE4B5]...}
XmlTokenColors                            : {[Comment, #FF006400], 
[CommentDelimiter, #FF008000], [ElementName, #FF8B0000], [MarkupExtension, 
#FFFF8C00]...}
DefaultOptions                            : 
Microsoft.PowerShell.Host.ISE.ISEOptions



Supported in Windows PowerShell ISE 2.0 and later.

Specifies the background color for error text that appears in the Console pane. It's an
instance of the System.Windows.Media.Color class.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the foreground color for error text that appears in the Console pane. It's an
instance of the System.Windows.Media.Color class.

PowerShell

FontSize                                  : 9
Zoom                                      : 100
FontName                                  : Lucida Console
ErrorForegroundColor                      : #FFFF0000
ErrorBackgroundColor                      : #00FFFFFF
WarningForegroundColor                    : #FFFF8C00
WarningBackgroundColor                    : #00FFFFFF
VerboseForegroundColor                    : #FF00FFFF
VerboseBackgroundColor                    : #00FFFFFF
DebugForegroundColor                      : #FF00FFFF
DebugBackgroundColor                      : #00FFFFFF
ConsolePaneBackgroundColor                : #FF012456
ConsolePaneTextBackgroundColor            : #FF012456
ConsolePaneForegroundColor                : #FFF5F5F5
ScriptPaneBackgroundColor                 : #FFFFFFFF
ScriptPaneForegroundColor                 : #FF000000
ShowWarningForDuplicateFiles              : True
ShowWarningBeforeSavingOnRun              : True
UseLocalHelp                              : True
AutoSaveMinuteInterval                    : 2
MruCount                                  : 10
ShowIntellisenseInConsolePane             : True
ShowIntellisenseInScriptPane              : True
UseEnterToSelectInConsolePaneIntellisense : True
UseEnterToSelectInScriptPaneIntellisense  : True
IntellisenseTimeoutInSeconds              : 3

ErrorBackgroundColor

# Changes the background color for the error text that appears in the 
Console pane to black.
$psISE.Options.ErrorBackgroundColor = 'black'

ErrorForegroundColor



Supported in Windows PowerShell ISE 2.0 and later.

Specifies the font name currently in use in both the Script pane and the Console pane.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the font size as an integer. It's used in the Script pane, the Command pane,
and the Output pane. The valid range of values is 8 through 32.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the number of seconds that IntelliSense uses to try to resolve the currently
typed text. After this number of seconds, IntelliSense times out and enables you to
continue typing. The default value is 3 seconds. The value is an integer.

PowerShell

# Changes the foreground color for the error text that appears in the 
console pane to green.
$psISE.Options.ErrorForegroundColor = 'green'

FontName

# Changes the font used in both panes.
$psISE.Options.FontName = 'Courier New'

FontSize

# Changes the font size in all panes.
$psISE.Options.FontSize = 20

IntellisenseTimeoutInSeconds

# Changes the number of seconds for IntelliSense syntax recognition to 5.
$psISE.Options.IntellisenseTimeoutInSeconds = 5

MruCount



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the number of recently opened files that Windows PowerShell ISE tracks and
displays at the bottom of the File Open menu. The default value is 10. The value is an
integer.

PowerShell

This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE. For later versions, see ConsolePaneBackgroundColor.

The read/write property that gets or sets the background color for the Output pane
itself. It's an instance of the System.Windows.Media.Color class.

PowerShell

This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE. For later versions, see ConsolePaneForegroundColor.

The read/write property that changes the foreground color of the text in the Output
pane in Windows PowerShell ISE 2.0.

PowerShell

This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE. For later versions, see ConsolePaneTextBackgroundColor.

# Changes the number of recently used files that appear at the bottom of the
# File Open menu to 5.
$psISE.Options.MruCount = 5

OutputPaneBackgroundColor

# Changes the background color of the Output pane to gold.
$psISE.Options.OutputPaneForegroundColor = 'gold'

OutputPaneTextForegroundColor

# Changes the foreground color of the text in the Output Pane to blue.
$psISE.Options.OutputPaneTextForegroundColor  = 'blue'

OutputPaneTextBackgroundColor



The read/write property that changes the background color of the text in the Output
pane.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read/write property that gets or sets the background color for files. It's an instance
of the System.Windows.Media.Color class.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read/write property that gets or sets the foreground color for non-script files in the
Script pane. To set the foreground color for script files, use the TokenColors.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read/write property that gets or sets the position of the Script pane on the display.
The string can be either 'Maximized', 'Top', or 'Right'.

PowerShell

# Changes the background color of the Output pane text to pink.
$psISE.Options.OutputPaneTextBackgroundColor = 'pink'

ScriptPaneBackgroundColor

# Sets the color of the script pane background to yellow.
$psISE.Options.ScriptPaneBackgroundColor = 'yellow'

ScriptPaneForegroundColor

# Sets the foreground to color of non-script files in the script pane to 
green.
$psISE.Options.ScriptPaneBackgroundColor = 'green'

SelectedScriptPaneState



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether the CTRL + J  list of snippets includes the starter set that's included in
Windows PowerShell. When set to $false , only user-defined snippets appear in the
CTRL + J  list. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether IntelliSense offers syntax, parameter, and value suggestions in the
Console pane. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether IntelliSense offers syntax, parameter, and value suggestions in the
Script pane. The default value is $true .

PowerShell

# Moves the Script Pane to the top.
$psISE.Options.SelectedScriptPaneState = 'Top'
# Moves the Script Pane to the right.
$psISE.Options.SelectedScriptPaneState = 'Right'
# Maximizes the Script Pane
$psISE.Options.SelectedScriptPaneState = 'Maximized'

ShowDefaultSnippets

# Hide the default snippets from the CTRL+J list.
$psISE.Options.ShowDefaultSnippets = $false

ShowIntellisenseInConsolePane

# Turn off IntelliSense in the console pane.
$psISE.Options.ShowIntellisenseInConsolePane = $false

ShowIntellisenseInScriptPane

# Turn off IntelliSense in the Script pane.



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether the Script pane displays line numbers in the left margin. The default
value is $true .

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether the Script pane displays expandable and collapsible brackets next to
sections of code in the left margin. When they're displayed, you can click the minus -
icons next to a block of text to collapse it or click the plus +  icon to expand a block of
text. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies whether the ISE toolbar appears at the top of the Windows PowerShell ISE
window. The default value is $true .

PowerShell

$psISE.Options.ShowIntellisenseInScriptPane = $false

ShowLineNumbers

# Turn off line numbers in the Script pane.
$psISE.Options.ShowLineNumbers = $false

ShowOutlining

# Turn off outlining in the Script pane.
$psISE.Options.ShowOutlining = $false

ShowToolBar

# Show the toolbar.
$psISE.Options.ShowToolBar = $true

ShowWarningBeforeSavingOnRun



Supported in Windows PowerShell ISE 2.0 and later.

Specifies whether a warning message appears when a script is saved automatically
before it's run. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies whether a warning message appears when the same file is opened in different
PowerShell tabs. If set to $true , to open the same file in multiple tabs displays this
message: "A copy of this file is open in another Windows PowerShell tab. Changes made
to this file will affect all open copies." The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the colors of the IntelliSense tokens in the Windows PowerShell ISE Script
pane. This property is a dictionary object that contains name/value pairs of token types
and colors for the Script pane. To change the colors of the IntelliSense tokens in the
Console pane, see ConsoleTokenColors. To reset the colors to the default values, see
RestoreDefaultTokenColors. Token colors can be set for the following: Attribute,
Command, CommandArgument, CommandParameter, Comment, GroupEnd, GroupStart,
Keyword, LineContinuation, LoopLabel, Member, NewLine, Number, Operator, Position,
StatementSeparator, String, Type, Unknown, Variable.

PowerShell

# Enable the warning message when an attempt
# is made to run a script without saving it first.
$psISE.Options.ShowWarningBeforeSavingOnRun = $true

ShowWarningForDuplicateFiles

# Enable the warning message when a file is
# opened in multiple PowerShell tabs.
$psISE.Options.ShowWarningForDuplicateFiles = $true

TokenColors

# Sets the color of commands to green.
$psISE.Options.TokenColors["Command"] = "green"



Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether you can use the Enter key to select an IntelliSense provided option in
the Console pane. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether you can use the Enter key to select an IntelliSense-provided option in
the Script pane. The default value is $true .

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies whether the locally installed Help or the online Help appears when you press
F1  with the cursor positioned in a keyword. If set to $true , then a pop-up window

shows content from the locally installed Help. You can install the Help files by running
the Update-Help  command. If set to $false , then your browser opens to a page on
Microsoft Learn.

PowerShell

# Sets the color of keywords to magenta.
$psISE.Options.TokenColors["Keyword"] = "magenta"

UseEnterToSelectInConsolePaneIntellisense

# Turn off using the ENTER key to select an IntelliSense provided option in 
the Console pane.
$psISE.Options.UseEnterToSelectInConsolePaneIntellisense = $false

UseEnterToSelectInScriptPaneIntellisense

# Turn on using the Enter key to select an IntelliSense provided option in 
the Console pane.
$psISE.Options.UseEnterToSelectInConsolePaneIntellisense = $true

UseLocalHelp

# Sets the option for the online help to be displayed.
$psISE.Options.UseLocalHelp = $false



Supported in Windows PowerShell ISE 2.0 and later.

Specifies the background color for verbose text that appears in the Console pane. It's a
System.Windows.Media.Color object.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the foreground color for verbose text that appears in the Console pane. It's a
System.Windows.Media.Color object.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Specifies the background color for warning text that appears in the Console pane. It's a
System.Windows.Media.Color object.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

# Sets the option for the local Help to be displayed.
$psISE.Options.UseLocalHelp = $true

VerboseBackgroundColor

# Changes the background color for verbose text to blue.
$psISE.Options.VerboseBackgroundColor ='#0000FF'

VerboseForegroundColor

# Changes the foreground color for verbose text to yellow.
$psISE.Options.VerboseForegroundColor = 'yellow'

WarningBackgroundColor

# Changes the background color for warning text to blue.
$psISE.Options.WarningBackgroundColor = '#0000FF'

WarningForegroundColor



Specifies the foreground color for warning text that appears in the Output pane. It's a
System.Windows.Media.Color object.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies a dictionary object that contains name/value pairs of token types and colors
for XML content that's displayed in Windows PowerShell ISE. Token colors can be set for
the following: Attribute, Command, CommandArgument, CommandParameter,
Comment, GroupEnd, GroupStart, Keyword, LineContinuation, LoopLabel, Member,
NewLine, Number, Operator, Position, StatementSeparator, String, Type, Unknown,
Variable. Also see RestoreDefaultXmlTokenColors.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Specifies the relative size of text in both the Console and Script panes. The default value
is 100. Smaller values cause the text in Windows PowerShell ISE to appear smaller while
larger numbers cause text to appear larger. The value is an integer that ranges from 20
to 400.

PowerShell

# Changes the foreground color for warning text to yellow.
$psISE.Options.WarningForegroundColor = 'yellow'

XmlTokenColors

# Sets the color of XML element names to green.
$psISE.Options.XmlTokenColors["ElementName"] = 'green'
# Sets the color of XML comments to magenta.
$psISE.Options.XmlTokenColors["Comment"] = 'magenta'

Zoom

# Changes the text in the Windows PowerShell ISE to be double its normal 
size.
$psISE.Options.Zoom = 200

See Also



Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy



The ISESnippetCollection Object
Article • 03/27/2025

The ISESnippetCollection object is a collection of ISESnippet objects. The files collection
that's associated with a PowerShellTab object is a member of this class. An example is
the $psISE.CurrentPowerShellTab.Files  collection.

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Loads a snippets.ps1xml  file that contains user-defined snippets. The easiest way to
create snippets is to use the New-IseSnippet  cmdlet, which automatically stores them in
your profile folder so that they're loaded every time that you start Windows PowerShell
ISE.

FilePathName - String - The path and file name to a snippets.ps1xml  file that
contains snippet definitions.

PowerShell

The ISESnippetObject
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

Methods

Load( FilePathName )

# Loads a custom snippet file into the current PowerShell tab.
$joinPathSplat = @{
    Path = ( Split-Path $PROFILE)
    ChildPath = 'Snippets\MySnips.snippets.ps1xml'
    AdditionalChildPath = 
$psISE.CurrentPowerShellTab.Snippets.Add($SnipPath)
}
$SnipFile = Join-Path @joinPathSplat

See Also



The ISESnippetObject
Article • 03/27/2025

An ISESnippet object is an instance of the Microsoft.PowerShell.Host.ISE.ISESnippet
class. The members of the $psISE.CurrentPowerShellTab.Snippets  collection are all
examples of ISESnippet objects. The easiest way to create a snippet is to use the New-
IseSnippet cmdlet.

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that gets the name of the author of the snippet.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that gets the code fragment to be inserted into the editor.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that gets the Windows keyboard shortcut for the menu item.

PowerShell

Properties

Author

# Get the author of the first snippet item
$psISE.CurrentPowerShellTab.Snippets.Item(0).Author

CodeFragment

# Get the code fragment associated with the first snippet item.
$psISE.CurrentPowerShellTab.Snippets.Item(0).CodeFragment

Shortcut

https://learn.microsoft.com/en-us/powershell/module/ISE/New-IseSnippet
https://learn.microsoft.com/en-us/powershell/module/ISE/New-IseSnippet


The ISESnippetCollection Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Get the shortcut for the first submenu item.
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Clear()
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add('_Process', {Get-
Process}, 'Alt+P')
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus[0].Shortcut

See Also



The PowerShellTabCollection Object
Article • 03/27/2025

The PowerShellTab collection object is a collection of PowerShellTab objects. Each
PowerShellTab object functions as a separate runtime environment. It's an instance of
Microsoft.PowerShell.Host.ISE.PowerShellTabs class. An example is the
$psISE.PowerShellTabs  object.

Supported in Windows PowerShell ISE 2.0 and later.

Adds a new PowerShell tab to the collection. It returns the newly added tab.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

Removes the tab that's specified by the psTab parameter.

psTab - The PowerShell tab to remove.

PowerShell

Methods

Add()

$newTab = $psISE.PowerShellTabs.Add()
$newTab.DisplayName = 'Brand New Tab'

Remove(Microsoft.PowerShell.Host.ISE.PowerShellTab
psTab)

$newTab = $psISE.PowerShellTabs.Add()
Change the DisplayName of the new PowerShell tab.
$newTab.DisplayName = 'This tab will go away in 5 seconds'
sleep 5
$psISE.PowerShellTabs.Remove($newTab)

SetSelectedPowerShellTab(Microsoft.PowerShell.Host.ISE.
PowerShellTab psTab)



Supported in Windows PowerShell ISE 2.0 and later.

Selects the PowerShell tab that's specified by the psTab parameter to make it the
currently active PowerShell tab.

psTab - The PowerShell tab to select.

PowerShell

The PowerShellTab Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Save the current tab in a variable and rename it
$oldTab = $psISE.CurrentPowerShellTab
$psISE.CurrentPowerShellTab.DisplayName = 'Old Tab'
# Create a new tab and give it a new display name
$newTab = $psISE.PowerShellTabs.Add()
$newTab.DisplayName = 'Brand New Tab'
# Switch back to the original tab
$psISE.PowerShellTabs.SelectedPowerShellTab = $oldTab

See Also



The PowerShellTab Object
Article • 03/27/2025

The PowerShellTab object represents a Windows PowerShell runtime environment.

Supported in Windows PowerShell ISE 2.0 and later.

Runs the given script in the PowerShell tab.

Script - System.Management.Automation.ScriptBlock or String - The script block to
run.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

Runs the given script in the PowerShell tab.

Methods

Invoke( Script )

７ Note

This method only works on other PowerShell tabs, not the PowerShell tab from
which it's run. It doesn't return any object or value. If the code modifies any
variable, then those changes persist on the tab against which the command was
invoked.

# Manually create a second PowerShell tab before running this script.
# Return to the first PowerShell tab and type the following command
$psISE.PowerShellTabs[1].Invoke({dir})

InvokeSynchronous( Script, [useNewScope],

millisecondsTimeout )

７ Note

This method only works on other PowerShell tabs, not the PowerShell tab from
which it's run. The script block is run and any value that's returned from the script is



Script - System.Management.Automation.ScriptBlock or String - The script block to
run.
[useNewScope] - Optional Boolean that defaults to $true  - If set to $true , then a
new scope is created within which to run the command. It doesn't modify the
runtime environment of the PowerShell tab that's specified by the command.
[millisecondsTimeout] - Optional integer that defaults to 500. - If the command
doesn't finish within the specified time, then the command generates a
TimeoutException with the message "The operation has timed out."

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the Add-ons menu for the PowerShell tab.

PowerShell

returned to the run environment from which you invoked the command. If the
command takes longer to run than the millesecondsTimeout value specifies, then
the command fails with an exception: "The operation has timed out."

# Create a new PowerShell tab and then switch back to the first
$psISE.PowerShellTabs.Add()
$psISE.PowerShellTabs.SetSelectedPowerShellTab($psISE.PowerShellTabs[0])

# Invoke a simple command on the other tab, in its own scope
$psISE.PowerShellTabs[1].InvokeSynchronous('$x=1', $false)
# You can switch to the other tab and type '$x' to see that the value is 
saved there.

# This example sets a value in the other tab (in a different scope)
# and returns it through the pipeline to this tab to store in $a
$a = $psISE.PowerShellTabs[1].InvokeSynchronous('$z=3;$z')
$a

# This example runs a command that takes longer than the allowed timeout 
value
# and measures how long it runs so that you can see the impact
Measure-Command {$psISE.PowerShellTabs[1].InvokeSynchronous('sleep 10', 
$false, 5000)}

Properties

AddOnsMenu



Supported in Windows PowerShell ISE 2.0 and later.

The read-only Boolean property that returns a $true  value if a script can be invoked
with the Invoke( Script ) method.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.
In Windows PowerShell ISE 2.0 this was named CommandPane.

The read-only property that gets the Console pane editor object.

PowerShell

# Clear the Add-ons menu if one exists.
$psISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Clear()
# Create an AddOns menu with an accessor.
# Note the use of "_"  as opposed to the "&" for mapping to the fast key 
letter for the menu item.
$menuAdded = $psISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Add('_Process',
    {Get-Process}, 'Alt+P')
# Add a nested menu.
$parentAdded = $psISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Add('Parent', 
$null, $null)
$parentAdded.SubMenus.Add('_Dir', {dir}, 'Alt+D')
# Show the Add-ons menu on the current PowerShell tab.
$psISE.CurrentPowerShellTab.AddOnsMenu

CanInvoke

# CanInvoke will be false if the PowerShell
# tab is running a script that takes a while, and you
# check its properties from another PowerShell tab. It's
# always false if checked on the current PowerShell tab.
# Manually create a second PowerShell tab before running this script.
# Return to the first tab and type
$secondTab = $psISE.PowerShellTabs[1]
$secondTab.CanInvoke
$secondTab.Invoke({sleep 20})
$secondTab.CanInvoke

ConsolePane

# Gets the Console Pane editor.
$psISE.CurrentPowerShellTab.ConsolePane



Supported in Windows PowerShell ISE 2.0 and later.

The read-write property that gets or sets the text that's displayed on the PowerShell tab.
By default, tabs are named "PowerShell #", where the # represents a number.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-write Boolean property that determines whether the Script pane is expanded
or hidden.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the collection of script files that are open in the
PowerShell tab.

PowerShell

DisplayName

$newTab = $psISE.PowerShellTabs.Add()
# Change the DisplayName of the new PowerShell tab.
$newTab.DisplayName = 'Brand New Tab'

ExpandedScript

# Toggle the expanded script property to see its effect.
$psISE.CurrentPowerShellTab.ExpandedScript = 
!$psISE.CurrentPowerShellTab.ExpandedScript

Files

$newFile = $psISE.CurrentPowerShellTab.Files.Add()
$newFile.Editor.Text = "a`r`nb"
# Gets the line count
$newFile.Editor.LineCount

Output



This feature is present in Windows PowerShell ISE 2.0, but was removed or renamed in
later versions of the ISE. In later versions of Windows PowerShell ISE, you can use the
ConsolePane object for the same purposes.

The read-only property that gets the Output pane of the current editor.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the current prompt text. Note: the prompt  function can
be overridden by the user's profile. If the result is other than a simple string, then this
property returns nothing.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-write property that indicates if the Commands pane is currently displayed.

PowerShell

Supported in Windows PowerShell ISE 2.0 and later.

The read-only property that gets the PowerShellTab status text.

# Clears the text in the Output pane.
$psISE.CurrentPowerShellTab.Output.Clear()

Prompt

# Gets the current prompt text.
$psISE.CurrentPowerShellTab.Prompt

ShowCommands

# Gets the current status of the Commands pane and stores it in the $a 
variable
$a = $psISE.CurrentPowerShellTab.ShowCommands
# if $a is $false, then turn the Commands pane on by changing the value to 
$true
if (!$a) {$psISE.CurrentPowerShellTab.ShowCommands = $true}

StatusText



PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that indicates whether the horizontal Add-Ons tool pane is
currently open.

PowerShell

Supported in Windows PowerShell ISE 3.0 and later, and not present in earlier versions.

The read-only property that indicates whether the vertical Add-Ons tool pane is
currently open.

PowerShell

The PowerShellTabCollection Object
Purpose of the Windows PowerShell ISE Scripting Object Model
The ISE Object Model Hierarchy

# Gets the current status text,
$psISE.CurrentPowerShellTab.StatusText

HorizontalAddOnToolsPaneOpened

# Gets the current state of the horizontal Add-ons tool pane.
$psISE.CurrentPowerShellTab.HorizontalAddOnToolsPaneOpened

VerticalAddOnToolsPaneOpened

# Turns on the Commands pane
$psISE.CurrentPowerShellTab.ShowCommands = $true
# Gets the current state of the vertical Add-ons tool pane.
$psISE.CurrentPowerShellTab.HorizontalAddOnToolsPaneOpened

See Also



Other Useful Scripting Objects
Article • 03/27/2025

The following objects provide additional scripting functionality in Windows PowerShell
ISE. They aren't part of the $psISE  hierarchy.

There are some limitations on how Windows PowerShell ISE interacts with console
applications. A command or an automation script that requires user intervention might
not work the way it works from the Windows PowerShell console. You might want to
block these commands or scripts from running in the Windows PowerShell ISE
Command pane. The $psUnsupportedConsoleApplications object keeps a list of such
commands. If you try to run the commands in this list, you get a message that they
aren't supported. The following script adds an entry to the list.

PowerShell

This is a dictionary object that maintains a context-sensitive mapping between Help
topics and their associated links in the local compiled HTML Help file. It's used to locate
the local Help for a particular topic. You can add or delete topics from this list. The
following code example shows some example key-value pairs that are contained in
$psLocalHelp .

PowerShell

Useful Scripting objects

$psUnsupportedConsoleApplications

# List the unsupported commands
$psUnsupportedConsoleApplications

# Add a command to this list
$psUnsupportedConsoleApplications.Add('Mycommand')

# Show the augmented list of commands
$psUnsupportedConsoleApplications

$psLocalHelp

# See the local help map
$psLocalHelp | Format-List



Output

The following script adds an entry to the list.

PowerShell

This is a dictionary object that maintains a context-sensitive mapping between topic
titles of Help topics and their associated external URLs. It's used to locate the Help for a
particular topic on the web. You can add or delete topics from this list.

PowerShell

Output

The following script adds an entry to the list.

PowerShell

Key   : Add-Computer
Value : WindowsPowerShellHelp.chm::/html/093f660c-b8d5-43cf-aa0c-
54e5e54e76f9.htm

Key   : Add-Content
Value : WindowsPowerShellHelp.chm::/html/0c836a1b-f389-4e9a-9325-
0f415686d194.htm

$psLocalHelp.Add("Get-MyNoun", "C:\MyFolder\MyHelpChm.chm::/html/0198854a-
1298-57ae-aa0c-87b5e5a84712.htm")

$psOnlineHelp

$psOnlineHelp | Format-List

Key   : Add-Computer
Value : https://go.microsoft.com/fwlink/p/?LinkID=135194

Key   : Add-Content
Value : https://go.microsoft.com/fwlink/p/?LinkID=113278

$psOnlineHelp.Add("Get-MyNoun", "https://www.mydomain.com/MyNoun.html")

See Also



Purpose of the Windows PowerShell ISE Scripting Object Model



Starting Windows PowerShell
Article • 03/27/2025

Windows PowerShell is a scripting engine embedded into multiple hosts. The most
common hosts are the interactive command-line powershell.exe  and the Interactive
Scripting Environment powershell_ise.exe .

PowerShell version 6 and higher uses .NET (Core). Supported versions are available on
Windows, macOS, and Linux.

Beginning in PowerShell 6, the PowerShell binary named pwsh.exe  for Windows and
pwsh  for macOS and Linux. You can start PowerShell preview versions using pwsh-
preview . For more information, see About pwsh.

To find cmdlet reference and installation documentation for PowerShell 7, use the
following links:

Document Link

Cmdlet reference PowerShell Module Browser

Windows installation Installing PowerShell on Windows

macOS installation Installing PowerShell on macOS

Linux installation Installing PowerShell on Linux

To view content for other PowerShell versions, see How to use the PowerShell
documentation.

Open the Start menu, type Windows PowerShell, select Windows PowerShell,
then select Open.

PowerShell binary name

ﾉ Expand table

Run from the Start Menu

Run from the Command Prompt

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pwsh
https://learn.microsoft.com/en-us/powershell/module/
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-macos
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-linux


In Windows Command shell, Windows PowerShell, or Windows PowerShell ISE, to start
Windows PowerShell, type: PowerShell .

You can also use the parameters of the powershell.exe  program to customize the
session. For more information, see about_PowerShell_exe.

Open the Start menu, type Windows PowerShell, select Windows PowerShell, and then
select Run as administrator.

Use any of the following methods to start Windows PowerShell ISE.

Open the Start menu, type ISE, select Windows PowerShell ISE, then select Open.

In Windows Command shell, Windows PowerShell, or Windows PowerShell ISE, to start
Windows PowerShell, type: PowerShell_ISE . In Windows PowerShell, you can use the
alias ise .

Select Start, type ISE, right-click Windows PowerShell ISE, and then click Run as
administrator.

64-bit versions of Windows include a 32-bit version of Windows PowerShell, Windows
PowerShell (x86), in addition to the 64-bit version. The 64-bit version runs by default.

However, you might occasionally need to run Windows PowerShell (x86), such as when
you're using a module that requires the 32-bit version or when you're connecting

Run with administrative privileges

How to Start Windows PowerShell ISE on
Earlier Releases of Windows

Run from the Start Menu

At the Command Prompt

Run with administrative privileges

Starting the 32-Bit Version of Windows
PowerShell

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_PowerShell_exe


remotely to a 32-bit computer.

To start a 32-bit version of Windows PowerShell, use any of the following procedures.

Select Start, type Windows PowerShell, select Windows PowerShell (x86), then
select Open.



Windows Management Framework
Article • 03/27/2025

Windows Management Framework (WMF) provides a consistent management interface
for Windows. WMF provides a seamless way to manage various versions of Windows
client and Windows Server. WMF installer packages contain updates to management
functionality and are available for older versions of Windows.

WMF installation adds and/or updates the following features:

Windows PowerShell
Windows PowerShell Desired State Configuration (DSC)
Windows PowerShell Integrated Script Environment (ISE)
Windows Remote Management (WinRM)
Windows Management Instrumentation (WMI)
Windows PowerShell Web Services (Management OData IIS Extension)
Software Inventory Logging (SIL)
Server Manager CIM Provider

To learn about the enhancements in Windows PowerShell and other components, see
the release notes for each version of WMF:

WMF 5.1
WMF 5.0

７ Note

WMF 5.1 is the only supported version of WMF and is included in all currently
supported versions of Windows. This information in this article provides a history of
WMF versions.

WMF Release Notes

WMF availability across Windows operating
systems

ﾉ Expand table

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/windows-powershell/wmf/whats-new/release-notes#wmf-51-changes
https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/windows-powershell/wmf/whats-new/release-notes#wmf-50-changes


OS Version End of
Support

WMF 5.1 WMF
5.0

WMF
4.0

WMF
3.0

WMF
2.0

Windows Server
2022

2031-10-14 Included

Windows Server
2019

2029-01-09 Included

Windows Server
2016

2027-01-11 Included

Windows 11 2025-10-14 Included

Windows 10 2025-10-14 Included in
1607+

Included

Windows Server
2012 R2

Out of
support

Yes Yes Included

Windows 8.1 Out of
support

Yes Yes Included

Windows Server
2012

Out of
support

Yes Yes Yes Included

Windows 8 Out of
support

Included

Windows Server
2008 R2 SP1

Out of
support

Yes Yes Yes Yes Included

Windows 7 SP1 Out of
support

Yes Yes Yes Yes Included

Windows Server
2008 SP2

Out of
support

Yes Yes

Windows Vista Out of
support

Yes

Windows Server
2003

Out of
support

Yes

Windows XP Out of
support

Yes Yes

Included: The features of the specified version of WMF were shipped in the
indicated version of Windows client or Windows Server.
Out of support: Microsoft no longer supports these products. You must upgrade
to a supported version. For more information, see the Microsoft Lifecycle Policy

https://learn.microsoft.com/en-us/windows/release-health/windows-server-release-info
https://learn.microsoft.com/en-us/windows/release-health/windows-server-release-info
https://learn.microsoft.com/en-us/windows/release-health/windows-server-release-info
https://learn.microsoft.com/en-us/windows/release-health/supported-versions-windows-client
https://learn.microsoft.com/en-us/windows/release-health/supported-versions-windows-client
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://aka.ms/wmf51download
https://aka.ms/wmf51download
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://aka.ms/wmf51download
https://aka.ms/wmf51download
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://learn.microsoft.com/en-us/windows/release-health/status-windows-8.1-and-windows-server-2012-r2
https://aka.ms/wmf51download
https://aka.ms/wmf51download
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://aka.ms/wmf51download
https://aka.ms/wmf51download
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://aka.ms/wmf51download
https://aka.ms/wmf51download
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://learn.microsoft.com/en-us/lifecycle/products/?products=windows
https://support.microsoft.com/lifecycle
https://support.microsoft.com/lifecycle


page.

７ Note

The version of WMF that shipped in an operating system is supported for the
lifetime of support for that version of the operating system. The standalone
installers for WMF 5.0 and older are no longer available or supported.



PowerShell Security
Learn about PowerShell's security features and best practices.

Security features

ｅ OVERVIEW

PowerShell security features

Using App Control for Business

ｃ HOW-TO GUIDE

Preventing script injection attacks

Securing a restricted PowerShell remoting session

PowerShell remoting

ｐ CONCEPT

Running remote commands

Using WS-Management (WSMan) Remoting in PowerShell

Security Considerations for PowerShell Remoting using WinRM

PowerShell Remoting FAQ

ｃ HOW-TO GUIDE

Making the second hop in PowerShell Remoting

PowerShell remoting over SSH

Just Enough Administration (JEA)

ｐ CONCEPT

Overview

https://learn.microsoft.com/en-us/powershell/scripting/security/application-control?view=powershell-7.5


Prerequisites

JEA Role Capabilities

Session configurations

Security considerations

ｃ HOW-TO GUIDE

Registering JEA Configurations

Using JEA

Auditing and Reporting on JEA

Using App Control

ｅ OVERVIEW

Using App Control for Business

How App Control works with PowerShell

ｃ HOW-TO GUIDE

How to use App Control to secure PowerShell

Managing secrets

ｐ CONCEPT

Overview of the SecretManagement and SecretStore modules

Understanding the security features of SecretManagement and SecretStore

ｃ HOW-TO GUIDE

Managing a SecretStore vault

Use the SecretStore in automation

Use Azure Key Vault in automation

ｉ REFERENCE

https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/overview
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/security-concepts
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/manage-secretstore
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/using-secrets-in-automation
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/using-azure-keyvault


Microsoft.PowerShell.SecretManagement module

Microsoft.PowerShell.SecretStore module

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.secretmanagement
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.secretstore


PowerShell security features
Article • 10/21/2024

PowerShell has several features designed to improve the security of your scripting
environment.

PowerShell's execution policy is a safety feature that controls the conditions under which
PowerShell loads configuration files and runs scripts. This feature helps prevent the
execution of malicious scripts. You can use a Group Policy setting to set execution
policies for computers and users. Execution policies only apply to the Windows platform.

For more information see about_Execution_Policies.

PowerShell has several cmdlets that support the use of the
System.Security.SecureString  class. And, as with any .NET class, you can use
SecureString in your own scripts. However, Microsoft doesn't recommend using
SecureString for new development. Microsoft recommends that you avoid using
passwords and rely on other means to authenticate, such as certificates or Windows
authentication.

PowerShell continues to support the SecureString class for backward compatibility.
Using a SecureString is still more secure than using a plain text string. By default,
PowerShell doesn't show the unprotected value of a SecureString object. However,
SecureString can be easily converted to a plain text string. For a full discussion about
using SecureString, see the System.Security.SecureString class documentation.

Module Logging allows you to enable logging for selected PowerShell modules. This
setting is effective in all sessions on the computer. PowerShell records pipeline
execution events for the specified modules in the Windows PowerShell log in Event
Viewer.

Script Block Logging enables logging for the processing of commands, script blocks,
functions, and scripts - whether invoked interactively, or through automation.

Execution policy

Use of the SecureString class

Module and script block logging

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies
https://learn.microsoft.com/en-us/dotnet/fundamentals/runtime-libraries/system-security-securestring


PowerShell logs this information to the Microsoft-Windows-PowerShell/Operational
event log.

For more information, see the following articles:

about_Group_Policy_Settings
about_Logging_Windows
about_Logging_Non-Windows

The Windows Antimalware Scan Interface (AMSI) is an API that allows applications to
pass actions to an antimalware scanner, such as Windows Defender, to scan for
malicious payloads. Beginning with PowerShell 5.1, PowerShell running on Windows 10
(and higher) passes all script blocks to AMSI.

PowerShell 7.3 extends the data that's sent to AMSI for inspection. It now includes all
invocations of .NET method members.

For more information about AMSI, see How AMSI helps.

ConstrainedLanguage mode protects your system by limiting the cmdlets and .NET
types allowed in a PowerShell session. For a full description, see
about_Language_Modes.

Windows 10 includes two technologies, App Control for Business and AppLocker that
you can use to control applications. PowerShell detects if a system wide application
control policy is being enforced. The policy applies certain behaviors when running
script blocks, script files, or loading module files to prevent arbitrary code execution on
the system.

App Control for Business is designed as a security feature under the servicing criteria
defined by the Microsoft Security Response Center (MSRC). App Control is the preferred
application control system for Windows.

For more information about how PowerShell supports AppLocker and App Control, see
Use App Control to secure PowerShell.

AMSI Support

Constrained language mode

Application Control

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_group_policy_settings#turn-on-module-logging
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_windows
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
https://learn.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/appcontrol
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/applocker/what-is-applocker


Beginning with PowerShell 7.2, all install packages contain a Software Bill of Materials
(SBOM). The PowerShell team also produces SBOMs for modules that they own but ship
independently from PowerShell.

You can find SBOM files in the following locations:

In PowerShell, find the SBOM at $PSHOME/_manifest/spdx_2.2/manifest.spdx.json .
For modules, find the SBOM in the module's folder under
_manifest/spdx_2.2/manifest.spdx.json .

The creation and publishing of the SBOM is the first step to modernize Federal
Government cybersecurity and enhance software supply chain security. For more
information about this initiative, see the blog post Generating SBOMs with SPDX at
Microsoft .

PowerShell follows the Microsoft Security Servicing Criteria for Windows . Only security
features meet the criteria for servicing.

Security features

System Lockdown with App Control for Business
Constrained language mode with App Control for Business

Defense in depth features

System Lockdown with AppLocker
Constrained language mode with AppLocker
Execution Policy

Software Bill of Materials (SBOM)

Security Servicing Criteria

https://devblogs.microsoft.com/engineering-at-microsoft/generating-software-bills-of-materials-sboms-with-spdx-at-microsoft/
https://devblogs.microsoft.com/engineering-at-microsoft/generating-software-bills-of-materials-sboms-with-spdx-at-microsoft/
https://devblogs.microsoft.com/engineering-at-microsoft/generating-software-bills-of-materials-sboms-with-spdx-at-microsoft/
https://www.microsoft.com/msrc/windows-security-servicing-criteria
https://www.microsoft.com/msrc/windows-security-servicing-criteria


Use App Control to secure PowerShell
Article • 10/21/2024

Windows 10 includes two technologies, App Control for Business and AppLocker, that
you can use to control applications. They allow you to create a lockdown experience to
help secure your PowerShell environment.

AppLocker builds on the application control features of Software Restriction Policies.
AppLocker allows you to create rules to allow or deny apps for specific users or groups.
You identify the apps based on unique properties of the files.

Application Control for Business, introduced in Windows 10 as Windows Defender
Application Control (WDAC), allows you to control which drivers and applications are
allowed to run on Windows.

PowerShell detects both AppLocker and App Control for Business system wide policies.
AppLocker doesn't have way to query the policy enforcement status. To detect if a
system wide application control policy is being enforced by AppLocker, PowerShell
creates two temporary files and tests if they can be executed. The filenames use the
following name format:

$Env:TEMP/__PSAppLockerTest__<random-8dot3-name>.ps1

$Env:TEMP/__PSAppLockerTest__<random-8dot3-name>.psm1

App Control for Business is the preferred application control system for Windows. App
Control provides APIs that allow you to discover the policy configuration. App Control is
designed as a security feature under the servicing criteria defined by the Microsoft
Security Response Center (MSRC). For more information, see Application Controls for
Windows and App Control and AppLocker feature availability.

Lockdown policy detection

７ Note

When choosing between App Control or AppLocker, we recommend that you
implement application control using App Control for Business rather than
AppLocker. Microsoft is no longer investing in AppLocker. Although AppLocker
may continue to receive security fixes, it won't receive feature enhancements.

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/appcontrol
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/applocker/what-is-applocker
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/appcontrol
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/appcontrol
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/feature-availability
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/appcontrol-and-applocker-overview#choose-when-to-use-app-control-or-applocker


When PowerShell runs under an App Control policy, its behavior changes based on the
defined security policy. Under an App Control policy, PowerShell runs trusted scripts and
modules allowed by the policy in FullLanguage  mode. All other scripts and script blocks
are untrusted and run in ConstrainedLanguage  mode. PowerShell throws errors when the
untrusted scripts attempt to perform actions that aren't allowed in ConstrainedLanguage
mode. It can be difficult to know why a script failed to run correctly in
ConstrainedLanguage  mode.

PowerShell 7.4 added a new feature to support App Control policies in Audit mode. In
audit mode, PowerShell runs the untrusted scripts in ConstrainedLanguage  mode without
errors, but logs messages to the event log instead. The log messages describe what
restrictions would apply if the policy were in Enforce mode.

Windows PowerShell 5.1 was the first version of PowerShell to support App Control. The
security features of App Control and AppLocker improve with each new release of
PowerShell. The following sections describe how this support changed in each version of
PowerShell. The changes are cumulative, so the features described in the later versions
include those from earlier versions.

On Windows, when PowerShell runs under an App Control policy, its behavior changes
based on the defined security policy. Under an App Control policy, PowerShell runs
trusted scripts and modules allowed by the policy in FullLanguage  mode. All other
scripts and script blocks are untrusted and run in ConstrainedLanguage  mode.
PowerShell throws errors when the untrusted scripts attempt to perform disallowed
actions. It's difficult to know why a script fails to run correctly in ConstrainedLanguage
mode.

PowerShell 7.4 now supports App Control policies in Audit mode. In audit mode,
PowerShell runs the untrusted scripts in ConstrainedLanguage  mode but logs messages
to the event log instead of throwing errors. The log messages describe what restrictions
would apply if the policy were in Enforce mode.

App Control policy enforcement

App Control policy auditing

History of changes

Changes in PowerShell 7.4



PowerShell 7.3 now supports the ability to block or allow PowerShell script files via
the App Control API.

There was a corner-case scenario in AppLocker where you only have Deny rules
and constrained mode isn't used to enforce the policy that allows you to bypass
the execution policy. Beginning in PowerShell 7.2, a change was made to ensure
AppLocker rules take precedence over a Set-ExecutionPolicy -ExecutionPolicy
Bypass  command.

PowerShell 7.2 now disallows the use of the Add-Type  cmdlet in a NoLanguage
mode PowerShell session on a locked down machine.

PowerShell 7.2 now disallows scripts from using COM objects in AppLocker system
lockdown conditions. Cmdlets that use COM or DCOM internally aren't affected.

For more information about how App Control works and what restrictions it
enforces, see How App Control works with PowerShell.
For more information about securing PowerShell with App Control, see How to use
App Control.

Changes in PowerShell 7.3

Changes in PowerShell 7.2

Further reading



How App Control works with PowerShell
Article • 10/21/2024

This article explains how App Control for Business secures PowerShell and the
restrictions it imposes. The secure behavior of PowerShell varies based on the version of
Windows and PowerShell you're using.

PowerShell detects both AppLocker and App Control for Business system wide polices.
AppLocker is deprecated. App Control is the preferred application control system for
Windows.

PowerShell uses the legacy App Control WldpGetLockdownPolicy  API to discover two
things:

System wide policy enforcement: None , Audit , Enforce
Individual file policy: None , Audit  (allowed by policy), Enforce  (not allowed by
policy)

All versions of PowerShell (v5.1 - v7.x) support this App Control policy detection.

App Control introduced new APIs in recent versions of Windows. Beginning with version
7.3, PowerShell uses the new WldpCanExecuteFile  API to decide how a file should be
handled. Windows PowerShell 5.1 doesn't support this new API. The new API takes
precedence over the legacy API for individual files. However, PowerShell continues to
use the legacy API to get the system wide policy configuration. If the new API isn't
available, PowerShell falls back to the old API behavior.

The new API provides the following information for each file:

WLDP_CAN_EXECUTE_ALLOWED

WLDP_CAN_EXECUTE_BLOCKED

WLDP_CAN_EXECUTE_REQUIRE_SANDBOX

How PowerShell detects a system lockdown
policy

Legacy App Control policy enforcement detection

Latest App Control policy enforcement detection



PowerShell can run in both interactive and non-interactive modes.

In interactive mode, PowerShell is a command-line application that takes users
command-line input as commands or scripts to run. Results are displayed back to
the user.
In non-interactive mode, PowerShell loads modules and runs script files without
user input. Result data streams are either ignored or redirected to a file.

PowerShell runs commands in ConstrainedLanguage  mode. This mode prevents
interactive users from running certain commands or executing arbitrary code. For more
information about the restrictions in this mode, see the PowerShell restrictions under
lockdown policy section of this article.

When PowerShell runs a script or loads a module, it uses the App Control API to get the
policy enforcement for the file.

PowerShell version 7.3 or higher uses the WldpCanExecuteFile  API if available. This API
returns one of the following results:

WLDP_CAN_EXECUTE_ALLOWED : The file is approved by policy and is used in
FullLanguage  mode with a few restrictions.
WLDP_CAN_EXECUTE_BLOCKED : The file isn't approved by policy. PowerShell throws an
error when the file is run or loaded.
WLDP_CAN_EXECUTE_REQUIRE_SANDBOX : The file isn't approved by the policy but it can
still be run or loaded in ConstrainedLanguage  mode.

In Windows PowerShell 5.1 or if WldpCanExecuteFile  API isn't available, PowerShell's per
file behavior is:

None : The file is run loaded in FullLanguage  mode with a few restrictions.

Audit : The file is run or loaded in FullLanguage  mode with no restrictions. In
PowerShell 7.4 or higher, the policy logs restriction information to the Windows
event logs.
Enforce : The file is run or loaded in ConstrainedLanguage  mode.

PowerShell behavior under lockdown policy

Interactive mode running under policy enforcement

Noninteractive mode running under policy enforcement



When PowerShell detects the system is under a App Control lockdown policy, it applies
restrictions even if the script is trusted and running in FullLanguage  mode. These
restrictions prevent known behaviors of PowerShell that could result in arbitrary code
execution on a locked-down system. The lockdown policy enforces the following
restrictions:

Module dot-sourcing with wildcard function export restriction

Any module that uses script dot-sourcing and exports functions using wildcard
names results in an error. Blocking wildcard exports prevents script injection from a
malicious user who can plant an untrusted script that gets dot-sourced into a
trusted module. The malicious script could then gain access to the trusted
module's private functions.

Security recommendation: Never use script dot-sourcing in a module and always
export module functions with explicit names (no wildcard characters).

Nested module with wildcard function export restriction

If a parent module exports functions using function name wildcard characters,
PowerShell removes any function name in a nested module from the function
export list. Blocking wildcard exports from nested modules prevents accidental
exporting of dangerous nested functions through wildcard name matching.

Security recommendation: Always export module functions with explicit names
(no wildcard characters).

Interactive shell parameter type conversion

When the system is locked down, interactive PowerShell sessions run in
ConstrainedLanguage  mode to prevent arbitrary code execution. Trusted modules
loaded into the session run in FullLanguage  mode. If a trusted module cmdlet uses
complex types for its parameters, type conversion during parameter binding can
fail if the conversion isn't allowed across trust boundaries. The failure occurs when
PowerShell tries to convert a value by running a type constructor. Type
constructors aren't allowed to run in ConstrainedLanguage  mode.

In this example, parameter binding type conversion is normally allowed, but fails
when run in ConstrainedLanguage  mode. The ConnectionPort  type constructor isn't
allowed:

PowerShell

PowerShell restrictions under lockdown policy



Enter-PSHostProcess  cmdlet disallowed

The Enter-PSHostProcess  cmdlet is disabled and throws an error if used. This
command is used for attach-and-debug sessions. It allows you to connect to any
other PowerShell session on the local machine. The cmdlet is disabled to prevent
information disclosure and arbitrary code execution.

Script or function that isn't approved by the App Control policy is untrusted. When you
run an untrusted command, PowerShell either blocks the command from running (new
behavior) or runs the command in ConstrainedLanguage  mode. The following restrictions
apply to ConstrainedLanguage  mode:

Add-Type  cmdlet disallowed

Blocking Add-Type  prevents the execution of arbitrary .NET code.

Import-LocalizedData  cmdlet restricted

Blocking the SupportedCommand parameter of Import-LocalizedData  prevents
the execution of arbitrary code.

Invoke-Expression  cmdlet restricted

All script blocks passed to the Invoke-Expression  cmdlet are run in
ConstrainedLanguage  mode to prevent arbitrary code execution.

New-Object  cmdlet restricted

The New-Object  cmdlet is restricted to use only allowed .NET and COM types, to
prevent access to untrusted types.

ForEach-Object  cmdlet restriction

Type method invocation for variables passed to the ForeEach-Object  is disallowed
for any .NET type not in the approved list. In general, ConstrainedLanguage  mode

PS> Create-ConnectionOnPort -Connection 22
Create-ConnectionOnPort: Cannot bind parameter 'Connection'. Cannot 
convert the "22"
value of type "System.Int32" to type "ConnectionPort".

PowerShell restrictions under constrained
language mode



disallows any object method invocation except for approved .NET types to prevent
access to untrusted .NET types.

Export-ModuleMember  cmdlet restriction

Using Export-ModuleMember  cmdlet to export functions in a nested module script
file where the child module isn't trusted and the parent module is trusted, results
in an error. Blocking this scenario prevents a malicious untrusted module from
exporting dangerous functions from a trusted module.

New-Module  cmdlet restriction

When you run New-Module  in a trusted script, any script block provided by the
ScriptBlock  parameter is marked to run in ConstrainedLanguage  mode to prevent
the injection of arbitrary code into a trusted execution context.

Configuration  keyword not allowed

The Configuration  language keyword isn't allowed in ConstrainedLanguage  mode
to prevent code injection attacks.

class  keyword not allowed

The class  language keyword isn't allowed in ConstrainedLanguage  mode to
prevent the injection of arbitrary code.

Script Block processing scope restrictions

Child script blocks aren't allowed to run in parent script block scopes if the script
blocks have different trust levels. For example, you create a child relationship when
you dot-source one script into another. Blocking this scenario prevents an
untrusted script from getting access to dangerous functions in the trusted script
scope.

Prevent command discovery of untrusted script functions

PowerShell command discovery doesn't return functions from an untrusted source,
such as an untrusted script or module, to a trusted function. Blocking discovery of
untrusted commands prevents code injection through command planting.

Hashtable to object conversion not allowed

ConstrainedLanguage  mode blocks hashtable to object conversions in the Data
sections of PowerShell data ( .psd1 ) files to prevent potential code injection
attacks.



Automatic type conversion restricted

ConstrainedLanguage  mode blocks automatic type conversion except for a small
set of approved safe types to prevent potential code injection attacks.

Implicit module function export restriction

If a module doesn't explicitly export functions, PowerShell implicitly exports all
defined module functions automatically as a convenience feature. In
ConstrainedLanguage  mode, implicit exports no longer occur when a module is
loaded across trust boundaries. Blocking implicit exports prevents unintended
exposure of dangerous module functions not meant for public use.

Script files can't be imported as modules

PowerShell allows you to import script files ( .ps1 ) as a module. All defined
functions become publicly accessible. ConstrainedLanguage  mode blocks
importation of script file to prevent unintended exposure of dangerous script
functions.

Setting variables AllScope  restriction

ConstrainedLanguage  mode disables the ability to set AllScope  on variables.
Limiting the scope of variables prevents the variables from interfering with the
session state of trusted commands.

Type method invocation not allowed

ConstrainedLanguage  mode doesn't allow method invocation on unapproved
types. Blocking methods on unapproved types prevents invocation of .NET type
methods that might be dangerous or allow code injection.

Type property setters not allowed

ConstrainedLanguage  mode restricts invocation of property setters on unapproved
types. Blocking property setters on unapproved types prevents code injection
attacks.

Type creation not allowed

ConstrainedLanguage  mode blocks type creation on unapproved types to block
untrusted constructors that could allow code injection.

Module scope operator not allowed



ConstrainedLanguage  mode doesn't allow the use of the module scope operator.
For example: & (Get-Module MyModule) MyFunction . Blocking the module scope
operator prevents access to module private functions and variables.

For more information about PowerShell language modes, see
about_Language_Modes.
For information about how to configure and use App Control, see How to use App
Control for PowerShell.

Further reading

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/powershell/scripting/security/app-control/how-to-use-wdac?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/security/app-control/how-to-use-wdac?view=powershell-7.5


How to use App Control to secure
PowerShell
Article • 10/21/2024

This article describes how to set up a App Control for Business policy. You can configure
the policy to enforce or audit the policy's rule. In audit mode, PowerShell behavior
doesn't change but it logs Event ID 16387 messages to the PowerShellCore/Analytic
event log. In enforcement mode, PowerShell applies the policy's restrictions.

This article assumes you're using a test machine so that you can test PowerShell
behavior under a machine wide App Control policy before you deploy the policy in your
environment.

An App Control policy is described in an XML file, which contains information about
policy options, files allowed, and signing certificates recognized by the policy. When the
policy is applied, only approved files are allowed to load and run. PowerShell either
blocks unapproved script files from running or runs them in ConstrainedLanguage  mode,
depending on policy options.

You create and manipulate App Control policy using the ConfigCI module, which is
available on all supported Windows versions. This Windows PowerShell module can be
used in Windows PowerShell 5.1 or in PowerShell 7 through the Windows Compatibility
layer. It's easier to use this module in Windows PowerShell. The policy you create can be
applied to any version of PowerShell.

For testing, you just need to create a default policy and a self signed code signing
certificate.

1. Create a default policy

PowerShell

Create an App Control policy

Steps to create an App Control policy

New-CIPolicy -Level PcaCertificate -FilePath .\SystemCIPolicy.xml -
UserPEs



This command creates a default policy file called SystemCIPolicy.xml  that allows
all Microsoft code-signed files to run.

2. Disable Audit Mode in default policy

A new policy is always created in Audit  mode. To test policy enforcement, you
need to disable Audit mode when you apply the policy. Edit the
SystemCIPolicy.xml  file using a text editor like notepad.exe  or Visual Studio Code
(VS Code). Comment out the Audit mode  option.

XML

3. Create a self-signed code signing certificate

You need a code signing certificate to sign any test binaries or script files that you
want to run on your test machine. The New-SelfSignedCertificate  is provided by
the PKI module. For best results, you should run this command in Windows
PowerShell 5.1.

PowerShell

７ Note

Running this command can take up to two hours because it must scan the
entire test machine.

<!--
<Rule>
  <Option>Enabled:Audit Mode</Option>
</Rule>
-->

$newSelfSignedCertificateSplat = @{
    DnsName = $Env:COMPUTERNAME
    CertStoreLocation = "Cert:\CurrentUser\My\"
    Type = 'CodeSigningCert'
}
$cert = New-SelfSignedCertificate @newSelfSignedCertificateSplat
Export-Certificate -Cert $cert -FilePath C:\certs\signing.cer
Import-Certificate -FilePath C:\certs\signing.cer -CertStoreLocation 
"Cert:\CurrentUser\Root\"
$cert = Get-ChildItem Cert:\CurrentUser\My\ -CodeSigningCert

dir C:\bin\PowerShell\pwsh.exe | Set-AuthenticodeSignature -Certificate 
$cert



4. Add the code signing certificate to the policy

Use the following command to add the new code signing certificate to the policy.

PowerShell

5. Convert the XML policy file to a policy enforcement binary file

Finally, you need to convert the XML file to a binary file used by App Control to
apply a policy.

PowerShell

6. Apply the App Control policy

To apply the policy to your test machine, copy the SIPolicy.p7b  file to the
required system location, C:\Windows\System32\CodeIntegrity .

7. Disable the App Control policy

To disable the policy, rename the SIPolicy.p7b  file. If you need to do more testing,
you can change the name back to reenable the policy.

PowerShell

Add-SignerRule -FilePath .\SystemCIPolicy.xml -CertificatePath 
C:\certs\signing.cer -User

ConvertFrom-CIPolicy -XmlFilePath .\SystemCIPolicy.xml -BinaryFilePath 
.\SIPolicy.p7b

７ Note

Some policies definition must be copied to a subfolder such as
C:\Windows\System32\CodeIntegrity\CiPolicies . For more information, see
App Control Admin Tips & Known Issues.

Rename-Item -Path .\SIPolicy.p7b -NewName .\SIPolicy.p7b.off

Test using App Control policy auditing

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/operations/known-issues


PowerShell 7.4 added a new feature to support App Control policies in Audit mode. In
audit mode, PowerShell runs the untrusted scripts in ConstrainedLanguage  mode without
errors, but logs messages to the event log instead. The log messages describe what
restrictions would apply if the policy were in Enforce mode.

PowerShell logs audit events to the PowerShellCore/Analytic event log. The log isn't
enabled by default. To enable the log, open the Windows Event Viewer, right-click on
the PowerShellCore/Analytic log and select Enable Log.

Alternatively, you can run the following command from an elevated PowerShell session.

PowerShell

You can view the events in the Windows Event Viewer or use the Get-WinEvent  cmdlet to
retrieve the events.

PowerShell

Output

The event message includes the script position where the restriction would be applied.
This information helps you understand where you need to change your script so that it
runs under the App Control policy.

Viewing audit events

wevtutil.exe sl PowerShellCore/Analytic /enabled:true /quiet

Get-WinEvent -LogName PowerShellCore/Analytic -Oldest |
    Where-Object Id -EQ 16387 | Format-List

TimeCreated  : 4/19/2023 10:11:07 AM
ProviderName : PowerShellCore
Id           : 16387
Message      : App Control Audit.

    Title: Method or Property Invocation
    Message: Method or Property 'WriteLine' on type 'System.Console' 
invocation will not
        be allowed in ConstrainedLanguage mode.
        At C:\scripts\Test1.ps1:3 char:1
        + [System.Console]::WriteLine("pwnd!")
        + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    FullyQualifiedId: MethodOrPropertyInvocationNotAllowed



If you set the $DebugPreference  variable to Break  for an interactive PowerShell session,
PowerShell breaks into the command-line script debugger at the current location in the
script where the audit event occurred. The breakpoint allows you to debug your code
and inspect the current state of the script in real time.

） Important

Once you have reviewed the audit events, you should disable the Analytic log.
Analytic logs grow quickly and consume large amounts of disk space.

Viewing audit events in the PowerShell debugger



Preventing script injection attacks
Article • 04/01/2024

PowerShell scripts, like other programming languages, can be vulnerable to injection
attacks. An injection attack occurs when a user provides input to a vulnerable function
that includes extra commands. The vulnerable function runs the extra commands, which
can be a serious security vulnerability. For example, a malicious user could abuse the
vulnerable function to run arbitrary code on a remote computer, possibly compromising
that computer and gaining access to other machines on the network.

Once you are aware of the issue, there are several ways to protect against injection
attacks.

PowerShell code injection vulnerabilities involve user input that contains script code. The
user input is added to vulnerable script where it's parsed and run by PowerShell.

PowerShell

The Get-ProcessById  function looks up a local process by its Id value. It takes a $ProcId
parameter argument of any type. The $ProcId  is then converted to a string and inserted
into another script that's parsed and run using the Invoke-Expression  cmdlet. This
function works fine when a valid process Id integer is passed in.

PowerShell

However, the $ProcId  parameter doesn't specify a type. It accepts any arbitrary string
value that can include other commands.

Example of vulnerable code

function Get-ProcessById
{
    param ($ProcId)

    Invoke-Expression -Command "Get-Process -Id $ProcId"
}

Get-ProcessById $PID

 NPM(K)    PM(M)      WS(M)     CPU(s)      Id  SI ProcessName
 ------    -----      -----     ------      --  -- -----------
     97    50.09     132.72       1.20   12528   3 pwsh



PowerShell

In this example, the function correctly retrieved the process identified by $PID , but also
ran the injected script Write-Host 'pwnd!' .

Output

The are several ways to guard against an injection attack.

You can specify a type for the $ProcId  argument.

PowerShell

Output

Get-ProcessById "$PID; Write-Host 'pwnd!'"

 NPM(K)    PM(M)      WS(M)     CPU(s)      Id  SI ProcessName
 ------    -----      -----     ------      --  -- -----------
     92    45.66     122.52       1.06   21736   3 pwsh
pwnd!

Ways to guard against injection attacks

Use typed input

function Get-ProcessById
{
    param ([int] $ProcId)

    Invoke-Expression -Command "Get-Process -Id $ProcId"
}
Get-ProcessById "$PID; Write-Host 'pwnd!'"

Get-ProcessById:
Line |
   7 |  Get-ProcessById "$PID; Write-Host 'pwnd!'"
     |                  ~~~~~~~~~~~~~~~~~~~~~~~~~
     | Cannot process argument transformation on parameter 'ProcId'. Cannot 
convert value
"8064; Write-Host 'pwnd!'" to type "System.Int32". Error: "The input string 
'8064; Write-Host 'pwnd!'
was not in a correct format."



Here, the $ProcId  input parameter is restricted to an integer type, so an error occurs
when a string is passed in that can't be converted to an integer.

Instead of using Invoke-Expression , directly call Get-Process , and let PowerShell's
parameter binder validate the input.

PowerShell

Output

As a best practice, you should avoid using Invoke-Expression , especially when handling
user input. Invoke-Expression  is dangerous because it parses and runs whatever string
content you provide, making it vulnerable to injection attacks. It's better to rely on
PowerShell parameter binding.

However, there are times when using Invoke-Expression  is unavoidable and you also
need to handle user string input. You can safely handle user input using single quotes
around each string input variable. The single quote ensures that PowerShell's parser
treats the user input as a single string literal.

PowerShell

Don't use Invoke-Expression

function Get-ProcessById
{
    param ($ProcId)

    Get-Process -Id $ProcId
}
Get-ProcessById "$PID; Write-Host 'pwnd!'"

Get-Process:
Line |
   5 |      Get-Process -Id $ProcId
     |                      ~~~~~~~
     | Cannot bind parameter 'Id'. Cannot convert value "8064; Write-Host 
'pwnd!'" to type
"System.Int32". Error: "The input string '8064; Write-Host 'pwnd!' was not 
in a correct
format."

Wrap strings in single quotes



Output

However, this version of the function isn't yet completely safe from injection attacks. A
malicious user can still use single quotes in their input to inject code.

PowerShell

This example uses single quotes in the user input to force the function to run three
separate statements, one of which is arbitrary code injected by the user.

Output

To protect against the user inserting their own single quote characters to exploit the
function you must use the EscapeSingleQuotedStringContent()  API. This is a static public
method of the PowerShell
System.Management.Automation.Language.CodeGeneration class. This method makes
the user input safe by escaping any single quotes included in the user input.

PowerShell

function Get-ProcessById
{
    param ($ProcId)

    Invoke-Expression -Command "Get-Process -Id '$ProcId'"
}

Get-ProcessById "$PID; Write-Host 'pwnd!'"

Get-Process: Cannot bind parameter 'Id'. Cannot convert value "8064; Write-
Host " to type
"System.Int32". Error: "The input string '8064; Write-Host' was not in a 
correct format."

Get-ProcessById "$PID'; Write-Host 'pwnd!';'"

 NPM(K)    PM(M)      WS(M)     CPU(s)      Id  SI ProcessName
 ------    -----      -----     ------      --  -- -----------
     97    46.08     183.10       1.08    2524   3 pwsh
pwnd!

Use the EscapeSingleQuotedStringContent()  method



Output

For more information, see EscapeSingleQuotedStringContent().

Injection Hunter is a module written by Lee Holmes that contains PowerShell Script
Analyzer rules for detecting code injection vulnerabilities. Use one of the following
commands to install the module from the PowerShell Gallery:

PowerShell

You can use this to automate security analysis during builds, continuous integration
processes, deployments, and other scenarios.

PowerShell

Output

function Get-ProcessById
{
    param ($ProcId)

    $ProcIdClean = [System.Management.Automation.Language.CodeGeneration]::
        EscapeSingleQuotedStringContent("$ProcId")
    Invoke-Expression -Command "Get-Process -Id '$ProcIdClean'"
}
Get-ProcessById "$PID'; Write-Host 'pwnd!';'"

Get-Process: Cannot bind parameter 'Id'. Cannot convert value "8064'; Write-
Host 'pwnd!';'" to type
"System.Int32". Error: "The input string '8064'; Write-Host 'pwnd!';'' was 
not in a correct format."

Detecting vulnerable code with Injection
Hunter

# Use PowerShellGet v2.x
Install-Module InjectionHunter

# Use PowerShellGet v3.x
Install-PSResource InjectionHunter

$RulePath = (Get-Module -List InjectionHunter).Path
Invoke-ScriptAnalyzer -CustomRulePath $RulePath -Path .\Invoke-Dangerous.ps1

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.language.codegeneration.escapesinglequotedstringcontent


For more information, see PSScriptAnalyzer.

Lee Holmes' blog post about Injection Hunter
Injection Hunter

RuleName                            Severity     ScriptName Line  Message
--------                            --------     ---------- ----  -------
InjectionRisk.InvokeExpression      Warning      Invoke-Dan 3     Possible 
script injection risk via the
                                                 gerous.ps1       Invoke-
Expression cmdlet. Untrusted input can cause
                                                                  arbitrary 
PowerShell expressions to be run.
                                                                  Variables 
may be used directly for dynamic parameter
                                                                  arguments, 
splatting can be used for dynamic
                                                                  parameter 
names, and the invocation operator can be
                                                                  used for 
dynamic command names. If content escaping
                                                                  is truly 
needed, PowerShell has several valid quote
                                                                  
characters, so  [System.Management.Automation.Languag
                                                                  
e.CodeGeneration]::Escape* should be used.

Related links

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://devblogs.microsoft.com/powershell/powershell-injection-hunter-security-auditing-for-powershell-scripts/
https://www.powershellgallery.com/packages/InjectionHunter
https://www.powershellgallery.com/packages/InjectionHunter


Just Enough Administration
Article • 04/01/2024

Just Enough Administration (JEA) is a security technology that enables delegated
administration for anything managed by PowerShell. With JEA, you can:

Reduce the number of administrators on your machines using virtual accounts or
group-managed service accounts to perform privileged actions on behalf of
regular users.
Limit what users can do by specifying which cmdlets, functions, and external
commands they can run.
Better understand what your users are doing with transcripts and logs that show
you exactly which commands a user executed during their session.

Why is JEA important?

Highly privileged accounts used to administer your servers pose a serious security risk.
Should an attacker compromise one of these accounts, they could launch lateral
attacks  across your organization. Each compromised account gives an attacker access
to even more accounts and resources, and puts them one step closer to stealing
company secrets, launching a denial-of-service attack, and more.

It's not always easy to remove administrative privileges, either. Consider the common
scenario where the DNS role is installed on the same machine as your Active Directory
Domain Controller. Your DNS administrators require local administrator privileges to fix
issues with the DNS server. But to do so, you must make them members of the highly
privileged Domain Admins security group. This approach effectively gives DNS
Administrators control over your whole domain and access to all resources on that
machine.

JEA addresses this problem through the principle of Least Privilege. With JEA, you can
configure a management endpoint for DNS administrators that gives them access only
to the PowerShell commands they need to get their job done. This means you can
provide the appropriate access to repair a poisoned DNS cache or restart the DNS server
without unintentionally giving them rights to Active Directory, or to browse the file
system, or run potentially dangerous scripts. Better yet, when the JEA session is
configured to use temporary privileged virtual accounts, your DNS administrators can
connect to the server using non-admin credentials and still run commands that typically
require admin privileges. JEA enables you to remove users from widely privileged
local/domain administrator roles and carefully control what they can do on each
machine.

https://aka.ms/pth


To learn more about the requirements to use JEA, see the Prerequisites article.

Sample JEA configurations and the JEA DSC resource can be found in the JEA GitHub
repository .

Next steps

Samples and DSC resource

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://github.com/PowerShell/JEA
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Foverview%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Foverview.md&documentVersionIndependentId=91abe743-d9e5-5cdd-2b8e-00af6bd7be6d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+abf80c2d-488d-32b9-f783-fb60964632a9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


JEA Prerequisites
Article • 04/01/2024

Just Enough Administration is a feature included in PowerShell 5.0 and higher. This
article describes the prerequisites that must be satisfied to start using JEA.

To check which version of PowerShell is installed on your system, check the
$PSVersionTable  variable in a Windows PowerShell prompt.

PowerShell

Output

JEA is available with PowerShell 5.0 and higher. For full functionality, it's recommended
that you install the latest version of PowerShell available for your system. The following
table describes JEA's availability on Windows Server:

Server Operating System JEA Availability

Windows Server 2016+ Preinstalled

Windows Server 2012 R2 Full functionality with WMF 5.1

Windows Server 2012 Full functionality with WMF 5.1

Windows Server 2008 R2 Reduced functionality  with WMF 5.1

You can also use JEA on your home or work computer:

Check which version of PowerShell is installed

$PSVersionTable.PSVersion

Major  Minor  Build  Revision
-----  -----  -----  --------
5      1      14393  1000

ﾉ Expand table

1

ﾉ Expand table



Client Operating System JEA Availability

Windows 10 1607+ Preinstalled

Windows 10 1603, 1511 Preinstalled, with reduced functionality

Windows 10 1507 Not available

Windows 8, 8.1 Full functionality with WMF 5.1

Windows 7 Reduced functionality  with WMF 5.1

 JEA can't be configured to use group-managed service accounts on Windows
Server 2008 R2 or Windows 7. Virtual accounts and other JEA features are
supported.

 The following JEA features aren't supported on Windows 10 versions 1511 and
1603:

Running as a group-managed service account
Conditional access rules in session configurations
The user drive
Granting access to local user accounts

To get support for these features, update Windows to version 1607 (Anniversary
Update) or higher.

If you're running an older version of PowerShell, you may need to update your system
with the latest Windows Management Framework (WMF) update. For more information,
see the WMF documentation.

It's recommended that you test your workload's compatibility with WMF before
upgrading all of your servers.

Windows 10 users should install the latest feature updates to obtain the current version
of Windows PowerShell.

PowerShell Remoting provides the foundation on which JEA is built. It's necessary to
ensure PowerShell Remoting is enabled and properly secured before you can use JEA.
For more information, see WinRM Security.

2

1

1

2

Install Windows Management Framework

Enable PowerShell Remoting

https://learn.microsoft.com/en-us/powershell/scripting/wmf/overview
https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity


PowerShell Remoting is enabled by default on Windows Server 2012 and higher. You can
enable PowerShell Remoting by running the following command in an elevated
PowerShell window.

PowerShell

The following steps enable logging for all PowerShell actions on your system.
PowerShell Module Logging isn't required for JEA, however it's recommended you turn
on logging to ensure the commands users run are logged in a central location.

You can configure the PowerShell Module Logging policy using Group Policy.

1. Open the Local Group Policy Editor on a workstation or a Group Policy Object in
the Group Policy Management Console on an Active Directory Domain Controller

2. Navigate to Computer Configuration\Administrative Templates\Windows
Components\Windows PowerShell

3. Double-click on Turn on Module Logging
4. Click Enabled
5. In the Options section, click on Show next to Module Names
6. Type *  in the pop-up window to log commands from all modules.
7. Click OK to set the policy
8. Double-click on Turn on PowerShell Script Block Logging
9. Click Enabled

10. Click OK to set the policy
11. (On domain-joined machines only) Run gpupdate  or wait for Group Policy to

process the updated policy and apply the settings

You can also enable system-wide PowerShell transcription through Group Policy.

Create a role capability file
Create a session configuration file

Enable-PSRemoting

Enable PowerShell module and script block
logging (optional)

Next steps

See also



WinRM Security
PowerShell ♥ the Blue Team

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/winrmsecurity
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Fprerequisites%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Fprerequisites.md&documentVersionIndependentId=a524e4f6-7beb-d95a-e163-edd28142c14d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3df9d17d-3eea-9e41-3e86-68117e1145e6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


JEA Role Capabilities
Article • 04/01/2024

When creating a JEA endpoint, you need to define one or more role capabilities that
describe what someone can do in a JEA session. A role capability is a PowerShell data
file with the .psrc  extension that lists all the cmdlets, functions, providers, and external
programs that are made available to connecting users.

The first step in creating a role capability file is to consider what the users need access
to. The requirements gathering process can take a while, but it's important. Giving users
access to too few cmdlets and functions can prevent them from getting their job done.
Allowing access to too many cmdlets and functions can allow users to do more than you
intended and weaken your security stance.

How you go about this process depends on your organization and goals. The following
tips can help ensure you're on the right path.

1. Identify the commands users are using to get their jobs done. This may involve
surveying IT staff, checking automation scripts, or analyzing PowerShell session
transcripts and logs.

2. Update use of command-line tools to PowerShell equivalents, where possible, for
the best auditing and JEA customization experience. External programs can't be
constrained as granularly as native PowerShell cmdlets and functions in JEA.

3. Restrict the scope of the cmdlets to only allow specific parameters or parameter
values. This is especially important if users should manage only part of a system.

4. Create custom functions to replace complex commands or commands that are
difficult to constrain in JEA. A simple function that wraps a complex command or
applies additional validation logic can offer additional control for admins and end-
user simplicity.

5. Test the scoped list of allowable commands with your users or automation
services, and adjust as necessary.

Careful selection of commands is important to ensure the JEA endpoint doesn't allow
the user to elevate their permissions.

Determine which commands to allow

Examples of potentially dangerous commands

） Important



The following list contains examples of commands that can be used maliciously if
allowed in an unconstrained state. This isn't an exhaustive list and should only be used
as a cautionary starting point.

Risk: Granting the connecting user admin privileges to bypass JEA

Example:

PowerShell

Related commands:
Add-ADGroupMember

Add-LocalGroupMember

net.exe

dsadd.exe

Risk: Running arbitrary code, such as malware, exploits, or custom scripts to
bypass protections

Example:

PowerShell

Related commands:
Start-Process

New-Service

Invoke-Item

Invoke-WmiMethod

Invoke-CimMethod

Invoke-Expression

Invoke-Command

New-ScheduledTask

Register-ScheduledJob

Essential information required for user successCommands in a JEA session are often
run with elevated privileges.

Add-LocalGroupMember -Member 'CONTOSO\jdoe' -Group 'Administrators'

Start-Process -FilePath '\\san\share\malware.exe'



You can create a new PowerShell role capability file with the New-PSRoleCapabilityFile
cmdlet.

PowerShell

You should edit the created role capability file to allow only the commands required for
the role. The PowerShell help documentation contains several examples of how you can
configure the file.

To authorize users to run PowerShell cmdlets or functions, add the cmdlet or function
name to the VisibleCmdlets or VisibleFunctions fields. If you aren't sure whether a
command is a cmdlet or function, you can run Get-Command <name>  and check the
CommandType property in the output.

PowerShell

Sometimes the scope of a specific cmdlet or function is too broad for your users' needs.
A DNS admin, for example, may only need access to restart the DNS service. In multi-
tenant environments, tenants have access to self-service management tools. Tenants
should be limited to managing their own resources. For these cases, you can restrict
which parameters are exposed from the cmdlet or function.

PowerShell

In more advanced scenarios, you may also need to restrict the values a user may use
with these parameters. Role capabilities let you define a set of values or a regular
expression pattern that determine what input is allowed.

PowerShell

Create a role capability file

New-PSRoleCapabilityFile -Path .\MyFirstJEARole.psrc

Allowing PowerShell cmdlets and functions

VisibleCmdlets = @('Restart-Computer', 'Get-NetIPAddress')

VisibleCmdlets = @{
    Name       = 'Restart-Computer'
    Parameters = @{ Name = 'Name' }
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-psrolecapabilityfile


The list below describes the various ways you can customize a visible cmdlet or function.
You can mix and match any of the below in the VisibleCmdlets field.

Use case: Allow the user to run My-Func  without any restrictions on the
parameters.

PowerShell

Use case: Allow the user to run My-Func  from the module MyModule without any
restrictions on the parameters.

PowerShell

Use case: Allow the user to run any cmdlet or function with the verb My .

PowerShell

Use case: Allow the user to run any cmdlet or function with the noun Func .

PowerShell

VisibleCmdlets = @(
    @{
        Name       = 'Restart-Service'
        Parameters = @{ Name = 'Name'; ValidateSet = @('Dns', 'Spooler') }
    }
    @{
        Name       = 'Start-Website'
        Parameters = @{ Name = 'Name'; ValidatePattern = 'HR_*' }
    }
)

７ Note

The common PowerShell parameters are always allowed, even if you restrict the
available parameters. You shouldn't explicitly list them in the Parameters field.

@{ Name = 'My-Func' }

@{ Name = 'MyModule\My-Func' }

@{ Name = 'My-*' }

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


Use case: Allow the user to run My-Func  with the Param1  and Param2  parameters.
Any value can be supplied to the parameters.

PowerShell

Use case: Allow the user to run My-Func  with the Param1  parameter. Only Value1
and Value2  can be supplied to the parameter.

PowerShell

Use case: Allow the user to run My-Func  with the Param1  parameter. Any value
starting with contoso  can be supplied to the parameter.

PowerShell

You can't apply both a ValidatePattern and ValidateSet to the same cmdlet or function.

If you do, the ValidatePattern overrides the ValidateSet.

@{ Name = '*-Func' }

@{ Name = 'My-Func'; Parameters = @{ Name = 'Param1'}, @{ Name = 
'Param2' }}

@{
    Name       = 'My-Func'
    Parameters = @{ Name = 'Param1'; ValidateSet = @('Value1', 
'Value2') }
}

@{
    Name       = 'My-Func'
    Parameters = @{ Name = 'Param1'; ValidatePattern = 'contoso.*' }
}

２ Warning

For best security practices, it isn't recommended to use wildcards when defining
visible cmdlets or functions. Instead, you should explicitly list each trusted
command to ensure no other commands that share the same naming scheme are
unintentionally authorized.



For more information about ValidatePattern, check out this Hey, Scripting Guy! post
and the PowerShell Regular Expressions reference content.

To allow users to run executables and PowerShell scripts ( .ps1 ) in a JEA session, you
have to add the full path to each program in the VisibleExternalCommands field.

PowerShell

Where possible, use PowerShell cmdlet or function equivalents for any external
executables you authorize since you have control over the parameters allowed with
PowerShell cmdlets and functions.

Many executables allow you to read the current state and then change it by providing
different parameters.

For example, consider the role of a file server admin that manages network shares
hosted on a system. One way of managing shares is to use net share . However,
allowing net.exe  is dangerous because the user could use the command to gain admin
privileges with the command net group Administrators unprivilegedjeauser /add . A
more secure option is to allow the Get-SmbShare cmdlet, which achieves the same
result but has a much more limited scope.

When making external commands available to users in a JEA session, always specify the
complete path to the executable. This prevents the execution of similarly named and
potentially malicious programs located elsewhere on the system.

By default, no PowerShell providers are available in JEA sessions. This reduces the risk of
sensitive information and configuration settings being disclosed to the connecting user.

When necessary, you can allow access to the PowerShell providers using the
VisibleProviders  command. For a full list of providers, run Get-PSProvider .

PowerShell

Allowing external commands and PowerShell scripts

VisibleExternalCommands = @(
    'C:\Windows\System32\whoami.exe'
    'C:\Program Files\Contoso\Scripts\UpdateITSoftware.ps1'
)

Allowing access to PowerShell providers

https://devblogs.microsoft.com/scripting/validate-powershell-parameters-before-running-the-script/
https://devblogs.microsoft.com/scripting/validate-powershell-parameters-before-running-the-script/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_regular_expressions
https://learn.microsoft.com/en-us/powershell/module/smbshare/get-smbshare


For simple tasks that require access to the file system, registry, certificate store, or other
sensitive providers, consider writing a custom function that works with the provider on
the user's behalf. The functions, cmdlets, and external programs available in a JEA
session aren't subject to the same constraints as JEA. They can access any provider by
default. Also consider using the user drive when users need to copy files to or from a
JEA endpoint.

You can author custom functions in a role capability file to simplify complex tasks for
your end users. Custom functions are also useful when you require advanced validation
logic for cmdlet parameter values. You can write simple functions in the
FunctionDefinitions field:

PowerShell

The body (script block) of custom functions runs in the default language mode for the
system and isn't subject to JEA's language constraints. This means that functions can
access the file system and registry, and run commands that weren't made visible in the
role capability file. Take care to avoid running arbitrary code when using parameters.
Avoid piping user input directly into cmdlets like Invoke-Expression .

VisibleProviders = 'Registry'

Creating custom functions

VisibleFunctions = 'Get-TopProcess'

FunctionDefinitions = @{
    Name        = 'Get-TopProcess'
    ScriptBlock = {
        param($Count = 10)

        Get-Process |
            Sort-Object -Property CPU -Descending |
            Microsoft.PowerShell.Utility\Select-Object -First $Count
    }
}

） Important

Don't forget to add the name of your custom functions to the VisibleFunctions
field so they can be run by the JEA users.



In the above example, notice that the fully qualified module name (FQMN)
Microsoft.PowerShell.Utility\Select-Object  was used instead of the shorthand
Select-Object . Functions defined in role capability files are still subject to the scope of
JEA sessions, which includes the proxy functions JEA creates to constrain existing
commands.

By default, Select-Object  is a constrained cmdlet in all JEA sessions that doesn't allow
the selection of arbitrary properties on objects. To use the unconstrained Select-Object
in functions, you must explicitly request the full implementation using the FQMN. Any
constrained cmdlet in a JEA session has the same constraints when invoked from a
function. For more information, see about_Command_Precedence.

If you're writing several custom functions, it's more convenient to put them in a
PowerShell script module. You make those functions visible in the JEA session using the
VisibleFunctions field like you would with built-in and third-party modules.

For tab completion to work properly in JEA sessions you must include the built-in
function TabExpansion2  in the VisibleFunctions list.

Prior to PowerShell 6, for PowerShell to find a role capability file it must be stored in a
RoleCapabilities  folder in a PowerShell module. The module can be stored in any
folder included in the $Env:PSModulePath  environment variable, however you shouldn't
place it in $Env:SystemRoot\System32  or a folder where untrusted users could modify the
files.

The following example creates a PowerShell script module called ContosoJEA in the
$Env:ProgramFiles  path to host the role capabilities file.

PowerShell

Make the role capabilities available to a
configuration

# Create a folder for the module
$modulePath = Join-Path $Env:ProgramFiles 
"WindowsPowerShell\Modules\ContosoJEA"
New-Item -ItemType Directory -Path $modulePath

# Create an empty script module and module manifest.
# At least one file in the module folder must have the same name as the 
folder itself.
$rootModulePath = Join-Path $modulePath "ContosoJEAFunctions.psm1"
$moduleManifestPath = Join-Path $modulePath "ContosoJEA.psd1"
New-Item -ItemType File -Path $RootModulePath

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_command_precedence


For more information about PowerShell modules, see Understanding a PowerShell
Module.

Starting in PowerShell 6, the RoleDefinitions property was added to the session
configuration file. This property lets you specify the location of a role configuration file
for your role definition. See the examples in New-PSSessionConfigurationFile.

You can edit a role capability file to update the settings at any time. Any new JEA
sessions started after the role capability has been updated will reflect the revised
capabilities.

This is why controlling access to the role capabilities folder is so important. Only highly
trusted administrators should be allowed to change role capability files. If an untrusted
user can change role capability files, they can easily give themselves access to cmdlets
that allow them to elevate their privileges.

For administrators looking to lock down access to the role capabilities, ensure Local
System has read-only access to the role capability files and containing modules.

Users are granted access to all matching role capabilities in the session configuration file
when they enter a JEA session. JEA tries to give the user the most permissive set of
commands allowed by any of the roles.

The most complex merge logic affects cmdlets and functions, which can have their
parameters and parameter values limited in JEA.

The rules are as follows:

New-ModuleManifest -Path $moduleManifestPath -RootModule 
"ContosoJEAFunctions.psm1"

# Create the RoleCapabilities folder and copy in the PSRC file
$rcFolder = Join-Path $modulePath "RoleCapabilities"
New-Item -ItemType Directory $rcFolder
Copy-Item -Path .\MyFirstJEARole.psrc -Destination $rcFolder

Updating role capabilities

How role capabilities are merged

VisibleCmdlets and VisibleFunctions

https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssessionconfigurationfile


1. If a cmdlet is only made visible in one role, it's visible to the user with any
applicable parameter constraints.

2. If a cmdlet is made visible in more than one role, and each role has the same
constraints on the cmdlet, the cmdlet is visible to the user with those constraints.

3. If a cmdlet is made visible in more than one role, and each role allows a different
set of parameters, the cmdlet and all the parameters defined across every role are
visible to the user. If one role doesn't have constraints on the parameters, all
parameters are allowed.

4. If one role defines a validate set or validate pattern for a cmdlet parameter, and
the other role allows the parameter but doesn't constrain the parameter values,
the validate set or pattern is ignored.

5. If a validate set is defined for the same cmdlet parameter in more than one role, all
values from all validate sets are allowed.

6. If a validate pattern is defined for the same cmdlet parameter in more than one
role, any values that match any of the patterns are allowed.

7. If a validate set is defined in one or more roles, and a validate pattern is defined in
another role for the same cmdlet parameter, the validate set is ignored and rule (6)
applies to the remaining validate patterns.

Below is an example of how roles are merged according to these rules:

PowerShell

# Role A Visible Cmdlets
$roleA = @{
    VisibleCmdlets = @(
        'Get-Service'
         @{
            Name       = 'Restart-Service'
            Parameters = @{ Name = 'DisplayName'; ValidateSet = 'DNS Client' 
}
        }
    )
}

# Role B Visible Cmdlets
$roleB = @{
    VisibleCmdlets = @(
        @{
            Name       = 'Get-Service';
            Parameters = @{ Name = 'DisplayName'; ValidatePattern = 'DNS.*' 
}
        }
        @{
            Name       = 'Restart-Service'
            Parameters = @{ Name = 'DisplayName'; ValidateSet = 'DNS Server' 
}
        }



All other fields in the role capability file are added to a cumulative set of allowable
external commands, aliases, providers, and startup scripts. Any command, alias, provider,
or script available in one role capability is available to the JEA user.

Be careful to ensure that the combined set of providers from one role capability and
cmdlets/functions/commands from another don't allow users unintentional access to
system resources. For example, if one role allows the Remove-Item  cmdlet and another
allows the FileSystem  provider, you are at risk of a JEA user deleting arbitrary files on
your computer. Additional information about identifying users' effective permissions can
be found in the auditing JEA article.

Create a session configuration file

    )
}

# Resulting permissions for a user who belongs to both role A and B
# - The constraint in role B for the DisplayName parameter on Get-Service
#   is ignored because of rule #4
# - The ValidateSets for Restart-Service are merged because both roles use
#   ValidateSet on the same parameter per rule #5
$mergedAandB = @{
    VisibleCmdlets = @(
        'Get-Service'
        @{
            Name = 'Restart-Service';
            Parameters = @{
                Name = 'DisplayName'
                ValidateSet = 'DNS Client', 'DNS Server'
            }
        }
    )
}

VisibleExternalCommands, VisibleAliases,
VisibleProviders, ScriptsToProcess

Next steps



JEA Session Configurations
Article • 04/01/2024

A JEA endpoint is registered on a system by creating and registering a PowerShell
session configuration file. Session configurations define who can use the JEA endpoint
and which roles they have access to. They also define global settings that apply to all
users of the JEA session.

To register a JEA endpoint, you must specify how that endpoint is configured. There are
many options to consider. The most important options are:

Who has access to the JEA endpoint
Which roles they may be assigned
Which identity JEA uses under the covers
The name of the JEA endpoint

These options are defined in a PowerShell data file with a .pssc  extension known as a
PowerShell session configuration file. The session configuration file can be edited using
any text editor.

Run the following command to create a blank template configuration file.

PowerShell

The -SessionType RestrictedRemoteServer  field indicates that the session configuration
is used by JEA for secure management. Sessions of this type operate in NoLanguage
mode and only have access to the following default commands (and aliases):

Clear-Host  ( cls , clear )

Create a session configuration file

New-PSSessionConfigurationFile -SessionType RestrictedRemoteServer -Path 
.\MyJEAEndpoint.pssc

 Tip

Only the most common configuration options are included in the template file by
default. Use the -Full  switch to include all applicable settings in the generated
PSSC.



Exit-PSSession  ( exsn , exit )
Get-Command  ( gcm )
Get-FormatData

Get-Help

Measure-Object  ( measure )

Out-Default

Select-Object  ( select )

No PowerShell providers are available, nor are any external programs (executables or
scripts).

For more information about language modes, see about_Language_Modes.

Behind the scenes, JEA needs an identity (account) to use when running a connected
user's commands. You define which identity JEA uses in the session configuration file.

Local virtual accounts are useful when all roles defined for the JEA endpoint are used to
manage the local machine and a local administrator account is sufficient to run the
commands successfully. Virtual accounts are temporary accounts that are unique to a
specific user and only last for the duration of their PowerShell session. On a member
server or workstation, virtual accounts belong to the local computer's Administrators
group. On an Active Directory Domain Controller, virtual accounts belong to the
domain's Domain Admins group.

PowerShell

If the roles defined by the session configuration don't require full administrative
privilege, you can specify the security groups to which the virtual account will belong.
On a member server or workstation, the specified security groups must be local groups,
not groups from a domain.

When one or more security groups are specified, the virtual account isn't assigned to
the local or domain administrators group.

PowerShell

Choose the JEA identity

Local Virtual Account

# Setting the session to use a virtual account
RunAsVirtualAccount = $true

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes


A group-managed service account (GMSA) is the appropriate identity to use when JEA
users need to access network resources such as file shares and web services. GMSAs
give you a domain identity that's used to authenticate with resources on any machine
within the domain. The rights that a GMSA provides are determined by the resources
you're accessing. You don't have admin rights on any machines or services unless the
machine or service administrator has explicitly granted those rights to the GMSA.

PowerShell

GMSAs should only be used when necessary:

It's difficult to trace back actions to a user when using a GMSA. Every user shares
the same run-as identity. You must review PowerShell session transcripts and logs
to correlate individual users with their actions.

The GMSA may have access to many network resources that the connecting user
doesn't need access to. Always try to limit effective permissions in a JEA session to
follow the principle of least privilege.

# Setting the session to use a virtual account that only belongs to the 
NetworkOperator and NetworkAuditor local groups
RunAsVirtualAccount = $true
RunAsVirtualAccountGroups = 'NetworkOperator', 'NetworkAuditor'

７ Note

Virtual accounts are temporarily granted the Logon as a service right in the local
server security policy. If one of the VirtualAccountGroups specified has already
been granted this right in the policy, the individual virtual account will no longer be
added and removed from the policy. This can be useful in scenarios such as domain
controllers where revisions to the domain controller security policy are closely
audited. This is only available in Windows Server 2016 with the November 2018 or
later rollup and Windows Server 2019 with the January 2019 or later rollup.

Group-managed service account

# Configure JEA sessions to use the GMSA in the local computer's domain
# with the sAMAccountName of 'MyJEAGMSA'
GroupManagedServiceAccount = 'Domain\MyJEAGMSA'

７ Note



For more information about securing a JEA session, see the security considerations
article.

It's recommended that you configure a JEA endpoint to automatically record transcripts
of users' sessions. PowerShell session transcripts contain information about the
connecting user, the run as identity assigned to them, and the commands run by the
user. They can be useful to an auditing team who needs to understand who made a
specific change to a system.

To configure automatic transcription in the session configuration file, provide a path to a
folder where the transcripts should be stored.

PowerShell

Transcripts are written to the folder by the Local System account, which requires read
and write access to the directory. Standard users should have no access to the folder.
Limit the number of security administrators that have access to audit the transcripts.

If your connecting users need to copy files to or from the JEA endpoint, you can enable
the user drive in the session configuration file. The user drive is a PSDrive that's mapped
to a unique folder for each connecting user. This folder allows users to copy files to or
from the system without giving them access to the full file system or exposing the
FileSystem provider. The user drive contents are persistent across sessions to
accommodate situations where network connectivity may be interrupted.

PowerShell

By default, the user drive allows you to store a maximum of 50MB of data per user. You
can limit the amount of data a user can consume with the UserDriveMaximumSize field.

Group managed service accounts are only available on domain-joined machines
using PowerShell 5.1 or newer.

Session transcripts

TranscriptDirectory = 'C:\ProgramData\JEAConfiguration\Transcripts'

User drive

MountUserDrive = $true



PowerShell

If you don't want data in the user drive to be persistent, you can configure a scheduled
task on the system to automatically clean up the folder every night.

For more information about PSDrives, see Managing PowerShell drives.

Role definitions in a session configuration file define the mapping of users to roles.
Every user or group included in this field is granted permission to the JEA endpoint
when it's registered. Each user or group can be included as a key in the hashtable only
once, but can be assigned multiple roles. The name of the role capability should be the
name of the role capability file, without the .psrc  extension.

PowerShell

If a user belongs to more than one group in the role definition, they get access to the
roles of each. When two roles grant access to the same cmdlets, the most permissive
parameter set is granted to the user.

When specifying local users or groups in the role definitions field, be sure to use the
computer name, not localhost or wildcards. You can check the computer name by
inspecting the $Env:COMPUTERNAME  variable.

PowerShell

# Enables the user drive with a per-user limit of 500MB (524288000 bytes)
MountUserDrive = $true
UserDriveMaximumSize = 524288000

７ Note

The user drive is only available in PowerShell 5.1 or newer.

Role definitions

RoleDefinitions = @{
    'CONTOSO\JEA_DNS_ADMINS'    = @{ RoleCapabilities = 'DnsAdmin', 
'DnsOperator', 'DnsAuditor' }
    'CONTOSO\JEA_DNS_OPERATORS' = @{ RoleCapabilities = 'DnsOperator', 
'DnsAuditor' }
    'CONTOSO\JEA_DNS_AUDITORS'  = @{ RoleCapabilities = 'DnsAuditor' }
}

https://learn.microsoft.com/en-us/powershell/scripting/samples/managing-windows-powershell-drives


As shown in the example above, role capabilities are referenced by the base name of the
role capability file. The base name of a file is the filename without the extension. If
multiple role capabilities are available on the system with the same name, PowerShell
uses its implicit search order to select the effective role capability file. JEA does not give
access to all role capability files with the same name.

JEA uses the $Env:PSModulePath  environment variable to determine which paths to scan
for role capability files. Within each of those paths, JEA looks for valid PowerShell
modules that contain a "RoleCapabilities" subfolder. As with importing modules, JEA
prefers role capabilities that are shipped with Windows to custom role capabilities with
the same name.

For all other naming conflicts, precedence is determined by the order in which Windows
enumerates the files in the directory. The order isn't guaranteed to be alphabetical. The
first role capability file found that matches the specified name is used for the connecting
user. Since the role capability search order isn't deterministic, it's strongly
recommended that role capabilities have unique filenames.

All users and groups included in the RoleDefinitions field are automatically granted
access to JEA endpoints. Conditional access rules allow you to refine this access and
require users to belong to additional security groups that don't impact the roles to
which they're assigned. This is useful when you want to integrate a just-in-time
privileged access management solution, smartcard authentication, or other multifactor
authentication solution with JEA.

Conditional access rules are defined in the RequiredGroups field in a session
configuration file. There, you can provide a hashtable (optionally nested) that uses 'And'
and 'Or' keys to construct your rules. Here are some examples of how to use this field:

PowerShell

RoleDefinitions = @{
    'MyComputerName\MyLocalGroup' = @{ RoleCapabilities = 'DnsAuditor' }
}

Role capability search order

Conditional access rules

# Example 1: Connecting users must belong to a security group called 
"elevated-jea"
RequiredGroups = @{ And = 'elevated-jea' }



Session configuration files can also do everything a role capability file can do, just
without the ability to give connecting users access to different commands. If you want
to allow all users access to specific cmdlets, functions, or providers, you can do so right
in the session configuration file. For a full list of supported properties in the session
configuration file, run Get-Help New-PSSessionConfigurationFile -Full .

You can test a session configuration using the Test-PSSessionConfigurationFile cmdlet.
It's recommended that you test your session configuration file if you've manually edited
the .pssc  file. Testing ensures the syntax is correct. If a session configuration file fails
this test, it can't be registered on the system.

The following example shows how to create and validate a session configuration for JEA.
The role definitions are created and stored in the $roles  variable for convenience and
readability. it isn't a requirement to do so.

PowerShell

# Example 2: Connecting users must have signed on with 2 factor 
authentication or a smart card
# The 2 factor authentication group name is "2FA-logon" and the smart card 
group
# name is "smartcard-logon"
RequiredGroups = @{ Or = '2FA-logon', 'smartcard-logon' }

# Example 3: Connecting users must elevate into "elevated-jea" with their 
JIT system and
# have logged on with 2FA or a smart card
RequiredGroups = @{ And = 'elevated-jea', @{ Or = '2FA-logon', 'smartcard-
logon' }}

７ Note

Conditional access rules are only available in PowerShell 5.1 or newer.

Other properties

Testing a session configuration file

Sample session configuration file

$roles = @{
    'CONTOSO\JEA_DNS_ADMINS'    = @{ RoleCapabilities = 'DnsAdmin', 

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/test-pssessionconfigurationfile


To change the properties of a JEA session configuration, including the mapping of users
to roles, you must unregister. Then, re-register the JEA session configuration using an
updated session configuration file.

Register a JEA configuration
Author JEA roles

'DnsOperator', 'DnsAuditor' }
    'CONTOSO\JEA_DNS_OPERATORS' = @{ RoleCapabilities = 'DnsOperator', 
'DnsAuditor' }
    'CONTOSO\JEA_DNS_AUDITORS'  = @{ RoleCapabilities = 'DnsAuditor' }
}

$parameters = @{
    SessionType = 'RestrictedRemoteServer'
    Path = '.\JEAConfig.pssc'
    RunAsVirtualAccount = $true
    TranscriptDirectory = 'C:\ProgramData\JEAConfiguration\Transcripts'
    RoleDefinitions = $roles
    RequiredGroups = @{ Or = '2FA-logon', 'smartcard-logon' }
}
New-PSSessionConfigurationFile @parameters
Test-PSSessionConfigurationFile -Path .\JEAConfig.pssc # should yield True

Updating session configuration files

Next steps



Registering JEA Configurations
Article • 04/01/2024

Once you have your role capabilities and session configuration file created, the last step
is to register the JEA endpoint. Registering the JEA endpoint with the system makes the
endpoint available for use by users and automation engines.

For small environments, you can deploy JEA by registering the session configuration file
using the Register-PSSessionConfiguration cmdlet.

Before you begin, ensure that the following prerequisites have been met:

One or more roles has been created and placed in the RoleCapabilities folder of a
PowerShell module.
A session configuration file has been created and tested.
The user registering the JEA configuration has administrator rights on the system.
You've selected a name for your JEA endpoint.

The name of the JEA endpoint is required when users connect to the system using JEA.
The Get-PSSessionConfiguration cmdlet lists the names of the endpoints on a system.
Endpoints that start with microsoft  are typically shipped with Windows. The
microsoft.powershell  endpoint is the default endpoint used when connecting to a
remote PowerShell endpoint.

PowerShell

Output

Run the following command to register the endpoint.

PowerShell

Single machine configuration

Get-PSSessionConfiguration | Select-Object Name

Name
----
microsoft.powershell
microsoft.powershell.workflow
microsoft.powershell32

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-pssessionconfiguration
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-pssessionconfiguration


After registration, you're ready to use JEA. You may delete the session configuration file
at any time. The configuration file isn't used after registration of the endpoint.

When deploying JEA on multiple machines, the simplest deployment model uses the JEA
Desired State Configuration (DSC) resource to quickly and consistently deploy JEA on
each machine.

To deploy JEA with DSC, ensure the following prerequisites are met:

One or more role capabilities have been authored and added to a PowerShell
module.
The PowerShell module containing the roles is stored on a (read-only) file share
accessible by each machine.
Settings for the session configuration have been determined. You don't need to
create a session configuration file when using the JEA DSC resource.
You have credentials that allow administrative actions on each machine or access
to the DSC pull server used to manage the machines.
You've downloaded the JEA DSC resource .

Create a DSC configuration for your JEA endpoint on a target machine or pull server. In
this configuration, the JustEnoughAdministration DSC resource defines the session
configuration file and the File resource copies the role capabilities from the file share.

The following properties are configurable using the DSC resource:

Role Definitions
Virtual account groups
Group-managed service account name
Transcript directory

Register-PSSessionConfiguration -Path .\MyJEAConfig.pssc -Name 
'JEAMaintenance' -Force

２ Warning

The previous command restarts the WinRM service on the system. This terminates
all PowerShell remoting sessions and any ongoing DSC configurations. We
recommended you take production machines offline before running the command
to avoid disrupting business operations.

Multi-machine configuration with DSC

https://github.com/powershell/JEA/tree/master/DSC%20Resource


User drive
Conditional access rules
Startup scripts for the JEA session

The syntax for each of these properties in a DSC configuration is consistent with the
PowerShell session configuration file.

Below is a sample DSC configuration for a general server maintenance module. It
assumes that a valid PowerShell module containing role capabilities is located on the
\\myfileshare\JEA  file share.

PowerShell

Next, the configuration is applied on a system by directly invoking the Local
Configuration Manager or updating the pull server configuration.

The DSC resource also allows you to replace the default Microsoft.PowerShell endpoint.
When replaced, the resource automatically registers a backup endpoint named
Microsoft.PowerShell.Restricted. The backup endpoint has the default WinRM ACL that
allows Remote Management Users and local Administrators group members to access it.

Configuration JEAMaintenance
{
    Import-DscResource -Module JustEnoughAdministration, 
PSDesiredStateConfiguration

    File MaintenanceModule
    {
        SourcePath = "\\myfileshare\JEA\ContosoMaintenance"
        DestinationPath = "C:\Program 
Files\WindowsPowerShell\Modules\ContosoMaintenance"
        Checksum = "SHA-256"
        Ensure = "Present"
        Type = "Directory"
        Recurse = $true
    }

    JeaEndpoint JEAMaintenanceEndpoint
    {
        EndpointName = "JEAMaintenance"
        RoleDefinitions = "@{ 'CONTOSO\JEAMaintenanceAuditors' = @{ 
RoleCapabilities = 'GeneralServerMaintenance-Audit' }; 
'CONTOSO\JEAMaintenanceAdmins' = @{ RoleCapabilities = 
'GeneralServerMaintenance-Audit', 'GeneralServerMaintenance-Admin' } }"
        TranscriptDirectory = 'C:\ProgramData\JEAConfiguration\Transcripts'
        DependsOn = '[File]MaintenanceModule'
    }
}

https://learn.microsoft.com/en-us/powershell/scripting/dsc/managing-nodes/metaConfig
https://learn.microsoft.com/en-us/powershell/scripting/dsc/pull-server/pullServer


The Unregister-PSSessionConfiguration cmdlet removes a JEA endpoint. Unregistering a
JEA endpoint prevents new users from creating new JEA sessions on the system. It also
allows you to update a JEA configuration by re-registering an updated session
configuration file using the same endpoint name.

PowerShell

Test the JEA endpoint

Unregistering JEA configurations

# Unregister the JEA endpoint called "ContosoMaintenance"
Unregister-PSSessionConfiguration -Name 'ContosoMaintenance' -Force

２ Warning

Unregistering a JEA endpoint causes the WinRM service to restart. This interrupts
most remote management operations in progress, including other PowerShell
sessions, WMI invocations, and some management tools. Only unregister
PowerShell endpoints during planned maintenance windows.

Next steps

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/Unregister-PSSessionConfiguration
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Fregister-jea%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Fregister-jea.md&documentVersionIndependentId=64013a0a-acf4-c5e7-1d8b-5fba8b9e49c6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c9a5f1c0-eca4-9137-fc5e-251c112a2e8e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Using JEA
Article • 04/01/2024

This article describes the various ways you can connect to and use a JEA endpoint.

If you're testing your JEA configuration or have simple tasks for users, you can use JEA
the same way you would a regular PowerShell remoting session. For complex remoting
tasks, it's recommended to use implicit remoting. Implicit remoting allows users to
operate with the data objects locally.

To use JEA interactively, you need:

The name of the computer you're connecting to (can be the local machine)
The name of the JEA endpoint registered on that computer
Credentials that have access to the JEA endpoint on that computer

Given that information, you can start a JEA session using the New-PSSession or Enter-
PSSession cmdlets.

PowerShell

If the current user account has access to the JEA endpoint, you can omit the Credential
parameter.

When the PowerShell prompt changes to [localhost]: PS>  you know that you're now
interacting with the remote JEA session. You can run Get-Command  to check which
commands are available. Consult with your administrator to learn if there are any
restrictions on the available parameters or allowed parameter values.

Remember, JEA sessions operate in NoLanguage  mode. Some of the ways you typically
use PowerShell may not be available. For instance, you can't use variables to store data
or inspect the properties on objects returned from cmdlets. The following example
shows two approaches to get the same commands to work in NoLanguage  mode.

Using JEA interactively

$sessionParams = @{
    ComputerName      = 'localhost'
    ConfigurationName = 'JEAMaintenance'
    Credential        = Get-Credential
}
Enter-PSSession @sessionParams

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/New-PSSession
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession


PowerShell

For more complex command invocations that make this approach difficult, consider
using implicit remoting or creating custom functions that wrap the functionality you
require. For more information on NoLanguageMode , see about_Language_Modes.

PowerShell has an implicit remoting model that lets you import proxy cmdlets from a
remote machine and interact with them as if they were local commands. Implicit
remoting is explained in this Hey, Scripting Guy! blog post . Implicit remoting is useful
when working with JEA because it allows you to work with JEA cmdlets in a full language
mode. You can use tab completion, variables, manipulate objects, and even use local
scripts to automate tasks against a JEA endpoint. Anytime you invoke a proxy command,
the data is sent to the JEA endpoint on the remote machine and executed there.

Implicit remoting works by importing cmdlets from an existing PowerShell session. You
can optionally choose to prefix the nouns of each proxy cmdlet with a string of your
choosing. The prefix allows you to distinguish the commands that are for the remote
system. A temporary script module containing all the proxy commands is created and
imported for the duration of your local PowerShell session.

PowerShell

# Using variables is prohibited in NoLanguage mode. The following will not 
work:
# $vm = Get-VM -Name 'SQL01'
# Start-VM -VM $vm

# You can use pipes to pass data through to commands that accept input from 
the pipeline
Get-VM -Name 'SQL01' | Start-VM

# You can also wrap subcommands in parentheses and enter them inline as 
arguments
Start-VM -VM (Get-VM -Name 'SQL01')

# You can also use parameter sets that don't require extra data to be passed 
in
Start-VM -VMName 'SQL01'

Using JEA with implicit remoting

# Create a new PSSession to your JEA endpoint
$jeaSession = New-PSSession -ComputerName 'SERVER01' -ConfigurationName 
'JEAMaintenance'

# Import the entire PSSession and prefix each imported cmdlet with "JEA"

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Language_Modes
https://devblogs.microsoft.com/scripting/remoting-the-implicit-way/


If you're unable to import a JEA session because of JEA constraints on the default
parameters, follow the steps below to filter out the default commands from the
imported set. You can continue use commands like Select-Object , but you'll just use
the local version installed on your computer instead of the one imported from the
remote JEA session.

PowerShell

Import-PSSession -Session $jeaSession -Prefix 'JEA'

# Invoke "Get-Command" on the remote JEA endpoint using the proxy cmdlet
Get-JEACommand

） Important

Some systems may not be able to import an entire JEA session due to constraints in
the default JEA cmdlets. To get around this, only import the commands you need
from the JEA session by explicitly providing their names to the -CommandName
parameter. A future update will address the issue with importing entire JEA sessions
on affected systems.

# Create a new PSSession to your JEA endpoint
$jeaSession = New-PSSession -ComputerName 'SERVER01' -ConfigurationName 
'JEAMaintenance'

# Get a list of all the commands on the JEA endpoint
$commands = Invoke-Command -Session $jeaSession -ScriptBlock { Get-Command }

# Filter out the default cmdlets
$jeaDefaultCmdlets = @(
    'Clear-Host'
    'Exit-PSSession'
    'Get-Command'
    'Get-FormatData'
    'Get-Help'
    'Measure-Object'
    'Out-Default'
    'Select-Object'
)
$filteredCommands = $commands.Name | Where-Object { $jeaDefaultCmdlets -
notcontains $_ }

# Import only commands explicitly added in role capabilities and prefix each
# imported cmdlet with "JEA"
Import-PSSession -Session $jeaSession -Prefix 'JEA' -CommandName 
$filteredCommands



You can also persist the proxied cmdlets from implicit remoting using Export-PSSession.
For more information about implicit remoting, see the documentation for Import-
PSSession and Import-Module.

JEA can also be used in automation systems and in user applications, such as in-house
helpdesk apps and websites. The approach is the same as that for building apps that
talk to unconstrained PowerShell endpoints. Ensure the program is designed to work
with limitation imposed by JEA.

For simple, one-off tasks, you can use Invoke-Command to run commands in a JEA
session.

PowerShell

To check which commands are available for use when you connect to a JEA session, run
Get-Command  and iterate through the results to check for the allowed parameters.

PowerShell

If you're building a C# app, you can create a PowerShell runspace that connects to a JEA
session by specifying the configuration name in a WSManConnectionInfo object.

C#

Using JEA programmatically

Invoke-Command -ComputerName 'SERVER01' -ConfigurationName 'JEAMaintenance' 
-ScriptBlock {
    Get-Process
    Get-Service
}

$commandParameters = @{
    ComputerName      = 'SERVER01'
    ConfigurationName = 'JEAMaintenance'
    ScriptBlock       = { Get-Command }
}
Invoke-Command @commandParameters |
    Where-Object { $_.CommandType -in @('Function', 'Cmdlet') } |
    Format-Table Name, Parameters

// using System.Management.Automation;
var computerName = "SERVER01";
var configName   = "JEAMaintenance";
// See 
https://learn.microsoft.com/dotnet/api/system.management.automation.pscreden

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/Export-PSSession
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-pssession
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.wsmanconnectioninfo


Hyper-V in Windows 10 and Windows Server 2016 offers PowerShell Direct, a feature
that allows Hyper-V administrators to manage virtual machines with PowerShell
regardless of the network configuration or remote management settings on the virtual
machine.

You can use PowerShell Direct with JEA to give a Hyper-V administrator limited access to
your VM. This can be useful if you lose network connectivity to your VM and need a

tial
var creds        = // create a PSCredential object here

WSManConnectionInfo connectionInfo = new WSManConnectionInfo(
    false,                 // Use SSL
    computerName,          // Computer name
    5985,                  // WSMan Port
    "/wsman",              // WSMan Path
                           // Connection URI with config name
    string.Format(
        CultureInfo.InvariantCulture,
        "http://schemas.microsoft.com/powershell/{0}",
        configName
    ),
    creds                  // Credentials
);

// Now, use the connection info to create a runspace where you can run the 
commands
using (Runspace runspace = RunspaceFactory.CreateRunspace(connectionInfo))
{
    // Open the runspace
    runspace.Open();

    using (PowerShell ps = PowerShell.Create())
    {
        // Set the PowerShell object to use the JEA runspace
        ps.Runspace = runspace;

        // Now you can add and invoke commands
        ps.AddCommand("Get-Command");
        foreach (var result in ps.Invoke())
        {
            Console.WriteLine(result);
        }
    }

    // Close the runspace
    runspace.Close();
}

Using JEA with PowerShell Direct

https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct


datacenter admin to fix the network settings.

No additional configuration is required to use JEA over PowerShell Direct. However, the
guest operating system running inside the virtual machine must be Windows 10,
Windows Server 2016, or higher. The Hyper-V admin can connect to the JEA endpoint
by using the -VMName  or -VMId  parameters on PSRemoting cmdlets:

PowerShell

It's recommended you create a dedicated user account with the minimum rights needed
to manage the system for use by a Hyper-V administrator. Remember, even an
unprivileged user can sign into a Windows machine by default, including using
unconstrained PowerShell. That allows them to browse the file system and learn more
about your OS environment. To lock down a Hyper-V administrator and limit them to
only access a VM using PowerShell Direct with JEA, you must deny local logon rights to
the Hyper-V admin's JEA account.

$sharedParams = @{
    ConfigurationName = 'NICMaintenance'
    Credential        = Get-Credential -UserName 'localhost\JEAformyHoster'
}
# Entering a JEA session using PowerShell Direct when the VM name is unique
Enter-PSSession -VMName 'SQL01' @sharedParams

# Entering a JEA session using PowerShell Direct using VM ids
$vm = Get-VM -VMName 'MyVM' | Select-Object -First 1
Enter-PSSession -VMId $vm.VMId @sharedParams

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Fusing-jea%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Fusing-jea.md&documentVersionIndependentId=bd492c8f-8ff7-389c-5023-d1691f678b4e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c4293e47-0c3d-48c6-7ff6-6a58fbf842eb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


JEA Security Considerations
Article • 04/01/2024

JEA helps you improve your security posture by reducing the number of permanent
administrators on your machines. JEA uses a PowerShell session configuration to create
a new entry point for users to manage the system. Users who need elevated, but not
unlimited, access to the machine to do administrative tasks can be granted access to the
JEA endpoint. Since JEA allows these users to run administrative commands without
having full administrator access, you can then remove those users from highly privileged
security groups.

Each JEA endpoint has a designated run-as account under which the connecting user's
actions are executed. This account is configurable in the session configuration file, and
the account you choose has a significant bearing on the security of your endpoint.

Virtual accounts are the recommended way of configuring the run-as account. Virtual
accounts are one-time, temporary local accounts that are created for the connecting
user to use during the duration of their JEA session. As soon as their session is
terminated, the virtual account is destroyed and can't be used anymore. The connecting
user doesn't know the credentials for the virtual account. The virtual account can't be
used to access the system via other means like Remote Desktop or an unconstrained
PowerShell endpoint.

By default, virtual accounts are members of the local Administrators group on the
machine. This membership gives them full rights to manage anything on the system, but
no rights to manage resources on the network. When the user connects to other
machines from the JEA session, the user context is that of the local computer account,
not the virtual account.

Domain controllers are a special case since there isn't a local Administrators group.
Instead, virtual accounts belong to Domain Admins and can manage the directory
services on the domain controller. The domain identity is still restricted for use on the
domain controller where the JEA session was instantiated. Any network access appears
to come from the domain controller computer object instead.

In both cases, you may assign the virtual account to specific security groups, especially
when the task can be done without local or domain administrator privileges. If you
already have a security group defined for your administrators, grant the virtual account
membership to that group. Group membership for virtual accounts is limited to local

Run-As account



security groups on workstation and member servers. On domain controllers, virtual
accounts must be members of domain security groups. Once the virtual account has
been added to one or more security groups, it no longer belongs to the default groups
(local or domain administrators).

The following table summarizes the possible configuration options and resulting
permissions for virtual accounts:

Computer type Virtual account
group configuration

Local user context Network user
context

Domain controller Default Domain user, member of
<DOMAIN>\Domain Admins

Computer
account

Domain controller Domain groups A and
B

Domain user, member of
<DOMAIN>\A , <DOMAIN>\B

Computer
account

Member server or
workstation

Default Local user, member of
BUILTIN\Administrators

Computer
account

Member server or
workstation

Local groups C and D Local user, member of
<COMPUTER>\C  and <COMPUTER>\D

Computer
account

When you look at Security audit and Application event logs, you see that each JEA user
session has a unique virtual account. This unique account helps you track user actions in
a JEA endpoint back to the original user who ran the command. Virtual account names
follow the format WinRM Virtual
Users\WinRM_VA_<ACCOUNTNUMBER>_<DOMAIN>_<sAMAccountName>  For example, if user Alice in
domain Contoso restarts a service in a JEA endpoint, the username associated with any
service control manager events would be WinRM Virtual
Users\WinRM_VA_1_contoso_alice .

Group-managed service accounts (gMSAs) are useful when a member server needs to
have access to network resources in the JEA session. For example, when a JEA endpoint
is used to control access to a REST API service hosted on a different machine. It's easy to
write functions to invoke the REST APIs, but you need a network identity to authenticate
with the API. Using a group-managed service account makes the second hop possible
while maintaining control over which computers can use the account. The security group
(local or domain) memberships of the gMSA defined the effective permissions for the
gMSA account.

ﾉ Expand table



When a JEA endpoint is configured to use a gMSA, the actions of all JEA users appear to
come from the same gMSA. The only way to trace actions back to a specific user is to
identify the set of commands run in a PowerShell session transcript.

Pass-through credentials are used when you don't specify a run-as account. PowerShell
uses the connecting user's credential to run commands on the remote server. To use
pass-through credentials, you must grant the connecting user direct access to privileged
management groups. This configuration is NOT recommended for JEA. If the connecting
user already has administrator privileges, they can bypass JEA and manage the system
using other access methods.

Standard run-as accounts allow you to specify any user account under which the entire
PowerShell session runs. Session configurations using fixed run-as accounts (with the -
RunAsCredential  parameter) aren't JEA-aware. Role definitions no longer function as
expected. Every user authorized to access the endpoint is assigned the same role.

You shouldn't use a RunAsCredential on a JEA endpoint because it's difficult to trace
actions back to specific users and lacks support for mapping users to roles.

As with regular PowerShell remoting endpoints, each JEA endpoint has a separate access
control list (ACL) that controls who can authenticate with the JEA endpoint. If improperly
configured, trusted users may not be able to access the JEA endpoint, and untrusted
users may have access. The WinRM ACL doesn't affect the mapping of users to JEA roles.
Mapping is controlled by the RoleDefinitions field in the session configuration file used
to register the endpoint.

By default, when a JEA endpoint has multiple role capabilities, the WinRM ACL is
configured to allow access to all mapped users. For example, a JEA session configured
using the following commands grants full access to CONTOSO\JEA_Lev1  and
CONTOSO\JEA_Lev2 .

PowerShell

You can audit user permissions with the Get-PSSessionConfiguration cmdlet.

WinRM Endpoint ACL

$roles = @{ 'CONTOSO\JEA_Lev1' = 'Lev1Role'; 'CONTOSO\JEA_Lev2' = 'Lev2Role' 
}
New-PSSessionConfigurationFile -Path '.\jea.pssc' -SessionType 
RestrictedRemoteServer -RoleDefinitions $roles -RunAsVirtualAccount
Register-PSSessionConfiguration -Path '.\jea.pssc' -Name 'MyJEAEndpoint'

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-pssessionconfiguration?view=powershell-7.5


PowerShell

Output

To change which users have access, run either Set-PSSessionConfiguration -Name
'MyJEAEndpoint' -ShowSecurityDescriptorUI  for an interactive prompt or Set-
PSSessionConfiguration -Name 'MyJEAEndpoint' -SecurityDescriptorSddl <SDDL string>

to update the permissions. Users need at least Invoke rights to access the JEA endpoint.

It's possible to create a JEA endpoint that doesn't map a defined role to every user that
has access. These users can start a JEA session, but only have access to the default
cmdlets. You can audit user permissions in a JEA endpoint by running Get-
PSSessionCapability . For more information, see Auditing and Reporting on JEA.

When designing JEA roles, it's important to remember that the virtual and group-
managed service accounts running behind the scenes can have unrestricted access to
the local machine. JEA role capabilities help limit the commands and applications that
can be run in that privileged context. Improperly designed roles can allow dangerous
commands that may permit a user to break out of the JEA boundaries or obtain access
to sensitive information.

For example, consider the following role capability entry:

PowerShell

This role capability allows users to run any PowerShell cmdlet with the noun Process
from the Microsoft.PowerShell.Management module. Users may need to access
cmdlets like Get-Process  to see what applications are running on the system and Stop-
Process  to kill applications that aren't responding. However, this entry also allows

Get-PSSessionConfiguration -Name 'MyJEAEndpoint' | Select-Object Permission

Permission
----------
CONTOSO\JEA_Lev1 AccessAllowed
CONTOSO\JEA_Lev2 AccessAllowed

Least privilege roles

@{
    VisibleCmdlets = 'Microsoft.PowerShell.Management\*-Process'
}



Start-Process , which can be used to start up an arbitrary program with full
administrator permissions. The program doesn't need to be installed locally on the
system. A connected user could start a program from a file share that gives the user
local administrator privileges, runs malware, and more.

A more secure version of this same role capability would look like:

PowerShell

Avoid using wildcards in role capabilities. Be sure to regularly audit effective user
permissions to see which commands are accessible to a user. For more information, see
the Check effective rights section of the Auditing and Reporting on JEA article.

The following are best practice recommendations to ensure the security of your JEA
endpoints:

Review how the allowed providers are used to ensure that you don't create
vulnerabilities in your configured session.

@{
    VisibleCmdlets = 'Microsoft.PowerShell.Management\Get-Process',
                     'Microsoft.PowerShell.Management\Stop-Process'
}

Best practice recommendations

Limit the use and capabilities of PowerShell providers

２ Warning

Don't allow the FileSystem provider. If users can write to any part of the file system,
it's possible to completely bypass security.

Don't allow the Certificate provider. With the provider enabled, a user could gain
access to stored private keys.

Don't allow commands that can create new runspaces.

２ Warning



PowerShell has a set of proxy commands for restricted command scenarios. These proxy
commands ensure that input parameters can't compromise the security of the session.
The following commands have restricted proxies:

Exit-PSSession

Get-Command

Get-FormatData

Get-Help

Measure-Object

Out-Default

Select-Object

If you create your own implementation of these commands, you may inadvertently allow
users to run code prohibited by the JEA proxy commands.

One of the core principles of JEA is that it allows nonadministrators to do some
administrative tasks. JEA doesn't protect against users who already have administrator
privileges. Users who belong Domain Admins, local Administrators, or other highly
privileged groups can circumvent JEA's protections in other ways. For example, they
could sign in with RDP, use remote MMC consoles, or connect to unconstrained
PowerShell endpoints. Also, local administrator on a system can modify JEA
configurations to add more users or change a role capability to extend the scope of
what a user can do in their JEA session. It's important to evaluate your JEA users'
extended permissions to see if there are other ways to gain privileged access to the
system.

The *-Job  cmdlets can create new runspaces without the restrictions.

Don't allow the Trace-Command  cmdlet.

２ Warning

Using Trace-Command  brings all traced commands into the session.

Don't create your own proxy implementations for the
restricted commands.

JEA doesn't protect against admins



In addition to using JEA for regular day-to-day maintenance, it's common to have a just-
in-time privileged access management system. These systems allow designated users to
temporarily become a local administrator only after they complete a workflow that
documents their use of those permissions.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Fsecurity-considerations%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Fsecurity-considerations.md&documentVersionIndependentId=be2061eb-d422-17b9-625c-8ed3351dfc04&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4b8db9f7-208a-41ff-1d30-24b348f3797a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Auditing and Reporting on JEA
Article • 04/01/2024

After you've deployed JEA, you need to regularly audit the JEA configuration. Auditing
helps you assess that the correct people have access to the JEA endpoint and their
assigned roles are still appropriate.

To check which JEA sessions are registered on a machine, use the Get-
PSSessionConfiguration cmdlet.

PowerShell

Output

The effective rights for the endpoint are listed in the Permission property. These users
have the right to connect to the JEA endpoint. However, the roles and commands they
have access to is determined by the RoleDefinitions property in the session
configuration file that was used to register the endpoint. Expand the RoleDefinitions
property to evaluate the role mappings in a registered JEA endpoint.

PowerShell

Find registered JEA sessions on a machine

# Filter for sessions that are configured as 'RestrictedRemoteServer' to
# find JEA-like session configurations
Get-PSSessionConfiguration | Where-Object { $_.SessionType -eq 
'RestrictedRemoteServer' }

Name          : JEAMaintenance
PSVersion     : 5.1
StartupScript :
RunAsUser     :
Permission    : CONTOSO\JEA_DNS_ADMINS AccessAllowed, 
CONTOSO\JEA_DNS_OPERATORS AccessAllowed,
                CONTOSO\JEA_DNS_AUDITORS AccessAllowed

# Get the desired session configuration
$jea = Get-PSSessionConfiguration -Name 'JEAMaintenance'

# Enumerate users/groups and which roles they have access to
$jea.RoleDefinitions.GetEnumerator() | Select-Object Name, @{
  Name = 'Role Capabilities'

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-pssessionconfiguration


JEA gets role capabilities from the .psrc  files stored in the RoleCapabilities folder inside
a PowerShell module. The following function finds all role capabilities available on a
computer.

PowerShell

The Get-PSSessionCapability cmdlet enumerates all the commands available on a JEA
endpoint based on a user's group memberships. The output of Get-PSSessionCapability
is identical to that of the specified user running Get-Command -CommandType All  in a JEA
session.

PowerShell

  Expression = { $_.Value.RoleCapabilities }
}

Find available role capabilities on the machine

function Find-LocalRoleCapability {
    $results = @()

    # Find modules with a "RoleCapabilities" subfolder and add any PSRC 
files to the result set
    Get-Module -ListAvailable | ForEach-Object {
        $psrcpath = Join-Path -Path $_.ModuleBase -ChildPath 
'RoleCapabilities'
        if (Test-Path $psrcpath) {
            $results += Get-ChildItem -Path $psrcpath -Filter *.psrc
        }
    }

    # Format the results nicely to make it easier to read
    $results | Select-Object @{ Name = 'Name'; Expression = { 
$_.Name.TrimEnd('.psrc') }}, @{
        Name = 'Path'; Expression = { $_.FullName }
    } | Sort-Object Name
}

７ Note

The order of results from this function isn't necessarily the order in which the role
capabilities will be selected if multiple role capabilities share the same name.

Check effective rights for a specific user

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/Get-PSSessionCapability


If your users aren't permanent members of groups that would grant them additional JEA
rights, this cmdlet may not reflect those extra permissions. This happens when using
just-in-time privileged access management systems to allow users to temporarily belong
to a security group. Carefully evaluate the mapping of users to roles and capabilities to
ensure that users only get the level of access needed to do their jobs successfully.

If you enabled module or script block logging on the system, you can see events in the
Windows event logs for each command a user runs in a JEA session. To find these
events, open Microsoft-Windows-PowerShell/Operational event log and look for
events with event ID 4104.

Each event log entry includes information about the session in which the command was
run. For JEA sessions, the event includes information about the ConnectedUser and the
RunAsUser. The ConnectedUser is the actual user who created the JEA session. The
RunAsUser is the account JEA used to execute the command.

Application event logs show changes being made by the RunAsUser. So having module
and script logging enabled is required to trace a specific command invocation back to
the ConnectedUser.

Commands run in a JEA session that interact with external applications or services may
log events to their own event logs. Unlike PowerShell logs and transcripts, other logging
mechanisms don't capture the connected user of the JEA session. Instead, those
applications only log the virtual run-as user. To determine who ran the command, you
need to consult a session transcript or correlate PowerShell event logs with the time and
user shown in the application event log.

The WinRM log can also help you correlate run-as users to the connecting user in an
application event log. Event ID 193 in the Microsoft-Windows-Windows Remote
Management/Operational log records the security identifier (SID) and account name for
both the connecting user and run as user for every new JEA session.

Get-PSSessionCapability -ConfigurationName 'JEAMaintenance' -Username 
'CONTOSO\Alice'

PowerShell event logs

Application event logs

Session transcripts



If you configured JEA to create a transcript for each user session, a text copy of every
user's actions are stored in the specified folder.

The following command (as an administrator) finds all transcript directories.

PowerShell

Each transcript starts with information about the time the session started, which user
connected to the session, and which JEA identity was assigned to them.

The body of the transcript contains information about each command the user invoked.
The exact syntax of the command used is unavailable in JEA sessions because of the way
commands are transformed for PowerShell remoting. However, you can still determine
the effective command that was executed. Below is an example transcript snippet from a
user running Get-Service Dns  in a JEA session:

A CommandInvocation line is written for each command a user runs.
ParameterBindings record each parameter and value supplied with the command. In the
previous example, you can see that the parameter Name was supplied the with value
Dns for the Get-Service  cmdlet.

Get-PSSessionConfiguration |
  Where-Object { $_.TranscriptDirectory -ne $null } |
    Format-Table Name, TranscriptDirectory

**********************
Windows PowerShell transcript start
Start time: 20160710144736
Username: CONTOSO\Alice
RunAs User: WinRM Virtual Users\WinRM VA_1_CONTOSO_Alice
Machine: SERVER01 (Microsoft Windows NT 10.0.14393.0)
[...]

PS>CommandInvocation(Get-Service): "Get-Service"
>> ParameterBinding(Get-Service): name="Name"; value="Dns"
>> CommandInvocation(Out-Default): "Out-Default"
>> ParameterBinding(Out-Default): name="InputObject"; value="Dns"

Running  Dns                DNS Server



The output of each command also triggers a CommandInvocation, usually to Out-
Default . The InputObject of Out-Default  is the PowerShell object returned from the
command. The details of that object are printed a few lines below, closely mimicking
what the user would have seen.

PowerShell ♥ the Blue Team blog post on security

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fremoting%2Fjea%2Faudit-and-report%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fremoting%2Fjea%2Faudit-and-report.md&documentVersionIndependentId=253f7a43-6a9f-3785-7f3b-7da4741119b1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c1681f97-37a1-2d0d-aa47-421893cad375+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Running Remote Commands
Article • 03/24/2025

You can run commands on one or hundreds of computers with a single PowerShell
command. Windows PowerShell supports remote computing using various technologies,
including WMI, RPC, and WS-Management.

PowerShell supports WMI, WS-Management, and SSH remoting. In PowerShell 7 and
higher, RPC is supported only on Windows.

For more information about remoting in PowerShell, see the following articles:

SSH Remoting in PowerShell
WSMan Remoting in PowerShell

Many Windows PowerShell cmdlets have the ComputerName parameter that enables
you to collect data and change settings on one or more remote computers. These
cmdlets use varying communication protocols and work on all Windows operating
systems without any special configuration.

These cmdlets include:

Restart-Computer
Test-Connection
Clear-EventLog
Get-EventLog
Get-HotFix
Get-Process
Get-Service
Set-Service
Get-WinEvent
Get-WmiObject

Typically, cmdlets that support remoting without special configuration have the
ComputerName parameter and don't have the Session parameter. To find these cmdlets
in your session, type:

PowerShell

Windows PowerShell remoting without
configuration

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/restart-computer?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-connection?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/clear-eventlog?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-eventlog?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-hotfix?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-service?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-winevent?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-wmiobject?view=powershell-7.5


Using the WS-Management protocol, Windows PowerShell remoting lets you run any
Windows PowerShell command on one or more remote computers. You can establish
persistent connections, start interactive sessions, and run scripts on remote computers.

To use Windows PowerShell remoting, the remote computer must be configured for
remote management. For more information, including instructions, see About Remote
Requirements.

Once you have configured Windows PowerShell remoting, many remoting strategies are
available to you. This article lists just a few of them. For more information, see About
Remote.

To start an interactive session with a single remote computer, use the Enter-PSSession
cmdlet. For example, to start an interactive session with the Server01 remote computer,
type:

PowerShell

The command prompt changes to display the name of the remote computer. Any
commands that you type at the prompt run on the remote computer and the results are
displayed on the local computer.

To end the interactive session, type:

PowerShell

For more information about the Enter-PSSession  and Exit-PSSession  cmdlets, see:

Enter-PSSession

Get-Command | Where-Object {
    $_.Parameters.Keys -contains "ComputerName" -and
    $_.Parameters.Keys -notcontains "Session"
}

Windows PowerShell remoting

Start an interactive session

Enter-PSSession Server01

Exit-PSSession

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession?view=powershell-7.5


Exit-PSSession

To run a command on one or more computers, use the Invoke-Command cmdlet. For
example, to run a Get-UICulture command on the Server01 and Server02 remote
computers, type:

PowerShell

The output is returned to your computer.

Output

To run a script on one or many remote computers, use the FilePath parameter of the
Invoke-Command  cmdlet. The script must be on or accessible to your local computer. The
results are returned to your local computer.

For example, the following command runs the DiskCollect.ps1  script on the remote
computers, Server01 and Server02.

PowerShell

Use the New-PSSession  cmdlet to create a persistent session on a remote computer. The
following example creates remote sessions on Server01 and Server02. The session
objects are stored in the $s  variable.

PowerShell

Run a Remote Command

Invoke-Command -ComputerName Server01, Server02 -ScriptBlock {Get-UICulture}

LCID    Name     DisplayName               PSComputerName
----    ----     -----------               --------------
1033    en-US    English (United States)   server01.corp.fabrikam.com
1033    en-US    English (United States)   server02.corp.fabrikam.com

Run a Script

Invoke-Command -ComputerName Server01, Server02 -FilePath 
C:\Scripts\DiskCollect.ps1

Establish a Persistent Connection

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/exit-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-uiculture?view=powershell-7.5


Now that the sessions are established, you can run any command in them. And because
the sessions are persistent, you can collect data from one command and use it in
another command.

For example, the following command runs a Get-HotFix  command in the sessions in the
$s  variable and it saves the results in the $h  variable. The $h  variable is created in each
of the sessions in $s , but it doesn't exist in the local session.

PowerShell

Now you can use the data in the $h  variable with other commands in the same session.
The results are displayed on the local computer. For example:

PowerShell

PowerShell includes cmdlets that allow you to:

Configure and create remote sessions both from the local and remote ends
Create customized and restricted sessions
Import commands from a remote session that actually run implicitly on the remote
session
Configure the security of a remote session

PowerShell on Windows includes a WSMan provider. The provider creates a WSMan:
drive that lets you navigate through a hierarchy of configuration settings on the local
computer and remote computers.

For more information about the WSMan provider, see WSMan Provider and About WS-
Management Cmdlets, or in the Windows PowerShell console, type Get-Help WSMan .

For more information, see:

PowerShell Remoting FAQ

$s = New-PSSession -ComputerName Server01, Server02

Invoke-Command -Session $s {$h = Get-HotFix}

Invoke-Command -Session $s {$h | where {$_.InstalledBy -ne "NT 
AUTHORITY\SYSTEM"}}

Advanced Remoting

https://learn.microsoft.com/en-us/powershell/module/microsoft.wsman.management/about/about_wsman_provider
https://learn.microsoft.com/en-us/powershell/module/microsoft.wsman.management/about/about_ws-management_cmdlets
https://learn.microsoft.com/en-us/powershell/module/microsoft.wsman.management/about/about_ws-management_cmdlets


Register-PSSessionConfiguration
Import-PSSession

For help with remoting errors, see about_Remote_Troubleshooting.

about_Remote
about_Remote_Requirements
about_Remote_Troubleshooting
about_PSSessions
about_WS-Management_Cmdlets
Invoke-Command
Import-PSSession
New-PSSession
Register-PSSessionConfiguration
WSMan Provider

See Also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-pssessionconfiguration?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Remote_Troubleshooting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_faq
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Remote_Troubleshooting
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_PSSessions
https://learn.microsoft.com/en-us/powershell/module/microsoft.wsman.management/about/about_ws-management_cmdlets
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/import-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/register-pssessionconfiguration?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.wsman.management/about/about_wsman_provider


PowerShell remoting over SSH
Article • 04/01/2024

PowerShell remoting normally uses WinRM for connection negotiation and data
transport. SSH is now available for Linux and Windows platforms and allows true
multiplatform PowerShell remoting.

WinRM provides a robust hosting model for PowerShell remote sessions. SSH-based
remoting doesn't currently support remote endpoint configuration and Just Enough
Administration (JEA).

SSH remoting lets you do basic PowerShell session remoting between Windows and
Linux computers. SSH remoting creates a PowerShell host process on the target
computer as an SSH subsystem. Eventually we'll implement a general hosting model,
similar to WinRM, to support endpoint configuration and JEA.

The New-PSSession , Enter-PSSession , and Invoke-Command  cmdlets now have a new
parameter set to support this new remoting connection.

To create a remote session, you specify the target computer with the HostName
parameter and provide the user name with UserName. When running the cmdlets
interactively, you're prompted for a password. You can also use SSH key authentication
using a private key file with the KeyFilePath parameter. Creating keys for SSH
authentication varies by platform.

PowerShell 6 or higher, and SSH must be installed on all computers. Install both the SSH
client ( ssh.exe ) and server ( sshd.exe ) so that you can remote to and from the
computers. OpenSSH for Windows is now available in Windows 10 build 1809 and
Windows Server 2019. For more information, see Manage Windows with OpenSSH. For
Linux, install SSH, including sshd server, that's appropriate for your platform. You also
need to install PowerShell from GitHub to get the SSH remoting feature. The SSH server

Overview

[-HostName <string>]  [-UserName <string>]  [-KeyFilePath <string>]

General setup information

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview


must be configured to create an SSH subsystem to host a PowerShell process on the
remote computer. And, you must enable password or key-based authentication.

1. Install the latest version of PowerShell. For more information, see Installing
PowerShell on Windows.

You can confirm that PowerShell has SSH remoting support by listing the New-
PSSession  parameter sets. You'll notice there are parameter set names that begin
with SSH. Those parameter sets include SSH parameters.

PowerShell

Output

2. Install the latest Win32 OpenSSH. For installation instructions, see Getting started
with OpenSSH.

3. Edit the sshd_config  file located at $Env:ProgramData\ssh .

Make sure password authentication is enabled:

Create the SSH subsystem that hosts a PowerShell process on the remote
computer:

Install the SSH service on a Windows computer

(Get-Command New-PSSession).ParameterSets.Name

Name
----
SSHHost
SSHHostHashParam

７ Note

If you want to set PowerShell as the default shell for OpenSSH, see
Configuring Windows for OpenSSH.

PasswordAuthentication yes

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_server_configuration


Optionally, enable key authentication:

For more information, see Managing OpenSSH Keys.

4. Restart the sshd service.

Subsystem powershell C:/progra~1/powershell/7/pwsh.exe -sshs -NoLogo

７ Note

Starting in PowerShell 7.4, you no longer need to use the -NoLogo  parameter
when running PowerShell in SSH server mode.

７ Note

The default location of the PowerShell executable is
C:/progra~1/powershell/7/pwsh.exe . The location can vary depending on how
you installed PowerShell.

You must use the 8.3 short name for any file paths that contain spaces. There's
a bug in OpenSSH for Windows that prevents spaces from working in
subsystem executable paths. For more information, see this GitHub issue .

The 8.3 short name for the Program Files  folder in Windows is usually
Progra~1 . However, you can use the following command to make sure:

PowerShell

Output

Get-CimInstance Win32_Directory -Filter 'Name="C:\\Program Files"' 
|
  Select-Object EightDotThreeFileName

EightDotThreeFileName
---------------------
C:\progra~1

PubkeyAuthentication yes

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://github.com/PowerShell/Win32-OpenSSH/issues/784
https://github.com/PowerShell/Win32-OpenSSH/issues/784


PowerShell

5. Add the path where OpenSSH is installed to your PATH environment variable. For
example, C:\Program Files\OpenSSH\ . This entry allows for the ssh.exe  to be
found.

1. Install the latest version of PowerShell, see Installing PowerShell on Ubuntu.

2. Install Ubuntu OpenSSH Server .

Bash

3. Edit the sshd_config  file at location /etc/ssh .

Make sure password authentication is enabled:

Optionally, enable key authentication:

For more information about creating SSH keys on Ubuntu, see the manpage for
ssh-keygen .

Add a PowerShell subsystem entry:

Restart-Service sshd

Install the SSH service on an Ubuntu Linux
computer

sudo apt install openssh-client
sudo apt install openssh-server

PasswordAuthentication yes

PubkeyAuthentication yes

Subsystem powershell /usr/bin/pwsh -sshs -NoLogo

https://ubuntu.com/server/docs/service-openssh
https://ubuntu.com/server/docs/service-openssh
http://manpages.ubuntu.com/manpages/xenial/man1/ssh-keygen.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/ssh-keygen.1.html


4. Restart the ssh service.

Bash

1. Install the latest version of PowerShell. For more information, Installing PowerShell
on macOS.

Make sure SSH Remoting is enabled by following these steps:
a. Open System Settings .
b. Click on General
c. Click on Sharing .
d. Check Remote Login  to set Remote Login: On .
e. Allow access to the appropriate users.

2. Edit the sshd_config  file at location /private/etc/ssh/sshd_config .

Use a text editor such as nano:

Bash

Make sure password authentication is enabled:

７ Note

The default location of the PowerShell executable is /usr/bin/pwsh . The
location can vary depending on how you installed PowerShell.

７ Note

Starting in PowerShell 7.4, you no longer need to use the -NoLogo  parameter
when running PowerShell in SSH server mode.

sudo systemctl restart sshd.service

Install the SSH service on a macOS computer

sudo nano /private/etc/ssh/sshd_config



Add a PowerShell subsystem entry:

Optionally, enable key authentication:

3. Restart the sshd service.

Bash

PasswordAuthentication yes

Subsystem powershell /usr/local/bin/pwsh -sshs -NoLogo

７ Note

The default location of the PowerShell executable is /usr/local/bin/pwsh . The
location can vary depending on how you installed PowerShell.

７ Note

Starting in PowerShell 7.4, you no longer need to use the -NoLogo  parameter
when running PowerShell in SSH server mode.

PubkeyAuthentication yes

sudo launchctl stop com.openssh.sshd
sudo launchctl start com.openssh.sshd

７ Note

When you upgrade your operating system, the SSH configuration file might be
overwritten. Make sure you check the configuration file after an upgrade.

Authentication



PowerShell remoting over SSH relies on the authentication exchange between the SSH
client and SSH service and doesn't implement any authentication schemes itself. The
result is that any configured authentication schemes including multi-factor
authentication are handled by SSH and independent of PowerShell. For example, you
can configure the SSH service to require public key authentication and a one-time
password for added security. Configuration of multi-factor authentication is outside the
scope of this documentation. Refer to documentation for SSH on how to correctly
configure multi-factor authentication and validate it works outside of PowerShell before
attempting to use it with PowerShell remoting.

The easiest way to test remoting is to try it on a single computer. In this example, we
create a remote session back to the same Linux computer. We're using PowerShell
cmdlets interactively so we see prompts from SSH asking to verify the host computer
and prompting for a password. You can do the same thing on a Windows computer to
ensure remoting is working. Then, remote between computers by changing the host
name.

PowerShell

Output

PowerShell

７ Note

Users retain the same privileges in remote sessions. Meaning, Administrators have
access to an elevated shell, and normal users do not.

PowerShell remoting example

Linux to Linux

$session = New-PSSession -HostName UbuntuVM1 -UserName TestUser

The authenticity of host 'UbuntuVM1 (9.129.17.107)' can't be established.
ECDSA key fingerprint is SHA256:2kCbnhT2dUE6WCGgVJ8Hyfu1z2wE4lifaJXLO7QJy0Y.
Are you sure you want to continue connecting (yes/no)?
TestUser@UbuntuVM1s password:

$session



Output

PowerShell

Output

PowerShell

Output

PowerShell

 Id Name   ComputerName    ComputerType    State    ConfigurationName     
Availability
 -- ----   ------------    ------------    -----    -----------------     --
----------
  1 SSH1   UbuntuVM1       RemoteMachine   Opened   DefaultShell             
Available

Enter-PSSession $session

[UbuntuVM1]: PS /home/TestUser> uname -a
Linux TestUser-UbuntuVM1 4.2.0-42-generic 49~16.04.1-Ubuntu SMP Wed Jun 29 
20:22:11 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux

[UbuntuVM1]: PS /home/TestUser> Exit-PSSession

Invoke-Command $session -ScriptBlock { Get-Process pwsh }

Handles  NPM(K)    PM(K)      WS(K)     CPU(s)     Id  SI ProcessName    
PSComputerName
-------  ------    -----      -----     ------     --  -- -----------    ---
-----------
      0       0        0         19       3.23  10635 635 pwsh           
UbuntuVM1
      0       0        0         21       4.92  11033 017 pwsh           
UbuntuVM1
      0       0        0         20       3.07  11076 076 pwsh           
UbuntuVM1

Linux to Windows

Enter-PSSession -HostName WinVM1 -UserName PTestName



PowerShell

Output

PowerShell

Output

PowerShell

Output

PowerShell

Output

PTestName@WinVM1s password:

[WinVM1]: PS C:\Users\PTestName\Documents> cmd /c ver

Microsoft Windows [Version 10.0.10586]

Windows to Windows

C:\Users\PSUser\Documents>pwsh.exe

PowerShell
Copyright (c) Microsoft Corporation. All rights reserved.

$session = New-PSSession -HostName WinVM2 -UserName PSRemoteUser

The authenticity of host 'WinVM2 (10.13.37.3)' can't be established.
ECDSA key fingerprint is SHA256:kSU6slAROyQVMEynVIXAdxSiZpwDBigpAF/TXjjWjmw.
Are you sure you want to continue connecting (yes/no)?
Warning: Permanently added 'WinVM2,10.13.37.3' (ECDSA) to the list of known 
hosts.
PSRemoteUser@WinVM2's password:

$session

 Id Name            ComputerName    ComputerType    State         
ConfigurationName     Availability



PowerShell

Output

The sudo command doesn't work in a remote session to a Linux computer.

PSRemoting over SSH doesn't support Profiles and doesn't have access to
$PROFILE . Once in a session, you can load a profile by dot sourcing the profile with
the full filepath. This isn't related to SSH profiles. You can configure the SSH server
to use PowerShell as the default shell and to load a profile through SSH. See the
SSH documentation for more information.

Prior to PowerShell 7.1, remoting over SSH didn't support second-hop remote
sessions. This capability was limited to sessions using WinRM. PowerShell 7.1
allows Enter-PSSession  and Enter-PSHostProcess  to work from within any
interactive remote session.

 -- ----            ------------    ------------    -----         ----------
-------     ------------
  1 SSH1            WinVM2          RemoteMachine   Opened        
DefaultShell             Available

Enter-PSSession -Session $session

[WinVM2]: PS C:\Users\PSRemoteUser\Documents> $PSVersionTable

Name                           Value
----                           -----
PSEdition                      Core
PSCompatibleVersions           {1.0, 2.0, 3.0, 4.0...}
SerializationVersion           1.1.0.1
BuildVersion                   3.0.0.0
CLRVersion
PSVersion                      6.0.0-alpha
WSManStackVersion              3.0
PSRemotingProtocolVersion      2.3
GitCommitId                    v6.0.0-alpha.17

[WinVM2]: PS C:\Users\PSRemoteUser\Documents>

Limitations

See also



Installing PowerShell on Linux
Installing PowerShell on macOS
Installing PowerShell on Windows
Manage Windows with OpenSSH
Managing OpenSSH Keys
Ubuntu SSH

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_overview
https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_keymanagement
https://ubuntu.com/server/docs/service-openssh
https://ubuntu.com/server/docs/service-openssh


Using WS-Management (WSMan)
Remoting in PowerShell
Article • 01/27/2025

To enable PowerShell remoting run the Enable-PSRemoting  cmdlet in an elevated
PowerShell session. Running Enable-PSRemoting  configures a remoting endpoint for the
specific installation version that you are running the cmdlet in. For example, when you
run Enable-PSRemoting  while running PowerShell 7.4, PowerShell creates a remoting
endpoint runs PowerShell 7.4. If you run Enable-PSRemoting  while running PowerShell 7-
preview, PowerShell creates a remoting endpoint that runs PowerShell 7-preview. You
can create multiple remoting endpoints for different versions of that run side-by-side.

Running Enable-PSRemoting  creates two endpoints for that version.

One has a simple name corresponding to the PowerShell major version. that hosts
the session. For example, PowerShell.7.4.
The other configuration name contains the full version number. For example,
PowerShell.7.4.7.

You can connect to the latest version of PowerShell 7 host version using the simple
name, PowerShell.7.4. You can connect to a specific version of PowerShell using the
longer, version-specific name.

Use the ConfigurationName parameter with the New-PSSession  and Enter-PSSession
cmdlets to connect to a named configuration.

The following prerequisites must be met to enable PowerShell remoting over WSMan on
older versions of Windows.

Install the Windows Management Framework (WMF) 5.1 (as necessary). For more
information about WMF, see WMF Overview.
Install the Universal C Runtime  on Windows versions predating Windows 10. It's
available via direct download or Windows Update. Fully patched systems already
have this package installed.

Enabling PowerShell remoting

Remoting to older versions of Windows

https://www.microsoft.com/download/details.aspx?id=50410
https://www.microsoft.com/download/details.aspx?id=50410


Since the release of PowerShell 6, support for remoting over WS-Management (WSMan)
on non-Windows platforms has only been available to a limited set of Linux
distributions. All versions of those distributions that supported WSMan are no longer
supported by the Linux vendors that created them.

On non-Windows, WSMan relied on the Open Management Infrastructure (OMI)
project, which no longer supports PowerShell remoting. The OMI WSMan client is
dependent on OpenSSL 1.0. Most Linux distributions have moved to OpenSSL 2.0, which
isn't backward-compatible. At this time, there is no supported distribution that has the
dependencies needed for the OMI WSMan client to work.

The outdated libraries and supporting code have been removed for non-Windows
platforms. WSMan-based remoting is still supported between Windows systems.
Remoting over SSH is supported for all platforms. For more information, see PowerShell
remoting over SSH.

Enable-PSRemoting
Enter-PSSession
New-PSSession

WSMan remoting isn't supported on non-
Windows platforms

７ Note

Users may be able to get WSMan remoting to work using the PSWSMan  module.
This module isn't supported or maintained by Microsoft.

Further reading

https://github.com/Microsoft/omi
https://github.com/Microsoft/omi
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession?view=powershell-7.5
https://www.powershellgallery.com/packages/PSWSMan
https://www.powershellgallery.com/packages/PSWSMan


Security Considerations for PowerShell
Remoting using WinRM
Article • 03/24/2025

PowerShell Remoting is the recommended way to manage Windows systems.
PowerShell Remoting is enabled by default in Windows Server 2012 R2 and higher. This
document covers security concerns, recommendations, and best practices when using
PowerShell Remoting.

PowerShell Remoting uses Windows Remote Management (WinRM) to allow users to
run PowerShell commands on remote computers. WinRM is the Microsoft
implementation of the Web Services for Management (WS-Management)  protocol.
You can find more information about using PowerShell Remoting at Running Remote
Commands.

PowerShell Remoting isn't the same as using the ComputerName parameter of a cmdlet
to run it on a remote computer, which uses Remote Procedure Call (RPC) as its
underlying protocol.

PowerShell Remoting with WinRM listens on the following ports:

HTTP: 5985
HTTPS: 5986

By default, PowerShell Remoting only allows connections from members of the
Administrators group. Sessions are launched under the user's context, so all operating
system access controls applied to individual users and groups continue to apply to them
while connected over PowerShell Remoting.

On private networks, the default Windows Firewall rule for PowerShell Remoting accepts
all connections. On public networks, the default Windows Firewall rule allows PowerShell
Remoting connections only from within the same subnet. You have to explicitly change
that rule to open PowerShell Remoting to all connections on a public network.

What is PowerShell Remoting?

PowerShell Remoting default settings

２ Warning

https://learn.microsoft.com/en-us/windows/win32/winrm/portal
https://www.dmtf.org/sites/default/files/standards/documents/DSP0226_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0226_1.2.0.pdf


PowerShell Remoting uses WinRM for communication between computers. WinRM runs
as a service under the Network Service account, and spawns isolated processes running
as user accounts to host PowerShell instances. An instance of PowerShell running as one
user has no access to a process running an instance of PowerShell as another user.

Researchers from Mandiant presented a session at the BlackHat conference that
provides a good summary of the event logs and other security evidence generated by
PowerShell Remoting sessions. For more information, see Investigating PowerShell
Attacks .

It's helpful to consider the security of a PowerShell Remoting connection from two
perspectives: initial authentication, and ongoing communication.

Regardless of the transport protocol used (HTTP or HTTPS), WinRM always encrypts all
PowerShell remoting communication after initial authentication.

Authentication confirms the identity of the client to the server - and ideally - the server
to the client.

When a client connects to a domain server using its computer name, the default
authentication protocol is Kerberos. Kerberos guarantees both the user identity and
server identity without sending any sort of reusable credential.

When a client connects to a domain server using its IP address, or connects to a
workgroup server, Kerberos authentication isn't possible. In that case, PowerShell
Remoting relies on the NTLM authentication protocol. The NTLM authentication
protocol guarantees the user identity without sending any sort of delegable credential.
To prove user identity, the NTLM protocol requires that both the client and server

The firewall rule for public networks is meant to protect the computer from
potentially malicious external connection attempts. Use caution when removing this
rule.

Process isolation

Event logs generated by PowerShell Remoting

Encryption and transport protocols

Initial authentication

https://www.blackhat.com/docs/us-14/materials/us-14-Kazanciyan-Investigating-Powershell-Attacks-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kazanciyan-Investigating-Powershell-Attacks-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kazanciyan-Investigating-Powershell-Attacks-WP.pdf
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-kerberos
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-ntlm


compute a session key from the user's password without ever exchanging the password
itself. The server typically doesn't know the user's password, so it communicates with the
domain controller, which does know the user's password and calculates the session key
for the server.

The NTLM protocol doesn't, however, guarantee server identity. As with all protocols
that use NTLM for authentication, an attacker with access to a domain-joined
computer's machine account could invoke the domain controller to compute an NTLM
session-key and impersonate the server.

NTLM-based authentication is disabled by default. You can enable NTLM by either
configuring SSL on the target server, or by configuring the WinRM TrustedHosts setting
on the client.

Since the NTLM authentication protocol can't ensure the identity of the target server
(only that it already knows your password), you can configure target servers to use SSL
for PowerShell Remoting. Assigning an SSL certificate to the target server (if issued by a
Certificate Authority that the client also trusts) enables NTLM-based authentication that
guarantees both the user identity and server identity.

If deploying an SSL certificate to a server for NTLM connections is infeasible, you can
suppress the resulting identity errors by adding the server to the WinRM TrustedHosts
list. Adding a server name to the TrustedHosts list shouldn't be considered as any form
of statement of the trustworthiness of the hosts themselves - as the NTLM
authentication protocol can't guarantee that you are in fact connecting to the host
you're intending to connect to. Instead, you should consider the TrustedHosts setting to
be the list of hosts for which you wish to suppress the error generated by being unable
to verify the server's identity.

Once initial authentication is complete, the WinRM encrypts the ongoing
communication. When you connect over HTTPS, WinRM uses the TLS protocol to
negotiate the encryption used to transport data. When you connect over HTTP, WinRM
uses the message-level encryption negotiated by the initial authentication protocol.

Using SSL certificates to validate server identity during NTLM-
based connections

Ignoring NTLM-based server identity errors

Ongoing Communication



Basic authentication provides no encryption.
NTLM authentication uses an RC4 cipher with a 128-bit key.
The etype  in the TGS ticket determines Kerberos authentication encryption. This is
AES-256 on modern systems.
CredSSP encryption uses the TLS cipher suite negotiated in the handshake.

By default, PowerShell Remoting uses Kerberos (if available) or NTLM for authentication.
Both of these protocols authenticate to the remote machine without sending credentials
to it. This is the most secure way to authenticate, but because the remote machine
doesn't have the user's credentials, it can't access other computers and services on the
user's behalf. This is known as the second hop problem.

There are several ways to avoid this problem. For descriptions of these methods, and the
pros and cons of each, see Making the second hop in PowerShell Remoting.

Windows Remote Management (WinRM)
Web Services for Management (WS-Management)
2.2.9.1 Encrypted Message Types
Kerberos
NTLM authentication protocol
Investigating PowerShell Attacks

Making the second hop

References

https://learn.microsoft.com/en-us/windows/win32/winrm/portal
https://www.dmtf.org/sites/default/files/standards/documents/DSP0226_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0226_1.2.0.pdf
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wsmv/58421aa4-861a-4410-831a-c999f094cdb7
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-kerberos
https://learn.microsoft.com/en-us/windows/win32/secauthn/microsoft-ntlm
https://www.blackhat.com/docs/us-14/materials/us-14-Kazanciyan-Investigating-Powershell-Attacks-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Kazanciyan-Investigating-Powershell-Attacks-WP.pdf


Making the second hop in PowerShell
Remoting
Article • 04/01/2024

The "second hop problem" refers to a situation like the following:

1. You are logged in to ServerA.
2. From ServerA, you start a remote PowerShell session to connect to ServerB.
3. A command you run on ServerB via your PowerShell Remoting session attempts to

access a resource on ServerC.
4. Access to the resource on ServerC is denied, because the credentials you used to

create the PowerShell Remoting session aren't passed from ServerB to ServerC.

There are several ways to address this problem. The following table lists the methods in
order of preference.

Configuration Note

CredSSP Balances ease of use and security

Resource-based Kerberos constrained
delegation

Higher security with simpler configuration

Kerberos constrained delegation High security but requires Domain Administrator

Kerberos delegation (unconstrained) Not recommended

Just Enough Administration (JEA) Can provide the best security but requires more
detailed configuration

PSSessionConfiguration using RunAs Simpler to configure but requires credential
management

Pass credentials inside an Invoke-Command
script block

Simplest to use but you must provide credentials

You can use the Credential Security Support Provider (CredSSP) for authentication.
CredSSP caches credentials on the remote server (ServerB), so using it opens you up to
credential theft attacks. If the remote computer is compromised, the attacker has access
to the user's credentials. CredSSP is disabled by default on both client and server

ﾉ Expand table

CredSSP

https://learn.microsoft.com/en-us/windows/win32/secauthn/credential-security-support-provider


computers. You should enable CredSSP only in the most trusted environments. For
example, a domain administrator connecting to a domain controller because the
domain controller is highly trusted.

For more information about security concerns when using CredSSP for PowerShell
Remoting, see Accidental Sabotage: Beware of CredSSP .

For more information about credential theft attacks, see Mitigating Pass-the-Hash (PtH)
Attacks and Other Credential Theft .

For an example of how to enable and use CredSSP for PowerShell remoting, see Enable
PowerShell "Second-Hop" Functionality with CredSSP .

It works for all servers with Windows Server 2008 or later.

Has security vulnerabilities.
Requires configuration of both client and server roles.
doesn't work with the Protected Users group. For more information, see Protected
Users Security Group.

You can use legacy constrained delegation (not resource-based) to make the second
hop. Configure Kerberos constrained delegation with the option "Use any authentication
protocol" to allow protocol transition.

Requires no special coding
Credentials aren't stored.

Doesn't support the second hop for WinRM.
Requires Domain Administrator access to configure.
Must be configured on the Active Directory object of the remote server (ServerB).
Limited to one domain. Can't cross domains or forests.

Pros

Cons

Kerberos constrained delegation

Pros

Cons

https://www.powershellmagazine.com/2014/03/06/accidental-sabotage-beware-of-credssp
https://www.powershellmagazine.com/2014/03/06/accidental-sabotage-beware-of-credssp
https://www.microsoft.com/download/details.aspx?id=36036
https://www.microsoft.com/download/details.aspx?id=36036
https://www.microsoft.com/download/details.aspx?id=36036
https://devblogs.microsoft.com/scripting/enable-powershell-second-hop-functionality-with-credssp/
https://devblogs.microsoft.com/scripting/enable-powershell-second-hop-functionality-with-credssp/
https://devblogs.microsoft.com/scripting/enable-powershell-second-hop-functionality-with-credssp/
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/protected-users-security-group
https://learn.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/protected-users-security-group


Requires rights to update objects and Service Principal Names (SPNs).
ServerB can acquire a Kerberos ticket to ServerC on behalf of the user without user
intervention.

Using resource-based Kerberos constrained delegation (introduced in Windows Server
2012), you configure credential delegation on the server object where resources reside.
In the second hop scenario described above, you configure ServerC to specify from
where it accepts delegated credentials.

Credentials aren't stored.
Configured using PowerShell cmdlets. No special coding required.
Doesn't require Domain Administrator access to configure.
Works across domains and forests.

Requires Windows Server 2012 or later.
Doesn't support the second hop for WinRM.
Requires rights to update objects and Service Principal Names (SPNs).

７ Note

Active Directory accounts that have the Account is sensitive and can't be
delegated property set can't be delegated. For more information, see Security
Focus: Analysing 'Account is sensitive and can't be delegated' for Privileged
Accounts and Kerberos Authentication Tools and Settings.

Resource-based Kerberos constrained
delegation

Pros

Cons

７ Note

Active Directory accounts that have the Account is sensitive and can't be
delegated property set can't be delegated. For more information, see Security
Focus: Analysing 'Account is sensitive and can't be delegated' for Privileged
Accounts and Kerberos Authentication Tools and Settings.

https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738673(v=ws.10)
https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/archive/blogs/poshchap/security-focus-analysing-account-is-sensitive-and-cannot-be-delegated-for-privileged-accounts
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738673(v=ws.10)


Let's look at a PowerShell example that configures resource-based constrained
delegation on ServerC to allow delegated credentials from a ServerB. This example
assumes that all servers are running supported versions of Windows Server, and that
there is at least one Windows domain controller for each trusted domain.

Before you can configure constrained delegation, you must add the RSAT-AD-PowerShell
feature to install the Active Directory PowerShell module, and then import that module
into your session:

PowerShell

Several available cmdlets now have a PrincipalsAllowedToDelegateToAccount
parameter:

Output

The PrincipalsAllowedToDelegateToAccount parameter sets the Active Directory object
attribute msDS-AllowedToActOnBehalfOfOtherIdentity, which contains an access
control list (ACL) that specifies which accounts have permission to delegate credentials
to the associated account (in our example, it will be the machine account for ServerA).

Now let's set up the variables we'll use to represent the servers:

PowerShell

Example

Add-WindowsFeature RSAT-AD-PowerShell
Import-Module ActiveDirectory
Get-Command -ParameterName PrincipalsAllowedToDelegateToAccount

CommandType Name                 ModuleName
----------- ----                 ----------
Cmdlet      New-ADComputer       ActiveDirectory
Cmdlet      New-ADServiceAccount ActiveDirectory
Cmdlet      New-ADUser           ActiveDirectory
Cmdlet      Set-ADComputer       ActiveDirectory
Cmdlet      Set-ADServiceAccount ActiveDirectory
Cmdlet      Set-ADUser           ActiveDirectory

# Set up variables for reuse
$ServerA = $Env:COMPUTERNAME
$ServerB = Get-ADComputer -Identity ServerB
$ServerC = Get-ADComputer -Identity ServerC



WinRM (and therefore PowerShell remoting) runs as the computer account by default.
You can see this by looking at the StartName property of the winrm  service:

PowerShell

Output

For ServerC to allow delegation from a PowerShell remoting session on ServerB, we must
set the PrincipalsAllowedToDelegateToAccount parameter on ServerC to the computer
object of ServerB:

PowerShell

The Kerberos Key Distribution Center (KDC) caches denied-access attempts (negative
cache) for 15 minutes. If ServerB has previously attempted to access ServerC, you need
to clear the cache on ServerB by invoking the following command:

PowerShell

You could also restart the computer, or wait at least 15 minutes to clear the cache.

Get-CimInstance Win32_Service -Filter 'Name="winrm"' | Select-Object 
StartName

StartName
---------
NT AUTHORITY\NetworkService

# Grant resource-based Kerberos constrained delegation
Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDelegateToAccount 
$ServerB

# Check the value of the attribute directly
$x = Get-ADComputer -Identity $ServerC -Properties msDS-
AllowedToActOnBehalfOfOtherIdentity
$x.'msDS-AllowedToActOnBehalfOfOtherIdentity'.Access

# Check the value of the attribute indirectly
Get-ADComputer -Identity $ServerC -Properties 
PrincipalsAllowedToDelegateToAccount

Invoke-Command -ComputerName $ServerB.Name -Credential $cred -ScriptBlock {
    klist purge -li 0x3e7
}

https://learn.microsoft.com/en-us/windows/win32/secauthn/key-distribution-center


After clearing the cache, you can successfully run code from ServerA through ServerB to
ServerC:

PowerShell

In this example, the Using:  scope modifier is used to make the $ServerC  variable visible
to ServerB. For more information about the Using:  scope modifier, see
about_Remote_Variables.

To allow multiple servers to delegate credentials to ServerC, set the value of the
PrincipalsAllowedToDelegateToAccount parameter on ServerC to an array:

PowerShell

If you want to make the second hop across domains, use the Server parameter to
specify fully-qualified domain name (FQDN) of the domain controller of the domain to
which ServerB belongs:

PowerShell

# Capture a credential
$cred = Get-Credential Contoso\Alice

# Test kerberos double hop
Invoke-Command -ComputerName $ServerB.Name -Credential $cred -ScriptBlock {
    Test-Path \\$($Using:ServerC.Name)\C$
    Get-Process lsass -ComputerName $($Using:ServerC.Name)
    Get-EventLog -LogName System -Newest 3 -ComputerName 
$($Using:ServerC.Name)
}

# Set up variables for each server
$ServerB1 = Get-ADComputer -Identity ServerB1
$ServerB2 = Get-ADComputer -Identity ServerB2
$ServerB3 = Get-ADComputer -Identity ServerB3
$ServerC  = Get-ADComputer -Identity ServerC

$servers = @(
    $ServerB1,
    $ServerB2,
    $ServerB3
)

# Grant resource-based Kerberos constrained delegation
Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDelegateToAccount 
$servers

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Remote_Variables


To remove the ability to delegate credentials to ServerC, set the value of the
PrincipalsAllowedToDelegateToAccount parameter on ServerC to $null :

PowerShell

What's New in Kerberos Authentication
How Windows Server 2012 Eases the Pain of Kerberos Constrained Delegation, Part
1
How Windows Server 2012 Eases the Pain of Kerberos Constrained Delegation, Part
2
Understanding Kerberos Constrained Delegation for Microsoft Entra application
proxy deployments with Integrated Windows Authentication
[MS-ADA2 Active Directory Schema Attributes M2.210 Attribute msDS-
AllowedToActOnBehalfOfOtherIdentity]MS-ADA2
[MS-SFU Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol 1.3.2 S4U2proxy]MS-SFU
Remote Administration Without Constrained Delegation Using
PrincipalsAllowedToDelegateToAccount

You can also use Kerberos unconstrained delegation to make the second hop. Like all
Kerberos scenarios, credentials aren't stored. This method doesn't support the second
hop for WinRM.

# For ServerC in Contoso domain and ServerB in other domain
$ServerB = Get-ADComputer -Identity ServerB -Server dc1.alpineskihouse.com
$ServerC = Get-ADComputer -Identity ServerC
Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDelegateToAccount 
$ServerB

Set-ADComputer -Identity $ServerC -PrincipalsAllowedToDelegateToAccount 
$null

Information on resource-based Kerberos constrained
delegation

Kerberos delegation (unconstrained)

２ Warning

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831747(v=ws.11)
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-1
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-1
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-1
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-2
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-2
https://www.itprotoday.com/windows-server/how-windows-server-2012-eases-pain-kerberos-constrained-delegation-part-2
https://aka.ms/kcdpaper
https://aka.ms/kcdpaper
https://aka.ms/kcdpaper
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/cea4ac11-a4b2-4f2d-84cc-aebb4a4ad405
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-ada2/cea4ac11-a4b2-4f2d-84cc-aebb4a4ad405
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/bde93b0e-f3c9-4ddf-9f44-e1453be7af5a
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/bde93b0e-f3c9-4ddf-9f44-e1453be7af5a
https://learn.microsoft.com/en-us/archive/blogs/taylorb/remote-administration-without-constrained-delegation-using-principalsallowedtodelegatetoaccount
https://learn.microsoft.com/en-us/archive/blogs/taylorb/remote-administration-without-constrained-delegation-using-principalsallowedtodelegatetoaccount


JEA allows you to restrict what commands an administrator can run during a PowerShell
session. It can be used to solve the second hop problem.

For information about JEA, see Just Enough Administration.

No password maintenance when using a virtual account.

Requires WMF 5.0 or later.
Requires configuration on every intermediate server (ServerB).

You can create a session configuration on ServerB and set its RunAsCredential
parameter.

For information about using PSSessionConfiguration and RunAs to solve the second
hop problem, see Another solution to multi-hop PowerShell remoting.

Works with any server with WMF 3.0 or later.

Requires configuration of PSSessionConfiguration and RunAs on every
intermediate server (ServerB).
Requires password maintenance when using a domain RunAs account

This method provides no control of where delegated credentials are used. It's less
secure than CredSSP. This method should only be used for testing scenarios.

Just Enough Administration (JEA)

Pros

Cons

PSSessionConfiguration using RunAs

Pros

Cons

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/jea/overview
https://learn.microsoft.com/en-us/archive/blogs/sergey_babkins_blog/another-solution-to-multi-hop-powershell-remoting


You can pass credentials inside the ScriptBlock parameter of a call to the Invoke-
Command cmdlet.

Doesn't require special server configuration.
Works on any server running WMF 2.0 or later.

Requires an awkward code technique.
If running WMF 2.0, requires different syntax for passing arguments to a remote
session.

The following example shows how to pass credentials in a script block:

PowerShell

PowerShell Remoting Security Considerations

Pass credentials inside an Invoke-Command
script block

Pros

Cons

Example

# This works without delegation, passing fresh creds
# Note $Using:Cred in nested request
$cred = Get-Credential Contoso\Administrator
Invoke-Command -ComputerName ServerB -Credential $cred -ScriptBlock {
    hostname
    Invoke-Command -ComputerName ServerC -Credential $Using:cred -
ScriptBlock {hostname}
}

See also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command


Securing a restricted PowerShell
remoting session
Article • 04/01/2024

There are scenarios where you want to host a PowerShell session that, for security
reasons, has been limited to a subset of PowerShell commands.

By definition, a restricted session is one where Import-Module  isn't allowed to be used.
There may be other limitations, but this is the primary requirement. If the user can
import a module, then they can run anything they want.

Examples of restricted sessions include:

Just-Enough-Administration (JEA)
Custom restricted remoting implementations such as the Exchange and Teams
modules

For most system administrators, JEA provides the best experience for creating restricted
sessions and should be your first choice. For more information about JEA, see the JEA
Overview.

If your scenario requires a custom implementation, then you should follow these
recommendations.

Review how the allowed providers are used to ensure that you don't create
vulnerabilities in your restricted session implementation.

Recommendations for custom session
implementations

Limit the use and capabilities of PowerShell providers

２ Warning

Don't allow the FileSystem provider. If users can write to any part of the file system,
it's possible to completely bypass security.

Don't allow the Certificate provider. With the provider enabled, a user could gain
access to stored private keys.



PowerShell has a set of proxy commands for restricted command scenarios. These proxy
commands ensure that input parameters can't compromise the security of the session.
The following commands have restricted proxies:

Exit-PSSession

Get-Command

Get-FormatData

Get-Help

Measure-Object

Out-Default

Select-Object

If you create your own implementation of these commands, you may inadvertently allow
users to run code prohibited by the JEA proxy commands.

You can run the following command to get a list of restricted commands:

PowerShell

You can examine the restricted proxy commands by using the following command:

Don't allow commands that can create new runspaces

２ Warning

The *-Job  cmdlets can create new runspaces without the restrictions.

Don't allow the Trace-Command  cmdlet.

２ Warning

Using Trace-Command  brings all traced commands into the session.

Don't create your own proxy implementations for the
restricted commands

$commands = 
[System.Management.Automation.CommandMetadata]::GetRestrictedCommands(
    [System.Management.Automation.SessionCapabilities]::RemoteServer
)



PowerShell

PowerShell NoLanguage  mode disables the PowerShell scripting language completely.
You can't run scripts or use variables. You can only run native commands and cmdlets.

For more information about language modes, see about_Language_Modes.

By default, the PowerShell debugger runs code in FullLanguage  mode. Set the
UseFullLanguageModeInDebugger property in the SessionState to false.

For more information, see UseFullLanguageModeInDebugger.

$commands = 
[System.Management.Automation.CommandMetadata]::GetRestrictedCommands(
    [System.Management.Automation.SessionCapabilities]::RemoteServer
)
$getHelpProxyBlock = 
[System.Management.Automation.ProxyCommand]::Create($commands['Get-Help'])

Configure the session to use NoLanguage mode

Don't allow the debugger to be used in the session

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.sessionstate.usefulllanguagemodeindebugger?#system-management-automation-sessionstate-usefulllanguagemodeindebugger
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fsecurity%2Fsecuring-restricted-sessions%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fsecurity%2Fsecuring-restricted-sessions.md&documentVersionIndependentId=57bbe85f-57e7-e8e2-3525-eeb09d5da791&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e7fb23df-c2bb-de7d-1c4c-e2646d69106b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PowerShell Remoting FAQ
FAQ

When you work remotely, you type commands in PowerShell on one computer (known
as the "local computer"), but the commands run on another computer (known as the
"remote computer"). The experience of working remotely should be as much like
working directly at the remote computer as possible.

Yes. To work remotely, the local and remote computers must have PowerShell, the
Microsoft .NET Framework, and the Web Services for Management (WS-Management)
protocol. Any files and other resources that are needed to execute a particular
command must be on the remote computer.

Computers running Windows PowerShell 3.0 and computers running Windows
PowerShell 2.0 can connect to each other remotely and run remote commands.
However, some features, such as the ability to disconnect from a session and reconnect
to it, work only when both computers are running Windows PowerShell 3.0.

You must have permission to connect to the remote computer, permission to run
PowerShell, and permission to access data stores (such as files and folders), and the
registry on the remote computer.

For more information, see about_Remote_Requirements.

When you submit a remote command, the command is transmitted across the network
to the PowerShell engine on the remote computer, and it runs in the PowerShell client
on the remote computer. The command results are sent back to the local computer and
appear in the PowerShell session on the local computer.

７ Note

To use PowerShell remoting, the remote computer must be configured for
remoting. For more information, see about_Remote_Requirements.

Must both computers have PowerShell
installed?

How does remoting work?

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Remote_Requirements
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Remote_Requirements


To transmit the commands and receive the output, PowerShell uses the WS-
Management protocol. For information about the WS-Management protocol, see WS-
Management Protocol in the Windows documentation.

Beginning in Windows PowerShell 3.0, remote sessions are stored on the remote
computer. This enables you to disconnect from the session and reconnect from a
different session or a different computer without interrupting the commands or losing
state.

When you connect to a remote computer, the system uses the username and password
credentials on the local computer or the credentials that you supply in the command to
log you in to the remote computer. The credentials and the rest of the transmission are
encrypted.

To add additional protection, you can configure the remote computer to use Secure
Sockets Layer (SSL) instead of HTTP to listen for Windows Remote Management
(WinRM) requests. Then, users can use the UseSSL parameter of the Invoke-Command ,
New-PSSession , and Enter-PSSession  cmdlets when establishing a connection. This
option uses the more secure HTTPS channel instead of HTTP.

No. Some cmdlets have a ComputerName parameter that lets you get objects from the
remote computer.

These cmdlets do not use PowerShell remoting. So, you can use them on any computer
that is running PowerShell, even if the computer is not configured for PowerShell
remoting or if the computer does not meet the requirements for PowerShell remoting.

These cmdlets include the following:

Get-HotFix

Rename-Computer

Restart-Computer

Stop-Computer

To find all the cmdlets with a ComputerName parameter, type:

Is PowerShell remoting secure?

Do all remote commands require
PowerShell remoting?

https://learn.microsoft.com/en-us/windows/win32/winrm/ws-management-protocol
https://learn.microsoft.com/en-us/windows/win32/winrm/ws-management-protocol


PowerShell

To determine whether the ComputerName parameter of a particular cmdlet requires
PowerShell remoting, see the parameter description. To display the parameter
description, type:

PowerShell

For example:

PowerShell

For all other commands, use the Invoke-Command  cmdlet.

To run a command on a remote computer, use the Invoke-Command  cmdlet.

Enclose your command in braces ( {} ) to make it a script block. Use the ScriptBlock
parameter of Invoke-Command  to specify the command.

You can use the ComputerName parameter of Invoke-Command  to specify a remote
computer. Or, you can create a persistent connection to a remote computer (a session)
and then use the Session parameter of Invoke-Command  to run the command in the
session.

For example, the following commands run a Get-Process  command remotely.

PowerShell

Get-Help * -Parameter ComputerName
# or
Get-Command -ParameterName ComputerName

Get-Help <cmdlet-name> -Parameter ComputerName

Get-Help Get-HotFix -Parameter ComputerName

How do I run a command on a remote
computer?

Invoke-Command -ComputerName Server01, Server02 -ScriptBlock {Get-Process}

#  - OR -



To interrupt a remote command, type CTRL + C . The interruption request is passed to
the remote computer, where it terminates the remote command.

For more information about remote commands, see about_Remote and the Help topics
for the cmdlets that support remoting.

You can use the Enter-PSSession  cmdlet to start an interactive session with a remote
computer.

At the PowerShell prompt, type:

PowerShell

The command prompt changes to show that you are connected to the remote
computer.

Now, the commands that you type run on the remote computer just as though you
typed them directly on the remote computer.

To end the interactive session, type:

PowerShell

An interactive session is a persistent session that uses the WS-Management protocol. It
is not the same as using Telnet, but it provides a similar experience.

For more information, see Enter-PSSession .

Invoke-Command -Session $s -ScriptBlock {Get-Process}

Can I just telnet into a remote
computer?

Enter-PSSession <ComputerName>

<ComputerName>\C:>

Exit-PSSession



Yes. You can run remote commands by specifying the name of the remote computer, its
NetBIOS name, or its IP address. Or, you can run remote commands by specifying a
PowerShell session (PSSession) that is connected to the remote computer.

When you use the ComputerName parameter of Invoke-Command  or Enter-PSSession ,
PowerShell establishes a temporary connection. PowerShell uses the connection to run
only the current command, and then it closes the connection. This is a very efficient
method for running a single command or several unrelated commands, even on many
remote computers.

When you use the New-PSSession  cmdlet to create a PSSession, PowerShell establishes a
persistent connection for the PSSession. Then, you can run multiple commands in the
PSSession, including commands that share data.

Typically, you create a PSSession to run a series of related commands that share data.
Otherwise, the temporary connection created by the ComputerName parameter is
sufficient for most commands.

For more information about sessions, see about_PSSessions.

Yes. The ComputerName parameter of the Invoke-Command  cmdlet accepts multiple
computer names, and the Session parameter accepts multiple PSSessions.

When you run an Invoke-Command  command, PowerShell runs the commands on all of
the specified computers or in all of the specified PSSessions.

PowerShell can manage hundreds of concurrent remote connections. However, the
number of remote commands that you can send might be limited by the resources of
your computer and its capacity to establish and maintain multiple network connections.

For more information, see the example in the Invoke-Command  Help topic.

PowerShell profiles are not run automatically in remote sessions, so the commands that
the profile adds are not present in the session. In addition, the $PROFILE  automatic

Can I create a persistent connection?

Can I run commands on more than one
computer at a time?

Where are my profiles?

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pssessions


variable is not populated in remote sessions.

To run a profile in a session, use the Invoke-Command  cmdlet.

For example, the following command runs the CurrentUserCurrentHost profile from the
local computer in the session in $s .

The following command runs the CurrentUserCurrentHost profile from the remote
computer in the session in $s . Because the $PROFILE  variable is not populated, the
command uses the explicit path to the profile.

PowerShell

After running this command, the commands that the profile adds to the session are
available in $s .

You can also use a startup script in a session configuration to run a profile in every
remote session that uses the session configuration.

For more information about PowerShell profiles, see about_Profiles. For more
information about session configurations, see Register-PSSessionConfiguration .

To help you manage the resources on your local computer, PowerShell includes a per-
command throttling feature that lets you limit the number of concurrent remote
connections that are established for each command.

The default is 32 concurrent connections, but you can use the ThrottleLimit parameter
of the cmdlets to set a custom throttle limit for particular commands.

When you use the throttling feature, remember that it is applied to each command, not
to the entire session or to the computer. If you are running commands concurrently in

Invoke-Command -Session $s -FilePath $PROFILE

Invoke-Command -Session $s {
  . "$HOME\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1"
}

How does throttling work on remote
commands?

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles


several sessions or PSSessions, the number of concurrent connections is the sum of the
concurrent connections in all the sessions.

To find cmdlets with a ThrottleLimit parameter, type:

When you use PowerShell locally, you send and receive "live" .NET Framework objects;
"live" objects are objects that are associated with actual programs or system
components. When you invoke the methods or change the properties of live objects, the
changes affect the actual program or component. And, when the properties of a
program or component change, the properties of the object that represent them also
change.

However, because most live objects cannot be transmitted over the network, PowerShell
"serializes" most of the objects sent in remote commands, that is, it converts each object
into a series of XML (Constraint Language in XML [CLiXML]) data elements for
transmission.

When PowerShell receives a serialized object, it converts the XML into a deserialized
object type. The deserialized object is an accurate record of the properties of the
program or component at a previous time, but it is no longer "live", that is, it is no
longer directly associated with the component. And, the methods are removed because
they are no longer effective.

Typically, you can use deserialized objects just as you would use live objects, but you
must be aware of their limitations. Also, the objects that are returned by the Invoke-
Command  cmdlet have additional properties that help you to determine the origin of the
command.

Some object types, such as DirectoryInfo objects and GUIDs, are converted back into live
objects when they are received. These objects do not need any special handling or
formatting.

Get-Help * -Parameter ThrottleLimit
-or-
Get-Command -ParameterName ThrottleLimit

Is the output of remote commands
different from local output?



For information about interpreting and formatting remote output, see
about_Remote_Output.

Yes. A PowerShell background job is a PowerShell command that runs asynchronously
without interacting with the session. When you start a background job, the command
prompt returns immediately, and you can continue to work in the session while the job
runs even if it runs for an extended period of time.

You can start a background job even while other commands are running because
background jobs always run asynchronously in a temporary session.

You can run background jobs on a local or remote computer. By default, a background
job runs on the local computer. However, you can use the AsJob parameter of the
Invoke-Command  cmdlet to run any remote command as a background job. And, you can
use Invoke-Command  to run a Start-Job  command remotely.

For more information about background jobs in PowerShell , see about_Jobs and
about_Remote_Jobs.

You can use PowerShell remote commands to run Windows-based programs on remote
computers. For example, you can run Shutdown.exe  or Ipconfig.exe  on a remote
computer.

However, you cannot use PowerShell commands to open the user interface for any
program on a remote computer.

When you start a Windows program on a remote computer, the command is not
completed, and the PowerShell command prompt does not return, until the program is
finished or until you press CTRL + C  to interrupt the command. For example, if you run
the Ipconfig.exe  program on a remote computer, the command prompt does not
return until Ipconfig.exe  is completed.

If you use remote commands to start a program that has a user interface, the program
process starts, but the user interface does not appear. The PowerShell command is not
completed, and the command prompt does not return until you stop the program

Can I run background jobs remotely?

Can I run Windows programs on a
remote computer?

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_output
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_jobs


process or until you press CTRL + C , which interrupts the command and stops the
process.

For example, if you use a PowerShell command to run Notepad  on a remote computer,
the Notepad process starts on the remote computer, but the Notepad user interface
does not appear. To interrupt the command and restore the command prompt, press
CTRL + C .

Yes. Every remote session must use one of the session configurations on the remote
computer. You can manage the session configurations on your computer (and the
permissions to those session configurations) to determine who can run commands
remotely on your computer and which commands they can run.

A session configuration configures the environment for the session. You can define the
configuration by using an assembly that implements a new configuration class or by
using a script that runs in the session. The configuration can determine the commands
that are available in the session. And, the configuration can include settings that protect
the computer, such as settings that limit the amount of data that the session can receive
remotely in a single object or command. You can also specify a security descriptor that
determines the permissions that are required to use the configuration.

The Enable-PSRemoting  cmdlet creates the default session configurations on your
computer: Microsoft.PowerShell, Microsoft.PowerShell.Workflow, and
Microsoft.PowerShell32 (64-bit operating systems only). Enable-PSRemoting  sets the
security descriptor for the configuration to allow only members of the Administrators
group on your computer to use them.

You can use the session configuration cmdlets to edit the default session configurations,
to create new session configurations, and to change the security descriptors of all the
session configurations.

Beginning in Windows PowerShell 3.0, the New-PSSessionConfigurationFile  cmdlet lets
you create custom session configurations by using a text file. The file includes options
for setting the language mode and for specifying the cmdlets and modules that are
available in sessions that use the session configuration.

When users use the Invoke-Command , New-PSSession , or Enter-PSSession  cmdlets, they
can use the ConfigurationName parameter to indicate the session configuration that is

Can I limit the commands that users can
run remotely on my computer?



used for the session. And, they can change the default configuration that their sessions
use by changing the value of the $PSSessionConfigurationName  preference variable in
the session.

For more information about session configurations, see the Help for the session
configuration cmdlets. To find the session configuration cmdlets, type:

PowerShell

The most common PowerShell remoting scenario involving multiple computers is the
one-to-many configuration, in which one local computer (the administrator's computer)
runs PowerShell commands on numerous remote computers. This is known as the "fan-
out" scenario.

However, in some enterprises, the configuration is many-to-one, where many client
computers connect to a single remote computer that is running PowerShell, such as a
file server or a kiosk. This is known as the "fan-in" configuration.

PowerShell remoting supports both fan-out and fan-in configurations.

For the fan-out configuration, PowerShell uses the Web Services for Management (WS-
Management) protocol and the WinRM service that supports the Microsoft
implementation of WS-Management. When a local computer connects to a remote
computer, WS-Management establishes a connection and uses a plug-in for PowerShell
to start the PowerShell host process (Wsmprovhost.exe) on the remote computer. The
user can specify an alternate port, an alternate session configuration, and other features
to customize the remote connection.

To support the "fan-in" configuration, PowerShell uses internet Information Services (IIS)
to host WS-Management, to load the PowerShell plug-in, and to start PowerShell. In this
scenario, instead of starting each PowerShell session in a separate process, all
PowerShell sessions run in the same host process.

IIS hosting and fan-in remote management is not supported in Windows XP or in
Windows Server 2003.

Get-Command *PSSessionConfiguration

What are fan in and fan out
configurations?



In a fan-in configuration, the user can specify a connection URI and an HTTP endpoint,
including the transport, computer name, port, and application name. IIS forwards all the
requests with a specified application name to the application. The default is WS-
Management, which can host PowerShell.

You can also specify an authentication mechanism and prohibit or allow redirection from
HTTP and HTTPS endpoints.

Yes. PowerShell remoting is available even when the local computer is not in a domain.
You can use the remoting features to connect to sessions and to create sessions on the
same computer. The features work the same as they do when you connect to a remote
computer.

To run remote commands on a computer in a workgroup, change the following
Windows settings on the computer.

Caution: These settings affect all users on the system and they can make the system
more vulnerable to a malicious attack. Use caution when making these changes.

Windows Vista, Windows 7, Windows 8:

Create the following registry entry, and then set its value to 1:
LocalAccountTokenFilterPolicy in
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System

You can use the following PowerShell command to add this entry:

PowerShell

Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows
Server 2012 R2:

Can I test remoting on a single
computer not in a domain?

$parameters = @{
  
Path='HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'
  Name='LocalAccountTokenFilterPolicy'
  propertyType='DWord'
  Value=1
}
New-ItemProperty @parameters



No changes are needed because the default setting of the "Network Access:
Sharing and security model for local accounts" policy is "Classic". Verify the setting
in case it has changed.

Yes. Typically, the commands run without error, although you might need to use the
Credential parameter of the Invoke-Command , New-PSSession , or Enter-PSSession
cmdlets to provide the credentials of a member of the Administrators group on the
remote computer. This is sometimes required even when the current user is a member
of the Administrators group on the local and remote computers.

However, if the remote computer is not in a domain that the local computer trusts, the
remote computer might not be able to authenticate the user's credentials.

To enable authentication, use the following command to add the remote computer to
the list of trusted hosts for the local computer in WinRM. Type the command at the
PowerShell prompt.

PowerShell

For example, to add the Server01 computer to the list of trusted hosts on the local
computer, type the following command at the PowerShell prompt:

PowerShell

Yes. For more information, see PowerShell remoting over SSH.

about_Remote

Can I run remote commands on a
computer in another domain?

Set-Item WSMan:\localhost\Client\TrustedHosts -Value <Remote-computer-name>

Set-Item WSMan:\localhost\Client\TrustedHosts -Value Server01

Does PowerShell support remoting over
SSH?

See also

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote


about_Profiles

about_PSSessions

about_Remote_Jobs

about_Remote_Variables

Invoke-Command

New-PSSession

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pssessions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_variables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession?view=powershell-7.5


Desired State Configuration (DSC)
Overview
Article • 03/19/2025

DSC is a management platform that enables you to manage your IT and development
infrastructure with configuration as code.

There are four versions of DSC available:

Microsoft DSC 3.0 is the new version of DSC. This version provides true cross-
platform support. It is a standalone product that's not dependent on PowerShell,
however, you can still use your existing PowerShell DSC resources.

PowerShell DSC 3.0 (preview) is the version of DSC supported by the Azure
Machine Configuration on Linux.

PowerShell DSC 2.0 is the version of DSC that shipped in PowerShell 7.

With the release of PowerShell 7.2, the PSDesiredStateConfiguration module is no
longer included in the PowerShell package. Separating DSC into its own module
allows us to invest and develop DSC independent of PowerShell and reduces the
size of the PowerShell package. Users of DSC will enjoy the benefit of upgrading
DSC without the need to upgrade PowerShell, accelerating the time to deployment
of new DSC features. Users that want to continue using DSC v2 can download
PSDesiredStateConfiguration 2.0.5 from the PowerShell Gallery.

PowerShell DSC 1.1 is the legacy version of DSC that originally shipped in Windows
PowerShell 5.1.

For more information, see the Desired State Configuration overview article.

https://learn.microsoft.com/en-us/azure/governance/machine-configuration/overview
https://learn.microsoft.com/en-us/azure/governance/machine-configuration/overview
https://learn.microsoft.com/en-us/powershell/dsc/overview


The PowerShell Gallery
Article • 04/13/2023

The PowerShell Gallery  is the central repository for PowerShell content. In it, you can
find PowerShell scripts, modules containing PowerShell cmdlets and Desired State
Configuration (DSC) resources. Some of these packages are authored by Microsoft, and
others are authored by the PowerShell community.

The PowerShellGet module contains cmdlets for discovering, installing, updating, and
publishing PowerShell packages from the PowerShell Gallery. These packages can
contain artifacts such as Modules, DSC Resources, Role Capabilities, and Scripts. Make
sure you have the latest version of PowerShellGet installed.

The documentation for PowerShellGet and the PowerShell Gallery has been moved to a
new location so that we can manage the version-specific information separate from the
versions of PowerShell.

See the new documentation in PowerShellGet and the PowerShell Gallery.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://www.powershellgallery.com/
https://learn.microsoft.com/en-us/powershell/gallery/overview
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fgallery%2Foverview%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fgallery%2Foverview.md&documentVersionIndependentId=2e6d46ee-f235-14da-df6a-04ffb06027ce&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+01392d1d-aba9-430c-4cb1-b73e10dfc079+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Community Update
A list of resources and a summary of new articles and community contributions.

What's new in Docs?

ｈ WHAT'S NEW

2025 Updates

2024 Updates

2023 Updates

2022 Updates

2021 Updates

2020 Updates

Contributor Hall of Fame

Learning resources

ｄ TRAINING

PowerShell 101

Deep Dives

PowerShell Learn modules

ｑ VIDEO

Microsoft Virtual Academy videos

Jason Helmick's - The Show

The PSConfEU Channel

The PowerShell.org Channel

Community resources

https://learn.microsoft.com/en-us/training/browse/?terms=PowerShell
https://learn.microsoft.com/en-us/shows/browse?terms=powershell
https://www.youtube.com/user/JasonHelmick/videos
https://www.youtube.com/channel/UCxgrI58XiKnDDByjhRJs5fg
https://www.youtube.com/user/powershellorg


ｅ OVERVIEW

Community support

ａ DOWNLOAD

Digital art

ｉ REFERENCE

PowerShell 7 usage stats

Top contributors to PowerShell

https://msit.powerbi.com/view?r=eyJrIjoiM2E3MDllNDMtNGE4OS00NjdkLWI1ODEtZGI2MGNiYjA1ZmI1IiwidCI6IjcyZjk4OGJmLTg2ZjEtNDFhZi05MWFiLTJkN2NkMDExZGI0NyIsImMiOjV9&pageName=ReportSection
https://msit.powerbi.com/view?r=eyJrIjoiM2E3MDllNDMtNGE4OS00NjdkLWI1ODEtZGI2MGNiYjA1ZmI1IiwidCI6IjcyZjk4OGJmLTg2ZjEtNDFhZi05MWFiLTJkN2NkMDExZGI0NyIsImMiOjV9&pageName=ReportSection4644b8b160132457dabe


Getting support from the community
Article • 03/27/2025

The PowerShell Community is a vibrant and active group of users. This article can help
you get connected with other member of the community.

The PowerShell community can file issues, bugs, or feature requests in our GitHub
repository. If you have questions, you may find help from other members of the
community in one of these public forums:

User Groups
PowerShell Tech Community
DSC Community
PowerShell.org
Stack Overflow
r/PowerShell subreddit
PowerShell Virtual User Group - join via:

Slack
Discord

For information about our support policy, see the PowerShell Support Lifecycle.

https://github.com/powershell/powershell/issues
https://github.com/powershell/powershell/issues
https://aka.ms/psusergroup
https://aka.ms/psusergroup
https://techcommunity.microsoft.com/t5/PowerShell/ct-p/WindowsPowerShell
https://techcommunity.microsoft.com/t5/PowerShell/ct-p/WindowsPowerShell
https://dsccommunity.org/
https://dsccommunity.org/
https://forums.powershell.org/
https://forums.powershell.org/
https://stackoverflow.com/questions/tagged/powershell
https://stackoverflow.com/questions/tagged/powershell
https://www.reddit.com/r/PowerShell/
https://www.reddit.com/r/PowerShell/
https://aka.ms/psslack
https://aka.ms/psslack
https://aka.ms/psdiscord
https://aka.ms/psdiscord
https://learn.microsoft.com/en-us/powershell/scripting/powershell-support-lifecycle


Community Contributor Hall of Fame
Article • 04/04/2025

The PowerShell Community is a vibrant and collaborative group. We greatly appreciate all the
help and support we get from the community. You can be a contributor too. To learn how, read
our Contributor's Guide.

These GitHub users are the All-Time Top Community Contributors.

Pull Requests help us fix those issues and make the documentation better for everyone.

PRs Merged 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Grand
Total

Community 3 194 446 467 321 160 100 121 108 81 99 2100

matt9ucci 157 80 30 1 6 274

nschonni 14 138 10 162

kiazhi 25 79 12 116

alexandair 57 7 26 2 1 93

sethvs 1 44 20 1 10 6 82

doctordns 5 32 20 7 9 5 1 79

surfingoldelephant 55 55

ehmiiz 22 14 36

ArieHein 1 7 25 33

yecril71pl 21 3 3 27

Dan1el42 20 20

skycommand 1 3 3 6 1 4 1 19

NReilingh 2 13 3 18

it-praktyk 16 1 17

vors 15 1 16

markekraus 11 5 16

Pull Requests merged

ﾉ Expand table



PRs Merged 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Grand
Total

kvprasoon 2 1 7 2 2 2 16

changeworld 3 12 15

k-takai 5 1 7 13

purdo17 13 13

exchange12rocks 7 3 1 11

PlagueHO 10 1 11

bergmeister 1 3 3 1 1 1 1 11

GitHub issues help us identify errors and gaps in our documentation.

Issues Opened 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Grand
Total

Community 3 54 95 211 561 557 363 225 270 222 60 2621

mklement0 19 60 56 61 28 8 20 24 276

ehmiiz 20 14 34

iSazonov 1 4 10 8 4 3 1 31

jszabo98 2 15 6 1 1 2 27

iRon7 2 2 2 10 8 1 25

juvtib 15 7 22

doctordns 5 3 5 7 1 21

peetrike 1 4 2 6 4 3 20

surfingoldelephant 6 12 18

JustinGrote 1 3 6 1 1 2 2 2 18

vexx32 3 11 3 17

KirkMunro 7 7 1 15

alexandair 9 4 2 15

GitHub issues opened

ﾉ Expand table



Issues Opened 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Grand
Total

kilasuit 3 2 1 4 1 3 14

clamb123 14 14

tabad 11 2 13

rkeithhill 1 2 2 2 3 1 2 13

trollyanov 11 1 12

jsilverm 8 4 12

CarloToso 11 11

Liturgist 1 1 1 2 4 2 11

ArmaanMcleod 4 6 10

vors 1 6 2 1 10

UberKluger 1 7 2 10

LaurentDardenne 3 2 5 10

matt9ucci 2 5 2 1 10



What's new in PowerShell Docs for 2025
Article • 04/04/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

Content updates

DSC v3 GA release - Complete reorg of the documentation as well as updating for
the GA release
PSScriptAnalyzer v1.24.0 release - updated docs for release
Tons for quality improvements from surfingoldelephant

38 PRs cleaning up 1505 files

GitHub stats

68 PRs merged (40 from Community)
30 issues opened (28 from Community)
30 issues closed (28 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

surfingoldelephant 38 2

Allyyyyy 1

jborean93 1

JustinGrote 2

2025-March

Top Community Contributors

ﾉ Expand table



Content updates

Updated the Microsoft Update FAQ
Tons of quality improvements from the community

surfingoldelephant - 13 PRs on 497 files
ArieHein - 10 PRs on 140 files

GitHub stats

52 PRs merged (29 from Community)
26 issues opened (25 from Community)
28 issues closed (26 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

surfingoldelephant 13 3

ArieHein 10

changeworld 4

deadlydog 2

piedquance 4

New content

about_Comments - thanks to @surfingoldelephant
Created reference content for PowerShell 7.6-preview
What's New in PowerShell 7.6

Updates

Updates for PowerShell 7.5.0 GA release

2025-February

Top Community Contributors

ﾉ Expand table

2025-January

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comments
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-76


What's New in PowerShell 7.5
Release history of modules and cmdlets

Special thanks to @ArieHein for his contributions (15 PRs on 234 files) to fix typos
and adherence to style guidelines.

GitHub stats

74 PRs merged (30 from Community)
32 issues opened (32 from Community)
37 issues closed (37 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ArieHein 15 1

changeworld 8

surfingoldelephant 4 5

cnotin 1

daniel-brandenburg 1

o-l-a-v 2

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-75
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/cmdlet-versions


What's new in PowerShell Docs for 2024
Article • 03/30/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

Added about_Type_Conversion
Updated and improved documentation for several PSScriptAnalyzer rules

AvoidDefaultValueSwitchParameter
AvoidGlobalFunctions
AvoidOverwritingBuiltInCmdlets
AvoidUsingCmdletAliases
AvoidUsingWriteHost
PlaceOpenBrace
PossibleIncorrectComparisonWithNull
PossibleIncorrectUsageOfAssignmentOperator
ProvideCommentHelp
UseApprovedVerbs
UseCompatibleCmdlets
UseCompatibleCommands
UseCompatibleTypes
UseShouldProcessForStateChangingFunctions
UseSupportsShouldProcess

GitHub stats

22 PRs merged (7 from Community)
30 issues opened (30 from Community)
24 issues closed (24 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

2024-December

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_type_conversion
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoiddefaultvalueswitchparameter
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidglobalfunctions
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidoverwritingbuiltincmdlets
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidusingcmdletaliases
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidusingwritehost
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/placeopenbrace
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/possibleincorrectcomparisonwithnull
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/possibleincorrectusageofassignmentoperator
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/providecommenthelp
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/useapprovedverbs
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/usecompatiblecmdlets
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/usecompatiblecommands
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/usecompatibletypes
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/useshouldprocessforstatechangingfunctions
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/usesupportsshouldprocess


GitHub Id PRs merged Issues opened

sethvs 3

ArieHein 1

bharathalleni 1

jhribal 1

Saibamen 1

skycommand 1

surfingoldelephant 6

ArmaanMcleod 2

dpareit 2

New and updated content

15 new article about AI Shell - What is AI Shell?
Updated What's New in PowerShell 7.5 for the RC1 release

GitHub stats

21 PRs merged (9 from Community)
14 issues opened (14 from Community)
14 issues closed (14 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ArieHein 5

abeu1 1

ﾉ Expand table

2024-November

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/utility-modules/aishell/overview


GitHub Id PRs merged Issues opened

alexandair 1

igoragoli 1

jmillerca 1

SamB 1

uiolee 1 1

New content

Improve the accessibility of DSC output in PowerShell
Added cmdlet reference for the Microsoft.PowerShell.PlatyPS Module v1.0.0-
preview1 release

GitHub stats

30 PRs merged (11 from Community)
22 issues opened (22 from Community)
22 issues closed (22 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

jhribal 4

ArieHein 2

Bergbok 1 1

colinwebster-hc 1

HotCakeX 1

pmsjt 1

2024-October

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/dsc/concepts/output-accessibility?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.platyps/


GitHub Id PRs merged Issues opened

CameronSWilliamson 1

FARICJH59 2

New content

Improve the accessibility of output in PowerShell
What's new in PSResourceGet?
about_PSReadLine_Release_Notes

GitHub stats

29 PRs merged (1 from Community)
19 issues opened (19 from Community)
20 issues closed (20 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

iRon7 5

jikuja 2

Updates for new releases of PowerShell 7.2.23, 7.4.5 and 7.5-preview.4
Two new cmdlets in 7.5-preview.4

ConvertFrom-CliXml
ConvertTo-CliXml

2024-September

Top Community Contributors

ﾉ Expand table

2024-August

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/output-for-screen-reader
https://learn.microsoft.com/en-us/powershell/gallery/powershellget/psresourceget-release-notes
https://learn.microsoft.com/en-us/powershell/module/psreadline/about/about_psreadline_release_notes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-clixml?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertto-clixml?view=powershell-7.5


GitHub stats

25 PRs merged (4 from Community)
20 issues opened (18 from Community)
20 issues closed (17 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

RokeJulianLockhart 1

mohitNarang 1

aberus 1

Updates for new releases of PowerShell 7.2.22 and 7.4.4
Improved registry examples in:

Working with registry entries
about_Registry_Provider

GitHub stats

38 PRs merged (11 from Community)
20 issues opened (20 from Community)
24 issues closed (24 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

guillermooo 4

darthwalsh 2

ﾉ Expand table

2024-July

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/samples/working-with-registry-entries
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_registry_provider


GitHub Id PRs merged Issues opened

shekeriev 1

Blake-Madden 1

paaspaas00 1

ninmonkey 1 1

o-l-a-v 1

New content

TabExpansion2

GitHub stats

35 PRs merged (5 from Community)
16 issues opened (13 from Community)
16 issues closed (13 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

mklement0 2

sethvs 2

InvalidAccountNameEntered 1

OS3DrNick 1

trackd 1

landon-lengyel 1

msklv 1

2024-June

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/tabexpansion2


Retired PowerShell 7.3 content

Moved 467 articles to Previous Versions PowerShell content archive

Updated content for PowerShell 7.5-preview.3 release

What's New in PowerShell 7.5

New content for DSC v3 alpha release

See Desired State Configuration changelog

GitHub stats

31 PRs merged (11 from Community)
22 issues opened (21 from Community)
19 issues closed (18 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

berlintay 1

dcarpenter31 1

i5513 2

MatejKafka 1

real-guanyuming-he 1

santisq 2

stephanadler1 1

stevenjudd 2

2024-May

Top Community Contributors

ﾉ Expand table

2024-Apr

https://learn.microsoft.com/en-us/previous-versions/powershell/scripting/overview?view=powershell-7.3&preserve-view=true
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-75
https://learn.microsoft.com/en-us/powershell/dsc/changelog?view=dsc-3.0&preserve-view=true


New content for PSResourceGet

Supported repository configurations
Added Azure Container Registry information

Use ACR repositories with PSResourceGet

Refreshed and reorganized Security content to be more discoverable

PowerShell Security

New content for DSC v3 alpha.7 release

See Desired State Configuration changelog

GitHub stats

31 PRs merged (11 from Community)
22 issues opened (21 from Community)
19 issues closed (18 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Blake-Madden 3

Hrxn 2

aberus 1

nickcox 1

kilasuit 1

glenn-slayden 1

darthwalsh 1

landon-l8 1

joshooaj 1

mklement0 5

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/gallery/powershellget/supported-repositories#azure-container-registry
https://learn.microsoft.com/en-us/powershell/gallery/powershellget/how-to/use-acr-repository
https://learn.microsoft.com/en-us/powershell/scripting/security/overview
https://learn.microsoft.com/en-us/powershell/dsc/changelog?view=dsc-3.0&preserve-view=true


GitHub Id PRs merged Issues opened

RokeJulianLockhart 2

DSC v3.0-alpha.5 release
See the updated Changelog

PSScriptAnalyzer 1.22.0 release - 3 new rules
AvoidMultipleTypeAttributes
AvoidSemicolonsAsLineTerminators
AvoidUsingBrokenHashAlgorithms
See the CHANGELOG  for a complete list of updates

GitHub stats

30 PRs merged (1 from Community)
31 issues opened (28 from Community)
30 issues closed (26 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Hrxn 3

muzimuzhi 1

bergmeister 1

PowerShell 7.5.0-preview.2 release
See What's New in PowerShell 7.5

Lots of updates for the DSC v3-alpha.5 release including 6 new articles
See Desired State Configuration changelog

2024-Mar

Top Community Contributors

ﾉ Expand table

2024-Feb

https://learn.microsoft.com/en-us/powershell/dsc/changelog?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidmultipletypeattributes
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidsemicolonsaslineterminators
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/avoidusingbrokenhashalgorithms
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/CHANGELOG.MD
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/CHANGELOG.MD
https://learn.microsoft.com/en-us/powershell/dsc/changelog?view=dsc-3.0&preserve-view=true


Worked with the Windows team to publish preview content for Windows Server
2025

This work included changes to the reference content and to the module source
code to resolve errors reported by Update-Help

GitHub stats

31 PRs merged (6 from Community)
26 issues opened (23 from Community)
27 issues closed (25 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Certezalito 1

sethvs 1

chrisdent-de 1

jborean93 1

brucificus 1

XPlantefeve 1

mklement0 4

PowerShell 7.5.0-preview.1 release
See What's New in PowerShell 7.5

Lots of updates for the DSC v3-alpha.4 release including 6 new articles
See Desired State Configuration changelog

GitHub stats

Top Community Contributors

ﾉ Expand table

2024-Jan

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/module/?view=windowsserver2025-ps&preserve-view=true
https://learn.microsoft.com/en-us/powershell/module/?view=windowsserver2025-ps&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/changelog?view=dsc-3.0&preserve-view=true


37 PRs merged (6 from Community)
36 issues opened (35 from Community)
36 issues closed (34 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

b-rad15 1

flcdrg 1

holtkampjs 1

JamesDBartlett3 1

MuzaffarNurillaew 1

ybeltrikov 1

ArmaanMcleod 3

mklement0 3

deraeler 2

J0F3 2

tabad 2

wwilliams69 2

ﾉ Expand table



What's new in PowerShell Docs for 2023
Article • 03/30/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

Lots of minor updates but no new content. The Docs team is taking a break for the
holidays.

GitHub stats

24 PRs merged (4 from Community)
21 issues opened (18 from Community)
18 issues closed (15 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Blake-Madden 2

shyguyCreate 1

ryanperrymba 1

jp2images 1

mklement0 2

Updated content

2023-Dec

Top Community Contributors

ﾉ Expand table

2023-Nov



Updated release notes for PowerShell 7.4.0 GA
What's New in PowerShell 7.4 - PowerShell
PowerShell Gallery - Microsoft.PowerShell.WhatsNew 0.5.4
PowerShell SDK 7.4 reference - .NET API browser

Retired Windows PowerShell content to archive site
Added What is Windows PowerShell?

Major updates to: about_Classes and about_Enum

New content

New Class articles added
about Classes Constructors
about Classes Inheritance
about Classes Methods
about Classes Properties

GitHub stats

37 PRs merged (7 from Community)
32 issues opened (31 from Community)
33 issues closed (31 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

jmiller76 2

VShrubowich 1

TEBandCo 1

skycommand 1

darthwalsh 1

diecknet 1

tabad 7

mklement0 2

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-74
https://www.powershellgallery.com/packages/Microsoft.PowerShell.WhatsNew
https://www.powershellgallery.com/packages/Microsoft.PowerShell.WhatsNew
https://learn.microsoft.com/en-us/dotnet/api/?view=powershellsdk-7.4.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/overview
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes_constructors
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes_inheritance
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes_methods
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes_properties


GitHub Id PRs merged Issues opened

radkedan 2

New content

Securing a restricted PowerShell remoting session

Updated content

Updated release notes for PowerShell 7.4-rc.1
Updated release notes for PSReadLine GA 2.3.4
Updated release notes for PSResourceGet 1.0.0

Docs platform changes

Released new feedback experience at the bottom of each page

GitHub stats

55 PRs merged (11 from Community)
41 issues opened (37 from Community)
37 issues closed (33 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

baardhermansen 1

diecknet 1

dipstar 1

ehmiiz 1 1

G2-Games 1

indented-automation 1

2023-Oct

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/security/securing-restricted-sessions


GitHub Id PRs merged Issues opened

jhribal 1

Joeselorm 1

matziq 1

RAJU2529 1

ThomasNieto 1 2

iRon7 2

JustinWebDev 2

o-l-a-v 2

tabad 4

New content

How to create a feedback provider

Updated Content

Updated What's new in PowerShell 7.4 for PowerShell 7.4-preview.6
Documented the changes to search scope in How to use the documentation
Updated What's new in Crescendo 1.1 for the GA release
Updated the setup scripts for supported Linux distributions
Updated DSC v3 content for the alpha.3 release

Quality improvement project contributions

@ehmiiz contributed 5 PRs to update 35 files

New Learn platform features

Deployed the new feedback experience at that bottom of each page

GitHub stats

52 PRs merged (9 from Community)

2023-Sep

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/whats-new/whats-new-in-crescendo-11


24 issues opened (22 from Community)
24 issues closed (23 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ehmiiz 5 5

bubbletroubles 1

JamesDBartlett3 1

not-not-kevin 1

skycommand 1

jsilverm 3

mklement0 2

New content

66 New articles for DSC v3 (alpha)

See Microsoft Desired State Configuration v3 overview to get started with the new
documentation

Updated Content

Crescendo 1.1-RC1 release updates
What's new in Crescendo 1.1

New PSResourceGet beta24 content updates
See Supported repository configurations

Lots updates for the PowerShell 7.4-preview.5 release
What's New in PowerShell 7.4 (preview)
New features for 10 cmdlets

Updated support status and installation notes for Raspberry Pi
Community support for PowerShell on Linux - PowerShell

ﾉ Expand table

2023-Aug

https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/whats-new/whats-new-in-crescendo-11
https://learn.microsoft.com/en-us/powershell/gallery/powershellget/supported-repositories
https://learn.microsoft.com/en-us/powershell/scripting/install/community-support#raspberry-pi-os


GitHub stats

29 PRs merged (3 from Community)
16 issues opened (12 from Community)
21 issues closed (17 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ehmiiz 1 1

crisman 1

deadlydog 1

JamesDBartlett3 1

Updated content

7.4-preview.4 release notes
Add publish information to Supported repository configurations
Updated the release notes shipped with Get-WhatsNew
Fixed invalid ///-comments in SDK API reference
Updated the man page that ships in PowerShell for Linux and macOS

GitHub stats

31 PRs merged (10 from Community)
21 issues opened (17 from Community)
17 issues closed (13 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

Top Community Contributors

ﾉ Expand table

2023-Jul

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/gallery/powershellget/supported-repositories
https://www.powershellgallery.com/packages/Microsoft.PowerShell.WhatsNew
https://www.powershellgallery.com/packages/Microsoft.PowerShell.WhatsNew


GitHub Id PRs merged Issues opened

crisman 2 3

TSanzo-BLE 2

MilekJakub 1

Atman-Shastri 1

BraveJhawk 1

coolhome 1

johndward01 1

lor3k 1

New Azure Cloud Shell content

Using Cloud Shell in an Azure virtual network
Deploy Azure Cloud Shell in a VNET with quickstart templates

New PowerShellGet v3 content

Supported repository configurations
Cmdlet reference for Microsoft.PowerShell.PSResourceGet
Cmdlet reference for the PowerShellGet compatibility module

Lot of updates for the PowerShell 7.4-preview.4 release

What's New in PowerShell 7.4 (preview)
Using Experimental Features in PowerShell
New features for 12 cmdlets

Quality Project contributions

@XXLMandalorian013 contributed 3 PRs to update 2 files in the
MicrosoftDocs/windows-docs-powershell repository

GitHub stats

ﾉ Expand table

2023-Jun

Top Community Contributors

https://learn.microsoft.com/en-us/azure/cloud-shell/private-vnet
https://learn.microsoft.com/en-us/azure/cloud-shell/quickstart-deploy-vnet
https://learn.microsoft.com/en-us/powershell/gallery/powershellget/supported-repositories
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.psresourceget/?view=powershellget-3.x&preserve-view=true
https://learn.microsoft.com/en-us/powershell/module/powershellget/?view=powershellget-3.x&preserve-view=true


59 PRs merged (15 from Community)
44 issues opened (30 from Community)
47 issues closed (31 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

thegraffix 4

crisman 4 3

RAJU2529 1

dstreefkerk 1

vontompers 1

mubed 1

Frederisk 1

khaffner 1

noamper 1

aksarben 4

New content

New cmdlet in 7.4 - Get-SecureRandom
Using Windows Defender Application Control

Updated content

How to use the PowerShell documentation
Added descriptions for various navigation elements on the site
Added information about how to use the new Download PDF feature

Exploring the Windows PowerShell ISE
Added screenshots for the ISE user interface elements

Update documentation for Add-Member
Corrected some parameter values

ﾉ Expand table

2023-May

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-securerandom?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/learn/application-control
https://learn.microsoft.com/en-us/powershell/scripting/how-to-use-docs
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/ise/exploring-the-windows-powershell-ise
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-member?view=powershell-7.5


Improved the description and added examples for the SecondValue parameter

Quality Project contributions

@robderickson contributed 1 PR to update 10 files in the MicrosoftDocs/windows-
docs-powershell repository

GitHub stats

38 PRs merged (7 from Community)
24 issues opened (18 from Community)
20 issues closed (17 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

rwp0 1

pronichkin 1

Ooggle 1

mavaddat 1

IanKemp 1

mcdonaldjc 1

Brizio 1

dotnvo 1

r0bfr 1

mklement0 3

aksarben 2

crisman 2

Top Community Contributors

ﾉ Expand table

2023-April



New content

Handling errors in Crescendo
Transforming arguments in Crescendo

Updated content

Updated release notes for PowerShell 7.4-preview.3
Migrated the PowerShell Gallery and PowerShellGet docs to new location to enable
version selectors for PowerShellGet

PowerShell Summit 2023 - Hack-a-Doc event

We hosted a Hack-a-Doc event on April 27th. Special thanks to the following 19
people. They contributed 62 PRs to update 204 files in the
MicrosoftDocs/windows-powershell-docs  repository.

GitHub Id name Count of PRs Count of file

RobBiddle Robert Biddle 28 48

pbossman Phil Bossman 1 27

ThomasNieto Thomas Nieto 1 24

kevinCefalu Kevin Cefalu 1 24

robderickson Rob Derickson 4 17

Snozzberries Michael Soule 13 16

Spoonsk Joseph Gast 1 12

thedavecarroll Dave Carroll 1 11

raynbowbrite Vanda Paladino 2 7

majst32 Melissa Januszko 1 6

XXLMandalorian013 Drew McClellan 1 4

ThePoShWolf Anthony Howell 1 1

mdowst Matthew Dowst 1 1

thepowerstring 1 1

KevinMarquette Kevin Marquette 1 1

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/advanced/handling-errors
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/advanced/transforming-arguments
https://learn.microsoft.com/en-us/powershell/gallery/overview
https://github.com/MicrosoftDocs/windows-powershell-docs
https://github.com/MicrosoftDocs/windows-powershell-docs


GitHub Id name Count of PRs Count of file

53883 1 1

zockan Michael Svegmar 1 1

lanwench Paula Kingsley 1 1

stevenjudd Steven Judd 1 1

Grand Total 62 204

GitHub stats

23 PRs merged (2 from Community)
16 issues opened (14 from Community)
17 issues closed (15 Community issues closed)

The following people contributed to PowerShell docs this month by submitting pull
requests or filing issues. Thank you!

GitHub Id PRs merged Issues opened

NLZ 1

Jonathan-Quilter 1

New content

Create a class-based DSC Resource for Machine Configuration
Using PSReadLine key handlers

Updated content

Release notes for PowerShell 7.4-preview.2

Quality project updates from the community

One of our top contributors @ehmiiz  blogged about contributing to Docs

Top Community Contributors

ﾉ Expand table

2023-March

https://learn.microsoft.com/en-us/powershell/dsc/tutorials/create-dsc-resource-machine-config
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-keyhandlers
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-74
https://github.com/ehmiiz
https://github.com/ehmiiz


How to Learn Git, Markdown and PowerShell by Contributing to the PowerShell-
Docs Repository

GitHub stats

60 PRs merged (13 from Community)
44 issues opened (31 from Community)
50 issues closed (36 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

skycommand 2

martincostello 1

iRon7 1 4

chrullrich 1

FlintyLemming 1

ehmiiz 1

vvavrychuk 1

bb-froggy 1

BenjamimCS 1

kirillkrylov 1

bergmeister 1

lizy14 1

CarloToso 5

MartinGC94 2

rgl 2

Top Community Contributors

ﾉ Expand table

https://www.ehmiiz.se/blog/ps_docs_contributions/
https://www.ehmiiz.se/blog/ps_docs_contributions/
https://www.ehmiiz.se/blog/ps_docs_contributions/


New Content

Preventing script injection attacks (Thanks @PaulHigin )

Content updates

Major update to about_PowerShell_Config
Update to about_Logging_Non-Windows for macOS instructions
Major update to Class-based DSC Resources and other related articles for DSC v2

Quality project updates from the community

Added alias information to 4 cmdlet articles (Thanks @ehmiiz !)

GitHub stats

35 PRs merged (8 from Community)
20 issues opened (14 from Community)
17 issues closed (10 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

joshua-russell 4 1

1NF053C 1

doctordns 1

Hrxn 1

KyleMit 1

VertigoRay 1

ehmiiz 1

ArmaanMcleod 2

mklement0 2

2023-February

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/security/preventing-script-injection
https://github.com/PaulHigin
https://github.com/PaulHigin
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_powershell_config
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
https://learn.microsoft.com/en-us/powershell/dsc/concepts/class-based-resources
https://github.com/ehmiiz
https://github.com/ehmiiz


New Content

What's new in PowerShell 7.4 (preview)
about_Data_Files

Content updates

Updated docs for 7.4-preview.1 release
Major update to about_Language_Modes
Major update to about_Logging_Non-Windows

Quality project updates from the community

Added alias information to 40 cmdlet articles (Thanks @ehmiiz !)
Added alias information to 52 cmdlet articles (Thanks @szabolevo !)

GitHub stats

71 PRs merged (21 from Community)
53 issues opened (33 from Community)
62 issues closed (40 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ehmiiz 5 5

szabolevo 5 7

anderjef 2

turbedi 1

desk7 1

cobrabr 1

ZYinMD 1

2023-January

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-74
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_data_files
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_language_modes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_logging_non-windows
https://github.com/ehmiiz
https://github.com/ehmiiz
https://github.com/szabolevo
https://github.com/szabolevo


GitHub Id PRs merged Issues opened

tompazourek 1

kenyon 1

cjvandyk 1

JTBrinkmann 1

mklement0 4

CarloToso 3

KyleMit 2

iRon7 2



What's new in PowerShell Docs for 2022
Article • 03/30/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

New Content

about_PSItem
Configuring a light colored theme
What's new in Crescendo 1.1
Export-CrescendoCommand
PowerShell 7.4 (preview) cmdlet reference - a direct copy of the 7.3 content in
preparation for the preview release of PowerShell 7.4

More Quality project updates

Added alias information to 83 cmdlet articles (Thanks @ehmiiz!)
Added alias information to 8 cmdlet articles (Thanks @szabolevo!)

GitHub stats

51 PRs merged (14 from Community)
50 issues opened (28 from Community)
46 issues closed (23 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ehmiiz 8 7

changeworld 3

szabolevo 1

2022-December

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psitem
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-light-theme
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/whats-new/whats-new-in-crescendo-11
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.crescendo/export-crescendocommand


GitHub Id PRs merged Issues opened

amkhrjee 1

xtqqczze 1 3

ALiwoto 1 2

mklement0 3

New Content

Contributing quality improvements
See examples under Quality project updates

Product terminology and branding guidelines
Labelling in GitHub

Content updates

Updated release notes for the PowerShell 7.3 GA release
Updated about_Telemetry
Improved the description of delay-binding in about_Script_Blocks
Added a best practice recommendation to about_Functions_Advanced_Parameters

Quality project updates

Added alias information to 129 cmdlet articles (Thanks @ehmiiz!)
Added links to PRs in the PowerShell 7.3 release notes (Thanks @skycommand!)
Converted hyperlinks to link references in 5 articles (Thanks @chadmando!)

GitHub stats

52 PRs merged (12 from Community)
41 issues opened (27 from Community)
42 issues closed (28 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

2022-November

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_telemetry
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Script_Blocks
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Functions_Advanced_Parameters


GitHub Id PRs merged Issues opened

ehmiiz 9 8

chadmando 1

baardhermansen 1

skycommand 1

mklement0 3

peetrike 2

New Content

Create a class-based DSC Resource
Hacktoberfest and other hack-a-thon events

Content updates

Hacktoberfest 2022  cleanup efforts
Thank you to @ehmiiz, @TSanzo-BLE, and @chadmando for their Hacktoberfest
PRs! Their 11 PRs touched 114 articles.

Published PowerShell SDK .NET API content for PowerShell 7.2 and 7.3-preview
The first updates since PowerShell 7.1 released in November 2020
Removed the unsupported versions 6.0 and 7.1

Added a list of aliases not available on Linux and macOS to PowerShell differences
on non-Windows platforms

GitHub stats

65 PRs merged (21 from Community)
42 issues opened (28 from Community)
34 issues closed (23 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ehmiiz 5 5

2022-October

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/dsc/tutorials/create-class-based-resource?view=dsc-2.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/hackathons?
https://github.com/MicrosoftDocs/PowerShell-Docs/pulls?q=is%3Apr+is%3Aclosed+label%3Ahacktoberfest-accepted
https://github.com/MicrosoftDocs/PowerShell-Docs/pulls?q=is%3Apr+is%3Aclosed+label%3Ahacktoberfest-accepted
https://learn.microsoft.com/en-us/dotnet/api/?view=powershellsdk-7.2.0&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api/?view=powershellsdk-7.3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/unix-support
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/unix-support


GitHub Id PRs merged Issues opened

TSanzo-BLE 4

yecril71pl 2

chadmando 2

GigaScratch 1 1

rbleattler 1

spjeff 1

adamdriscoll 1

manuelcarriernunes 1

michelangelobottura 1

dmpe 1

KamilPacanek 1

SetTrend 2

No new content this month.

Content updates

PSScriptAnalyzer 1.21 update release
Release notes for 7.3-preview.8

GitHub stats

31 PRs merged (8 from Community)
18 issues opened (9 from Community)
16 issues closed (8 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

2022-September

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-73


GitHub Id PRs merged Issues opened

DonaldDWebster 1

emerconghaile 1

floojah 1

imere 1

mcdonaldjc 1

rayden84 1

sirsql 1

tig 1

b-long 2

New content

New landing page for What's new content

Shell experience docs
Running commands in the shell

DSC 2.0 docs
Conceptual content - 15 new articles
PSDscResources module reference - 58 new articles

Content updates

PowerShell VS Code docs
Release notes for 7.3-preview.7
Cleaned up markdown tables in About topics for better accessibility and
localization

Other Projects

Get-WhatsNew  cmdlet released - This cmdlet displays release notes for all
versions of PowerShell so you can see what's new for a particular version.

GitHub stats

57 PRs merged (16 from Community)

2022-August

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/overview
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/running-commands
https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-2.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/reference/psdscresources/overview?view=dsc-2.0&preserve-view=true
https://code.visualstudio.com/docs/languages/powershell
https://code.visualstudio.com/docs/languages/powershell
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-73
https://devblogs.microsoft.com/powershell/announcing-the-release-of-get-whatsnew/
https://devblogs.microsoft.com/powershell/announcing-the-release-of-get-whatsnew/


24 issues opened (12 from Community)
26 issues closed (15 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

sethvs 4

BEEDELLROKEJULIANLOCKHART 1

Chemerevsky 1

ClaudioESSilva 1

davidhaymond 1

DavidMetcalfe 1

dharmatech 1

kozhemyak 1

mcawai 1

NaridaL 1

Nicicalu 1

sdarwin 1

seansaleh 1

New content

Optimizing your shell experience
Using tab completion
Using command predictors
Getting dynamic help
Using aliases
Customizing your shell environment

Content updates

ﾉ Expand table

2022-July

https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/optimize-shell
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/tab-completion
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-predictors
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/dynamic-help
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/using-aliases
https://learn.microsoft.com/en-us/powershell/scripting/learn/shell/creating-profiles


Updated PowerShell 7.3-preview.6 release notes
Started reviewing and testing PowerShellGet v3 cmdlet reference (currently in beta)
to ensure accuracy and release readiness.
Refresh of our Community Contributor Guide

GitHub stats

50 PRs merged (6 from Community)
22 issues opened (14 from Community)
29 issues closed (19 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Alvynskio 1

bergmeister 1

BusHero 1

lewis-yeung 1

sethvs 1

tommymaynard 1

New content migrated from GitHub wiki

Limitations of PowerShell transcripts
Avoid using Invoke-Expression
Avoid assigning variables in expressions
about_Case-Sensitivity
Updated about_Arrays

New SecretManagement content

Understanding the security features of SecretManagement and SecretStore

Top Community Contributors

ﾉ Expand table

2022-June

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/what-s-new-in-powershell-73
https://aka.ms/PSDocsContributor
https://aka.ms/PSDocsContributor
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/output-missing-from-transcript
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/avoid-using-invoke-expression
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/avoid-assigning-variables-in-expressions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_case-sensitivity
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_arrays
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/security-concepts


Using the SecretStore in automation
Using Azure Key Vault in automation

Content updates

Updated release notes for 7.3-preview.5 and PSReadLine 2.2.6

GitHub stats

44 PRs merged (8 from Community)
23 issues opened (14 from Community)
23 issues closed (13 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

mcdonaldjc 2 1

radrow 1

yecril71pl 1

muhahaaa 1

windin7cc 1

fabiod89 1

NaridaL 1

New content

Create a Crescendo configuration using the Crescendo cmdlets
Overview of the SecretManagement and SecretStore modules
Get started with the SecretStore module
Understanding the SecretManagement module
Managing a SecretStore vault

Top Community Contributors

ﾉ Expand table

2022-May

https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/using-secrets-in-automation
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/using-azure-keyvault
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/advanced/using-crescendo-cmdlets
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/overview
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/get-started/using-secretstore
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/get-started/understanding-secretmanagement
https://learn.microsoft.com/en-us/powershell/utility-modules/secretmanagement/how-to/manage-secretstore


Content updates

Renamed the staging  branch to main
Updated the Table of Contents for easier discovery

Moved Support Lifecycle to the top level
Moved Contributor Guide to the top level

7.3-preview.4 release notes
Bulk formatting cleanup for many docs

PowerShell-Docs content - 272 files
Secrets management - 17 files

Updated the PSScriptAnalyzer README and deleted docs that were migrated to
Microsoft Learn
Removed CentOS and Fedora from docs - no longer supported
Retired 7.1 content - no longer supported

Collapse release notes into diff article
Delete or move content to archive repo

GitHub stats

53 PRs merged (12 from Community)
38 issues opened (21 from Community)
39 issues closed (26 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

tommymaynard 5

naveensrinivasan 2

rikurauhala 1

joshua6point0 1

rhorber 1

Raton-Laveur 1

StephenRoille 1

Top Community Contributors

ﾉ Expand table



GitHub Id PRs merged Issues opened

krlinus 2

New content

No new content this month

Content updates

Rewrote the install instructions for PowerShellGet
Created separate article for Installing PowerShellGet on older Windows systems

Other projects

PowerShell + DevOps Summit April 25-28
Gave presentation about contributing to Docs
Lightning demo about argument completers
Interview for the PowerShell Podcast

GitHub stats

24 PRs merged (3 from Community)
22 issues opened (17 from Community)
21 issues closed (15 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

Hrxn 1

kevinholtkamp 1

MikeyBronowski 1

tommymaynard 4

2022-April

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/gallery/powershellget/install-powershellget
https://learn.microsoft.com/en-us/powershell/gallery/powershellget/install-on-older-systems
https://powershellpodcast.podbean.com/e/contributing-to-powershell-made-easy-with-sean-wheeler/
https://powershellpodcast.podbean.com/e/contributing-to-powershell-made-easy-with-sean-wheeler/


New Content

New PowerShell docs
about_Member-Access_Enumeration
about_Module_Manifests
How to create a command-line predictor

Utility modules updates
New docs for Crescendo release

Install Crescendo
Choose a command-line tool
Decide which features to amplify
Create a Crescendo cmdlet
Generate and test a Crescendo module

Moved PlatyPS article from PowerShell docs to the PlatyPS documentation
Moved PlatyPS article

Migrated more PSScriptAnalyzer documentation from the source code
repository

Using PSScriptAnalyzer
Rules and recommendations
Creating custom rules

Content updates

Bulk cleanup of related links in About_ topics
Added issue and PR templates to all docs repos
Updates for 7.3 preview content

New tab completions
Support for SSH options on remoting cmdlets
New experimental feature PSAMSIMethodInvocationLogging

Other projects

Created a prototype cmdlet Get-WhatsNew  based on the draft RFC
Check out the RFC and provide feedback

New team member

Welcome Mikey Lombardi  to the docs team

2022-March

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_member-access_enumeration
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_module_manifests
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/create-cmdline-predictor
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/get-started/install-crescendo
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/get-started/choose-command-line-tool
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/get-started/research-tool
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/get-started/create-new-cmdlet
https://learn.microsoft.com/en-us/powershell/utility-modules/crescendo/get-started/generate-module
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/using-scriptanalyzer
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules-recommendations
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/create-custom-rule
https://github.com/PowerShell/PowerShell-RFC/pull/317
https://github.com/PowerShell/PowerShell-RFC/pull/317
https://github.com/michaeltlombardi
https://github.com/michaeltlombardi


GitHub stats

49 PRs merged (8 from Community)
26 issues opened (14 from Community)
33 issues closed (18 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

AspenForester 1

codaamok 1

DianaKuzmenko 1

MikeyBronowski 1

poshdude 1

robcmo 1

sertdfyguhi 1

stampycode 1

New Content

about_Calling_Generic_Methods

Content updates

Catching up on issues
Updates for 7.3 preview content

GitHub stats

22 PRs merged (3 from Community)
24 issues opened (19 from Community)

ﾉ Expand table

2022-February

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_calling_generic_methods?view=powershell-7.3&preserve-view=true


18 issues closed (16 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

sethvs 2

guilhermgonzaga 1

New Content

No new content. We're down to one writer for PowerShell. I was out of the office
for half of December for vacation then half of January for COVID.

Content updates

Catching up on issues
Updates for 7.3 preview content

GitHub stats

51 PRs merged (10 from Community)
29 issues opened (26 from Community)
46 issues closed (39 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

sethvs 3

UberKluger 1

MiguelDomingues 1

ﾉ Expand table

2022-January

Top Community Contributors

ﾉ Expand table



GitHub Id PRs merged Issues opened

reZach 1

Hertz-Hu 1

julian-hansen 1

Hrxn 1

peteraritchie 1



What's new in PowerShell Docs for 2021
Article • 03/30/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

New Content

Added PowerShell 7.3-preview.1 [preview content]
New DSC 3.0 content

PowerShell Desired State Configuration overview
Manage configuration using PowerShell DSC
DSC Configurations
DSC Resources

Content updates

Moved Desired State Configuration content to new docset and repository
DSC is now being developed outside of the PowerShell product.
The move allows for better versioning of documentation for DSC.

GitHub stats

24 PRs merged (4 from Community)
30 issues opened (26 from Community)
12 issues closed (7 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

dAu6jARL 1

2021-December

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/dsc/overview?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/getting-started/getting-started?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/concepts/configurations?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/concepts/resources?view=dsc-3.0&preserve-view=true
https://learn.microsoft.com/en-us/powershell/dsc/overview


GitHub Id PRs merged Issues opened

shriharshmishra 1

a-sync 1

bogdangrigg 1

New Content

about_Built-in_Functions

Content updates

PowerShell 7.2 GA documentation updates
Update GitHub Issue and PR templates - piloting the new YAML-based forms for
issues
Updated Crescendo reference for Preview 4 release

GitHub stats

48 PRs merged (13 from Community)
31 issues opened (24 from Community)
34 issues closed (28 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

matt9ucci 4

yecril71pl 3

tholabrk 1

lukejjh 1

Oechiih 1

2021-November

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_built-in_functions


GitHub Id PRs merged Issues opened

bergmeister 1

Hrxn 1

jebeckham 1

New Content

PSScriptAnalyzer documentation
Overview
Rules documentation

Content updates

Lots of general editorial and freshness updates across 450 files
PowerShell 7.2-rc.1 documentation updates

GitHub stats

49 PRs merged (12 from Community)
33 issues opened (30 from Community)
33 issues closed (32 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

doctordns 4

diecknet 1

Kagre 1

KexyBiscuit 1

JohnRoos 1

2021-October

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/overview
https://learn.microsoft.com/en-us/powershell/utility-modules/psscriptanalyzer/rules/readme


GitHub Id PRs merged Issues opened

Zhu-Panda 1

philanderson888 1

BlackFalcons 1

milaandahiya 1

mklement0 2

New Content

SDK documentation
How to validate an argument using a script
ValidateScript Attribute Declaration

Learning content
PowerShell security features

Content updates

Install documentation - Did a complete rewrite of the setup documentation. There
is now a separate article for each supported OS.

Install on Windows
Install on macOS
Install on Linux

Alpine
CentOS
Debian
Fedora
Raspberry Pi OS
Red Hat Enterprise Linux
Ubuntu
Alternate install methods
Community supported Linux

Supporting documentation
Using PowerShell in Docker
Arm Processor support
Microsoft Update for PowerShell FAQ
PowerShell Support Lifecycle

2021-September

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-validate-an-argument-using-script
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/validatescript-attribute-declaration
https://learn.microsoft.com/en-us/powershell/scripting/learn/security-features
https://learn.microsoft.com/en-us/powershell/scripting/install/Installing-PowerShell-on-Windows
https://learn.microsoft.com/en-us/powershell/scripting/install/Installing-PowerShell-on-macOS
https://learn.microsoft.com/en-us/powershell/scripting/install/Installing-PowerShell-on-Linux
https://learn.microsoft.com/en-us/powershell/scripting/install/install-alpine
https://learn.microsoft.com/en-us/powershell/scripting/install/install-debian
https://learn.microsoft.com/en-us/powershell/scripting/install/install-raspbian
https://learn.microsoft.com/en-us/powershell/scripting/install/install-rhel
https://learn.microsoft.com/en-us/powershell/scripting/install/install-ubuntu
https://learn.microsoft.com/en-us/powershell/scripting/install/install-other-linux
https://learn.microsoft.com/en-us/powershell/scripting/install/community-support
https://learn.microsoft.com/en-us/powershell/scripting/install/PowerShell-in-Docker
https://learn.microsoft.com/en-us/powershell/scripting/install/PowerShell-on-ARM
https://learn.microsoft.com/en-us/powershell/scripting/install/microsoft-update-faq
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle


Reformatted and updated the PSScriptAnalyzer rules documentation. Next month
we plan to publish these docs to Microsoft Learn.

Rules documentation on GitHub
Lots of general editorial updates across 4500 files
PowerShell 7.2-preview.10 documentation updates

GitHub stats

68 PRs merged (6 from Community)
32 issues opened (29 from Community)
49 issues closed (41 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

RaghuRocks3 1

Zhu-Panda 1

Jaykul 1

juvtib 1

przmv 1

mklement0 2

New content

about_ANSI_Terminals
about_PSCustomObject

Content updates

PowerShell 7.2-preview.9 documentation updates

Top Community Contributors

ﾉ Expand table

2021-August

Top Community Contributors

https://github.com/PowerShell/PSScriptAnalyzer/tree/master/docs/Rules
https://github.com/PowerShell/PSScriptAnalyzer/tree/master/docs/Rules
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_ansi_terminals?view=powershell-7.2&preserve-view=true
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pscustomobject


GitHub stats

66 PRs merged (14 from Community)
42 issues opened (30 from Community)
53 issues closed (38 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

AvrumFeldman 1

benmccallum 1

bitdeft 2

BraINstinct0 1

diddledani 1

doctordns 1

gravitional 1

homotechsual 1

imba-tjd 1

juvtib 1

kozhemyak 1

omarys 1

ryandasilva2992 1

sethvs 1

sneakernuts 1

New content

about_Functions_Argument_Completion
about_Tab_Expansion

ﾉ Expand table

2021-July

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_argument_completion
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Tab_Expansion


Content updates

about_Functions_Advanced_Parameters - major updates and links to new articles
PowerShell 7.2-preview.8 documentation updates

GitHub stats

51 PRs merged (9 from Community)
56 issues opened (50 from Community)
59 issues closed (52 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

rkeithhill 2

juvtib 2

SetTrend 1

Rob-S 1

xtqqczze 1

akashdabhi03 1

kurtmckee 1

clamb123 13

mklement0 2

jerryKahnPerl 2

New content

about_Intrinsic_Members
about_Booleans

Top Community Contributors

ﾉ Expand table

2021-June

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_intrinsic_members
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_booleans


Content updates

Converted about_Remote_FAQ to new YAML format and moved to conceptual TOC
Moved PSDesiredStateConfiguration out of 7.2 docs and into PowerShell-Docs-
Modules

DSC is being removed from PowerShell to become an optional module that is
loaded from the PowerShell Gallery
Long-term plan is to move all DSC documentation out of PowerShell-Docs into
a new repository for DSC content

Totally rewrote the PowerShell release notes to summarize the current state,
making it easier for users to find the information without having to read every
release note.

Differences between Windows PowerShell 5.1 and PowerShell (core) 7.x
PowerShell differences on non-Windows platforms

PowerShell 7.2-preview.7 documentation updates

GitHub stats

43 PRs merged (1 from Community)
36 issues opened (32 from Community)
49 issues closed (41 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

rkeithhill 1

frenchiveruti 2

paulaustin-automutatio 2

ringerc 2

trollyanov 2

UberKluger 2

Top Community Contributors

ﾉ Expand table

2021-May

https://learn.microsoft.com/en-us/powershell/scripting/learn/remoting/powershell-remoting-faq
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/differences-from-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/unix-support


New Content

Migrated two articles from the Windows Server content to the PowerShell docset
PowerShell scripting performance considerations
PowerShell module authoring considerations

Added PowerShell Language Specification 3.0
The specification document is available from the Microsoft Download Center as
a Microsoft Word document .

Updated content for PowerShell 7.2-Preview6 release
Moved Samples under the Learn node in the Table of Contents

GitHub stats

53 PRs merged (6 from Community)
37 issues opened (35 from Community)
39 issues closed (36 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

kvprasoon 2

jErprog 1

aamnah 1

BetaLyte 1

TheNCuber 1

trollyanov 6

Tarjei-stavanger 3

aungminko93750 3

SetTrend 2

cdichter 2

reuvygroovy 2

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/performance/script-authoring-considerations
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/performance/module-authoring-considerations
https://learn.microsoft.com/en-us/powershell/scripting/lang-spec/chapter-01
https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


New Content

Published new Learn content Write your first PowerShell code
Updated docs for PowerShell 7.2-preview.5
Updated metadata on ~3300 articles in the Windows module documentation

Preparing for Windows Server 2022 release and fixing updateable help
This is still a work in progress

GitHub stats

45 PRs merged (5 from Community)
42 issues opened (33 from Community)
55 issues closed (32 Community issues closed)

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

ealmonte32 1

hananyajacobson 1

MarcChasse 1

Melvin-Abraham 1

robertkruk 1

MikeMM70 2

New content

Working on simplify and expanding the Overview content
Added What is a PowerShell command?

Started a new tutorial series - PowerShell Bits
Discover PowerShell

2021-April

Top Community Contributors

ﾉ Expand table

2021-March

https://learn.microsoft.com/en-us/training/modules/powershell-write-first/
https://learn.microsoft.com/en-us/powershell/scripting/overview
https://learn.microsoft.com/en-us/powershell/scripting/powershell-commands
https://learn.microsoft.com/en-us/powershell/scripting/learn/tutorials/00-introduction
https://learn.microsoft.com/en-us/powershell/scripting/learn/tutorials/01-discover-powershell


Help content for PowerShell utility modules
Microsoft.PowerShell.Crescendo
Microsoft.PowerShell.SecretManagement
Microsoft.PowerShell.SecretStore
PlatyPS
PSScriptAnalyzer

Working with the Windows team to update help for Windows management
modules

Added content for Windows Server 2019 and Windows Server 2022 (preview)
Continuing to work on improving updateable help for these modules

PowerShell 7.2-preview documentation updates

GitHub stats

42 PRs merged (5 from Community)
63 issues opened (42 from Community)
47 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

bl-ue 1

brianary 1

Lx 1

matt9ucci 1

kfasick 1

mklement0 10

juvtib 6

BoJackem23 2

Top Community Contributors

ﾉ Expand table

2021-February

https://learn.microsoft.com/en-us/powershell/utility-modules/overview
https://learn.microsoft.com/en-us/powershell/windows/get-started
https://learn.microsoft.com/en-us/powershell/windows/get-started


New content

PowerShell 7.2-preview documentation updates

GitHub stats

40 PRs merged (12 from Community)
40 issues opened (30 from Community)
35 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

bbodenmiller 1

brianary 1

exchange12rocks 1

IvenBach 1

jamiepinheiro 1

jdoubleu 1

LogicalToolkit 1

matt9ucci 1

mihir-ajmera 1

revolter 1

secretGeek 1

springcomp 1

Ayanmullick 2

New content

Top Community Contributors

ﾉ Expand table

2021-January



PowerShell 7.2-preview documentation updates

GitHub stats

44 PRs merged (14 from Community)
46 issues opened (38 from Community)
35 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

AndreyMatrosov 4

revolter 2

cconrad 1

Hrxn 1

kilasuit 1

NN--- 1

snickler 1

vinian 1

zeekbrown 1

brianary 2

mklement0 2

plastikfan 2

Top Community Contributors

ﾉ Expand table



What's new in PowerShell Docs for 2020
Article • 03/30/2025

This article lists notable changes made to docs each month and celebrates the
contributions from the community.

Help us make the documentation better for you. Read the Contributor's Guide to learn
how to get started.

Updated contributor guide
documented the &preserve_view=true  query parameter for hyperlinks
documented cross-reference syntax for hyperlinks
added information about localization

GitHub stats
44 PRs merged (11 from Community)
50 issues opened (43 from Community)
50 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

doctordns 3 2

chadbaldwin 1

dawedawe 1

dumpvn 1

kvprasoon 1

lbearl 1

petershen0307 1

2020-December

Top Community Contributors

ﾉ Expand table



GitHub Id PRs merged Issues opened

skycommand 1

springcomp 1

Cwilson-dataselfcom 5

bobbybatatina 2

PowerShell 7.1 GA Release
What's New in PowerShell 7.1
Converted 7.1 docs to release status
Added 7.2 (preview) docs
Retired v6 docs to archive repository

Blog posts
You've got Help!
Updating help for the PSReadLine module

Documentation maintenance
Updated 137 articles to remove MSDN and TechNet references
Updated 171 articles to indicate Windows-only compatibility
Updated 38 articles to address build warnings and suggestions
Added include to 24 DSC articles
Major rewrite of the PowerShell Jobs articles

about_Jobs
about_Remote_Jobs
about_Thread_Jobs

GitHub stats
50 PRs merged (8 from Community)
55 issues opened (45 from Community)
51 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

2020-November

Top Community Contributors

https://devblogs.microsoft.com/powershell/youve-got-help/
https://devblogs.microsoft.com/powershell/youve-got-help/
https://devblogs.microsoft.com/powershell/updating-help-for-the-psreadline-module-in-windows-powershell-5-1/
https://devblogs.microsoft.com/powershell/updating-help-for-the-psreadline-module-in-windows-powershell-5-1/
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_thread_jobs


GitHub Id PRs merged Issues opened

AlanFlorance 1

gilbertbw 1

ianwalkeruk 1

JeremyTBradshaw 1

matt9ucci 1

Rob-S 1

ShaydeNofziger 1

skycommand 1

juvtib 8

iRon7 2

l-ip 2

stephenrgentry 2

Vixb1122 2

New articles
about_Character_Encoding
about_Output_Streams
Using Visual Studio Code to debug compiled cmdlets (thanks @fsackur)
Add Credential support to PowerShell functions (thanks @joshduffney)

Documentation maintenance
Updates for 7.1-rc content
Updated all article descriptions to improve SEO

GitHub stats
61 PRs merged (7 from Community)
49 issues opened (42 from Community)
61 issues closed

ﾉ Expand table

2020-October

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_character_encoding
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_output_streams
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/using-vscode-for-debugging-compiled-cmdlets
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/add-credentials-to-powershell-functions


The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

doctordns 1

escape208 1

nickdevore 1

fsackur 1

Duffney 1

skycommand 1

yecril71pl 1

mklement0 3

Abdullah0820 2

Documentation maintenance
Updates for 7.1-preview content

Community presentation
How to contribute to Docs for RTPUG - https://www.youtube.com/watch?
v=0_DEB61YOMc

GitHub stats
41 PRs merged (9 from Community)
52 issues opened (47 from Community)
51 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

Top Community Contributors

ﾉ Expand table

2020-September

Top Community Contributors

https://www.youtube.com/watch?v=0_DEB61YOMc
https://www.youtube.com/watch?v=0_DEB61YOMc
https://www.youtube.com/watch?v=0_DEB61YOMc


GitHub Id PRs merged Issues opened

doctordns 1

fatherjack 1

goforgold 1

jonathanweinberg 1

kvprasoon 1

skycommand 1

springcomp 1

themichaelbender 1

toddryan 1

mklement0 13

setpeetrike 2

New PowerShell documentation
About_Calculated_Properties
Writing Progress across multiple threads with ForEach-Object -Parallel

Documentation maintenance
Updates for 7.1-preview content

GitHub stats
69 PRs merged (26 from Community)
68 issues opened (49 from Community)
58 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

ﾉ Expand table

2020-August

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_calculated_properties
https://learn.microsoft.com/en-us/powershell/scripting/learn/deep-dives/write-progress-across-multiple-threads


GitHub Id PRs merged Issues opened

sethvs 10 2

yecril71pl 10

mklement0 1 7

springcomp 1 2

SquirrelAssassin 2

thorstenbutz 2

aetos382 1

crumdev 1

joshSi 1

kmoad 1

New PowerShell documentation
Resurrected old ETS docs - 7 articles added
Added article about creating updateable help using PlatyPS

Documentation maintenance
Updates for 7.1-preview content
Updated page header - simplified menu choices and added a download button
Fixed several Update-Help  issues

Help for PSDesiredStateConfiguration and ThreadJob modules now
downloads
Published updateable help for PowerShell 7.1 preview
Updateable help for PowerShell 5.1 now includes About topics

GitHub stats
99 PRs merged (29 from Community)
51 issues opened (44 from Community)
71 issues closed

2020-July

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/scripting/developer/ets/overview
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/create-help-using-platyps


The following people have contributed to PowerShell docs by submitting pull requests
or filing issues. Thank you!

GitHub Id PRs merged Issues opened

yecril71pl 10 3

sethvs 10

springcomp 3 2

txtor 2 1

baardhermansen 1

skycommand 1

srjennings 1

xtqqczze 1

mklement0 3

Allexxann 2

sharpninja 2

XuHeng1021 2

New PowerShell documentation
Published new PowerShell 101 content contributed by Mike F. Robbins
Added two recent blog posts from Rob Holt to the Scripting and development
docs

Choosing the right PowerShell NuGet package for your .NET project
Resolving PowerShell module assembly dependency conflicts

Documentation maintenance
Archived older content to https://aka.ms/PSLegacyDocs

PowerShell Web Access SDK content
PowerShell Workflows SDK content

Updates for 7.1-preview content

GitHub stats

ﾉ Expand table

2020-June

https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/choosing-the-right-nuget-package
https://learn.microsoft.com/en-us/powershell/scripting/dev-cross-plat/resolving-dependency-conflicts
https://aka.ms/PSLegacyDocs
https://aka.ms/PSLegacyDocs


83 PRs merged (15 from Community)
68 issues opened (52 from Community)
74 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

GitHub Id PRs merged Issues opened

doctordns 3

gabrielmccoll 2

adrianhale 1

aisbergde 1

beatcracker 1

bergmeister 1

DarioArzaba 1

gforceg 1

jpomfret 1

Karl-WE 1

signalwarrant 1

skycommand 1

tkhadimullin 1

johnkberry 2

juvtib 2

mklement0 2

Sagatboy33 4

Top Community Contributors

ﾉ Expand table

2020-May



New PowerShell documentation
Created a new Deep dives section containing content from community
contributor Kevin Marquette

Everything you want to know about arrays
Everything you want to know about hashtables
Everything you want to know about PSCustomObject
Everything you want to know about string substitution
Everything you want to know about if/then/else
Everything you want to know about switch
Everything you want to know about exceptions
Everything you want to know about $null
Everything you want to know about ShouldProcess
How to create a Standard Library binary module

Published the PowerShell 7.0 .NET API reference
Update-Help -Force  for PowerShell 5.1 now downloads updated content for the
core PowerShell modules

Documentation maintenance
Major reorganization of the Table of Contents

New content under Learning PowerShell
Windows PowerShell 5.1 content collected in one location

Archived older content to https://aka.ms/PSLegacyDocs
PowerShell Web Access
PowerShell Workflows Guide

Updates for 7.1-preview content

GitHub stats
81 PRs merged (21 from Community)
61 issues opened (53 from Community)
64 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

GitHub Id PRs merged Issues opened

nschonni 10

Top Community Contributors

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/?view=powershellsdk-7.0.0&preserve-view=true
https://aka.ms/PSLegacyDocs
https://aka.ms/PSLegacyDocs


GitHub Id PRs merged Issues opened

xtqqczze 2 1

kilasuit 1 1

davidseibel 1

doctordns 1

jhoffmann271 1

KevinMarquette 1

klitztuch 1

markojorge 1

perjahn 1

schuelermine 1

jsilverm 7

mklement0 5

cam1170 2

JustinGrote 2

peetrike 2

New documents
PowerShell documentation

Using Experimental Features
about_PSModulePath

Wiki articles
The case for and against Invoke-Expression
Variables can be assigned values as part of an expression (with limitations)

Documentation maintenance
Now publishing updates to Microsoft Learn on a daily schedule

Monday-Friday 3pm Redmond Time (UTC-8)
Restructured the Community content
Many editorial cleanups
Updated Contributor Guide

2020-April

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/experimental-features
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/The-case-for-and-against-Invoke-Expression
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/The-case-for-and-against-Invoke-Expression
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/Variables-can-be-assigned-values-as-part-of-an-expression-(with-limitations)
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/Variables-can-be-assigned-values-as-part-of-an-expression-(with-limitations)


Clarified some formatting rules
New information about table formatting

GitHub stats
74 PRs merged (8 from Community)
79 issues opened (71 from Community)
102 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

GitHub Id PRs merged Issues opened

ScSurber 1 1

alexandair 1

bmkaiser 1

hyoshioka0128 1

jpomfret 1

raydixon 1

signalwarrant 1

mklement0 8

reinierk 3

scabon 2

Abdullah0820 2

awooga 2

Damag3d 2

Fiasco123 2

Jasonthurston 2

Top Community Contributors

ﾉ Expand table

2020-March



New documents
The PowerShell Docs community pages

Community resources page
What's new in PowerShell Docs page (this page)
PowerShell Infographic  added to the Digital Art page
PowerShell-Doc contributor guide

New PowerShell content
Migrating from Windows PowerShell 5.1 to PowerShell 7
PowerShell 7 module compatibility list
Using PowerShell in Docker

New Wiki content
PowerShell prevents exceptions for non existent keys for types that
implement IDictionary TKey, TValue
PowerShell's treatment of namespaces is case insensitive but case preserving

Documentation maintenance
Massive cleanup of broken links
Cleanup of old and duplicate issues

GitHub stats
100 PRs merged (14 from Community)
68 issues opened (56 from Community)
109 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

k-takai - 7 PRs
mklement0 - 5 issues
juvtib - 4 issues
iSazonov - 3 issue
doctordns - 2 issues
mdorantesm - 2 issues
qt3m45su0najc7 - 2 issues

New documents
about_Parameter_Sets

Top Community Contributors

2020-February

https://learn.microsoft.com/en-us/powershell/scripting/community/community-support
https://github.com/MicrosoftDocs/PowerShell-Docs/blob/main/assets/PowerShell_7_Infographic.pdf
https://github.com/MicrosoftDocs/PowerShell-Docs/blob/main/assets/PowerShell_7_Infographic.pdf
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/overview
https://learn.microsoft.com/en-us/powershell/scripting/whats-new/migrating-from-windows-powershell-51-to-powershell-7
https://learn.microsoft.com/en-us/PowerShell/scripting/whats-new/module-compatibility
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-in-docker
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/PowerShell-prevents-exceptions-for-non-existent-keys-for-types-that-implement-IDictionary-TKey,-TValue-
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/PowerShell-prevents-exceptions-for-non-existent-keys-for-types-that-implement-IDictionary-TKey,-TValue-
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/PowerShell-prevents-exceptions-for-non-existent-keys-for-types-that-implement-IDictionary-TKey,-TValue-
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/PowerShell%27s-treatment-of-namespaces-is-case-insensitive-but-case-preserving
https://github.com/MicrosoftDocs/PowerShell-Docs/wiki/PowerShell%27s-treatment-of-namespaces-is-case-insensitive-but-case-preserving
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_parameter_sets


Release history of modules and cmdlets
PowerShell 7 documentation updates
Updates to address issues
Ran PlatyPS to verify parameter info for all cmdlets and versions
GitHub stats

52 PRs merged (9 from Community)
49 issues opened (42 from Community)
55 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

Maamue - 2 PRs
doctordns - 2 PRs
mklement0 - 4 issues
he852100 - 3 issues
VectorBCO - 2 issues
metablaster - 2 issues

New documents
about_Windows_PowerShell_Compatibility

PowerShell 7 documentation updates
Updates to address issues
GitHub stats

58 PRs merged (7 from Community)
57 issues opened (43 from Community)
70 issues closed

The following people have contributed to PowerShell docs by submitting pull requests
or filling issues. Thank you!

Makovec - 3 PRs
mklement0 - 9 issues
mvadu - 2 issues
razos - 2 issues

Top Community Contributors

2020-January

Top Community Contributors

https://learn.microsoft.com/en-us/powershell/scripting/whats-new/cmdlet-versions
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_Windows_PowerShell_Compatibility


VLoub - 2 issues
doctordns - 2 issues



PowerShell Digital Art
Article • 03/30/2025

The legends are true! The powerful shell that ensures safe passage to the cloud. But how?

Please enjoy the digital artwork linked below. Demonstrate to your peers that you have
been entrusted with the Scrolls of Monad!

PowerShell Infographic

PowerShell Hero Comic (High resolution)
PowerShell Hero Comic (Print resolution)
PowerShell Hero Comic (Web resolution)

PowerShell Hero Comic Wallpaper (4k resolution)
PowerShell Hero Pink Wallpaper (4k resolution)
PowerShell Hero White Wallpaper (4k resolution)

PowerShell Hero Poster

PowerShell Hero Image

As a general rule, third parties may not use Microsoft logos and artwork without
permission. The following are the limited circumstances under which third parties may
use the Microsoft PowerShell logo and artwork.

PowerShell Infographics

Comic

Wallpaper

Poster

PowerShell Hero

Microsoft PowerShell Logo and Digital Art Guidelines

https://github.com/MicrosoftDocs/PowerShell-Docs/blob/main/assets/PowerShell_7_Infographic.pdf
https://github.com/MicrosoftDocs/PowerShell-Docs/blob/main/assets/PowerShell_7_Infographic.pdf
https://aka.ms/powershellherocomic_highres
https://aka.ms/powershellherocomic_highres
https://aka.ms/powershellherocomic_print
https://aka.ms/powershellherocomic_print
https://aka.ms/powershellherocomic_web
https://aka.ms/powershellherocomic_web
https://aka.ms/powershellherowallpaper
https://aka.ms/powershellherowallpaper
https://aka.ms/powershellherowallpaper1
https://aka.ms/powershellherowallpaper1
https://aka.ms/powershellherowallpaper2
https://aka.ms/powershellherowallpaper2
https://aka.ms/powershellheroposter
https://aka.ms/powershellheroposter
https://aka.ms/powershellhero
https://aka.ms/powershellhero


For non-commercial purposes (documentation or on a website) that reference your
connection with Microsoft PowerShell.

Any uses outside of these guidelines as determined by Microsoft is strictly prohibited.
Do not use the Microsoft PowerShell logo or artwork in products, product packaging, or
other business services for which a formal license is required.

Microsoft reserves the right in its sole discretion to terminate or modify permission to
display the logo or artwork, and may request that third parties modify or delete any use
of the logo or artwork that, in Microsoft's sole judgment, does not comply with these
guidelines or might otherwise impair Microsoft's rights in the logo.



Using Visual Studio Code for PowerShell
Development
Article • 04/28/2023

Visual Studio Code  (VS Code) is a cross-platform script editor by Microsoft. Together
with the PowerShell extension , it provides a rich and interactive script editing
experience, making it easier to write reliable PowerShell scripts. Visual Studio Code with
the PowerShell extension is the recommended editor for writing PowerShell scripts.

It supports the following PowerShell versions:

PowerShell 7.2 and higher (Windows, macOS, and Linux)
Windows PowerShell 5.1 (Windows-only) with .NET Framework 4.8

Before you begin, make sure PowerShell exists on your system. For modern workloads
on Windows, macOS, and Linux, see the following links:

Installing PowerShell on Linux
Installing PowerShell on macOS
Installing PowerShell on Windows

For traditional Windows PowerShell workloads, see Installing Windows PowerShell.

７ Note

Visual Studio Code isn't the same as Visual Studio .

Getting started

） Important

The Windows PowerShell ISE is still available for Windows. However, it's no longer
in active feature development. The ISE only works with PowerShell 5.1 and older. As
a component of Windows, it continues to be officially supported for security and
high-priority servicing fixes. we've no plans to remove the ISE from Windows.

Install VS Code and the PowerShell Extension

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-7.5
https://visualstudio.microsoft.com/


1. Install Visual Studio Code. For more information, see the overview Setting up
Visual Studio Code .

There are installation instructions for each platform:

Running Visual Studio Code on Windows
Running Visual Studio Code on macOS
Running Visual Studio Code on Linux

2. Install the PowerShell Extension.
a. Launch the VS Code app by typing code  in a console or code-insiders  if you

installed Visual Studio Code Insiders.
b. Launch Quick Open on Windows or Linux by pressing Ctrl + P . On macOS,

press Cmd + P .
c. In Quick Open, type ext install powershell  and press Enter.
d. The Extensions view opens on the Side Bar. Select the PowerShell extension

from Microsoft.
e. Click the Install button on the PowerShell extension from Microsoft.
f. After the install, if you see the Install button turn into Reload, Click on Reload.

g. After VS Code has reloaded, you're ready for editing.

For example, to create a new file, click File > New. To save it, click File > Save and then
provide a filename, such as HelloWorld.ps1 . To close the file, click the X  next to the
filename. To exit VS Code, File > Exit.

Some systems are set up to require validation of all code signatures. You may receive
the following error:

This problem can occur when PowerShell's execution policy is set by Windows Group
Policy. To manually approve PowerShell Editor Services and the PowerShell extension for
VS Code, open a PowerShell prompt and run the following command:

PowerShell

Installing the PowerShell Extension on Restricted Systems

Language server startup failed.

Import-Module $HOME\.vscode\extensions\ms-
vscode.powershell*\modules\PowerShellEditorServices\PowerShellEditorServices
.psd1

https://code.visualstudio.com/Docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/windows
https://code.visualstudio.com/docs/setup/mac
https://code.visualstudio.com/docs/setup/linux


You're prompted with Do you want to run software from this untrusted publisher?
Type A  to run the file. Then, open VS Code and verify that the PowerShell extension is
functioning properly. If you still have problems getting started, let us know in a GitHub
issue .

With PowerShell installing side-by-side with Windows PowerShell, it's now possible to
use a specific version of PowerShell with the PowerShell extension. This feature looks at
a few well-known paths on different operating systems to discover installations of
PowerShell.

Use the following steps to choose the version:

1. Open the Command Palette on Windows or Linux with Ctrl + Shift + P . On
macOS, use Cmd + Shift + P .

2. Search for Session.
3. Click on PowerShell: Show Session Menu.
4. Choose the version of PowerShell you want to use from the list.

If you installed PowerShell to a non-typical location, it might not show up initially in the
Session Menu. You can extend the session menu by adding your own custom paths as
described below.

The PowerShell session menu can also be accessed from the {}  icon in the bottom right
corner of status bar. Hovering on or selecting this icon displays a shortcut to the session
menu and a small pin icon. If you select the pin icon, the version number is added to the
status bar. The version number is a shortcut to the session menu requiring fewer clicks.

First, if you're not familiar with how to change settings in VS Code, we recommend
reading Visual Studio Code's settings  documentation.

Choosing a version of PowerShell to use with the
extension

７ Note

Pinning the version number replicates the behavior of the extension in versions of
VS Code before 1.65. The 1.65 release of VS Code changed the APIs the PowerShell
extension uses and standardized the status bar for language extensions.

Configuration settings for Visual Studio Code

https://github.com/PowerShell/vscode-powershell/issues
https://code.visualstudio.com/docs/getstarted/settings


After reading the documentation, you can add configuration settings in settings.json .

JSON

If you don't want these settings to affect all files types, VS Code also allows per-
language configurations. Create a language-specific setting by putting settings in a
[<language-name>]  field. For example:

JSON

You can add other PowerShell executable paths to the session menu through the Visual
Studio Code setting : powershell.powerShellAdditionalExePaths .

You can do this using the GUI:

1. From the Command Palette search for and select Open User Settings. Or use the
keyboard shortcut on Windows or Linux Ctrl + , . On macOS, use Cmd + , .

2. In the Settings editor, search for PowerShell Additional Exe Paths.
3. Click Add Item.
4. For the Key (under Item), provide your choice of name for this additional

PowerShell installation.

{
    "editor.renderWhitespace": "all",
    "editor.renderControlCharacters": true,
    "files.trimTrailingWhitespace": true,
    "files.encoding": "utf8bom",
    "files.autoGuessEncoding": true
}

{
    "[powershell]": {
        "files.encoding": "utf8bom",
        "files.autoGuessEncoding": true
    }
}

 Tip

For more information about file encoding in VS Code, see Understanding file
encoding. Also, check out How to replicate the ISE experience in VS Code for
other tips on how to configure VS Code for PowerShell editing.

Adding your own PowerShell paths to the session menu

https://code.visualstudio.com/docs/getstarted/settings


5. For the Value (under Value), provide the absolute path to the executable itself.

You can add as many additional paths as you like. The added items show up in the
session menu with the given key as the name.

Alternatively you can add key-value pairs to the object
powershell.powerShellAdditionalExePaths  in your settings.json :

JSON

To set the default PowerShell version, set the value
powershell.powerShellDefaultVersion  to the text displayed in the session menu (the text
used for the key):

JSON

After you've configured this setting, restart VS Code or to reload the current VS Code
window from the Command Palette, type Developer: Reload Window .

{
    "powershell.powerShellAdditionalExePaths": {
        "Downloaded PowerShell": 
"C:/Users/username/Downloads/PowerShell/pwsh.exe",
        "Built PowerShell": 
"C:/Users/username/src/PowerShell/src/powershell-win-
core/bin/Debug/net6.0/win7-x64/publish/pwsh.exe"
    },
}

７ Note

Prior to version 2022.5.0 of the extension, this setting was a list of objects with the
required keys exePath  and versionName . A breaking change was introduced to
support configuration via GUI. If you had previously configured this setting, please
convert it the new format. The value given for versionName  is now the Key, and the
value given for exePath  is now the Value. You can do this more easily by resetting
the value and using the Settings interface.

{
    "powershell.powerShellAdditionalExePaths": {
        "Downloaded PowerShell": 
"C:/Users/username/Downloads/PowerShell/pwsh.exe",
    },
    "powershell.powerShellDefaultVersion": "Downloaded PowerShell",
}



If you open the session menu, you now see your additional PowerShell installations.

In VS Code version 1.9 (or higher), you can debug PowerShell scripts without opening
the folder that contains the PowerShell script.

1. Open the PowerShell script file with File > Open File...
2. Set a breakpoint - select a line then press F9

3. Press F5  to start debugging

You should see the Debug actions pane appear that allows you to break into the
debugger, step, resume, and stop debugging.

Workspace debugging refers to debugging in the context of a folder that you've opened
from the File menu using Open Folder.... The folder you open is typically your
PowerShell project folder or the root of your Git repository. Workspace debugging
allows you to define multiple debug configurations other than just debugging the
currently open file.

Follow these steps to create a debug configuration file:

1. Open the Debug view on Windows or Linux by pressing Ctrl + Shift + D . On
macOS, press Cmd + Shift + D .

2. Click the create a launch.json file link.

3. From the Select Environment prompt, choose PowerShell.

4. Choose the type of debugging you'd like to use:

Launch Current File - Launch and debug the file in the currently active editor
window

 Tip

If you build PowerShell from source, this is a great way to test out your local build
of PowerShell.

Debugging with Visual Studio Code

No-workspace debugging

Workspace debugging



Launch Script - Launch and debug the specified file or command
Interactive Session - Debug commands executed from the Integrated
Console
Attach - Attach the debugger to a running PowerShell Host Process

VS Code creates a directory and a file .vscode\launch.json  in the root of your
workspace folder to store the debug configuration. If your files are in a Git repository,
you typically want to commit the launch.json  file. The contents of the launch.json  file
are:

JSON

This file represents the common debug scenarios. When you open this file in the editor,
you see an Add Configuration... button. You can click this button to add more
PowerShell debug configurations. One useful configuration to add is PowerShell:
Launch Script. With this configuration, you can specify a file containing optional
arguments that are used whenever you press F5  no matter which file is active in the
editor.

After the debug configuration is established, you can select the configuration you want
to use during a debug session. Select a configuration from the debug configuration

{
  "version": "0.2.0",
  "configurations": [
      {
          "type": "PowerShell",
          "request": "launch",
          "name": "PowerShell Launch (current file)",
          "script": "${file}",
          "args": [],
          "cwd": "${file}"
      },
      {
          "type": "PowerShell",
          "request": "attach",
          "name": "PowerShell Attach to Host Process",
          "processId": "${command.PickPSHostProcess}",
          "runspaceId": 1
      },
      {
          "type": "PowerShell",
          "request": "launch",
          "name": "PowerShell Interactive Session",
          "cwd": "${workspaceRoot}"
      }
  ]
}



drop-down in the Debug view's toolbar.

If you experience any issues using VS Code for PowerShell script development, see the
troubleshooting guide  on GitHub.

There are a few videos and blog posts that may be helpful to get you started using the
PowerShell extension for VS Code:

Using Visual Studio Code as Your Default PowerShell Editor
Visual Studio Code: deep dive into debugging your PowerShell scripts

PowerShell Extension
Write and debug PowerShell scripts in Visual Studio Code
Debugging Visual Studio Code Guidance
Debugging PowerShell in Visual Studio Code
Get started with PowerShell development in Visual Studio Code
Visual Studio Code editing features for PowerShell development - Part 1
Visual Studio Code editing features for PowerShell development - Part 2
Debugging PowerShell script in Visual Studio Code - Part 1
Debugging PowerShell script in Visual Studio Code - Part 2

The PowerShell extension's source code can be found on GitHub .

If you're interested in contributing, Pull Requests are greatly appreciated. Follow along
with the developer documentation  on GitHub to get started.

Troubleshooting the PowerShell extension

Useful resources

Videos

Blog posts

PowerShell extension project source code

６  Collaborate with us on
GitHub

PowerShell feedback

https://github.com/PowerShell/vscode-powershell/blob/master/docs/troubleshooting.md
https://youtu.be/bGn45vIeAMM
https://youtu.be/cSbIXmlkr8o
https://learn.microsoft.com/en-us/archive/blogs/cdndevs/visual-studio-code-powershell-extension
https://devblogs.microsoft.com/powershell/announcing-powershell-language-support-for-visual-studio-code-and-more/
https://johnpapa.net/debugging-with-visual-studio-code/
https://github.com/PowerShell/vscode-powershell/tree/master/examples
https://devblogs.microsoft.com/scripting/get-started-with-powershell-development-in-visual-studio-code/
https://devblogs.microsoft.com/scripting/visual-studio-code-editing-features-for-powershell-development-part-1/
https://devblogs.microsoft.com/scripting/visual-studio-code-editing-features-for-powershell-development-part-2/
https://devblogs.microsoft.com/scripting/debugging-powershell-script-in-visual-studio-code-part-1/
https://devblogs.microsoft.com/scripting/debugging-powershell-script-in-visual-studio-code-part-2/
https://github.com/PowerShell/vscode-powershell
https://github.com/PowerShell/vscode-powershell/blob/master/docs/development.md


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fvscode%2Fusing-vscode%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fvscode%2Fusing-vscode.md&documentVersionIndependentId=781d1d43-834f-7e39-cc60-8905d5803f9b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+919fe42a-edb9-c950-1405-ae723bb6a48e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to replicate the ISE experience in
Visual Studio Code
Article • 07/10/2023

While the PowerShell extension for VS Code doesn't seek complete feature parity with
the PowerShell ISE, there are features in place to make the VS Code experience more
natural for users of the ISE.

This document tries to list settings you can configure in VS Code to make the user
experience a bit more familiar compared to the ISE.

The easiest way to replicate the ISE experience in Visual Studio Code is by turning on
"ISE Mode". To do this, open the command palette ( F1  OR Ctrl + Shift + P  OR Cmd +
Shift + P  on macOS) and type in "ISE Mode". Select "PowerShell: Enable ISE Mode"

from the list.

This command automatically applies the settings described below The result looks like
this:

ISE Mode

７ Note

This feature is available in the PowerShell Preview extension since version 2019.12.0
and in the PowerShell extension since version 2020.3.0.



ISE Mode makes the following changes to VS Code settings.

Key bindings

Function ISE Binding VS Code Binding

Interrupt and break debugger Ctrl + B F6

Execute current line/highlighted text F8 F8

List available snippets Ctrl + J Ctrl + Alt + J

Simplified ISE-like UI

If you're looking to simplify the Visual Studio Code UI to look more closely to the
UI of the ISE, apply these two settings:

JSON

ISE Mode configuration settings

ﾉ Expand table

７ Note

You can configure your own key bindings in VS Code as well.

https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/how-to-replicate-the-ise-experience-in-vscode/3-ise-mode.png?view=powershell-7.5


These settings hide the "Activity Bar" and the "Debug Side Bar" sections shown
inside the red box below:

The end result looks like this:

"workbench.activityBar.visible": false,
"debug.openDebug": "neverOpen",



Tab completion

To enable more ISE-like tab completion, add this setting:

JSON

No focus on console when executing

To keep the focus in the editor when you execute with F8 :

JSON

The default is true  for accessibility purposes.

Don't start integrated console on startup

"editor.tabCompletion": "on",

"powershell.integratedConsole.focusConsoleOnExecute": false



To stop the integrated console on startup, set:

JSON

Assume files are PowerShell by default

To make new/untitled files, register as PowerShell by default:

JSON

Color scheme

There are a number of ISE themes available for VS Code to make the editor look
much more like the ISE.

In the Command Palette type theme  to get Preferences: Color Theme  and press
Enter . In the drop-down list, select PowerShell ISE .

You can set this theme in the settings with:

JSON

PowerShell Command Explorer

Thanks to the work of @corbob , the PowerShell extension has the beginnings of
its own command explorer.

In the Command Palette, enter PowerShell Command Explorer  and press Enter .

Open in the ISE

If you want to open a file in the Windows PowerShell ISE anyway, open the
Command Palette, search for "open in ise", then select PowerShell: Open Current

"powershell.integratedConsole.showOnStartup": false

７ Note

The background PowerShell process still starts to provide IntelliSense, script
analysis, symbol navigation, etc., but the console won't be shown.

"files.defaultLanguage": "powershell",

"workbench.colorTheme": "PowerShell ISE",

https://github.com/corbob


File in PowerShell ISE.

4sysops has a great article  on configuring VS Code to be more like the ISE.
Mike F Robbins has a great post  on setting up VS Code.

Command Palette

The Command Palette is handy way of executing commands in VS Code. Open the
command palette using F1  OR Ctrl + Shift + P  OR Cmd + Shift + P  on macOS.

For more information, see the VS Code documentation .

Hide the Debug Console panel

The PowerShell extension uses the built-in debugging interface of VS Code to
allow for debugging of PowerShell scripts and modules. However, the extension
does not use the Debug Console panel. To hide the Debug Console, right-click on
Debug Console and select Hide 'Debug Console'.

For more information about debugging PowerShell with Visual Studio Code, see
Using VS Code.

Other resources

VS Code Tips

More settings

https://4sysops.com/archives/make-visual-studio-code-look-and-behave-like-powershell-ise/
https://mikefrobbins.com/2017/08/24/how-to-install-visual-studio-code-and-configure-it-as-a-replacement-for-the-powershell-ise/
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette


If you know of more ways to make VS Code feel more familiar for ISE users, contribute
to this doc. If there's a compatibility configuration you're looking for, but you can't find
any way to enable it, open an issue  and ask away!

We're always happy to accept PRs and contributions as well!

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://github.com/PowerShell/VSCode-powershell/issues/new/choose
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fvscode%2Fhow-to-replicate-the-ise-experience-in-vscode%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fvscode%2FHow-To-Replicate-the-ISE-Experience-In-VSCode.md&documentVersionIndependentId=eb1fa4c2-2692-df5d-691a-78551edf6abb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+92497070-504a-7239-dce7-ba7c23426514+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Using Visual Studio Code for remote
editing and debugging
Article • 11/17/2022

For those of you that are familiar with the ISE, you may recall that you could run psedit
file.ps1  from the integrated console to open files - local or remote - right in the ISE.

This feature is also available in the PowerShell extension for VSCode. This guide shows
you how to do it.

This guide assumes that you have:

A remote resource (ex: a VM, a container) that you have access to
PowerShell running on it and the host machine
VSCode and the PowerShell extension for VSCode

This feature works on PowerShell and Windows PowerShell.

This feature also works when connecting to a remote machine via WinRM, PowerShell
Direct, or SSH. If you want to use SSH, but are using Windows, check out the Win32
version of SSH !

These examples show remote editing and debugging from a MacBook Pro to an Ubuntu
VM running in Azure. The process is identical on Windows.

With the PowerShell extension for VSCode started and the PowerShell Integrated
Console opened, we can type Open-EditorFile foo.ps1  or psedit foo.ps1  to open the
local foo.ps1 file right in the editor.

Prerequisites

） Important

The Open-EditorFile  and psedit  commands only work in the PowerShell
Integrated Console created by the PowerShell extension for VSCode.

Usage examples

Local file editing with Open-EditorFile

https://github.com/PowerShell/Win32-OpenSSH


From there, we can:

Add breakpoints to the gutter

７ Note

The file foo.ps1  must already exist.



Hit F5 to debug the PowerShell script.



While debugging, you can interact with the debug console, check out the variables in
the scope on the left, and all the other standard debugging tools.

Now let's get into remote file editing and debugging. The steps are nearly the same,
there's just one thing we need to do first - enter our PowerShell session to the remote
server.

There's a cmdlet for to do so. It's called Enter-PSSession .

In short:

Enter-PSSession -ComputerName foo  starts a session via WinRM
Enter-PSSession -ContainerId foo  and Enter-PSSession -VmId foo  start a session
via PowerShell Direct
Enter-PSSession -HostName foo  starts a session via SSH

For more information, see the documentation for Enter-PSSession.

Since we're remoting to an Ubuntu VM in Azure, we're using SSH.

First, in the Integrated Console, run Enter-PSSession . You're connected to the remote
session when [<hostname>]  shows up to the left of your prompt.

Remote file editing with Open-EditorFile

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enter-pssession


Now, we can do the same steps as if we're editing a local script.

1. Run Open-EditorFile test.ps1  or psedit test.ps1  to open the remote test.ps1
file



2. Edit the file/set breakpoints



3. Start debugging (F5) the remote file

If you have any problems, you can open issues in the GitHub repo .

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://github.com/powershell/vscode-powershell
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fvscode%2Fusing-vscode-for-remote-editing-and-debugging%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fvscode%2FUsing-VSCode-for-Remote-Editing-and-Debugging.md&documentVersionIndependentId=3ffdba34-e346-e974-3d48-f273a0028ea8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4a10e4b2-aca7-4aba-9ad1-d99d1bd7626f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Understanding file encoding in VS Code
and PowerShell
Article • 11/30/2023

When using VS Code to create and edit PowerShell scripts, it's important that your files
are saved using the correct character encoding format.

VS Code manages the interface between a human entering strings of characters into a
buffer and reading/writing blocks of bytes to the filesystem. When VS Code saves a file,
it uses a text encoding to decide what bytes each character becomes. For more
information, see about_Character_Encoding.

Similarly, when PowerShell runs a script it must convert the bytes in a file to characters
to reconstruct the file into a PowerShell program. Since VS Code writes the file and
PowerShell reads the file, they need to use the same encoding system. This process of
parsing a PowerShell script goes: bytes -> characters -> tokens -> abstract syntax tree ->
execution.

Both VS Code and PowerShell are installed with a sensible default encoding
configuration. However, the default encoding used by PowerShell has changed with the
release of PowerShell 6. To ensure you have no problems using PowerShell or the
PowerShell extension in VS Code, you need to configure your VS Code and PowerShell
settings properly.

Encoding problems occur when the encoding of VS Code or your script file doesn't
match the expected encoding of PowerShell. There is no way for PowerShell to
automatically determine the file encoding.

You're more likely to have encoding problems when you're using characters not in the
7-bit ASCII character set . For example:

Extended non-letter characters like em-dash ( — ), non-breaking space (  ) or left
double quotation mark ( " )
Accented latin characters ( É , ü )
Non-latin characters like Cyrillic ( Д , Ц )

What is file encoding and why is it important?

Common causes of encoding issues

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_character_encoding
https://ascii.cl/
https://ascii.cl/


CJK characters (本 , 화 , が )

Common reasons for encoding issues are:

The encodings of VS Code and PowerShell haven't been changed from their
defaults. For PowerShell 5.1 and below, the default encoding is different from VS
Code's.
Another editor has opened and overwritten the file in a new encoding. This often
happens with the ISE.
The file is checked into source control in an encoding that's different from what VS
Code or PowerShell expects. This can happen when collaborators use editors with
different encoding configurations.

Often encoding errors present themselves as parse errors in scripts. If you find strange
character sequences in your script, this can be the problem. In the example below, an
en-dash ( – ) appears as the characters â&euro;" :

Output

This problem occurs because VS Code encodes the character –  in UTF-8 as the bytes

0xE2 0x80 0x93 . When these bytes are decoded as Windows-1252, they're interpreted
as the characters â&euro;" .

Some strange character sequences that you might see include:

â&euro;"  instead of –  (an en-dash)
â&euro;"  instead of —  (an em-dash)

Ã„2  instead of Ä
Â  instead of   (a non-breaking space)
Ã&copy;  instead of é

How to tell when you have encoding issues

Send-MailMessage : A positional parameter cannot be found that accepts 
argument 'Testing FuseMail SMTP...'.
At C:\Users\<User>\<OneDrive>\Development\PowerShell\Scripts\Send-
EmailUsingSmtpRelay.ps1:6 char:1
+ Send-MailMessage â&euro;"From $from â&euro;"To $recipient1 â&euro;"Subject 
$subject  ...
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidArgument: (:) [Send-MailMessage], 
ParameterBindingException
    + FullyQualifiedErrorId : 
PositionalParameterNotFound,Microsoft.PowerShell.Commands.SendMailMessage



This handy reference  lists the common patterns that indicate a UTF-8/Windows-1252
encoding problem.

The PowerShell extension interacts with scripts in a number of ways:

1. When scripts are edited in VS Code, the contents are sent by VS Code to the
extension. The Language Server Protocol  mandates that this content is
transferred in UTF-8. Therefore, it isn't possible for the extension to get the wrong
encoding.

2. When scripts are executed directly in the Integrated Console, they're read from the
file by PowerShell directly. If PowerShell's encoding differs from VS Code's,
something can go wrong here.

3. When a script that's open in VS Code references another script that isn't open in
VS Code, the extension falls back to loading that script's content from the file
system. The PowerShell extension defaults to UTF-8 encoding, but uses byte-order
mark , or BOM, detection to select the correct encoding.

The problem occurs when assuming the encoding of BOM-less formats (like UTF-8
with no BOM and Windows-1252 ). The PowerShell extension defaults to UTF-8. The
extension can't change VS Code's encoding settings. For more information, see issue
#824 .

Different systems and applications can use different encodings:

In .NET Standard, on the web, and in the Linux world, UTF-8 is now the dominant
encoding.
Many .NET Framework applications use UTF-16 . For historical reasons, this is
sometimes called "Unicode", a term that now refers to a broad standard  that
includes both UTF-8 and UTF-16.
On Windows, many native applications that predate Unicode continue to use
Windows-1252 by default.

Unicode encodings also have the concept of a byte-order mark (BOM). BOMs occur at
the beginning of text to tell a decoder which encoding the text is using. For multi-byte
encodings, the BOM also indicates endianness  of the encoding. BOMs are designed to

How the PowerShell extension in VS Code
interacts with encodings

Choosing the right encoding

https://www.i18nqa.com/debug/utf8-debug.html
https://www.i18nqa.com/debug/utf8-debug.html
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://wikipedia.org/wiki/Byte_order_mark
https://wikipedia.org/wiki/Byte_order_mark
https://wikipedia.org/wiki/Byte_order_mark
https://wikipedia.org/wiki/UTF-8
https://wikipedia.org/wiki/UTF-8
https://wikipedia.org/wiki/Windows-1252
https://wikipedia.org/wiki/Windows-1252
https://github.com/Microsoft/VSCode/issues/824
https://github.com/Microsoft/VSCode/issues/824
https://github.com/Microsoft/VSCode/issues/824
https://wikipedia.org/wiki/UTF-16
https://wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness


be bytes that rarely occur in non-Unicode text, allowing a reasonable guess that text is
Unicode when a BOM is present.

BOMs are optional and their adoption isn't as popular in the Linux world because a
dependable convention of UTF-8 is used everywhere. Most Linux applications presume
that text input is encoded in UTF-8. While many Linux applications will recognize and
correctly handle a BOM, a number don't, leading to artifacts in text manipulated with
those applications.

Therefore:

If you work primarily with Windows applications and Windows PowerShell, you
should prefer an encoding like UTF-8 with BOM or UTF-16.
If you work across platforms, you should prefer UTF-8 with BOM.
If you work mainly in Linux-associated contexts, you should prefer UTF-8 without
BOM.
Windows-1252 and latin-1 are essentially legacy encodings that you should avoid
if possible. However, some older Windows applications may depend on them.
It's also worth noting that script signing is encoding-dependent , meaning a
change of encoding on a signed script will require resigning.

VS Code's default encoding is UTF-8 without BOM.

To set VS Code's encoding , go to the VS Code settings ( Ctrl + , ) and set the
"files.encoding"  setting:

JSON

Some possible values are:

utf8 : [UTF-8] without BOM
utf8bom : [UTF-8] with BOM
utf16le : Little endian [UTF-16]
utf16be : Big endian [UTF-16]
windows1252 : [Windows-1252]

You should get a dropdown for this in the GUI view, or completions for it in the JSON
view.

Configuring VS Code

"files.encoding": "utf8bom"

https://github.com/PowerShell/PowerShell/issues/3466
https://github.com/PowerShell/PowerShell/issues/3466
https://code.visualstudio.com/docs/editor/codebasics#_file-encoding-support
https://code.visualstudio.com/docs/editor/codebasics#_file-encoding-support


You can also add the following to autodetect encoding when possible:

JSON

If you don't want these settings to affect all files types, VS Code also allows per-
language configurations. Create a language-specific setting by putting settings in a
[<language-name>]  field. For example:

JSON

You may also want to consider installing the Gremlins tracker  for Visual Studio Code.
This extension reveals certain Unicode characters that easily corrupted because they're
invisible or look like other normal characters.

PowerShell's default encoding varies depending on version:

In PowerShell 6+, the default encoding is UTF-8 without BOM on all platforms.
In Windows PowerShell, the default encoding is usually Windows-1252, which is an
extension of latin-1  (also known as ISO 8859-1).

In PowerShell 5+ you can find your default encoding with this:

PowerShell

The following script  can be used to determine what encoding your PowerShell session
infers for a script without a BOM.

PowerShell

"files.autoGuessEncoding": true

"[powershell]": {
    "files.encoding": "utf8bom",
    "files.autoGuessEncoding": true
}

Configuring PowerShell

[psobject].Assembly.GetTypes() | Where-Object { $_.Name -eq 'ClrFacade'} |
  ForEach-Object {
    $_.GetMethod('GetDefaultEncoding', 
[System.Reflection.BindingFlags]'nonpublic,static').Invoke($null, @())
  }

https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://wikipedia.org/wiki/ISO/IEC_8859-1
https://wikipedia.org/wiki/ISO/IEC_8859-1
https://gist.github.com/rjmholt/3d8dd4849f718c914132ce3c5b278e0e
https://gist.github.com/rjmholt/3d8dd4849f718c914132ce3c5b278e0e


It's possible to configure PowerShell to use a given encoding more generally using
profile settings. See the following articles:

@mklement0's answer about PowerShell encoding on Stack Overflow .
@rkeithhill's blog post about dealing with BOM-less UTF-8 input in PowerShell .

It's not possible to force PowerShell to use a specific input encoding. PowerShell 5.1 and
below, running on Windows with the locale set to en-US, defaults to Windows-1252
encoding when there's no BOM. Other locale settings may use a different encoding. To
ensure interoperability, it's best to save scripts in a Unicode format with a BOM.

$badBytes = [byte[]]@(0xC3, 0x80)
$utf8Str = [System.Text.Encoding]::UTF8.GetString($badBytes)
$bytes = [System.Text.Encoding]::ASCII.GetBytes('Write-Output "') + 
[byte[]]@(0xC3, 0x80) + [byte[]]@(0x22)
$path = Join-Path ([System.IO.Path]::GetTempPath()) 'encodingtest.ps1'

try
{
    [System.IO.File]::WriteAllBytes($path, $bytes)

    switch (& $path)
    {
        $utf8Str
        {
            return 'UTF-8'
            break
        }

        default
        {
            return 'Windows-1252'
            break
        }
    }
}
finally
{
    Remove-Item $path
}

） Important

Any other tools you have that touch PowerShell scripts may be affected by your
encoding choices or re-encode your scripts to another encoding.

Existing scripts

https://stackoverflow.com/a/40098904
https://stackoverflow.com/a/40098904
https://rkeithhill.wordpress.com/2010/05/26/handling-native-exe-output-encoding-in-utf8-with-no-bom/
https://rkeithhill.wordpress.com/2010/05/26/handling-native-exe-output-encoding-in-utf8-with-no-bom/


Scripts already on the file system may need to be re-encoded to your new chosen
encoding. In the bottom bar of VS Code, you'll see the label UTF-8. Click it to open the
action bar and select Save with encoding. You can now pick a new encoding for that
file. See VS Code's encoding  for full instructions.

If you need to re-encode multiple files, you can use the following script:

PowerShell

If you also edit scripts using the PowerShell ISE, you need to synchronize your encoding
settings there.

The ISE should honor a BOM, but it's also possible to use reflection to set the
encoding . Note that this wouldn't be persisted between startups.

Some source control tools, such as git, ignore encodings; git just tracks the bytes.
Others, like Azure DevOps or Mercurial, may not. Even some git-based tools rely on
decoding text.

When this is the case, make sure you:

Configure the text encoding in your source control to match your VS Code
configuration.
Ensure all your files are checked into source control in the relevant encoding.
Be wary of changes to the encoding received through source control. A key sign of
this is a diff indicating changes but where nothing seems to have changed
(because bytes have but characters have not).

On top of configuring source control, ensure that your collaborators on any files you
share don't have settings that override your encoding by re-encoding PowerShell files.

Get-ChildItem *.ps1 -Recurse | ForEach-Object {
    $content = Get-Content -Path $_
    Set-Content -Path $_.FullName -Value $content -Encoding UTF8 -PassThru -
Force
}

The PowerShell Integrated Scripting Environment (ISE)

Source control software

Collaborators' environments

https://code.visualstudio.com/docs/editor/codebasics#_file-encoding-support
https://code.visualstudio.com/docs/editor/codebasics#_file-encoding-support
https://bensonxion.wordpress.com/2012/04/25/powershell-ise-default-saveas-encoding/
https://bensonxion.wordpress.com/2012/04/25/powershell-ise-default-saveas-encoding/
https://bensonxion.wordpress.com/2012/04/25/powershell-ise-default-saveas-encoding/


Any other program that reads or writes a PowerShell script may re-encode it.

Some examples are:

Using the clipboard to copy and paste a script. This is common in scenarios like:
Copying a script into a VM
Copying a script out of an email or webpage
Copying a script into or out of a Microsoft Word or PowerPoint document

Other text editors, such as:
Notepad
vim
Any other PowerShell script editor

Text editing utilities, like:
Get-Content / Set-Content / Out-File
PowerShell redirection operators like >  and >>
sed / awk

File transfer programs, like:
A web browser, when downloading scripts
A file share

Some of these tools deal in bytes rather than text, but others offer encoding
configurations. In those cases where you need to configure an encoding, you need to
make it the same as your editor encoding to prevent problems.

There are a few other nice posts on encoding and configuring encoding in PowerShell
that are worth a read:

about_Character_Encoding
@mklement0's summary of PowerShell encoding on Stack Overflow
Previous issues opened on VS Code-PowerShell for encoding problems:

#1308
#1628
#1680
#1744
#1751

The classic Joel on Software write up about Unicode
Encoding in .NET Standard

Other programs

Other resources on encoding in PowerShell

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_character_encoding
https://stackoverflow.com/questions/40098771/changing-powershells-default-output-encoding-to-utf-8
https://stackoverflow.com/questions/40098771/changing-powershells-default-output-encoding-to-utf-8
https://github.com/PowerShell/VSCode-powershell/issues/1308
https://github.com/PowerShell/VSCode-powershell/issues/1308
https://github.com/PowerShell/VSCode-powershell/issues/1628
https://github.com/PowerShell/VSCode-powershell/issues/1628
https://github.com/PowerShell/VSCode-powershell/issues/1680
https://github.com/PowerShell/VSCode-powershell/issues/1680
https://github.com/PowerShell/VSCode-powershell/issues/1744
https://github.com/PowerShell/VSCode-powershell/issues/1744
https://github.com/PowerShell/VSCode-powershell/issues/1751
https://github.com/PowerShell/VSCode-powershell/issues/1751
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://github.com/dotnet/standard/issues/260#issuecomment-289549508
https://github.com/dotnet/standard/issues/260#issuecomment-289549508


Using Visual Studio Code to debug
compiled cmdlets
Article • 02/08/2023

This guide shows you how to interactively debug C# source code for a compiled
PowerShell module using Visual Studio Code (VS Code) and the C# extension.

Some familiarity with the Visual Studio Code debugger is assumed.

For a general introduction to the VS Code debugger, see Debugging in Visual
Studio Code .

For examples of debugging PowerShell script files and modules, see Using Visual
Studio Code for remote editing and debugging.

This guide assumes you have read and followed the instructions in the Writing Portable
Modules guide.

Build your project automatically before launching a debugging session. Rebuilding
ensures that you debug the latest version of your code.

Configure a build task:

1. In the Command Palette, run the Configure Default Build Task command.

Run Configure Default Build Task

2. In the Select a task to configure dialog, choose Create tasks.json file from
template.

3. In the Select a Task Template dialog, choose .NET Core.

A new tasks.json  file is created if one doesn't exist yet.

To test your build task:

1. In the Command Palette, run the Run Build Task command.

2. In the Select the build task to run dialog, choose build.

Creating a build task

Information about DLL files being locked

https://code.visualstudio.com/docs/editor/debugging
https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/configure-default-build-task.png?view=powershell-7.5


By default, a successful build doesn't show output in the terminal pane. If you see
output that contains the text Project file doesn't exist, you should edit the tasks.json
file. Include the explicit path to the C# project expressed as
"${workspaceFolder}/myModule" . In this example, myModule  is the name of the project
folder. This entry must go after the build  entry in the args  list as follows:

JSON

When debugging, your module DLL is imported into the PowerShell session in the VS
Code terminal. The DLL becomes locked. The following message is displayed when you
run the build task without closing the terminal session:

Output

Terminal sessions must be closed before you rebuild.

To debug the PowerShell cmdlet, you need to set up a custom launch configuration. This
configuration is used to:

Build your source code
Start PowerShell with your module loaded

    {
        "label": "build",
        "command": "dotnet",
        "type": "shell",
        "args": [
            "build",
            "${workspaceFolder}/myModule",
            // Ask dotnet build to generate full paths for file names.
            "/property:GenerateFullPaths=true",
            // Do not generate summary otherwise it leads to duplicate 
errors in Problems panel
            "/consoleloggerparameters:NoSummary",
        ],
        "group": "build",
        "presentation": {
            "reveal": "silent"
        },
        "problemMatcher": "$msCompile"
    }

Could not copy "obj\Debug\netstandard2.0\myModule.dll" to 
"bin\Debug\netstandard2.0\myModule.dll"`.

Setting up the debugger



Leave PowerShell open in the terminal pane

When you invoke your cmdlet in the terminal session, the debugger stops at any
breakpoints set in your source code.

1. Install the C# for Visual Studio Code  extension

2. In the Debug pane, add a debug configuration

3. In the Select environment  dialog, choose .NET Core

4. The launch.json  file is opened in the editor. With your cursor inside the

configurations  array, you see the configuration  picker. If you don't see this list,
select Add Configuration.

5. To create a default debug configuration, select Launch .NET Core Console App:

Launch .NET Core Console App

6. Edit the name , program , args , and console  fields as follows:

JSON

The program  field is used to launch pwsh  so that the cmdlet being debugged can be run.
The -NoExit  argument prevents the PowerShell session from exiting as soon as the
module is imported. The path in the Import-Module  argument is the default build output
path when you've followed the Writing Portable Modules guide. If you've created a

Configuring launch.json for PowerShell

 {
     "name": "PowerShell cmdlets: pwsh",
     "type": "coreclr",
     "request": "launch",
     "preLaunchTask": "build",
     "program": "pwsh",
     "args": [
         "-NoExit",
         "-NoProfile",
         "-Command",
         "Import-Module 
${workspaceFolder}/myModule/bin/Debug/netstandard2.0/myModule.dll",
     ],
     "cwd": "${workspaceFolder}",
     "stopAtEntry": false,
     "console": "integratedTerminal"
 }

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/add-configuration-dialog.png?view=powershell-7.5


module manifest ( .psd1  file), you should use the path to that instead. The /  path
separator works on Windows, Linux, and macOS. You must use the integrated terminal
to run the PowerShell commands you want to debug.

This launch configuration works for testing your cmdlets in Windows PowerShell
( powershell.exe ). Create a second launch configuration with the following changes:

1. name  should be PowerShell cmdlets: powershell

2. type  should be clr

3. program  should be powershell

It should look like this:

JSON

７ Note

If the debugger doesn't stop at any breakpoints, look in the Visual Studio Code
Debug Console for a line that says:

If you see this, add "justMyCode": false  to your launch config (at the same level as
"console": "integratedTerminal" .

Loaded '/path/to/myModule.dll'. Skipped loading symbols. Module is 
optimized and the debugger option 'Just My Code' is enabled.

Configuring launch.json for Windows PowerShell

 {
     "name": "PowerShell cmdlets: powershell",
     "type": "clr",
     "request": "launch",
     "preLaunchTask": "build",
     "program": "powershell",
     "args": [
         "-NoExit",
         "-NoProfile",
         "-Command",
         "Import-Module 
${workspaceFolder}/myModule/bin/Debug/netstandard2.0/myModule.dll",
     ],
     "cwd": "${workspaceFolder}",



Now everything is ready to begin debugging.

Place a breakpoint in the source code for the cmdlet you want to debug:

A breakpoint shows as a red dot in the gutter

Ensure that the relevant PowerShell cmdlets configuration is selected in the
configuration drop-down menu in the Debug view:

Select the launch configuration

Press F5  or click on the Start Debugging button

Switch to the terminal pane and invoke your cmdlet:

Invoke the cmdlet

Execution stops at the breakpoint:

Executions halts at breakpoint

You can step through the source code, inspect variables, and inspect the call stack.

To end debugging, click Stop in the debug toolbar or press Shift + F5 . The shell used
for debugging exits and releases the lock on the compiled DLL file.

     "stopAtEntry": false,
     "console": "integratedTerminal"
 }

Launching a debugging session

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/set-breakpoint.png?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/select-launch-configuration.png?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/invoke-the-cmdlet.png?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/docs-conceptual/dev-cross-plat/vscode/media/using-vscode-for-debugging-compiled-cmdlets/stopped-at-breakpoint.png?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fvscode%2Fusing-vscode-for-debugging-compiled-cmdlets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fvscode%2Fusing-vscode-for-debugging-compiled-cmdlets.md&documentVersionIndependentId=21e2f20d-3080-ad00-21ba-51e4d2718803&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2ede0dd8-1b2f-832f-b217-d10c9ce8b5dd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PowerShell scripting performance
considerations
Article • 12/05/2024

PowerShell scripts that leverage .NET directly and avoid the pipeline tend to be faster
than idiomatic PowerShell. Idiomatic PowerShell uses cmdlets and PowerShell functions,
often leveraging the pipeline, and resorting to .NET only when necessary.

There are many ways to avoid writing objects to the pipeline.

Assignment or file redirection to $null
Casting to [void]
Pipe to Out-Null

The speeds of assigning to $null , casting to [void] , and file redirection to $null  are
almost identical. However, calling Out-Null  in a large loop can be significantly slower,
especially in PowerShell 5.1.

PowerShell

７ Note

Many of the techniques described here aren't idiomatic PowerShell and may reduce
the readability of a PowerShell script. Script authors are advised to use idiomatic
PowerShell unless performance dictates otherwise.

Suppressing output

$tests = @{
    'Assign to $null' = {
        $arrayList = [System.Collections.ArrayList]::new()
        foreach ($i in 0..$args[0]) {
            $null = $arraylist.Add($i)
        }
    }
    'Cast to [void]' = {
        $arrayList = [System.Collections.ArrayList]::new()
        foreach ($i in 0..$args[0]) {
            [void] $arraylist.Add($i)
        }
    }
    'Redirect to $null' = {
        $arrayList = [System.Collections.ArrayList]::new()



These tests were run on a Windows 11 machine in PowerShell 7.3.4. The results are
shown below:

Output

        foreach ($i in 0..$args[0]) {
            $arraylist.Add($i) > $null
        }
    }
    'Pipe to Out-Null' = {
        $arrayList = [System.Collections.ArrayList]::new()
        foreach ($i in 0..$args[0]) {
            $arraylist.Add($i) | Out-Null
        }
    }
}

10kb, 50kb, 100kb | ForEach-Object {
    $groupResult = foreach ($test in $tests.GetEnumerator()) {
        $ms = (Measure-Command { & $test.Value $_ }).TotalMilliseconds

        [pscustomobject]@{
            Iterations        = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms, 2)
        }

        [GC]::Collect()
        [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
    $groupResult | Select-Object *, @{
        Name       = 'RelativeSpeed'
        Expression = {
            $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
            [Math]::Round($relativeSpeed, 2).ToString() + 'x'
        }
    }
}

Iterations Test              TotalMilliseconds RelativeSpeed
---------- ----              ----------------- -------------
     10240 Assign to $null               36.74 1x
     10240 Redirect to $null             55.84 1.52x
     10240 Cast to [void]                62.96 1.71x
     10240 Pipe to Out-Null              81.65 2.22x
     51200 Assign to $null              193.92 1x
     51200 Cast to [void]               200.77 1.04x
     51200 Redirect to $null            219.69 1.13x
     51200 Pipe to Out-Null             329.62 1.7x
    102400 Redirect to $null            386.08 1x



The times and relative speeds can vary depending on the hardware, the version of
PowerShell, and the current workload on the system.

Generating a list of items is often done using an array with the addition operator:

PowerShell

Array addition is inefficient because arrays have a fixed size. Each addition to the array
creates a new array big enough to hold all elements of both the left and right operands.
The elements of both operands are copied into the new array. For small collections, this
overhead may not matter. Performance can suffer for large collections.

There are a couple of alternatives. If you don't actually require an array, instead consider
using a typed generic list ( [List<T>] ):

PowerShell

The performance impact of using array addition grows exponentially with the size of the
collection and the number additions. This code compares explicitly assigning values to
an array with using array addition and using the Add(T)  method on a [List<T>]  object.
It defines explicit assignment as the baseline for performance.

PowerShell

    102400 Assign to $null              392.13 1.02x
    102400 Cast to [void]               405.24 1.05x
    102400 Pipe to Out-Null             572.94 1.48x

Array addition

$results = @()
$results += Get-Something
$results += Get-SomethingElse
$results

$results = [System.Collections.Generic.List[Object]]::new()
$results.AddRange((Get-Something))
$results.AddRange((Get-SomethingElse))
$results

$tests = @{
    'PowerShell Explicit Assignment' = {
        param($Count)

        $result = foreach($i in 1..$Count) {



These tests were run on a Windows 11 machine in PowerShell 7.3.4.

Output

            $i
        }
    }
    '.Add(T) to List<T>' = {
        param($Count)

        $result = [Collections.Generic.List[int]]::new()
        foreach($i in 1..$Count) {
            $result.Add($i)
        }
    }
    '+= Operator to Array' = {
        param($Count)

        $result = @()
        foreach($i in 1..$Count) {
            $result += $i
        }
    }
}

5kb, 10kb, 100kb | ForEach-Object {
    $groupResult = foreach($test in $tests.GetEnumerator()) {
        $ms = (Measure-Command { & $test.Value -Count $_ 
}).TotalMilliseconds

        [pscustomobject]@{
            CollectionSize    = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms, 2)
        }

        [GC]::Collect()
        [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
    $groupResult | Select-Object *, @{
        Name       = 'RelativeSpeed'
        Expression = {
            $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
            [Math]::Round($relativeSpeed, 2).ToString() + 'x'
        }
    }
}

CollectionSize Test                           TotalMilliseconds 
RelativeSpeed



When you're working with large collections, array addition is dramatically slower than
adding to a List<T> .

When using a [List<T>]  object, you need to create the list with a specific type, like
[string]  or [int] . When you add objects of a different type to the list, they are cast to
the specified type. If they can't be cast to the specified type, the method raises an
exception.

PowerShell

Output

When you need the list to be a collection of different types of objects, create it with
[Object]  as the list type. You can enumerate the collection inspect the types of the
objects in it.

PowerShell

-------------- ----                           ----------------- ------------
-
          5120 PowerShell Explicit Assignment             26.65 1x
          5120 .Add(T) to List<T>                        110.98 4.16x
          5120 += Operator to Array                      402.91 15.12x
         10240 PowerShell Explicit Assignment              0.49 1x
         10240 .Add(T) to List<T>                        137.67 280.96x
         10240 += Operator to Array                     1678.13 3424.76x
        102400 PowerShell Explicit Assignment             11.18 1x
        102400 .Add(T) to List<T>                       1384.03 123.8x
        102400 += Operator to Array                   201991.06 18067.18x

$intList = [System.Collections.Generic.List[int]]::new()
$intList.Add(1)
$intList.Add('2')
$intList.Add(3.0)
$intList.Add('Four')
$intList

MethodException:
Line |
   5 |  $intList.Add('Four')
     |  ~~~~~~~~~~~~~~~~~~~~
     | Cannot convert argument "item", with value: "Four", for "Add" to type
     "System.Int32": "Cannot convert value "Four" to type "System.Int32".
     Error: "The input string 'Four' was not in a correct format.""

1
2
3



Output

If you do require an array, you can call the ToArray()  method on the list or you can let
PowerShell create the array for you:

PowerShell

In this example, PowerShell creates an [ArrayList]  to hold the results written to the
pipeline inside the array expression. Just before assigning to $results , PowerShell
converts the [ArrayList]  to an [Object[]] .

Strings are immutable. Each addition to the string actually creates a new string big
enough to hold the contents of both the left and right operands, then copies the
elements of both operands into the new string. For small strings, this overhead may not
matter. For large strings, this can affect performance and memory consumption.

There are at least two alternatives:

The -join operator concatenates strings
The .NET [StringBuilder]  class provides a mutable string

The following example compares the performance of these three methods of building a
string.

PowerShell

$objectList = [System.Collections.Generic.List[Object]]::new()
$objectList.Add(1)
$objectList.Add('2')
$objectList.Add(3.0)
$objectList | ForEach-Object { "$_ is $($_.GetType())" }

1 is int
2 is string
3 is double

$results = @(
    Get-Something
    Get-SomethingElse
)

String addition

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_join
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_join


These tests were run on a Windows 11 machine in PowerShell 7.4.2. The output shows
that the -join  operator is the fastest, followed by the [StringBuilder]  class.

$tests = @{
    'StringBuilder' = {
        $sb = [System.Text.StringBuilder]::new()
        foreach ($i in 0..$args[0]) {
            $sb = $sb.AppendLine("Iteration $i")
        }
        $sb.ToString()
    }
    'Join operator' = {
        $string = @(
            foreach ($i in 0..$args[0]) {
                "Iteration $i"
            }
        ) -join "`n"
        $string
    }
    'Addition Assignment +=' = {
        $string = ''
        foreach ($i in 0..$args[0]) {
            $string += "Iteration $i`n"
        }
        $string
    }
}

10kb, 50kb, 100kb | ForEach-Object {
    $groupResult = foreach ($test in $tests.GetEnumerator()) {
        $ms = (Measure-Command { & $test.Value $_ }).TotalMilliseconds

        [pscustomobject]@{
            Iterations        = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms, 2)
        }

        [GC]::Collect()
        [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
    $groupResult | Select-Object *, @{
        Name       = 'RelativeSpeed'
        Expression = {
            $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
            [Math]::Round($relativeSpeed, 2).ToString() + 'x'
        }
    }
}



Output

The times and relative speeds can vary depending on the hardware, the version of
PowerShell, and the current workload on the system.

The idiomatic way to process a file in PowerShell might look something like:

PowerShell

This can be an order of magnitude slower than using .NET APIs directly. For example,
you can use the .NET [StreamReader]  class:

PowerShell

You could also use the ReadLines  method of [System.IO.File] , which wraps
StreamReader , simplifies the reading process:

Iterations Test                   TotalMilliseconds RelativeSpeed
---------- ----                   ----------------- -------------
     10240 Join operator                      14.75 1x
     10240 StringBuilder                      62.44 4.23x
     10240 Addition Assignment +=            619.64 42.01x
     51200 Join operator                      43.15 1x
     51200 StringBuilder                     304.32 7.05x
     51200 Addition Assignment +=          14225.13 329.67x
    102400 Join operator                      85.62 1x
    102400 StringBuilder                     499.12 5.83x
    102400 Addition Assignment +=          67640.79 790.01x

Processing large files

Get-Content $path | Where-Object Length -GT 10

try {
    $reader = [System.IO.StreamReader]::new($path)
    while (-not $reader.EndOfStream) {
        $line = $reader.ReadLine()
        if ($line.Length -gt 10) {
            $line
        }
    }
}
finally {
    if ($reader) {
        $reader.Dispose()
    }
}



PowerShell

It's common to need to use a shared property to identify the same record in different
collections, like using a name to retrieve an ID from one list and an email from another.
Iterating over the first list to find the matching record in the second collection is slow. In
particular, the repeated filtering of the second collection has a large overhead.

Given two collections, one with an Id and Name, the other with Name and Email:

PowerShell

The usual way to reconcile these collections to return a list of objects with the Id, Name,
and Email properties might look like this:

PowerShell

foreach ($line in [System.IO.File]::ReadLines($path)) {
    if ($line.Length -gt 10) {
        $line
    }
}

Looking up entries by property in large collections

$Employees = 1..10000 | ForEach-Object {
    [pscustomobject]@{
        Id   = $_
        Name = "Name$_"
    }
}

$Accounts = 2500..7500 | ForEach-Object {
    [pscustomobject]@{
        Name  = "Name$_"
        Email = "Name$_@fabrikam.com"
    }
}

$Results = $Employees | ForEach-Object -Process {
    $Employee = $_

    $Account = $Accounts | Where-Object -FilterScript {
        $_.Name -eq $Employee.Name
    }

    [pscustomobject]@{
        Id    = $Employee.Id
        Name  = $Employee.Name



However, that implementation has to filter all 5000 items in the $Accounts  collection
once for every item in the $Employee  collection. That can take minutes, even for this
single-value lookup.

Instead, you can make a Hash Table that uses the shared Name property as a key and
the matching account as the value.

PowerShell

Looking up keys in a hash table is much faster than filtering a collection by property
values. Instead of checking every item in the collection, PowerShell can check if the key
is defined and use its value.

PowerShell

This is much faster. While the looping filter took minutes to complete, the hash lookup
takes less than a second.

The Write-Host  command should only be used when you need to write formatted text
to the host console, rather than writing objects to the Success pipeline.

Write-Host  can be an order of magnitude slower than [Console]::WriteLine()  for
specific hosts like pwsh.exe , powershell.exe , or powershell_ise.exe . However,

        Email = $Account.Email
    }
}

$LookupHash = @{}
foreach ($Account in $Accounts) {
    $LookupHash[$Account.Name] = $Account
}

$Results = $Employees | ForEach-Object -Process {
    $Email = $LookupHash[$_.Name].Email
    [pscustomobject]@{
        Id    = $_.Id
        Name  = $_.Name
        Email = $Email
    }
}

Use Write-Host carefully



[Console]::WriteLine()  isn't guaranteed to work in all hosts. Also, output written using
[Console]::WriteLine()  doesn't get written to transcripts started by Start-Transcript .

PowerShell compiles the script code to bytecode that's interpreted. Beginning in
PowerShell 3, for code that's repeatedly executed in a loop, PowerShell can improve
performance by Just-in-time (JIT) compiling the code into native code.

Loops that have fewer than 300 instructions are eligible for JIT-compilation. Loops larger
than that are too costly to compile. When the loop has executed 16 times, the script is
JIT-compiled in the background. When the JIT-compilation completes, execution is
transferred to the compiled code.

Calling a function can be an expensive operation. If you're calling a function in a long
running tight loop, consider moving the loop inside the function.

Consider the following examples:

PowerShell

JIT compilation

Avoid repeated calls to a function

$tests = @{
    'Simple for-loop'       = {
        param([int] $RepeatCount, [random] $RanGen)

        for ($i = 0; $i -lt $RepeatCount; $i++) {
            $null = $RanGen.Next()
        }
    }
    'Wrapped in a function' = {
        param([int] $RepeatCount, [random] $RanGen)

        function Get-RandomNumberCore {
            param ($Rng)

            $Rng.Next()
        }

        for ($i = 0; $i -lt $RepeatCount; $i++) {
            $null = Get-RandomNumberCore -Rng $RanGen
        }
    }
    'for-loop in a function' = {
        param([int] $RepeatCount, [random] $RanGen)

        function Get-RandomNumberAll {



The Basic for-loop example is the base line for performance. The second example wraps
the random number generator in a function that's called in a tight loop. The third
example moves the loop inside the function. The function is only called once but the
code still generates the same amount of random numbers. Notice the difference in
execution times for each example.

Output

            param ($Rng, $Count)

            for ($i = 0; $i -lt $Count; $i++) {
                $null = $Rng.Next()
            }
        }

        Get-RandomNumberAll -Rng $RanGen -Count $RepeatCount
    }
}

5kb, 10kb, 100kb | ForEach-Object {
    $Rng = [random]::new()
    $groupResult = foreach ($test in $tests.GetEnumerator()) {
        $ms = Measure-Command { & $test.Value -RepeatCount $_ -RanGen $Rng }

        [pscustomobject]@{
            CollectionSize    = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms.TotalMilliseconds,2)
        }

        [GC]::Collect()
        [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
    $groupResult | Select-Object *, @{
        Name       = 'RelativeSpeed'
        Expression = {
            $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
            [Math]::Round($relativeSpeed, 2).ToString() + 'x'
        }
    }
}

CollectionSize Test                   TotalMilliseconds RelativeSpeed
-------------- ----                   ----------------- -------------
          5120 for-loop in a function              9.62 1x
          5120 Simple for-loop                    10.55 1.1x
          5120 Wrapped in a function              62.39 6.49x
         10240 Simple for-loop                    17.79 1x
         10240 for-loop in a function             18.48 1.04x



Most cmdlets are implemented for the pipeline, which is a sequential syntax and
process. For example:

PowerShell

Initializing a new pipeline can be expensive, therefore you should avoid wrapping a
cmdlet pipeline into another existing pipeline.

Consider the following example. The Input.csv  file contains 2100 lines. The Export-Csv
command is wrapped inside the ForEach-Object  pipeline. The Export-Csv  cmdlet is
invoked for every iteration of the ForEach-Object  loop.

PowerShell

Output

For the next example, the Export-Csv  command was moved outside of the ForEach-
Object  pipeline. In this case, Export-Csv  is invoked only once, but still processes all
objects passed out of ForEach-Object .

PowerShell

         10240 Wrapped in a function             127.39 7.16x
        102400 for-loop in a function            179.19 1x
        102400 Simple for-loop                   181.58 1.01x
        102400 Wrapped in a function            1155.57 6.45x

Avoid wrapping cmdlet pipelines

cmdlet1 | cmdlet2 | cmdlet3

$measure = Measure-Command -Expression {
    Import-Csv .\Input.csv | ForEach-Object -Begin { $Id = 1 } -Process {
        [pscustomobject]@{
            Id   = $Id
            Name = $_.opened_by
        } | Export-Csv .\Output1.csv -Append
    }
}

'Wrapped = {0:N2} ms' -f $measure.TotalMilliseconds

Wrapped = 15,968.78 ms



Output

The unwrapped example is 372 times faster. Also, notice that the first implementation
requires the Append parameter, which isn't required for the later implementation.

Creating objects using the New-Object  cmdlet can be slow. The following code
compares the performance of creating objects using the New-Object  cmdlet to the
[pscustomobject]  type accelerator.

PowerShell

$measure = Measure-Command -Expression {
    Import-Csv .\Input.csv | ForEach-Object -Begin { $Id = 2 } -Process {
        [pscustomobject]@{
            Id   = $Id
            Name = $_.opened_by
        }
    } | Export-Csv .\Output2.csv
}

'Unwrapped = {0:N2} ms' -f $measure.TotalMilliseconds

Unwrapped = 42.92 ms

Object creation

Measure-Command {
    $test = 'PSCustomObject'
    for ($i = 0; $i -lt 100000; $i++) {
        $resultObject = [pscustomobject]@{
            Name = 'Name'
            Path = 'FullName'
        }
    }
} | Select-Object @{n='Test';e={$test}},TotalSeconds

Measure-Command {
    $test = 'New-Object'
    for ($i = 0; $i -lt 100000; $i++) {
        $resultObject = New-Object -TypeName psobject -Property @{
            Name = 'Name'
            Path = 'FullName'
        }
    }
} | Select-Object @{n='Test';e={$test}},TotalSeconds



Output

PowerShell 5.0 added the new()  static method for all .NET types. The following code
compares the performance of creating objects using the New-Object  cmdlet to the
new()  method.

PowerShell

Output

There are situations where we may need to dynamically create objects based on some
input, the perhaps most commonly used way to create a new PSObject and then add
new properties using the Add-Member  cmdlet. The performance cost for small collections
using this technique may be negligible however it can become very noticeable for big
collections. In that case, the recommended approach is to use an [OrderedDictionary]

Test           TotalSeconds
----           ------------
PSCustomObject         0.48
New-Object             3.37

Measure-Command {
    $test = 'new() method'
    for ($i = 0; $i -lt 100000; $i++) {
        $sb = [System.Text.StringBuilder]::new(1000)
    }
} | Select-Object @{n='Test';e={$test}},TotalSeconds

Measure-Command {
    $test = 'New-Object'
    for ($i = 0; $i -lt 100000; $i++) {
        $sb = New-Object -TypeName System.Text.StringBuilder -ArgumentList 
1000
    }
} | Select-Object @{n='Test';e={$test}},TotalSeconds

Test         TotalSeconds
----         ------------
new() method         0.59
New-Object           3.17

Use OrderedDictionary to dynamically create
new objects



and then convert it to a PSObject using the [pscustomobject]  type accelerator. For
more information, see the Creating ordered dictionaries section of about_Hash_Tables.

Assume you have the following API response stored in the variable $json .

JSON

Now, suppose you want to export this data to a CSV. First you need to create new
objects and add the properties and values using the Add-Member  cmdlet.

PowerShell

Using an OrderedDictionary , the code can be translated to:

PowerShell

{
  "tables": [
    {
      "name": "PrimaryResult",
      "columns": [
        { "name": "Type", "type": "string" },
        { "name": "TenantId", "type": "string" },
        { "name": "count_", "type": "long" }
      ],
      "rows": [
        [ "Usage", "63613592-b6f7-4c3d-a390-22ba13102111", "1" ],
        [ "Usage", "d436f322-a9f4-4aad-9a7d-271fbf66001c", "1" ],
        [ "BillingFact", "63613592-b6f7-4c3d-a390-22ba13102111", "1" ],
        [ "BillingFact", "d436f322-a9f4-4aad-9a7d-271fbf66001c", "1" ],
        [ "Operation", "63613592-b6f7-4c3d-a390-22ba13102111", "7" ],
        [ "Operation", "d436f322-a9f4-4aad-9a7d-271fbf66001c", "5" ]
      ]
    }
  ]
}

$data = $json | ConvertFrom-Json
$columns = $data.tables.columns
$result = foreach ($row in $data.tables.rows) {
    $obj = [psobject]::new()
    $index = 0

    foreach ($column in $columns) {
        $obj | Add-Member -MemberType NoteProperty -Name $column.name -Value 
$row[$index++]
    }

    $obj
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_hash_tables#creating-ordered-dictionaries


In both cases the $result  output would be same:

Output

The latter approach becomes exponentially more efficient as the number of objects and
member properties increases.

Here is a performance comparison of three techniques for creating objects with 5
properties:

PowerShell

$data = $json | ConvertFrom-Json
$columns = $data.tables.columns
$result = foreach ($row in $data.tables.rows) {
    $obj = [ordered]@{}
    $index = 0

    foreach ($column in $columns) {
        $obj[$column.name] = $row[$index++]
    }

    [pscustomobject] $obj
}

Type        TenantId                             count_
----        --------                             ------
Usage       63613592-b6f7-4c3d-a390-22ba13102111 1
Usage       d436f322-a9f4-4aad-9a7d-271fbf66001c 1
BillingFact 63613592-b6f7-4c3d-a390-22ba13102111 1
BillingFact d436f322-a9f4-4aad-9a7d-271fbf66001c 1
Operation   63613592-b6f7-4c3d-a390-22ba13102111 7
Operation   d436f322-a9f4-4aad-9a7d-271fbf66001c 5

$tests = @{
    '[ordered] into [pscustomobject] cast' = {
        param([int] $Iterations, [string[]] $Props)

        foreach ($i in 1..$Iterations) {
            $obj = [ordered]@{}
            foreach ($prop in $Props) {
                $obj[$prop] = $i
            }
            [pscustomobject] $obj
        }
    }
    'Add-Member'                           = {
        param([int] $Iterations, [string[]] $Props)

        foreach ($i in 1..$Iterations) {



            $obj = [psobject]::new()
            foreach ($prop in $Props) {
                $obj | Add-Member -MemberType NoteProperty -Name $prop -
Value $i
            }
            $obj
        }
    }
    'PSObject.Properties.Add'              = {
        param([int] $Iterations, [string[]] $Props)

        # this is how, behind the scenes, `Add-Member` attaches
        # new properties to our PSObject.
        # Worth having it here for performance comparison

        foreach ($i in 1..$Iterations) {
            $obj = [psobject]::new()
            foreach ($prop in $Props) {
                $obj.psobject.Properties.Add(
                    [psnoteproperty]::new($prop, $i))
            }
            $obj
        }
    }
}

$properties = 'Prop1', 'Prop2', 'Prop3', 'Prop4', 'Prop5'

1kb, 10kb, 100kb | ForEach-Object {
    $groupResult = foreach ($test in $tests.GetEnumerator()) {
        $ms = Measure-Command { & $test.Value -Iterations $_ -Props 
$properties }

        [pscustomobject]@{
            Iterations        = $_
            Test              = $test.Key
            TotalMilliseconds = [Math]::Round($ms.TotalMilliseconds, 2)
        }

        [GC]::Collect()
        [GC]::WaitForPendingFinalizers()
    }

    $groupResult = $groupResult | Sort-Object TotalMilliseconds
    $groupResult | Select-Object *, @{
        Name       = 'RelativeSpeed'
        Expression = {
            $relativeSpeed = $_.TotalMilliseconds / 
$groupResult[0].TotalMilliseconds
            [Math]::Round($relativeSpeed, 2).ToString() + 'x'
        }
    }
}



And these are the results:

Output

$null
[void]
Out-Null
List<T>
Add(T) method
[string]
[int]
[Object]
ToArray() method
[ArrayList]
[StringBuilder]
[StreamReader]
[File]::ReadLines() method
Write-Host
Add-Member

Iterations Test                                 TotalMilliseconds 
RelativeSpeed
---------- ----                                 ----------------- ----------
---
      1024 [ordered] into [pscustomobject] cast             22.00 1x
      1024 PSObject.Properties.Add                         153.17 6.96x
      1024 Add-Member                                      261.96 11.91x
     10240 [ordered] into [pscustomobject] cast             65.24 1x
     10240 PSObject.Properties.Add                        1293.07 19.82x
     10240 Add-Member                                     2203.03 33.77x
    102400 [ordered] into [pscustomobject] cast            639.83 1x
    102400 PSObject.Properties.Add                       13914.67 21.75x
    102400 Add-Member                                    23496.08 36.72x

Related links

https://learn.microsoft.com/en-us/dotnet/api/system.void
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/out-null?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.add
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.add
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.toarray#system-collections-generic-list-1-toarray
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.toarray#system-collections-generic-list-1-toarray
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readlines
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readlines
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/write-host?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-member?view=powershell-7.5


PowerShell module authoring
considerations
Article • 11/17/2022

This document includes some guidelines related to how a module is authored for best
performance.

A module manifest that doesn't use the following guidelines can have a noticeable
impact on general PowerShell performance even if the module isn't used in a session.

Command auto-discovery analyzes each module to determine which commands the
module exports and this analysis can be expensive. The results of module analysis are
cached per user, but the cache isn't available on first run, which is a typical scenario with
containers. During module analysis, if the exported commands can be fully determined
from the manifest, more expensive analysis of the module can be avoided.

In the module manifest, don't use wildcards in the AliasesToExport ,
CmdletsToExport , and FunctionsToExport  entries.

If the module doesn't export commands of a particular type, specify this explicitly
in the manifest by specifying @() . A missing or $null  entry is equivalent to
specifying the wildcard * .

The following should be avoided where possible:

PowerShell

Instead, use:

Module Manifest Authoring

Guidelines

@{
    FunctionsToExport = '*'

    # Also avoid omitting an entry, it's equivalent to using a wildcard
    # CmdletsToExport = '*'
    # AliasesToExport = '*'
}



PowerShell

When deciding how to implement your module, there are three primary choices:

Binary (usually C#)
Script (PowerShell)
CDXML (an XML file wrapping CIM)

If the speed of loading your module is important, CDXML is roughly an order of
magnitude slower than a binary module.

A binary module loads the fastest because it's compiled ahead of time and can use
NGen to JIT compile once per machine.

A script module typically loads a bit more slowly than a binary module because
PowerShell must parse the script before compiling and executing it.

A CDXML module is typically much slower than a script module because it must first
parse an XML file which then generates quite a bit of PowerShell script that's then
parsed and compiled.

@{
    FunctionsToExport = 'Format-Hex', 'Format-Octal'
    CmdletsToExport = @()  # Specify an empty array, not $null
    AliasesToExport = @()  # Also ensure all three entries are present
}

Avoid CDXML

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fperformance%2Fmodule-authoring-considerations%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fperformance%2Fmodule-authoring-considerations.md&documentVersionIndependentId=d6f42ba9-867e-0596-135f-aeb25285b953&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1a81afb8-7a3e-f730-1409-81ac090b7cbd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Portable Modules
Article • 06/29/2023

Windows PowerShell is written for .NET Framework while PowerShell Core is written for
.NET Core. Portable modules are modules that work in both Windows PowerShell and
PowerShell Core. While .NET Framework and .NET Core are highly compatible, there are
differences in the available APIs between the two. There are also differences in the APIs
available in Windows PowerShell and PowerShell Core. Modules intended to be used in
both environments need to be aware of these differences.

PowerShell SnapIns aren't supported in PowerShell Core. However, it's trivial to convert a
PSSnapIn to a PowerShell module. Typically, the PSSnapIn registration code is in a single
source file of a class that derives from PSSnapIn. Remove this source file from the build;
it's no longer needed.

Use New-ModuleManifest to create a new module manifest that replaces the need for
the PSSnapIn registration code. Some values from the PSSnapIn (such as Description)
can be reused within the module manifest.

The RootModule property in the module manifest should be set to the name of the
assembly ( .dll ) implementing the cmdlets.

To port modules written for Windows PowerShell to work with PowerShell Core, start
with the .NET Portability Analyzer . Run this tool against your compiled assembly to
determine if the .NET APIs used in the module are compatible with .NET Framework,
.NET Core, and other .NET runtimes. The tool suggests alternate APIs if they exist.
Otherwise, you may need to add runtime checks and restrict capabilities not available in
specific runtimes.

If creating a new module, the recommendation is to use the .NET CLI.

Porting an existing module

Porting a PSSnapIn

The .NET Portability Analyzer (aka APIPort)

Creating a new module

https://learn.microsoft.com/en-us/dotnet/framework/
https://learn.microsoft.com/en-us/dotnet/core/
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/modules-and-snap-ins
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pssnapin
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest
https://github.com/Microsoft/dotnet-apiport
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.runtimeinformation.frameworkdescription#System_Runtime_InteropServices_RuntimeInformation_FrameworkDescription
https://learn.microsoft.com/en-us/dotnet/core/tools/?tabs=netcore2x


Once the .NET CLI is installed, install a template library to generate a simple PowerShell
module. The module will be compatible with Windows PowerShell, PowerShell Core,
Windows, Linux, and macOS.

The following example shows how to install the template:

PowerShell

Output

After the template is installed, you can create a new PowerShell module project using
that template. In this example, the sample module is called 'myModule'.

Installing the PowerShell Standard module template

dotnet new install Microsoft.PowerShell.Standard.Module.Template

The following template packages will be installed:
   Microsoft.PowerShell.Standard.Module.Template

Success: Microsoft.PowerShell.Standard.Module.Template::0.1.3 installed the 
following templates:
Template Name               Short Name  Language  Tags
--------------------------  ----------  --------  -------------------------
PowerShell Standard Module  psmodule    [C#]      Library/PowerShell/Module

Creating a new module project

PS> mkdir myModule

    Directory: C:\Users\Steve

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 8/3/2018 2:41 PM myModule

PS> cd myModule
PS C:\Users\Steve\myModule> dotnet new psmodule
The template "PowerShell Standard Module" was created successfully.

Processing post-creation actions...
Restoring  C:\Users\Steve\myModule\myModule.csproj:
  Determining projects to restore...
  Restored C:\Users\Steve\myModule\myModule.csproj (in 184 ms).
Restore succeeded.



Use standard .NET CLI commands to build the project.

PowerShell

Output

After building the module, you can import it and execute the sample cmdlet.

PowerShell

Output

Building the module

dotnet build

PS C:\Users\Steve\myModule> dotnet build
MSBuild version 17.6.3+07e294721 for .NET
  Determining projects to restore...
  All projects are up-to-date for restore.
  PowerShellPG -> 
C:\Users\Steve\myModule\bin\Debug\netstandard2.0\myModule.dll

Build succeeded.
    0 Warning(s)
    0 Error(s)

Time Elapsed 00:00:02.36

Testing the module

Import-Module .\bin\Debug\netstandard2.0\myModule.dll
Test-SampleCmdlet -?
Test-SampleCmdlet -FavoriteNumber 7 -FavoritePet Cat

NAME
    Test-SampleCmdlet

SYNTAX
    Test-SampleCmdlet [-FavoriteNumber] <int> [[-FavoritePet] {Cat | Dog | 
Horse}] [<CommonParameters>]

ALIASES
    None

REMARKS



For a guide on setting up Visual Studio Code to debug the module, see Using Visual
Studio Code for debugging compiled cmdlets.

The following sections describe in detail some of the technologies used by this
template.

.NET Standard is a formal specification of .NET APIs that are available in all .NET
implementations. Managed code targeting .NET Standard works with the .NET
Framework and .NET Core versions that are compatible with that version of the .NET
Standard.

Targeting .NET Standard helps ensure that, as the module evolves, incompatible APIs
don't accidentally get introduced into the module. Incompatibilities are discovered at
compile time instead of runtime.

However, it isn't required to target .NET Standard for a module to work with both
Windows PowerShell and PowerShell Core, as long as you use compatible APIs. The
Intermediate Language (IL) is compatible between the two runtimes. You can target .NET
Framework 4.6.1, which is compatible with .NET Standard 2.0. If you don't use APIs

    None

FavoriteNumber FavoritePet
-------------- -----------
             7 Cat

Debugging the module

Supporting technologies

.NET Standard Library

７ Note

Although an API may exist in .NET Standard, the API implementation in .NET Core
may throw a PlatformNotSupportedException  at runtime, so to verify compatibility
with Windows PowerShell and PowerShell Core, the best practice is to run tests for
your module within both environments. Also run tests on Linux and macOS if your
module is intended to be cross-platform.

https://learn.microsoft.com/en-us/dotnet/standard/net-standard


outside of .NET Standard 2.0, then your module works with PowerShell Core 6 without
recompilation.

The PowerShell Standard  library is a formal specification of PowerShell APIs available
in all PowerShell versions greater than or equal to the version of that standard.

For example, PowerShell Standard 5.1  is compatible with both Windows PowerShell
5.1 and PowerShell Core 6.0 or newer.

We recommend you compile your module using PowerShell Standard Library. The library
ensures the APIs are available and implemented in both Windows PowerShell and
PowerShell Core 6. PowerShell Standard is intended to always be forwards-compatible. A
module built using PowerShell Standard Library 5.1 will always be compatible with future
versions of PowerShell.

After validating that your module works with both Windows PowerShell and PowerShell
Core, the module manifest should explicitly indicate compatibility by using the
CompatiblePSEditions property. A value of Desktop  means that the module is
compatible with Windows PowerShell, while a value of Core  means that the module is
compatible with PowerShell Core. Including both Desktop  and Core  means that the
module is compatible with both Windows PowerShell and PowerShell Core.

First, validate that your module works on Linux and macOS. Next, indicate compatibility
with those operating systems in the module manifest. This makes it easier for users to

PowerShell Standard Library

Module Manifest

Indicating Compatibility With Windows PowerShell and PowerShell
Core

７ Note

Core  doesn't automatically mean that the module is compatible with Windows,
Linux, and macOS. The CompatiblePSEditions property was introduced in
PowerShell v5. Module manifests that use the CompatiblePSEditions property fail
to load in versions prior to PowerShell v5.

Indicating OS Compatibility

https://github.com/PowerShell/PowerShellStandard
https://www.nuget.org/packages/PowerShellStandard.Library/5.1.0
https://learn.microsoft.com/en-us/powershell/gallery/concepts/module-psedition-support


find your module for their operating system when published to the PowerShell
Gallery .

Within the module manifest, the PrivateData  property has a PSData  sub-property. The
optional Tags  property of PSData  takes an array of values that show up in PowerShell
Gallery. The PowerShell Gallery supports the following compatibility values:

Tag Description

PSEdition_Core Compatible with PowerShell Core 6

PSEdition_Desktop Compatible with Windows PowerShell

Windows Compatible with Windows

Linux Compatible with Linux (no specific distro)

macOS Compatible with macOS

Example:

PowerShell

ﾉ Expand table

@{
    GUID = "4ae9fd46-338a-459c-8186-07f910774cb8"
    Author = "Microsoft Corporation"
    CompanyName = "Microsoft Corporation"
    Copyright = "(C) Microsoft Corporation. All rights reserved."
    HelpInfoUri = "https://go.microsoft.com/fwlink/?linkid=855962"
    ModuleVersion = "1.2.4"
    PowerShellVersion = "3.0"
    ClrVersion = "4.0"
    RootModule = "PackageManagement.psm1"
    Description = 'PackageManagement (a.k.a. OneGet) is a new way to 
discover and install software packages from around the web.
 it's a manager or multiplexer of existing package managers (also called 
package providers) that unifies Windows package management with a single 
Windows PowerShell interface. With PackageManagement, you can do the 
following.
  - Manage a list of software repositories in which packages can be 
searched, acquired and installed
  - Discover software packages
  - Seamlessly install, uninstall, and inventory packages from one or more 
software repositories'

    CmdletsToExport = @(
        'Find-Package',
        'Get-Package',
        'Get-PackageProvider',

https://www.powershellgallery.com/


Modules intended for use across different operating systems or processor architectures
may depend on a managed library that itself depends on some native libraries.

Prior to PowerShell 7, one would have to have custom code to load the appropriate
native dll so that the managed library can find it correctly.

With PowerShell 7, native binaries to load are searched in sub-folders within the
managed library's location following a subset of the .NET RID Catalog notation.

        'Get-PackageSource',
        'Install-Package',
        'Import-PackageProvider'
        'Find-PackageProvider'
        'Install-PackageProvider'
        'Register-PackageSource',
        'Set-PackageSource',
        'Unregister-PackageSource',
        'Uninstall-Package'
        'Save-Package'
    )

    FormatsToProcess  = @('PackageManagement.format.ps1xml')

    PrivateData = @{
        PSData = @{
            Tags = @('PackageManagement', 'PSEdition_Core', 
'PSEdition_Desktop', 'Windows', 'Linux', 'macOS')
            ProjectUri = 'https://oneget.org'
        }
    }
}

Dependency on Native Libraries

managed.dll folder
    |
    |--- 'win-x64' folder
    |       |--- native.dll
    |
    |--- 'win-x86' folder
    |       |--- native.dll
    |
    |--- 'win-arm' folder
    |       |--- native.dll
    |
    |--- 'win-arm64' folder
    |       |--- native.dll
    |

https://learn.microsoft.com/en-us/dotnet/core/rid-catalog


    |--- 'linux-x64' folder
    |       |--- native.so
    |
    |--- 'linux-x86' folder
    |       |--- native.so
    |
    |--- 'linux-arm' folder
    |       |--- native.so
    |
    |--- 'linux-arm64' folder
    |       |--- native.so
    |
    |--- 'osx-x64' folder
    |       |--- native.dylib

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fwriting-portable-modules%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2FWriting-Portable-Modules.md&documentVersionIndependentId=5343c03a-1bff-65cf-4600-405b904d02dd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7e228a4f-cbf7-4bc5-2579-09a748f98fda+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to create a Standard Library binary
module
Article • 02/02/2023

I recently had an idea for module that I wanted to implement as a binary module. I have
yet to create one using the PowerShell Standard Library  so this felt like a good
opportunity. I used the Creating a cross-platform binary module  guide to create this
module without any roadblocks. We're going to walk that same process and I'll add a
little extra commentary along the way.

The PowerShell Standard Library allows us to create cross platform modules that work in
both PowerShell and Windows PowerShell 5.1.

When you are writing a module in C# you give up easy access to PowerShell cmdlets
and functions. But if you are creating a module that doesn't depend on a lot of other
PowerShell commands, the performance benefit can be significant. PowerShell was
optimized for the administrator, not the computer. By switching to C#, you get to shed
the overhead added by PowerShell.

For example, we have a critical process that does a lot of work with JSON and
hashtables. We optimized the PowerShell as much as we could but the process still takes
12 minutes to complete. The module already contained a lot of C# style PowerShell. This
makes conversion to a binary module clean and simple. By converting to a binary
module, we reduced the process time from over 12 minutes to under four minutes.

７ Note

The original version  of this article appeared on the blog written by
@KevinMarquette . The PowerShell team thanks Kevin for sharing this content
with us. Please check out his blog at PowerShellExplained.com .

What's the PowerShell Standard Library?

Why binary modules?

Hybrid modules

https://github.com/PowerShell/PowerShellStandard
https://github.com/PowerShell/PowerShellStandard
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://powershellexplained.com/2018-08-04-Powershell-Standard-Library-Binary-Module/
https://powershellexplained.com/2018-08-04-Powershell-Standard-Library-Binary-Module/
https://twitter.com/KevinMarquette
https://twitter.com/KevinMarquette
https://powershellexplained.com/
https://powershellexplained.com/


You can mix binary cmdlets with PowerShell advanced functions. Everything you know
about script modules applies the same way. The empty psm1  file is included so you can
add other PowerShell functions later.

Almost all of the compiled cmdlets that I have created started out as PowerShell
functions first. All of our binary modules are really hybrid modules.

I kept the build script simple here. I generally use a large Invoke-Build  script as part of
my CI/CD pipeline. It does more magic like running Pester tests, running
PSScriptAnalyzer, managing versioning, and publishing to the PSGallery. Once I started
using a build script for my modules, I was able to find lots of things to add to it.

The plan for this module is to create a src  folder for the C# code and structure the rest
like I would for a script module. This includes using a build script to compile everything
into an Output  folder. The folder structure looks like this:

First I need to create the folder and create the git repo. I'm using $module  as a
placeholder for the module name. This should make it easier for you to reuse these
examples if needed.

PowerShell

Build scripts

Planning the module

MyModule
├───src
├───Output
│   └───MyModule
├───MyModule
│   ├───Data
│   ├───Private
│   └───Public
└───Tests

Getting Started

$module = 'MyModule'
New-Item -Path $module -Type Directory



Then create the root level folders.

PowerShell

This article is focused on the binary module so that's where we'll start. This section pulls
examples from the Creating a cross-platform binary module  guide. Review that guide
if you need more details or have any issues.

First thing we want to do is check the version of the dotnet core SDK  that we have
installed. I'm using 2.1.4, but you should have 2.0.0 or newer before continuing.

PowerShell

I'm working out of the src  folder for this section.

PowerShell

Using the dotnet command, create a new class library.

PowerShell

This created the library project in a subfolder but I don't want that extra level of nesting.
I'm going to move those files up a level.

PowerShell

Set-Location $module
git init

New-Item -Path 'src' -Type Directory
New-Item -Path 'Output' -Type Directory
New-Item -Path 'Tests' -Type Directory
New-Item -Path $module -Type Directory

Binary module setup

PS> dotnet --version
2.1.4

Set-Location 'src'

dotnet new classlib --name $module

https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://www.microsoft.com/net/download/core
https://www.microsoft.com/net/download/core


Set the .NET core SDK version for the project. I have the 2.1 SDK so I'm going to specify
2.1.0 . Use 2.0.0  if you're using the 2.0 SDK.

PowerShell

Add the PowerShell Standard Library NuGet package  to the project. Make sure you
use the most recent version available for the level of compatibility that you need. I
would default to the latest version but I don't think this module leverages any features
newer than PowerShell 3.0.

PowerShell

We should have a src folder that looks like this:

PowerShell

Now we're ready to add our own code to the project.

We need to update the src\Class1.cs  to contain this starter cmdlet:

C#

Move-Item -Path .\$module\* -Destination .\
Remove-Item $module -Recurse

dotnet new globaljson --sdk-version 2.1.0

dotnet add package PowerShellStandard.Library --version 7.0.0-preview.1

PS> Get-ChildItem
    Directory: \MyModule\src

Mode                LastWriteTime         Length Name
----                -------------         ------ ----
d-----        7/14/2018   9:51 PM                obj
-a----        7/14/2018   9:51 PM             86 Class1.cs
-a----        7/14/2018  10:03 PM            259 MyModule.csproj
-a----        7/14/2018  10:05 PM             45 global.json

Building a binary cmdlet

using System;
using System.Management.Automation;

namespace MyModule

https://www.nuget.org/packages/PowerShellStandard.Library/
https://www.nuget.org/packages/PowerShellStandard.Library/


Rename the file to match the class name.

PowerShell

Then we can build our module.

PowerShell

We can call Import-Module  on the new dll to load our new cmdlet.

PowerShell

{
    [Cmdlet( VerbsDiagnostic.Resolve , "MyCmdlet")]
    public class ResolveMyCmdletCommand : PSCmdlet
    {
        [Parameter(Position=0)]
        public Object InputObject { get; set; }

        protected override void EndProcessing()
        {
            this.WriteObject(this.InputObject);
            base.EndProcessing();
        }
    }
}

Rename-Item .\Class1.cs .\ResolveMyCmdletCommand.cs

PS> dotnet build

Microsoft (R) Build Engine version 15.5.180.51428 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

Restore completed in 18.19 ms for C:\workspace\MyModule\src\MyModule.csproj.
MyModule -> C:\workspace\MyModule\src\bin\Debug\netstandard2.0\MyModule.dll

Build succeeded.
    0 Warning(s)
    0 Error(s)

Time Elapsed 00:00:02.19

PS> Import-Module .\bin\Debug\netstandard2.0\$module.dll
PS> Get-Command -Module $module

CommandType Name                    Version Source
----------- ----                    ------- ------
Cmdlet      Resolve-MyCmdlet        1.0.0.0 MyModule



If the import fails on your system, try updating .NET to 4.7.1 or newer. The Creating a
cross-platform binary module  guide goes into more details on .NET support and
compatibility for older versions of .NET.

It's cool that we can import the dll and have a working module. I like to keep going with
it and create a module manifest. We need the manifest if we want to publish to the
PSGallery later.

From the root of our project, we can run this command to create the module manifest
that we need.

PowerShell

I'm also going to create an empty root module for future PowerShell functions.

PowerShell

This allows me to mix both normal PowerShell functions and binary cmdlets in the same
project.

I compile everything together into an output folder. We need to create a build script to
do that. I would normally add this to an Invoke-Build  script, but we can keep it simple
for this example. Add this to a build.ps1  at the root of the project.

PowerShell

Module manifest

$manifestSplat = @{
    Path              = ".\$module\$module.psd1"
    Author            = 'Kevin Marquette'
    NestedModules     = @('bin\MyModule.dll')
    RootModule        = "$module.psm1"
    FunctionsToExport = @('Resolve-MyCmdlet')
}
New-ModuleManifest @manifestSplat

Set-Content -Value '' -Path ".\$module\$module.psm1"

Building the full module

$module = 'MyModule'
Push-Location $PSScriptRoot

dotnet build $PSScriptRoot\src -o $PSScriptRoot\output\$module\bin

https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md
https://github.com/PowerShell/PowerShell/blob/master/docs/cmdlet-example/command-line-simple-example.md


These commands build our DLL and place it into our output\$module\bin  folder. It then
copies the other module files into place.

At this point, we can import our module with the psd1 file.

PowerShell

From here, we can drop the .\Output\$module  folder into our $Env:PSModulePath
directory and it autoloads our command whenever we need it.

I learned that the dotnet  tool has a PSModule  template.

All the steps that I outlined above are still valid, but this template cuts many of them
out. It's still a fairly new template that's still getting some polish placed on it. Expect it to
keep getting better from here.

This is how you use install and use the PSModule template.

PowerShell

Copy-Item "$PSScriptRoot\$module\*" "$PSScriptRoot\output\$module" -Recurse 
-Force

Import-Module "$PSScriptRoot\Output\$module\$module.psd1"
Invoke-Pester "$PSScriptRoot\Tests"

Output
└───MyModule
    ├───MyModule.psd1
    ├───MyModule.psm1
    └───bin
        ├───MyModule.deps.json
        ├───MyModule.dll
        └───MyModule.pdb

Import-Module ".\Output\$module\$module.psd1"

Update: dotnet new PSModule

dotnet new -i Microsoft.PowerShell.Standard.Module.Template
dotnet new psmodule
dotnet build
Import-Module "bin\Debug\netstandard2.0\$module.dll"
Get-Module $module



This minimally-viable template takes care of adding the .NET SDK, PowerShell Standard
Library, and creates an example class in the project. You can build it and run it right
away.

Before we end this article, here are a few other details worth mentioning.

Once a binary module is loaded, you can't really unload it. The DLL file is locked until
you unload it. This can be annoying when developing because every time you make a
change and want to build it, the file is often locked. The only reliable way to resolve this
is to close the PowerShell session that loaded the DLL.

I do most of my PowerShell dev work in VS Code . When I'm working on a binary
module (or a module with classes), I've gotten into the habit of reloading VS Code every
time I build. Ctrl + Shift + P  pops the command window and Reload Window  is always
at the top of my list.

One other option is to have good Pester test coverage. Then you can adjust the
build.ps1 script to start a new PowerShell session, perform the build, run the tests, and
close the session.

This locking can be annoying when trying to update your locally installed module. If any
session has it loaded, you have to go hunt it down and close it. This is less of an issue
when installing from a PSGallery because module versioning places the new one in a
different folder.

You can set up a local PSGallery and publish to that as part of your build. Then do your
local install from that PSGallery. This sounds like a lot of work, but this can be as simple
as starting a docker container. I cover a way to do that in my post on Using a NuGet
server for a PSRepository .

Important details

Unloading DLLs

VS Code reload window action

Nested PowerShell sessions

Updating installed modules

https://code.visualstudio.com/
https://code.visualstudio.com/
https://powershellexplained.com/2018-03-03-Powershell-Using-a-NuGet-server-for-a-PSRepository/
https://powershellexplained.com/2018-03-03-Powershell-Using-a-NuGet-server-for-a-PSRepository/
https://powershellexplained.com/2018-03-03-Powershell-Using-a-NuGet-server-for-a-PSRepository/


I didn't touch on the C# syntax for creating a cmdlet, but there is plenty of
documentation on it in the Windows PowerShell SDK. It's definitely something worth
experimenting with as a stepping stone into more serious C#.

Final thoughts

https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell-reference


Choosing the right PowerShell NuGet
package for your .NET project
Article • 11/17/2022

Alongside the pwsh  executable packages published with each PowerShell release, the
PowerShell team also maintains several packages available on NuGet . These packages
allow targeting PowerShell as an API platform in .NET.

As a .NET application that provides APIs and expects to load .NET libraries implementing
its own (binary modules), it's essential that PowerShell be available in the form of a
NuGet package.

Currently there are several NuGet packages that provide some representation of the
PowerShell API surface area. Which package to use with a particular project hasn't
always been made clear. This article sheds some light on a few common scenarios for
PowerShell-targeting .NET projects and how to choose the right NuGet package to
target for your PowerShell-oriented .NET project.

Some .NET projects seek to write code to be loaded into a pre-existing PowerShell
runtime (such as pwsh , powershell.exe , the PowerShell Integrated Console or the ISE),
while others want to run PowerShell in their own applications.

Referencing is for when a project, usually a module, is intended to be loaded into
PowerShell. It must be compiled against the APIs that PowerShell provides in order
to interact with it, but the PowerShell implementation is supplied by the
PowerShell process loading it in. For referencing, a project can use reference
assemblies or the actual runtime assemblies as a compilation target, but must
ensure that it does not publish any of these with its build.
Hosting is when a project needs its own implementation of PowerShell, usually
because it is a standalone application that needs to run PowerShell. In this case,
pure reference assemblies cannot be used. Instead, a concrete PowerShell
implementation must be depended upon. Because a concrete PowerShell
implementation must be used, a specific version of PowerShell must be chosen for
hosting; a single host application cannot multi-target PowerShell versions.

Hosting vs referencing

Publishing projects that target PowerShell as a reference

https://www.nuget.org/
https://www.nuget.org/
https://learn.microsoft.com/en-us/dotnet/standard/assembly/reference-assemblies
https://learn.microsoft.com/en-us/dotnet/standard/assembly/reference-assemblies


In order to prevent publishing project dependencies that are just being used as
compilation reference targets, it is recommended to set the PrivateAssets attribute:

XML

If you forget to do this and use a reference assembly as your target, you may see issues
related to using the reference assembly's default implementation instead of the actual
implementation. This may take the form of a NullReferenceException , since reference
assemblies often mock the implementation API by simply returning null .

While any .NET library or application can embed PowerShell, there are some common
scenarios that use PowerShell APIs:

Implementing a PowerShell binary module

PowerShell binary modules are .NET libraries loaded by PowerShell that must
implement PowerShell APIs like the PSCmdlet or CmdletProvider types in order to
expose cmdlets or providers respectively. Because they are loaded in, modules
seek to compile against references to PowerShell without publishing it in their
build. It's also common for modules to want to support multiple PowerShell
versions and platforms, ideally with a minimum of overhead of disk space,
complexity, or repeated implementation. See about_Modules for more information
about modules.

Implementing a PowerShell Host

A PowerShell Host provides an interaction layer for the PowerShell runtime. It is a
specific form of hosting, where a PSHost is implemented as a new user interface to
PowerShell. For example, the PowerShell ConsoleHost provides a terminal user
interface for PowerShell executables, while the PowerShell Editor Services Host and
the ISE Host both provide an editor-integrated partially graphical user interface

７ Note

We use the term publish in this article to refer to running dotnet publish , which
places a .NET library into a directory with all of its dependencies, ready for
deployment to a particular runtime.

<PackageReference Include="PowerShellStandard.Library" Version="5.1.0.0" 
PrivateAssets="all" />

Key kinds of PowerShell-targeting .NET projects

https://learn.microsoft.com/en-us/dotnet/core/tools/csproj#packagereference
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscmdlet
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.cmdletprovider
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_modules
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.host.pshost


around PowerShell. While it's possible to load a host onto an existing PowerShell
process, it's much more common for a host implementation to act as a standalone
PowerShell implementation that redistributes the PowerShell engine.

Calling into PowerShell from another .NET application

As with any application, PowerShell can be called as a subprocess to run
workloads. However, as a .NET application, it's also possible to invoke PowerShell
in-process to get back full .NET objects for use within the calling application. This is
a more general form of hosting, where the application holds its own PowerShell
implementation for internal use. Examples of this might be a service or daemon
running PowerShell to manage machine state or a web application that runs
PowerShell on request to do something like manage cloud deployments.

Unit testing PowerShell modules from .NET

While modules and other libraries designed to expose functionality to PowerShell
should be primarily tested from PowerShell (we recommend Pester ), sometimes
it's necessary to unit test APIs written for a PowerShell module from .NET. This
situation involves the module code trying to target a number of PowerShell
versions, while testing should run it on specific, concrete implementations.

In this article, we'll cover the following NuGet packages that expose PowerShell APIs:

PowerShellStandard.Library , a reference assembly that enables building a single
assembly that can be loaded by multiple PowerShell runtimes.
Microsoft.PowerShell.SDK, the way to target and rehost the whole PowerShell SDK
The System.Management.Automation  package, the core PowerShell runtime and
engine implementation, that can be useful in minimal hosted implementations and
for version-specific targeting scenarios.
The Windows PowerShell reference assemblies, the way to target and effectively
rehost Windows PowerShell (PowerShell versions 5.1 and below).

PowerShell NuGet packages at a glance

７ Note

The PowerShell NuGet  package is not a .NET library package at all, but instead
provides the PowerShell dotnet global tool implementation. This should not be
used by any projects, since it only provides an executable.

https://github.com/Pester/Pester
https://github.com/Pester/Pester
https://www.nuget.org/packages/PowerShellStandard.Library/
https://www.nuget.org/packages/PowerShellStandard.Library/
https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell
https://www.nuget.org/packages/System.Management.Automation/
https://www.nuget.org/packages/System.Management.Automation/
https://www.nuget.org/packages/PowerShell/
https://www.nuget.org/packages/PowerShell/


The PowerShell Standard library is a reference assembly that captures the intersection of
the APIs of PowerShell versions 7, 6 and 5.1. This provides a compile-time-checked API
surface to compile .NET code against, allowing .NET projects to target PowerShell
versions 7, 6 and 5.1 without risking calling an API that won't be there.

PowerShell Standard is intended for writing PowerShell modules, or other code only
intended to be run after loading it into a PowerShell process. Because it is a reference
assembly, PowerShell Standard contains no implementation itself, so provides no
functionality for standalone applications.

PowerShell Standard targets the .NET Standard 2.0 target runtime, which is a façade
runtime designed to provide a common surface area shared by .NET Framework and
.NET Core. This allows targeting a single runtime to produce a single assembly that will
work with multiple PowerShell versions, but has the following consequences:

The PowerShell loading the module or library must be running a minimum of .NET
4.6.1; .NET 4.6 and .NET 4.5.2 do not support .NET Standard. Note that a newer
Windows PowerShell version does not mean a newer .NET Framework version;
Windows PowerShell 5.1 may run on .NET 4.5.2.
In order to work with a PowerShell running .NET Framework 4.7.1 or below, the
.NET 4.6.1 NETStandard.Library  implementation is required to provide the
netstandard.dll and other shim assemblies in older .NET Framework versions.

PowerShell 6+ provides its own shim assemblies for type forwarding from .NET
Framework 4.6.1 (and above) to .NET Core. This means that as long as a module uses
only APIs that exist in .NET Core, PowerShell 6+ can load and run it when it has been
built for .NET Framework 4.6.1 (the net461  runtime target).

This means that binary modules using PowerShell Standard to target multiple
PowerShell versions with a single published DLL have two options:

1. Publishing an assembly built for the net461  target runtime. This involves:

Publishing the project for the net461  runtime
Also compiling against the netstandard2.0  runtime (without using its build
output) to ensure that all APIs used are also present in .NET Core.

2. Publishing an assembly build for the netstandard2.0  target runtime. This requires:

PowerShellStandard.Library

Using PowerShell Standard with different .NET runtimes

https://learn.microsoft.com/en-us/dotnet/standard/net-standard
https://www.nuget.org/packages/NETStandard.Library/
https://www.nuget.org/packages/NETStandard.Library/


Publishing the project for the netstandard2.0  runtime
Taking the net461  dependencies of NETStandard.Library and copying them
into the project assembly's publish location so that the assembly is type-
forwarded corrected in .NET Framework.

To build PowerShell modules or libraries targeting older .NET Framework versions, it may
be preferable to target multiple .NET runtimes. This will publish an assembly for each
target runtime, and the correct assembly will need to be loaded at module load time
(for example with a small psm1 as the root module).

When it comes to testing your module in .NET test runners like xUnit, remember that
compile-time checks can only go so far. You must test your module against the relevant
PowerShell platforms.

To test APIs built against PowerShell Standard in .NET, you should add
Microsoft.PowerShell.SDK  as a testing dependency with .NET Core (with the version set
to match the desired PowerShell version), and the appropriate Windows PowerShell
reference assemblies with .NET Framework.

For more information on PowerShell Standard and using it to write a binary module that
works in multiple PowerShell versions, see this blog post . Also see the PowerShell
Standard repository  on GitHub.

Microsoft.PowerShell.SDK  is a meta-package that pulls together all of the components
of the PowerShell SDK into a single NuGet package. A self-contained .NET application
can use Microsoft.PowerShell.SDK to run arbitrary PowerShell functionality without
depending on any external PowerShell installations or libraries.

A given Microsoft.PowerShell.SDK  version contains the concrete implementation of the
same version of the PowerShell application; version 7.0 contains the implementation of
PowerShell 7.0 and running commands or scripts with it will largely behave like running
them in PowerShell 7.0.

Testing PowerShell Standard projects in .NET

Microsoft.PowerShell.SDK

７ Note

The PowerShell SDK just refers to all the component packages that make up
PowerShell, and which can be used for .NET development with PowerShell.

https://devblogs.microsoft.com/powershell/powershell-standard-library-build-single-module-that-works-across-windows-powershell-and-powershell-core/
https://devblogs.microsoft.com/powershell/powershell-standard-library-build-single-module-that-works-across-windows-powershell-and-powershell-core/
https://github.com/PowerShell/PowerShellStandard
https://github.com/PowerShell/PowerShellStandard
https://github.com/PowerShell/PowerShellStandard


Running PowerShell commands from the SDK is mostly, but not totally, the same as
running them from pwsh . For example, Start-Job currently depends on the pwsh
executable being available, and so will not work with Microsoft.PowerShell.SDK  by
default.

Targeting Microsoft.PowerShell.SDK  from a .NET application allows you to integrate
with all of PowerShell's implementation assemblies, such as
System.Management.Automation , Microsoft.PowerShell.Management , and other module
assemblies.

Publishing an application targeting Microsoft.PowerShell.SDK  will include all these
assemblies, and any dependencies PowerShell requires. It will also include other assets
that PowerShell required in its build, such as the module manifests for
Microsoft.PowerShell.*  modules and the ref  directory required by Add-Type.

Given the completeness of Microsoft.PowerShell.SDK , it's best suited for:

Implementation of PowerShell hosts.
xUnit testing of libraries targeting PowerShell reference assemblies.
Invoking PowerShell in-process from a .NET application.

Microsoft.PowerShell.SDK  may also be used as a reference target when a .NET project is
intended to be used as a module or otherwise loaded by PowerShell, but depends on
APIs only present in a particular version of PowerShell. Note that an assembly published
against a specific version of Microsoft.PowerShell.SDK  will only be safe to load and use
in that version of PowerShell. To target multiple PowerShell versions with specific APIs,
multiple builds are required, each targeting their own version of
Microsoft.PowerShell.SDK .

The System.Management.Automation  package is the heart of the PowerShell SDK. It exists
on NuGet, primarily, as an asset for Microsoft.PowerShell.SDK  to pull in. However, it can
also be used directly as a package for smaller hosting scenarios and version-targeting
modules.

７ Note

The PowerShell SDK is only available for PowerShell versions 6 and up. To provide
equivalent functionality with Windows PowerShell, use the Windows PowerShell
reference assemblies described below.

System.Management.Automation

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/start-job
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type


Specifically, the System.Management.Automation  package may be a preferable provider of
PowerShell functionality when:

You're only looking to use PowerShell language functionality (in the
System.Management.Automation.Language  namespace) like the PowerShell parser,
AST, and AST visitor APIs (for example for static analysis of PowerShell).
You only wish to execute specific commands from the Microsoft.PowerShell.Core
module and can execute them in a session state created with the CreateDefault2
factory method.

Additionally, System.Management.Automation  is a useful reference assembly when:

You wish to target APIs that are only present within a specific PowerShell version
You won't be depending on types occurring outside the
System.Management.Automation  assembly (for example, types exported by cmdlets
in Microsoft.PowerShell.*  modules).

For PowerShell versions 5.1 and older (Windows PowerShell), there is no SDK to provide
an implementation of PowerShell, since Windows PowerShell's implementation is a part
of Windows.

Instead, the Windows PowerShell reference assemblies provide both reference targets
and a way to rehost Windows PowerShell, acting the same as the PowerShell SDK does
for versions 6 and up.

Rather than being differentiated by version, Windows PowerShell reference assemblies
have a different package for each version of Windows PowerShell:

PowerShell 5.1
PowerShell 4
PowerShell 3

Information on how to use the Windows PowerShell reference assemblies can be found
in the Windows PowerShell SDK.

Different PowerShell tooling projects target different PowerShell NuGet packages
depending on their needs. Listed here are some notable examples.

Windows PowerShell reference assemblies

Real-world examples using these NuGet
packages

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.initialsessionstate.createdefault2
https://www.nuget.org/packages/Microsoft.PowerShell.5.ReferenceAssemblies/
https://www.nuget.org/packages/Microsoft.PowerShell.5.ReferenceAssemblies/
https://www.nuget.org/packages/Microsoft.PowerShell.4.ReferenceAssemblies/
https://www.nuget.org/packages/Microsoft.PowerShell.4.ReferenceAssemblies/
https://www.nuget.org/packages/Microsoft.PowerShell.3.ReferenceAssemblies/
https://www.nuget.org/packages/Microsoft.PowerShell.3.ReferenceAssemblies/
https://learn.microsoft.com/en-us/powershell/scripting/developer/windows-powershell


PSReadLine , the PowerShell module that provides much of PowerShell's rich console
experience, targets PowerShell Standard as a dependency rather than a specific
PowerShell version, and targets the net461  .NET runtime in its csproj .

PowerShell 6+ supplies its own shim assemblies that allow a DLL targeting the net461
runtime to "just work" when loaded in (by redirecting binding to .NET Framework's
mscorlib.dll  to the relevant .NET Core assembly).

This simplifies PSReadLine's module layout and delivery significantly, since PowerShell
Standard ensures the only APIs used will be present in both PowerShell 5.1 and
PowerShell 6+, while also allowing the module to ship with only a single assembly.

The .NET 4.6.1 target does mean that Windows PowerShell running on .NET 4.5.2 and
.NET 4.6 is not supported though.

PowerShell Editor Services  (PSES) is the backend for the PowerShell extension  for
Visual Studio Code , and is actually a form of PowerShell module that gets loaded by a
PowerShell executable and then takes over that process to rehost PowerShell within
itself while also providing Language Service Protocol and Debug Adapter features.

PSES provides concrete implementation targets for netcoreapp2.1  to target PowerShell
6+ (since PowerShell 7's netcoreapp3.1  runtime is backwards compatible) and net461  to
target Windows PowerShell 5.1, but contains most of its logic in a second assembly that
targets netstandard2.0  and PowerShell Standard. This allows it to pull in dependencies
required for .NET Core and .NET Framework platforms, while still simplifying most of the
codebase behind a uniform abstraction.

Because it is built against PowerShell Standard, PSES requires a runtime implementation
of PowerShell in order to be tested correctly. To do this, PSES's xUnit  tests pull in
Microsoft.PowerShell.SDK  and Microsoft.PowerShell.5.ReferenceAssemblies  in order to
provide a PowerShell implementation in the test environment.

As with PSReadLine, PSES cannot support .NET 4.6 and below, but it performs a check
at runtime before calling any of the APIs that could cause a crash on the lower .NET
Framework runtimes.

PSReadLine

PowerShell Editor Services

PSScriptAnalyzer

https://github.com/PowerShell/PSReadLine
https://github.com/PowerShell/PSReadLine
https://github.com/PowerShell/PSReadLine/blob/master/PSReadLine/PSReadLine.csproj
https://github.com/PowerShell/PSReadLine/blob/master/PSReadLine/PSReadLine.csproj
https://github.com/PowerShell/PowerShellEditorServices/
https://github.com/PowerShell/PowerShellEditorServices/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/PowerShell/PowerShellEditorServices/blob/8c500ee1752201d3c1cc2e5d90f1a2af3b1eb15d/test/PowerShellEditorServices.Test/PowerShellEditorServices.Test.csproj#L15-L20
https://github.com/PowerShell/PowerShellEditorServices/blob/8c500ee1752201d3c1cc2e5d90f1a2af3b1eb15d/test/PowerShellEditorServices.Test/PowerShellEditorServices.Test.csproj#L15-L20
https://github.com/PowerShell/PowerShellEditorServices/blob/8c500ee1752201d3c1cc2e5d90f1a2af3b1eb15d/src/PowerShellEditorServices.Hosting/EditorServicesLoader.cs#L231-L251
https://github.com/PowerShell/PowerShellEditorServices/blob/8c500ee1752201d3c1cc2e5d90f1a2af3b1eb15d/src/PowerShellEditorServices.Hosting/EditorServicesLoader.cs#L231-L251


PSScriptAnalyzer , the linter for PowerShell, must target syntactic elements only
introduced in certain versions of PowerShell. Because recognition of these syntactic
elements is accomplished by implementing an AstVisitor2, it's not possible to use
PowerShellStandard and also implement AST visitor methods for newer PowerShell
syntaxes.

Instead, PSScriptAnalyzer targets each PowerShell version  as a build configuration,
and produces a separate DLL for each of them. This increases build size and complexity,
but allows:

Version-specific API targeting
Version-specific functionality to be implemented with essentially no runtime cost
Total support for Windows PowerShell all the way down to .NET Framework 4.5.2

In this article, we've listed and discussed the NuGet packages available to target when
implementing a .NET project that uses PowerShell, and the reasons you might have for
using one over another.

If you've skipped to the summary, some broad recommendations are:

PowerShell modules should compile against PowerShell Standard if they only
require APIs common to different PowerShell versions.
PowerShell hosts and applications that need to run PowerShell internally should
target the PowerShell SDK for PowerShell 6+ or the relevant Windows PowerShell
reference assemblies for Windows PowerShell.
PowerShell modules that need version-specific APIs should target the PowerShell
SDK or Windows PowerShell reference assemblies for the required PowerShell
versions, using them as reference assemblies (that is, not publishing the PowerShell
dependencies).

Summary

https://github.com/powershell/psscriptanalyzer
https://github.com/powershell/psscriptanalyzer
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.language.astvisitor2
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Engine.csproj
https://github.com/PowerShell/PSScriptAnalyzer/blob/master/Engine/Engine.csproj


Resolving PowerShell module assembly
dependency conflicts
Article • 09/08/2022

When writing a binary PowerShell module in C#, it's natural to take dependencies on
other packages or libraries to provide functionality. Taking dependencies on other
libraries is desirable for code reuse. PowerShell always loads assemblies into the same
context. This presents issues when a module's dependencies conflict with already-
loaded DLLs and may prevent using two otherwise unrelated modules in the same
PowerShell session.

If you've had this problem, you've seen an error message like this:

This article looks at some ways dependency conflicts occur in PowerShell and ways to
mitigate dependency conflict issues. Even if you're not a module author, there are some
tricks in here that might help you with dependency conflicts occurring in modules that
you use.

In .NET, dependency conflicts occur when two versions of the same assembly are loaded
into the same Assembly Load Context. This term means slightly different things on
different .NET platforms, which is covered later in this article. This conflict is a common
problem that occurs in any software where versioned dependencies are used.

Conflict issues are compounded by the fact that a project almost never deliberately or
directly depends on two versions of the same dependency. Instead, the project has two
or more dependencies that each require a different version of the same dependency.

For example, say your .NET application, DuckBuilder , brings in two dependencies, to
perform parts of its functionality and looks like this:

Why do dependency conflicts occur?



Because Contoso.ZipTools  and Fabrikam.FileHelpers  both depend on different versions
of Newtonsoft.Json, there may be a dependency conflict depending on how each
dependency is loaded.

In PowerShell, the dependency conflict issue is magnified because PowerShell's own
dependencies are loaded into the same shared context. This means the PowerShell
engine and all loaded PowerShell modules must not have conflicting dependencies. A
classic example of this is Newtonsoft.Json:

Conflicting with PowerShell's dependencies



In this example, the module FictionalTools  depends on Newtonsoft.Json version
12.0.3 , which is a newer version of Newtonsoft.Json than 11.0.2  that ships in the
example PowerShell.

Because the module depends on a newer version of the assembly, it won't accept the
version that PowerShell already has loaded. But because PowerShell has already loaded
a version of the assembly, the module can't load its own version using the conventional
load mechanism.

７ Note

This is an example. PowerShell 7.0 currently ships with Newtonsoft.Json 12.0.3.
Newer versions of PowerShell have newer versions of Newtonsoft.Json.



Another common scenario in PowerShell is that a module is loaded that depends on one
version of an assembly, and then another module is loaded later that depends on a
different version of that assembly.

This often looks like the following:

In this case, the FictionalTools  module requires a newer version of
Microsoft.Extensions.Logging  than the FilesystemManager  module.

Imagine these modules load their dependencies by placing the dependency assemblies
in the same directory as the root module assembly. This allows .NET to implicitly load
them by name. If we're running PowerShell 7.0 (on top of .NET Core 3.1), we can load
and run FictionalTools , then load and run FilesystemManager  without issue. However,
in a new session, if we load and run FilesystemManager , then load FictionalTools , we
get a FileLoadException  from the FictionalTools  command because it requires a
newer version of Microsoft.Extensions.Logging  than the one loaded. FictionalTools
can't load the version needed because an assembly of the same name has already been
loaded.

PowerShell runs on the .NET platform, which is responsible for resolving and loading
assembly dependencies. We must understand how .NET operates here to understand
dependency conflicts.

Conflicting with another module's dependencies

PowerShell and .NET



We must also confront the fact that different versions of PowerShell run on different
.NET implementations. In general, PowerShell 5.1 and below run on .NET Framework,
while PowerShell 6 and above run on .NET Core. These two implementations of .NET
load and handle assemblies differently. This means that resolving dependency conflicts
can vary depending on the underlying .NET platform.

In .NET, an Assembly Load Context (ALC) is a runtime namespace into which assemblies
are loaded. The assemblies' names must be unique. This concept allows assemblies to
be uniquely resolved by name in each ALC.

The semantics of assembly loading depend on both the .NET implementation (.NET Core
vs .NET Framework) and the .NET API used to load a particular assembly. Rather than go
into detail here, there are links in the Further reading section that go into great detail on
how .NET assembly loading works in each .NET implementation.

In this article we'll refer to the following mechanisms:

Implicit assembly loading (effectively Assembly.Load(AssemblyName) ), when .NET
implicitly tries to load an assembly by name from a static assembly reference in
.NET code.
Assembly.LoadFrom() , a plugin-oriented loading API that adds handlers to resolve
dependencies of the loaded DLL. This method may not resolve dependencies the
way we want.
Assembly.LoadFile() , a basic loading API intended to load only the assembly
asked for and does not handle any dependencies.

The way these APIs work has changed in subtle ways between .NET Core and .NET
Framework, so it's worth reading through the included links. Importantly, Assembly Load
Contexts and other assembly resolution mechanisms have changed between .NET
Framework and .NET Core.

In particular, .NET Framework has the following features:

The Global Assembly Cache, for machine-wide assembly resolution
Application Domains, which work like in-process sandboxes for assembly isolation,
but also present a serialization layer to contend with

Assembly Load Contexts

Assembly reference loading in .NET

Differences in .NET Framework vs .NET Core



A limited assembly load context model that has a fixed set of assembly load
contexts, each with their own behavior:

The default load context, where assemblies are loaded by default
The load-from context, for loading assemblies manually at runtime
The reflection-only context, for safely loading assemblies to read their metadata
without running them
The mysterious void that assemblies loaded with Assembly.LoadFile(string
path)  and Assembly.Load(byte[] asmBytes)  live in

For more information, see Best Practices for Assembly Loading.

.NET Core (and .NET 5+) has replaced this complexity with a simpler model:

No Global Assembly Cache. Applications bring all their own dependencies. This
removes an external factor for dependency resolution in applications, making
dependency resolution more reproducible. PowerShell, as the plugin host,
complicates this slightly for modules. Its dependencies in $PSHOME  are shared with
all modules.
Only one Application Domain, and no ability to create new ones. The Application
Domain concept is maintained in .NET to be the global state of the .NET process.
A new, extensible Assembly Load Context (ALC) model. Assembly resolution can be
namespaced by putting it in a new ALC. .NET processes begin with a single default
ALC into which all assemblies are loaded (except for those loaded with
Assembly.LoadFile(string)  and Assembly.Load(byte[]) ). But the process can
create and define its own custom ALCs with its own loading logic. When an
assembly is loaded, the first ALC it's loaded into is responsible for resolving its
dependencies. This creates opportunities to implement powerful .NET plugin
loading mechanisms.

In both implementations, assemblies are loaded lazily. This means that they're loaded
when a method requiring their type is run for the first time.

For example, here are two versions of the same code that load a dependency at
different times.

The first always loads its dependency when Program.GetRange()  is called, because the
dependency reference is lexically present within the method:

C#

using Dependency.Library;

public static class Program
{

https://learn.microsoft.com/en-us/dotnet/framework/deployment/best-practices-for-assembly-loading


The second loads its dependency only if the limit  parameter is 20 or more, because of
the internal indirection through a method:

C#

    public static List<int> GetRange(int limit)
    {
        var list = new List<int>();
        for (int i = 0; i < limit; i++)
        {
            if (i >= 20)
            {
                // Dependency.Library will be loaded when GetRange is run
                // because the dependency call occurs directly within the 
method
                DependencyApi.Use();
            }

            list.Add(i);
        }
        return list;
    }
}

using Dependency.Library;

public static class Program
{
    public static List<int> GetNumbers(int limit)
    {
        var list = new List<int>();
        for (int i = 0; i < limit; i++)
        {
            if (i >= 20)
            {
                // Dependency.Library is only referenced within
                // the UseDependencyApi() method,
                // so will only be loaded when limit >= 20
                UseDependencyApi();
            }

            list.Add(i);
        }
        return list;
    }

    private static void UseDependencyApi()
    {
        // Once UseDependencyApi() is called, Dependency.Library is loaded
        DependencyApi.Use();
    }
}



This is a good practice since it minimizes the memory and filesystem I/O and uses the
resources more efficiently. The unfortunate a side effect of this is that we won't know
that the assembly fails to load until we reach the code path that tries to load the
assembly.

It can also create a timing condition for assembly load conflicts. If two parts of the same
program try to load different versions of the same assembly, the version loaded
depends on which code path is run first.

For PowerShell, this means that the following factors can affect an assembly load
conflict:

Which module was loaded first?
Was the code path that uses the dependency library run?
Does PowerShell load a conflicting dependency at startup or only under certain
code paths?

In some cases, it's possible to make small adjustments to your module and fix things
with minimal effort. But these solutions tend to come with caveats. While they may
apply to your module, they won't work for every module.

The simplest way to avoid dependency conflicts is to agree on a dependency. This may
be possible when:

Your conflict is with a direct dependency of your module and you control the
version.
Your conflict is with an indirect dependency, but you can configure your direct
dependencies to use a workable indirect dependency version.
You know the conflicting version and can rely on it not changing.

The Newtonsoft.Json package is a good example of this last scenario. This is a
dependency of PowerShell 6 and above, and isn't used in Windows PowerShell. Meaning
a simple way to resolve versioning conflicts is to target the lowest version of
Newtonsoft.Json across the PowerShell versions you wish to target.

For example, PowerShell 6.2.6 and PowerShell 7.0.2 both currently use Newtonsoft.Json
version 12.0.3. To create a module targeting Windows PowerShell, PowerShell 6, and
PowerShell 7, you would target Newtonsoft.Json 12.0.3 as a dependency and include it

Quick fixes and their limitations

Change your dependency version



in your built module. When the module is loaded in PowerShell 6 or 7, PowerShell's own
Newtonsoft.Json assembly is already loaded. Since it's the version required for your
module, resolution succeeds. In Windows PowerShell, the assembly isn't already present
in PowerShell, so it's loaded from your module folder instead.

Generally, when targeting a concrete PowerShell package, like Microsoft.PowerShell.Sdk
or System.Management.Automation, NuGet should be able to resolve the right
dependency versions required. Targeting both Windows PowerShell and PowerShell 6+
becomes more difficult because you must choose between targeting multiple
frameworks or PowerShellStandard.Library.

Circumstances where pinning to a common dependency version won't work include:

The conflict is with an indirect dependency, and none of your dependencies can be
configured to use a common version.
The other dependency version is likely to change often, so settling on a common
version is only a short-term fix.

This solution is more for module users than module authors. This is a solution to use
when confronted with a module that won't work due to an existing dependency conflict.

Dependency conflicts occur because two versions of the same assembly are loaded into
the same .NET process. A simple solution is to load them into different processes, as
long as you can still use the functionality from both together.

In PowerShell, there are several ways to achieve this:

Invoke PowerShell as a subprocess

To run a PowerShell command out of the current process, start a new PowerShell
process directly with the command call:

PowerShell

The main limitation here is that restructuring the result can be trickier or more
error prone than other options.

The PowerShell job system

Use the dependency out of process

pwsh -c 'Invoke-ConflictingCommand'



The PowerShell job system also runs commands out of process, by sending
commands to a new PowerShell process and returning the results:

PowerShell

In this case, you just need to be sure that any variables and state are passed in
correctly.

The job system can also be slightly cumbersome when running small commands.

PowerShell remoting

When it's available, PowerShell remoting can be a useful way to run commands out
of process. With remoting, you can create a fresh PSSession in a new process, call
its commands over PowerShell remoting, then use the results locally with the other
modules containing the conflicting dependencies.

An example might look like this:

PowerShell

Implicit remoting to Windows PowerShell

Another option in PowerShell 7 is to use the -UseWindowsPowerShell  flag on
Import-Module . This imports the module through a local remoting session into
Windows PowerShell:

PowerShell

Be aware that modules may not be compatible with or may work differently with
Windows PowerShell.

$result = Start-Job { Invoke-ConflictingCommand } | Receive-Job -Wait

# Create a local PowerShell session
# where the module with conflicting assemblies will be loaded
$s = New-PSSession

# Import the module with the conflicting dependency via remoting,
# exposing the commands locally
Import-Module -PSSession $s -Name ConflictingModule

# Run a command from the module with the conflicting dependencies
Invoke-ConflictingCommand

Import-Module -Name ConflictingModule -UseWindowsPowerShell



As a module author, out-of-process command invocation is difficult to bake into a
module and may have edge cases that cause issues. In particular, remoting and jobs
may not be available in all environments where your module needs to work. However,
the general principle of moving the implementation out of process and allowing the
PowerShell module to be a thinner client, may still be applicable.

As a module user, there are cases where out-of-process invocation won't work:

When PowerShell remoting is unavailable because you don't have privileges to use
it or it is not enabled.
When a particular .NET type is needed from output as input to a method or
another command. Commands running over PowerShell remoting emit
deserialized objects rather than strongly-typed .NET objects. This means that
method calls and strongly typed APIs don't work with the output of commands
imported over remoting.

The previous solutions all had scenarios and modules that don't work. However, they
also have the virtue of being relatively simple to implement correctly. The following
solutions are more robust, but require more effort to implement correctly and can
introduce subtle bugs if not written carefully.

Assembly Load Contexts (ALCs) were introduced in .NET Core 1.0 to specifically address
the need to load multiple versions of the same assembly into the same runtime.

Within .NET, they offer the most robust solution to the problem of loading conflicting
versions of an assembly. However, custom ALCs are not available in .NET Framework.
This means that this solution only works in PowerShell 6 and above.

Currently, the best example of using an ALC for dependency isolation in PowerShell is in
PowerShell Editor Services, the language server for the PowerShell extension for Visual
Studio Code. An ALC is used  to prevent PowerShell Editor Services' own dependencies
from clashing with those in PowerShell modules.

Implementing module dependency isolation with an ALC is conceptually difficult, but we
will work through a minimal example. Imagine we have a simple module that is only
intended to work in PowerShell 7. The source code is organized as follows:

When out-of-process invocation should not be used

More robust solutions

Loading through .NET Core Assembly Load Contexts

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.loader.assemblyloadcontext
https://github.com/PowerShell/PowerShellEditorServices/blob/master/src/PowerShellEditorServices.Hosting/Internal/PsesLoadContext.cs
https://github.com/PowerShell/PowerShellEditorServices/blob/master/src/PowerShellEditorServices.Hosting/Internal/PsesLoadContext.cs


The cmdlet implementation looks like this:

C#

The (heavily simplified) manifest, looks like this:

PowerShell

And the csproj  looks like this:

XML

+ AlcModule.psd1
+ src/
    + TestAlcModuleCommand.cs
    + AlcModule.csproj

using Shared.Dependency;

namespace AlcModule
{
    [Cmdlet(VerbsDiagnostic.Test, "AlcModule")]
    public class TestAlcModuleCommand : Cmdlet
    {
        protected override void EndProcessing()
        {
            // Here's where our dependency gets used
            Dependency.Use();
            // Something trivial to make our cmdlet do *something*
            WriteObject("done!");
        }
    }
}

@{
    Author = 'Me'
    ModuleVersion = '0.0.1'
    RootModule = 'AlcModule.dll'
    CmdletsToExport = @('Test-AlcModule')
    PowerShellVersion = '7.0'
}

<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.1</TargetFramework>
  </PropertyGroup>
  <ItemGroup>
    <PackageReference Include="Shared.Dependency" Version="1.0.0" />



When we build this module, the generated output has the following layout:

In this example, our problem is in the Shared.Dependency.dll  assembly, which is our
imaginary conflicting dependency. This is the dependency that we need to put behind
an ALC so that we can use the module-specific version.

We need to re-engineer the module so that:

Module dependencies are only loaded into our custom ALC, and not into
PowerShell's ALC, so there can be no conflict. Moreover, as we add more
dependencies to our project, we don't want to continuously add more code to
keep loading working. Instead, we want reusable, generic dependency resolution
logic.
Loading the module still works as normal in PowerShell. Cmdlets and other types
that the PowerShell module system needs are defined within PowerShell's own
ALC.

To mediate these two requirements, we must break up our module into two assemblies:

A cmdlets assembly, AlcModule.Cmdlets.dll , that contains definitions of all the
types that PowerShell's module system needs to load our module correctly.
Namely, any implementations of the Cmdlet  base class and the class that
implements IModuleAssemblyInitializer , which sets up the event handler for
AssemblyLoadContext.Default.Resolving  to properly load AlcModule.Engine.dll
through our custom ALC. Since PowerShell 7 deliberately hides types defined in
assemblies loaded in other ALCs, any types that are meant to be publicly exposed
to PowerShell must also be defined here. Finally, our custom ALC definition needs
to be defined in this assembly. Beyond that, as little code as possible should live in
this assembly.
An engine assembly, AlcModule.Engine.dll , that handles the actual
implementation of the module. Types from this are available in the PowerShell ALC,

    <PackageReference Include="Microsoft.PowerShell.Sdk" Version="7.0.1" 
PrivateAssets="all" />
  </ItemGroup>
</Project>

AlcModule/
  + AlcModule.psd1
  + AlcModule.dll
  + Shared.Dependency.dll



but it's initially loaded through our custom ALC. Its dependencies are only loaded
into the custom ALC. Effectively, this becomes a bridge between the two ALCs.

Using this bridge concept, our new assembly situation looks like this:

To make sure the default ALC's dependency probing logic doesn't resolve the
dependencies to be loaded into the custom ALC, we need to separate these two parts of
the module in different directories. The new module layout has the following structure:

To see how the implementation changes, we'll start with the implementation of
AlcModule.Engine.dll :

C#

AlcModule/
  AlcModule.Cmdlets.dll
  AlcModule.psd1
  Dependencies/
  | + AlcModule.Engine.dll
  | + Shared.Dependency.dll

using Shared.Dependency;

namespace AlcModule.Engine
{
    public class AlcEngine
    {
        public static void Use()
        {
            Dependency.Use();
        }



This is a simple container for the dependency, Shared.Dependency.dll , but you should
think of it as the .NET API for your functionality that the cmdlets in the other assembly
wrap for PowerShell.

The cmdlet in AlcModule.Cmdlets.dll  looks like this:

C#

At this point, if we were to load AlcModule and run Test-AlcModule , we get a
FileNotFoundException when the default ALC tries to load Alc.Engine.dll  to run
EndProcessing() . This is good, since it means the default ALC can't find the
dependencies we want to hide.

Now we need to add code to AlcModule.Cmdlets.dll  so that it knows how to resolve

AlcModule.Engine.dll . First we must define our custom ALC to resolve assemblies from
our module's Dependencies  directory:

C#

    }
}

// Reference our module's Engine implementation here
using AlcModule.Engine;

namespace AlcModule.Cmdlets
{
    [Cmdlet(VerbsDiagnostic.Test, "AlcModule")]
    public class TestAlcModuleCommand : Cmdlet
    {
        protected override void EndProcessing()
        {
            AlcEngine.Use();
            WriteObject("done!");
        }
    }
}

namespace AlcModule.Cmdlets
{
    internal class AlcModuleAssemblyLoadContext : AssemblyLoadContext
    {
        private readonly string _dependencyDirPath;

        public AlcModuleAssemblyLoadContext(string dependencyDirPath)
        {
            _dependencyDirPath = dependencyDirPath;
        }



Then we need to hook up our custom ALC to the default ALC's Resolving  event, which is
the ALC version of the AssemblyResolve  event on Application Domains. This event is
fired to find AlcModule.Engine.dll  when EndProcessing()  is called.

C#

        protected override Assembly Load(AssemblyName assemblyName)
        {
            // We do the simple logic here of looking for an assembly of the 
given name
            // in the configured dependency directory.
            string assemblyPath = Path.Combine(
                _dependencyDirPath,
                $"{assemblyName.Name}.dll");

            if (File.Exists(assemblyPath))
            {
                // The ALC must use inherited methods to load assemblies.
                // Assembly.Load*() won't work here.
                return LoadFromAssemblyPath(assemblyPath);
            }

            // For other assemblies, return null to allow other resolutions 
to continue.
            return null;
        }
    }
}

namespace AlcModule.Cmdlets
{
    public class AlcModuleResolveEventHandler : IModuleAssemblyInitializer, 
IModuleAssemblyCleanup
    {
        // Get the path of the dependency directory.
        // In this case we find it relative to the AlcModule.Cmdlets.dll 
location
        private static readonly string s_dependencyDirPath = 
Path.GetFullPath(
            Path.Combine(
                
Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location),
                "Dependencies"));

        private static readonly AlcModuleAssemblyLoadContext s_dependencyAlc 
=
            new AlcModuleAssemblyLoadContext(s_dependencyDirPath);

        public void OnImport()
        {
            // Add the Resolving event handler here



With the new implementation, take a look at the sequence of calls that occurs when the
module is loaded and Test-AlcModule  is run:

            AssemblyLoadContext.Default.Resolving += ResolveAlcEngine;
        }

        public void OnRemove(PSModuleInfo psModuleInfo)
        {
            // Remove the Resolving event handler here
            AssemblyLoadContext.Default.Resolving -= ResolveAlcEngine;
        }

        private static Assembly ResolveAlcEngine(AssemblyLoadContext 
defaultAlc, AssemblyName assemblyToResolve)
        {
            // We only want to resolve the Alc.Engine.dll assembly here.
            // Because this will be loaded into the custom ALC,
            // all of *its* dependencies will be resolved
            // by the logic we defined for that ALC's implementation.
            //
            // Note that we are safe in our assumption that the name is 
enough
            // to distinguish our assembly here,
            // since it's unique to our module.
            // There should be no other AlcModule.Engine.dll on the system.
            if (!assemblyToResolve.Name.Equals("AlcModule.Engine"))
            {
                return null;
            }

            // Allow our ALC to handle the directory discovery concept
            //
            // This is where Alc.Engine.dll is loaded into our custom ALC
            // and then passed through into PowerShell's ALC,
            // becoming the bridge between both
            return s_dependencyAlc.LoadFromAssemblyName(assemblyToResolve);
        }
    }
}



Some points of interest are:

The IModuleAssemblyInitializer  is run first when the module loads and sets the
Resolving  event.
We don't load the dependencies until Test-AlcModule  is run and its

EndProcessing()  method is called.
When EndProcessing()  is called, the default ALC fails to find AlcModule.Engine.dll
and fires the Resolving  event.
Our event handler hooks up the custom ALC to the default ALC and loads
AlcModule.Engine.dll  only.
When AlcEngine.Use()  is called within AlcModule.Engine.dll , the custom ALC
again kicks in to resolve Shared.Dependency.dll . Specifically, it always loads our

Shared.Dependency.dll  since it never conflicts with anything in the default ALC and
only looks in our Dependencies  directory.

Assembling the implementation, our new source code layout looks like this:

+ AlcModule.psd1
+ src/
  + AlcModule.Cmdlets/
  | + AlcModule.Cmdlets.csproj
  | + TestAlcModuleCommand.cs
  | + AlcModuleAssemblyLoadContext.cs
  | + AlcModuleInitializer.cs
  |
  + AlcModule.Engine/



AlcModule.Cmdlets.csproj looks like:

XML

AlcModule.Engine.csproj looks like this:

XML

So, when we build the module, our strategy is:

Build AlcModule.Engine
Build AlcModule.Cmdlets
Copy everything from AlcModule.Engine  into the Dependencies  directory, and
remember what we copied
Copy everything from AlcModule.Cmdlets  that wasn't in AlcModule.Engine  into the
base module directory

Since the module layout here is so crucial to dependency separation, here's a build
script to use from the source root:

PowerShell

  | + AlcModule.Engine.csproj
  | + AlcEngine.cs

<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.1</TargetFramework>
  </PropertyGroup>
  <ItemGroup>
    <ProjectReference Include="..\AlcModule.Engine\AlcModule.Engine.csproj" 
/>
    <PackageReference Include="Microsoft.PowerShell.Sdk" Version="7.0.1" 
PrivateAssets="all" />
  </ItemGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk">
  <PropertyGroup>
    <TargetFramework>netcoreapp3.1</TargetFramework>
  </PropertyGroup>
  <ItemGroup>
    <PackageReference Include="Shared.Dependency" Version="1.0.0" />
  </ItemGroup>
</Project>



param(
    # The .NET build configuration
    [ValidateSet('Debug', 'Release')]
    [string]
    $Configuration = 'Debug'
)

# Convenient reusable constants
$mod = "AlcModule"
$netcore = "netcoreapp3.1"
$copyExtensions = @('.dll', '.pdb')

# Source code locations
$src = "$PSScriptRoot/src"
$engineSrc = "$src/$mod.Engine"
$cmdletsSrc = "$src/$mod.Cmdlets"

# Generated output locations
$outDir = "$PSScriptRoot/out/$mod"
$outDeps = "$outDir/Dependencies"

# Build AlcModule.Engine
Push-Location $engineSrc
dotnet publish -c $Configuration
Pop-Location

# Build AlcModule.Cmdlets
Push-Location $cmdletsSrc
dotnet publish -c $Configuration
Pop-Location

# Ensure out directory exists and is clean
Remove-Item -Path $outDir -Recurse -ErrorAction Ignore
New-Item -Path $outDir -ItemType Directory
New-Item -Path $outDeps -ItemType Directory

# Copy manifest
Copy-Item -Path "$PSScriptRoot/$mod.psd1"

# Copy each Engine asset and remember it
$deps = [System.Collections.Generic.Hashtable[string]]::new()
Get-ChildItem -Path "$engineSrc/bin/$Configuration/$netcore/publish/" |
    Where-Object { $_.Extension -in $copyExtensions } |
    ForEach-Object { [void]$deps.Add($_.Name); Copy-Item -Path $_.FullName -
Destination $outDeps }

# Now copy each Cmdlets asset, not taking any found in Engine
Get-ChildItem -Path "$cmdletsSrc/bin/$Configuration/$netcore/publish/" |
    Where-Object { -not $deps.Contains($_.Name) -and $_.Extension -in 
$copyExtensions } |
    ForEach-Object { Copy-Item -Path $_.FullName -Destination $outDir }



Finally, we have a general way to isolate our module's dependencies in an Assembly
Load Context that remains robust over time as more dependencies are added.

For a more detailed example, go to this GitHub repository . This example demonstrates
how to migrate a module to use an ALC, while keeping that module working in .NET
Framework. It also shows how to use .NET Standard and PowerShell Standard to simplify
the core implementation.

This solution is also used by the Bicep PowerShell module , and the blog post
Resolving PowerShell Module Conflicts  is another good read about this solution.

Although being robust, the solution described above requires the module assembly to
not directly reference the dependency assemblies, but instead, reference a wrapper
assembly that references the dependency assemblies. The wrapper assembly acts like a
bridge, forwarding the calls from the module assembly to the dependency assemblies.
This makes it usually a non-trivial amount of work to adopt this solution:

For a new module, this would add additional complexity to the design and
implementation
For an existing module, this would require significant refactoring

There is a simplified solution to achieve side-by-side assembly loading, by hooking up a
Resolving  event with a custom AssemblyLoadContext  instance. Using this method is
easier for the module author but has two limitations. Check out the PowerShell-ALC-
Samples  repository for sample code and documentation that describes these
limitations and detailed scenarios for this solution.

Assembly resolving handler for side-by-side loading

） Important

Do not use Assembly.LoadFile  for the dependency isolation purpose. Using
Assembly.LoadFile  creates a Type Identity issue when another module loads a
different version of the same assembly into the default AssemblyLoadContext . While
this API loads an assembly to a separate AssemblyLoadContext  instance, the
assemblies loaded are discoverable by PowerShell's type resolution code .
Therefore, there could be duplicate types with the same fully qualifed type name
available from two different ALCs.

Custom Application Domains

https://github.com/rjmholt/ModuleDependencyIsolationExample
https://github.com/rjmholt/ModuleDependencyIsolationExample
https://github.com/PSBicep/PSBicep
https://github.com/PSBicep/PSBicep
https://pipe.how/get-assemblyloadcontext/
https://pipe.how/get-assemblyloadcontext/
https://github.com/daxian-dbw/PowerShell-ALC-Samples
https://github.com/daxian-dbw/PowerShell-ALC-Samples
https://github.com/daxian-dbw/PowerShell-ALC-Samples
https://github.com/PowerShell/PowerShell/blob/918bb8c952af1d461abfc98bc709a1d359168a1c/src/System.Management.Automation/utils/ClrFacade.cs#L56-L61
https://github.com/PowerShell/PowerShell/blob/918bb8c952af1d461abfc98bc709a1d359168a1c/src/System.Management.Automation/utils/ClrFacade.cs#L56-L61


The final and most extreme option for assembly isolation is to use custom Application
Domains. Application Domains are only available in .NET Framework. They are used to
provide in-process isolation between parts of a .NET application. One of the uses is to
isolate assembly loads from each other within the same process.

However, Application Domainsare serialization boundaries. Objects in one application
domain can't be referenced and used directly by objects in another application domain.
You can work around this by implementing MarshalByRefObject . But when you don't
control the types, as is often the case with dependencies, it's not possible to force an
implementation here. The only solution is to make large architectural changes. The
serialization boundary also has serious performance implications.

Because Application Domains have this serious limitation, are complicated to
implement, and only work in .NET Framework, we won't give an example of how you
might use them here. While they're worth mentioning as a possibility, they're not
recommended.

If you're interested in trying to use a custom application domain, the following links
might help:

Conceptual documentation on Application Domains
Examples for using Application Domains

Finally, we'll address some possibilities that come up when researching .NET
dependency conflicts in .NET that can look promising, but generally won't work for
PowerShell.

These solutions have the common theme that they are changes to deployment
configurations for an environment where you control the application and possibly the
entire machine. These solutions are oriented toward scenarios like web servers and
other applications deployed to server environments, where the environment is intended
to host the application and is free to be configured by the deploying user. They also
tend to be very much .NET Framework oriented, meaning they don't work with
PowerShell 6 or higher.

If you know that your module is only used in Windows PowerShell 5.1 environments that
you have total control over, some of these may be options. In general however,
modules shouldn't modify global machine state like this. It can break configurations

Solutions for dependency conflicts that don't
work for PowerShell

https://learn.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/use


that cause problems in powershell.exe , other modules, or other dependent applications
that cause your module to fail in unexpected ways.

.NET Framework applications can take advantage of an app.config  file to configure
some application behaviors declaratively. It's possible to write an app.config  entry that
configures assembly binding to redirect assembly loading to a particular version.

Two issues with this for PowerShell are:

.NET Core doesn't support app.config , so this solution only applies to

powershell.exe .
powershell.exe  is a shared application that lives in the System32  directory. It's
likely that your module won't be able to modify its contents on many systems.
Even if it can, modifying the app.config  could break an existing configuration or
affect the loading of other modules.

For the same reasons, trying to configure the codebase  setting in app.config  is not
going to work in PowerShell modules.

Another way to resolve dependency version conflicts in .NET Framework is to install
dependencies to the GAC, so that different versions can be loaded side-by-side from the
GAC.

Again, for PowerShell modules, the chief issues here are:

The GAC only applies to .NET Framework, so this does not help in PowerShell 6 and
above.
Installing assemblies to the GAC is a modification of global machine state and may
cause side-effects in other applications or to other modules. It may also be difficult
to do correctly, even when your module has the required access privileges. Getting
it wrong could cause serious, machine-wide issues in other .NET applications.

Static binding redirect with app.config to force using the
same dependency version

Setting codebase  with app.config

Installing dependencies to the Global Assembly Cache
(GAC)



There's plenty more to read on .NET assembly version dependency conflicts. Here are
some nice jumping off points:

.NET: Assemblies in .NET

.NET Core: The managed assembly loading algorithm

.NET Core: Understanding System.Runtime.Loader.AssemblyLoadContext

.NET Core: Discussion about side-by-side assembly loading solutions

.NET Framework: Redirecting assembly versions

.NET Framework: Best practices for assembly loading

.NET Framework: How the runtime locates assemblies

.NET Framework: Resolve assembly loads
Stack Overflow: Assembly binding redirect, how and why?
PowerShell: Discussion about implementing AssemblyLoadContexts
PowerShell: Assembly.LoadFile() doesn't load into default AssemblyLoadContext
Rick Strahl: When does a .NET assembly dependency get loaded?
Jon Skeet: Summary of versioning in .NET
Nate McMaster: Deep dive into .NET Core primitives

Further reading

https://learn.microsoft.com/en-us/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/core/dependency-loading/loading-managed
https://learn.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext
https://github.com/dotnet/runtime/issues/13471
https://github.com/dotnet/runtime/issues/13471
https://learn.microsoft.com/en-us/dotnet/framework/configure-apps/redirect-assembly-versions
https://learn.microsoft.com/en-us/dotnet/framework/deployment/best-practices-for-assembly-loading
https://learn.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://learn.microsoft.com/en-us/dotnet/standard/assembly/resolve-loads
https://stackoverflow.com/questions/43365736/assembly-binding-redirect-how-and-why
https://stackoverflow.com/questions/43365736/assembly-binding-redirect-how-and-why
https://github.com/PowerShell/PowerShell/issues/11571
https://github.com/PowerShell/PowerShell/issues/11571
https://github.com/PowerShell/PowerShell/issues/12052
https://github.com/PowerShell/PowerShell/issues/12052
https://weblog.west-wind.com/posts/2012/Nov/03/Back-to-Basics-When-does-a-NET-Assembly-Dependency-get-loaded
https://weblog.west-wind.com/posts/2012/Nov/03/Back-to-Basics-When-does-a-NET-Assembly-Dependency-get-loaded
https://codeblog.jonskeet.uk/2019/06/30/versioning-limitations-in-net/
https://codeblog.jonskeet.uk/2019/06/30/versioning-limitations-in-net/
https://natemcmaster.com/blog/2017/12/21/netcore-primitives/
https://natemcmaster.com/blog/2017/12/21/netcore-primitives/


How to create a command-line
predictor
Article • 07/10/2023

PSReadLine 2.1.0 introduced the concept of a smart command-line predictor by
implementing the Predictive IntelliSense feature. PSReadLine 2.2.2 expanded on that
feature by adding a plugin model that allows you create your own command-line
predictors.

Predictive IntelliSense enhances tab completion by providing suggestions, on the
command line, as you type. The prediction suggestion appears as colored text following
your cursor. This enables you to discover, edit, and execute full commands based on
matching predictions from your command history or additional domain-specific plugins.

To create and use a plugin predictor, you must be using the following versions of
software:

PowerShell 7.2 (or higher) - provides the APIs necessary for creating a command
predictor
PSReadLine 2.2.2 (or higher) - allows you to configure PSReadLine to use the
plugin

A predictor is a PowerShell binary module. The module must implement the
System.Management.Automation.Subsystem.Prediction.ICommandPredictor  interface. This
interface declares the methods used to query for prediction results and provide
feedback.

A predictor module must register a CommandPredictor  subsystem with PowerShell's
SubsystemManager  when loaded and unregister itself when unloaded.

The following diagram shows the architecture of a predictor in PowerShell.

System requirements

Overview of a predictor



To create a predictor, you must have the .NET 6 SDK installed for your platform. For
more information on the SDK, see Download .NET 6.0 .

Create a new PowerShell module project by following these steps:

1. Use the dotnet  command-line tool to create a starter classlib project.

PowerShell

2. Edit the SamplePredictor.csproj  to contain the following information:

XML

Creating the code

dotnet new classlib --name SamplePredictor

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <TargetFramework>net6.0</TargetFramework>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="Microsoft.PowerShell.SDK" 
Version="7.2.0" />
  </ItemGroup>

https://dotnet.microsoft.com/download/dotnet/6.0


3. Delete the default Class1.cs  file created by dotnet  and copy the following code
to a SamplePredictorClass.cs  file in your project folder.

C#

</Project>

using System;
using System.Collections.Generic;
using System.Threading;
using System.Management.Automation;
using System.Management.Automation.Subsystem;
using System.Management.Automation.Subsystem.Prediction;

namespace PowerShell.Sample
{
    public class SamplePredictor : ICommandPredictor
    {
        private readonly Guid _guid;

        internal SamplePredictor(string guid)
        {
            _guid = new Guid(guid);
        }

        /// <summary>
        /// Gets the unique identifier for a subsystem implementation.
        /// </summary>
        public Guid Id => _guid;

        /// <summary>
        /// Gets the name of a subsystem implementation.
        /// </summary>
        public string Name => "SamplePredictor";

        /// <summary>
        /// Gets the description of a subsystem implementation.
        /// </summary>
        public string Description => "A sample predictor";

        /// <summary>
        /// Get the predictive suggestions. It indicates the start of a 
suggestion rendering session.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>
        /// <param name="context">The <see cref="PredictionContext"/> 
object to be used for prediction.</param>
        /// <param name="cancellationToken">The cancellation token to 
cancel the prediction.</param>
        /// <returns>An instance of <see cref="SuggestionPackage"/>.
</returns>



        public SuggestionPackage GetSuggestion(PredictionClient client, 
PredictionContext context, CancellationToken cancellationToken)
        {
            string input = context.InputAst.Extent.Text;
            if (string.IsNullOrWhiteSpace(input))
            {
                return default;
            }

            return new SuggestionPackage(new List<PredictiveSuggestion>
{
                new PredictiveSuggestion(string.Concat(input, " HELLO 
WORLD"))
            });
        }

        #region "interface methods for processing feedback"

        /// <summary>
        /// Gets a value indicating whether the predictor accepts a 
specific kind of feedback.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>
        /// <param name="feedback">A specific type of feedback.</param>
        /// <returns>True or false, to indicate whether the specific 
feedback is accepted.</returns>
        public bool CanAcceptFeedback(PredictionClient client, 
PredictorFeedbackKind feedback) => false;

        /// <summary>
        /// One or more suggestions provided by the predictor were 
displayed to the user.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>
        /// <param name="session">The mini-session where the displayed 
suggestions came from.</param>
        /// <param name="countOrIndex">
        /// When the value is greater than 0, it's the number of 
displayed suggestions from the list
        /// returned in <paramref name="session"/>, starting from the 
index 0. When the value is
        /// less than or equal to 0, it means a single suggestion from 
the list got displayed, and
        /// the index is the absolute value.
        /// </param>
        public void OnSuggestionDisplayed(PredictionClient client, uint 
session, int countOrIndex) { }

        /// <summary>
        /// The suggestion provided by the predictor was accepted.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>



        /// <param name="session">Represents the mini-session where the 
accepted suggestion came from.</param>
        /// <param name="acceptedSuggestion">The accepted suggestion 
text.</param>
        public void OnSuggestionAccepted(PredictionClient client, uint 
session, string acceptedSuggestion) { }

        /// <summary>
        /// A command line was accepted to execute.
        /// The predictor can start processing early as needed with the 
latest history.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>
        /// <param name="history">History command lines provided as 
references for prediction.</param>
        public void OnCommandLineAccepted(PredictionClient client, 
IReadOnlyList<string> history) { }

        /// <summary>
        /// A command line was done execution.
        /// </summary>
        /// <param name="client">Represents the client that initiates 
the call.</param>
        /// <param name="commandLine">The last accepted command line.
</param>
        /// <param name="success">Shows whether the execution was 
successful.</param>
        public void OnCommandLineExecuted(PredictionClient client, 
string commandLine, bool success) { }

        #endregion;
    }

    /// <summary>
    /// Register the predictor on module loading and unregister it on 
module un-loading.
    /// </summary>
    public class Init : IModuleAssemblyInitializer, 
IModuleAssemblyCleanup
    {
        private const string Identifier = "843b51d0-55c8-4c1a-8116-
f0728d419306";

        /// <summary>
        /// Gets called when assembly is loaded.
        /// </summary>
        public void OnImport()
        {
            var predictor = new SamplePredictor(Identifier);
            
SubsystemManager.RegisterSubsystem(SubsystemKind.CommandPredictor, 
predictor);
        }



The following example code returns the string "HELLO WORLD" for the prediction
result for all user input. Since the sample predictor doesn't process any feedback,
the code doesn't implement the feedback methods from the interface. Change the
prediction and feedback code to meet the needs of your predictor.

4. Run dotnet build  to produce the assembly. You can find the compiled assembly in
the bin/Debug/net6.0  location of your project folder.

To try out your new predictor, open a new PowerShell 7.2 session and run the following
commands:

PowerShell

        /// <summary>
        /// Gets called when the binary module is unloaded.
        /// </summary>
        public void OnRemove(PSModuleInfo psModuleInfo)
        {
            
SubsystemManager.UnregisterSubsystem(SubsystemKind.CommandPredictor, 
new Guid(Identifier));
        }
    }
}

７ Note

The list view of PSReadLine doesn't support multiline suggestions. Each
suggestion should be a single line. If your code has a multiline suggestion,
you should split the lines into separate suggestions or join the lines with a
semicolon ( ; ).

７ Note

To ensure a responsive user experience, the ICommandPredictor interface has
a 20ms time out for responses from the Predictors. Your predictor code must
return results in less than 20ms to be displayed.

Using your predictor plugin

Set-PSReadLineOption -PredictionSource HistoryAndPlugin
Import-Module .\bin\Debug\net6.0\SamplePredictor.dll



With the assembly is loaded in the session, you see the text "HELLO WORLD" appear as
you type in the terminal. You can press F2  to switch between the Inline  view and the
List  view.

For more information about PSReadLine options, see Set-PSReadLineOption.

You can get a list of installed predictors, using the following command:

PowerShell

Output

Get-PSSubsystem -Kind CommandPredictor

Kind              SubsystemType      IsRegistered Implementations
----              -------------      ------------ ---------------
CommandPredictor  ICommandPredictor          True {SamplePredictor}

７ Note

Get-PSSubsystem  is an experimental cmdlet that was introduced in PowerShell 7.1
You must enable the PSSubsystemPluginModel  experimental feature to use this
cmdlet. For more information, see Using Experimental Features.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/psreadline/set-psreadlineoption
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdev-cross-plat%2Fcreate-cmdline-predictor%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdev-cross-plat%2Fcreate-cmdline-predictor.md&documentVersionIndependentId=9cf982b7-79e6-6604-070b-402052dc779b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d55628ee-6e91-a7a1-4c7e-500d72b4b3a5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to create a feedback provider
Article • 04/11/2024

PowerShell 7.4 introduced the concept of feedback providers. A feedback provider is a
PowerShell module that implements the IFeedbackProvider  interface to provide
command suggestions based on user command execution attempts. The provider is
triggered when there's a success or failure execution. Feedback providers use
information from the success or failure to provide feedback.

To create a feedback provider, you must satisfy the following prerequisites:

Install PowerShell 7.4 or higher
You must enable the PSFeedbackProvider  experimental feature to enable
support for feedback providers and predictors. For more information, see Using
Experimental Features.

Install .NET 8 SDK - 8.0.0 or higher
See the Download .NET 8.0  page to get the latest version of the SDK.

A feedback provider is a PowerShell binary module that implements the
System.Management.Automation.Subsystem.Feedback.IFeedbackProvider  interface. This
interface declares the methods to get feedback based on the command line input. The
feedback interface can provide suggestions based on the success or failure of the
command invoked by the user. The suggestions can be anything that you want. For
example, you might suggest ways to address an error or better practices, like avoiding
the use of aliases. For more information, see the What are Feedback Providers?  blog
post.

The following diagram shows the architecture of a feedback provider:

Prerequisites

Overview of a feedback provider

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://devblogs.microsoft.com/powershell/what-are-feedback-providers/
https://devblogs.microsoft.com/powershell/what-are-feedback-providers/


The following examples walk you through the process of creating a simple feedback
provider. Also, you can register the provider with the command predictor interface to
add feedback suggestions to the command-line predictor experience. For more
information about predictors, see Using predictors in PSReadLine and How to create a
command line predictor.

Use the following command to create a new project in the project directory:

PowerShell

Add a package reference for the System.Management.Automation  package to your

.csproj  file. The following example shows the updated .csproj  file:

XML

Step 1 - Create a new class library project

dotnet new classlib --name MyFeedbackProvider

<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>



Change the name of the Class1.cs  file to match the name of your provider. This
example uses myFeedbackProvider.cs . This file contains the two main classes that define
the feedback provider. The following example shows the basic template for the class
definitions.

C#

    <TargetFramework>net8.0</TargetFramework>
    <ImplicitUsings>enable</ImplicitUsings>
    <Nullable>enable</Nullable>
  </PropertyGroup>

  <ItemGroup>
    <PackageReference Include="System.Management.Automation" Version="7.4.0-
preview.3">
        <ExcludeAssets>contentFiles</ExcludeAssets>
        <PrivateAssets>All</PrivateAssets>
    </PackageReference>
  </ItemGroup>
</Project>

７ Note

You should change the version of the System.Management.Automation  assembly to
match the version of the PowerShell preview that you are targeting. The minimum
version is 7.4.0-preview.3.

Step 2 - Add the class definition for your
provider

using System.Management.Automation;
using System.Management.Automation.Subsystem;
using System.Management.Automation.Subsystem.Feedback;
using System.Management.Automation.Subsystem.Prediction;
using System.Management.Automation.Language;

namespace myFeedbackProvider;

public sealed class myFeedbackProvider : IFeedbackProvider, 
ICommandPredictor
{

}

public class Init : IModuleAssemblyInitializer, IModuleAssemblyCleanup
{



The Init  class registers and unregisters the feedback provider with the subsystem
manager. The OnImport()  method runs when the binary module is being loaded. The
OnRemove()  method runs when the binary module is being removed. This example
registers both the feedback provider and command predictor subsystem.

C#

Replace the <ADD YOUR GUID HERE>  placeholder value with a unique Guid. You can
generate a Guid using the New-Guid  cmdlet.

PowerShell

The Guid is a unique identifier for your provider. The provider must have a unique Id to
be registered with the subsystem.

}

Step 3 - Implement the Init class

public class Init : IModuleAssemblyInitializer, IModuleAssemblyCleanup
{
    private const string Id = "<ADD YOUR GUID HERE>";

    public void OnImport()
    {
        var feedback = new myFeedbackProvider(Id);
        SubsystemManager.RegisterSubsystem(SubsystemKind.FeedbackProvider, 
feedback);
        SubsystemManager.RegisterSubsystem(SubsystemKind.CommandPredictor, 
feedback);
    }

    public void OnRemove(PSModuleInfo psModuleInfo)
    {
        SubsystemManager.UnregisterSubsystem<ICommandPredictor>(new 
Guid(Id));
        SubsystemManager.UnregisterSubsystem<IFeedbackProvider>(new 
Guid(Id));
    }
}

New-Guid



The following code implements the properties defined in the interfaces, adds needed
class members, and creates the constructor for the myFeedbackProvider  class.

C#

Step 4 - Add class members and define the
constructor

/// <summary>
/// Gets the global unique identifier for the subsystem implementation.
/// </summary>
private readonly Guid _guid;
public Guid Id => _guid;

/// <summary>
/// Gets the name of a subsystem implementation, this will be the name 
displayed when triggered
/// </summary>
public string Name => "myFeedbackProvider";

/// <summary>
/// Gets the description of a subsystem implementation.
/// </summary>
public string Description => "This is very simple feedback provider";

/// <summary>
/// Default implementation. No function is required for a feedback provider.
/// </summary>
Dictionary<string, string>? ISubsystem.FunctionsToDefine => null;

/// <summary>
/// Gets the types of trigger for this feedback provider.
/// </summary>
/// <remarks>
/// The default implementation triggers a feedback provider by <see 
cref="FeedbackTrigger.CommandNotFound"/> only.
/// </remarks>
public FeedbackTrigger Trigger => FeedbackTrigger.All;

/// <summary>
/// List of candidates from the feedback provider to be passed as predictor 
results
/// </summary>
private List<string>? _candidates;

/// <summary>
/// PowerShell session used to run PowerShell commands that help create 
suggestions.
/// </summary>
private PowerShell _powershell;

internal myFeedbackProvider(string guid)



The GetFeedback  method takes two parameters, context  and token . The context
parameter receives the information about the trigger so you can decide how to respond
with suggestions. The token  parameter is used for cancellation. This function returns a
FeedbackItem  containing the suggestion.

C#

The following image shows how these fields are used in the suggestions that are
displayed to the user.

{
    _guid = new Guid(guid); // Save guid
    _powershell = PowerShell.Create(); // Create PowerShell instance
}

Step 5 - Create the GetFeedback() method

/// <summary>
/// Gets feedback based on the given commandline and error record.
/// </summary>
/// <param name="context">The context for the feedback call.</param>
/// <param name="token">The cancellation token to cancel the operation.
</param>
/// <returns>The feedback item.</returns>
public FeedbackItem? GetFeedback(FeedbackContext context, CancellationToken 
token)
{
    // Target describes the different kinds of triggers to activate on,
    var target = context.Trigger;
    var commandLine = context.CommandLine;
    var ast = context.CommandLineAst;

    // defining the header and footer variables
    string header;
    string footer;

    // List of the actions
    List<string>? actions = new List<string>();

    // Trigger on success code goes here

    // Trigger on error code goes here

    return null;
}



For a successful invocation, we want to expand any aliases used in the last execution.
Using the CommandLineAst , we identify any aliased commands and create a suggestion to
use the fully qualified command name instead.

C#

Create suggestions for a Success trigger

// Trigger on success
if (target == FeedbackTrigger.Success)
{
    // Getting the commands from the AST and only finding those that are 
Commands
    var astCmds = ast.FindAll((cAst) => cAst is CommandAst, true);

    // Inspect each of the commands
    foreach(var command in astCmds)
    {

        // Get the command name
        var aliasedCmd = ((CommandAst) command).GetCommandName();

        // Check if its an alias or not, if so then add it to the list of 
actions
        if(TryGetAlias(aliasedCmd, out string commandString))
        {
            actions.Add($"{aliasedCmd} --> {commandString}");
        }
    }

    // If no alias was found return null
    if(actions.Count == 0)
    {
        return null;
    }

    // If aliases are found, set the header to a description and return a 
new FeedbackItem.
    header = "You have used an aliased command:";
    // Copy actions to _candidates for the predictor
    _candidates = actions;



The TryGetAlias()  method is a private helper function that returns a boolean value to
indicate whether the command is an alias. In the class constructor, we created a
PowerShell instance that we can use to run PowerShell commands. The TryGetAlias()
method uses this PowerShell instance to invoke the GetCommand  method to determine if
the command is an alias. The AliasInfo  object returned by GetCommand  contains full
name of the aliased command.

C#

When a command execution fails, we want to suggest that the user Get-Help  to get
more information about how to use the command.

    return new FeedbackItem(header, actions);
}

Implement the TryGetAlias() method

/// <summary>
/// Checks if a command is an alias.
/// </summary>
/// <param name="command">The command to check if alias</param>
/// <param name="targetCommand">The referenced command by the aliased 
command</param>
/// <returns>True if an alias and false if not</returns>
private bool TryGetAlias(string command, out string targetCommand)
{
    // Create PowerShell runspace as a session state proxy to run GetCommand 
and check
    // if its an alias
    AliasInfo? pwshAliasInfo =
        
_powershell.Runspace.SessionStateProxy.InvokeCommand.GetCommand(command, 
CommandTypes.Alias) as AliasInfo;

    // if its null then it is not an aliased command so just return false
    if(pwshAliasInfo is null)
    {
        targetCommand = String.Empty;
        return false;
    }

    // Set targetCommand to referenced command name
    targetCommand = pwshAliasInfo.ReferencedCommand.Name;
    return true;
}

Create suggestions for a Failure trigger



C#

Another way your feedback provider can enhance the user experience is to provide
command suggestions to the ICommandPredictor interface. For more information
about creating a command line predictor, see How to create a command line predictor.

The following code implements the methods necessary from the ICommandPredictor
interface to add predictor behavior to your feedback provider.

CanAcceptFeedback()  - This method returns a Boolean value that indicates whether
the predictor accepts a specific type of feedback.
GetSuggestion()  - This method returns a SuggestionPackage  object that contains
the suggestions to be displayed by the predictor.
OnCommandLineAccepted()  - This method is called when a command line is accepted
to execute.

C#

// Trigger on error
if (target == FeedbackTrigger.Error)
{
    // Gets the command that caused the error.
    var erroredCommand = context.LastError?.InvocationInfo.MyCommand;
    if (erroredCommand is null)
    {
        return null;
    }

    header = $"You have triggered an error with the command 
{erroredCommand}. Try using the following command to get help:";

    actions.Add($"Get-Help {erroredCommand}");
    footer = $"You can also check online documentation at 
https://learn.microsoft.com/en-us/powershell/module/?term={erroredCommand}";

    // Copy actions to _candidates for the predictor
    _candidates = actions;
    return new FeedbackItem(header, actions, footer, 
FeedbackDisplayLayout.Portrait);
}

Step 6 - Send suggestions to the command line
predictor

/// <summary>
/// Gets a value indicating whether the predictor accepts a specific kind of 
feedback.



/// </summary>
/// <param name="client">Represents the client that initiates the call.
</param>
/// <param name="feedback">A specific type of feedback.</param>
/// <returns>True or false, to indicate whether the specific feedback is 
accepted.</returns>
public bool CanAcceptFeedback(PredictionClient client, PredictorFeedbackKind 
feedback)
{
    return feedback switch
    {
        PredictorFeedbackKind.CommandLineAccepted => true,
        _ => false,
    };
}

/// <summary>
/// Get the predictive suggestions. It indicates the start of a suggestion 
rendering session.
/// </summary>
/// <param name="client">Represents the client that initiates the call.
</param>
/// <param name="context">The <see cref="PredictionContext"/> object to be 
used for prediction.</param>
/// <param name="cancellationToken">The cancellation token to cancel the 
prediction.</param>
/// <returns>An instance of <see cref="SuggestionPackage"/>.</returns>
public SuggestionPackage GetSuggestion(
    PredictionClient client,
    PredictionContext context,
    CancellationToken cancellationToken)
{
    if (_candidates is not null)
    {
        string input = context.InputAst.Extent.Text;
        List<PredictiveSuggestion>? result = null;

        foreach (string c in _candidates)
        {
            if (c.StartsWith(input, StringComparison.OrdinalIgnoreCase))
            {
                result ??= new List<PredictiveSuggestion>
(_candidates.Count);
                result.Add(new PredictiveSuggestion(c));
            }
        }

        if (result is not null)
        {
            return new SuggestionPackage(result);
        }
    }

    return default;
}



Now you are ready to build and begin using your feedback provider! To build the
project, run the following command:

PowerShell

This command create the PowerShell module as a DLL file in the following path of your
project folder: bin/Debug/net8.0/myFeedbackProvider

You may run into the error error NU1101: Unable to find package
System.Management.Automation.  when building on Windows machines. To fix this add a
nuget.config  file to your project directory and add the following:

YAML

/// <summary>
/// A command line was accepted to execute.
/// The predictor can start processing early as needed with the latest 
history.
/// </summary>
/// <param name="client">Represents the client that initiates the call.
</param>
/// <param name="history">History command lines provided as references for 
prediction.</param>
public void OnCommandLineAccepted(PredictionClient client, 
IReadOnlyList<string> history)
{
    // Reset the candidate state once the command is accepted.
    _candidates = null;
}

Step 7 - Build the feedback provider

dotnet build

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <packageSources>
    <clear />
    <add key="nuget.org" value="https://api.nuget.org/v3/index.json" />
  </packageSources>
  <disabledPackageSources>
    <clear />
  </disabledPackageSources>
</configuration>



To test your new feedback provider, import the compiled module into your PowerShell
session. This can be done by importing the folder described after building has
succeeded:

PowerShell

Once you're satisfied with your module, you should create a module manifest, publish it
to the PowerShell Gallery, and install it in your $Env:PSModulePath . For more information,
see How to create a module manifest. You can add the Import-Module  command to your

$PROFILE  script so the module is available in PowerShell session.

You can get a list of installed feedback providers, using the following command:

PowerShell

Output

The following screenshot shows some example suggestions from the new provider.

Using a feedback provider

Import-Module ./bin/Debug/net8.0/myFeedbackProvider

Get-PSSubsystem -Kind FeedbackProvider

Kind              SubsystemType      IsRegistered Implementations
----              -------------      ------------ ---------------
FeedbackProvider  IFeedbackProvider          True {general}

７ Note

Get-PSSubsystem  is an experimental cmdlet that was introduced in PowerShell 7.1
You must enable the PSSubsystemPluginModel  experimental feature to use this
cmdlet. For more information, see Using Experimental Features.



The following is a GIF showing how the predictor integration works from the new
provider.

We have created other feedback provider that can be used as a good reference for
deeper examples.

The command-not-found  feedback provider utilizes the command-not-found  utility tool on
Linux systems to provide suggestions when native commands are attempted to run but
are missing. You can find the code in the GitHub Repository  or can download for
yourself on the PowerShell Gallery .

Other feedback providers

command-not-found

PowerShell Adapter

https://github.com/PowerShell/command-not-found
https://github.com/PowerShell/command-not-found
https://www.powershellgallery.com/packages/command-not-found
https://www.powershellgallery.com/packages/command-not-found


The Microsoft.PowerShell.PowerShellAdapter  is a feedback provider that helps you
convert text outputs from native commands into PowerShell objects. It detects
"adapters" on your system and suggests you to use them when you use the native
command. You can learn more about PowerShell Adapters from, PowerShell Adapter
Feedback Provider  blog post. You can also find the code in the GitHub Repository
or can download for yourself on the PowerShell Gallery .

The following code combines the previous examples into the find full implementation of
the provider class.

C#

Appendix - Full implementation code

using System.Management.Automation;
using System.Management.Automation.Subsystem;
using System.Management.Automation.Subsystem.Feedback;
using System.Management.Automation.Subsystem.Prediction;
using System.Management.Automation.Language;

namespace myFeedbackProvider;

public sealed class myFeedbackProvider : IFeedbackProvider, 
ICommandPredictor
{
    /// <summary>
    /// Gets the global unique identifier for the subsystem implementation.
    /// </summary>
    private readonly Guid _guid;
    public Guid Id => _guid;

    /// <summary>
    /// Gets the name of a subsystem implementation, this will be the name 
displayed when triggered
    /// </summary>
    public string Name => "myFeedbackProvider";

    /// <summary>
    /// Gets the description of a subsystem implementation.
    /// </summary>
    public string Description => "This is very simple feedback provider";

    /// <summary>
    /// Default implementation. No function is required for a feedback 
provider.
    /// </summary>
    Dictionary<string, string>? ISubsystem.FunctionsToDefine => null;

    /// <summary>
    /// Gets the types of trigger for this feedback provider.

https://devblogs.microsoft.com/powershell/powershell-adapter-feedback-provider/
https://devblogs.microsoft.com/powershell/powershell-adapter-feedback-provider/
https://devblogs.microsoft.com/powershell/powershell-adapter-feedback-provider/
https://github.com/PowerShell/JsonAdapter
https://github.com/PowerShell/JsonAdapter
https://www.powershellgallery.com/packages/Microsoft.PowerShell.PSAdapter
https://www.powershellgallery.com/packages/Microsoft.PowerShell.PSAdapter


    /// </summary>
    /// <remarks>
    /// The default implementation triggers a feedback provider by <see 
cref="FeedbackTrigger.CommandNotFound"/> only.
    /// </remarks>
    public FeedbackTrigger Trigger => FeedbackTrigger.All;

    /// <summary>
    /// List of candidates from the feedback provider to be passed as 
predictor results
    /// </summary>
    private List<string>? _candidates;

    /// <summary>
    /// PowerShell session used to run PowerShell commands that help create 
suggestions.
    /// </summary>
    private PowerShell _powershell;

    // Constructor
    internal myFeedbackProvider(string guid)
    {
        _guid = new Guid(guid); // Save guid
        _powershell = PowerShell.Create(); // Create PowerShell instance
    }

    #region IFeedbackProvider
    /// <summary>
    /// Gets feedback based on the given commandline and error record.
    /// </summary>
    /// <param name="context">The context for the feedback call.</param>
    /// <param name="token">The cancellation token to cancel the operation.
</param>
    /// <returns>The feedback item.</returns>
    public FeedbackItem? GetFeedback(FeedbackContext context, 
CancellationToken token)
    {
        // Target describes the different kinds of triggers to activate on,
        var target = context.Trigger;
        var commandLine = context.CommandLine;
        var ast = context.CommandLineAst;

        // defining the header and footer variables
        string header;
        string footer;

        // List of the actions
        List<string>? actions = new List<string>();

        // Trigger on success
        if (target == FeedbackTrigger.Success)
        {
            // Getting the commands from the AST and only finding those that 
are Commands
            var astCmds = ast.FindAll((cAst) => cAst is CommandAst, true);



            // Inspect each of the commands
            foreach(var command in astCmds)
            {

                // Get the command name
                var aliasedCmd = ((CommandAst) command).GetCommandName();

                // Check if its an alias or not, if so then add it to the 
list of actions
                if(TryGetAlias(aliasedCmd, out string commandString))
                {
                    actions.Add($"{aliasedCmd} --> {commandString}");
                }
            }

            // If no alias was found return null
            if(actions.Count == 0)
            {
                return null;
            }

            // If aliases are found, set the header to a description and 
return a new FeedbackItem.
            header = "You have used an aliased command:";
            // Copy actions to _candidates for the predictor
            _candidates = actions;

            return new FeedbackItem(header, actions);
        }

        // Trigger on error
        if (target == FeedbackTrigger.Error)
        {
            // Gets the command that caused the error.
            var erroredCommand = 
context.LastError?.InvocationInfo.MyCommand;
            if (erroredCommand is null)
            {
                return null;
            }

            header = $"You have triggered an error with the command 
{erroredCommand}. Try using the following command to get help:";

            actions.Add($"Get-Help {erroredCommand}");
            footer = $"You can also check online documentation at 
https://learn.microsoft.com/en-us/powershell/module/?term={erroredCommand}";

            // Copy actions to _candidates for the predictor
            _candidates = actions;
            return new FeedbackItem(header, actions, footer, 
FeedbackDisplayLayout.Portrait);
        }
        return null;



    }

    /// <summary>
    /// Checks if a command is an alias.
    /// </summary>
    /// <param name="command">The command to check if alias</param>
    /// <param name="targetCommand">The referenced command by the aliased 
command</param>
    /// <returns>True if an alias and false if not</returns>
    private bool TryGetAlias(string command, out string targetCommand)
    {
        // Create PowerShell runspace as a session state proxy to run 
GetCommand and check
        // if its an alias
        AliasInfo? pwshAliasInfo =
            
_powershell.Runspace.SessionStateProxy.InvokeCommand.GetCommand(command, 
CommandTypes.Alias) as AliasInfo;

        // if its null then it is not an aliased command so just return 
false
        if(pwshAliasInfo is null)
        {
            targetCommand = String.Empty;
            return false;
        }

        // Set targetCommand to referenced command name
        targetCommand = pwshAliasInfo.ReferencedCommand.Name;
        return true;
    }
    #endregion IFeedbackProvider

    #region ICommandPredictor

    /// <summary>
    /// Gets a value indicating whether the predictor accepts a specific 
kind of feedback.
    /// </summary>
    /// <param name="client">Represents the client that initiates the call.
</param>
    /// <param name="feedback">A specific type of feedback.</param>
    /// <returns>True or false, to indicate whether the specific feedback is 
accepted.</returns>
    public bool CanAcceptFeedback(PredictionClient client, 
PredictorFeedbackKind feedback)
    {
        return feedback switch
        {
            PredictorFeedbackKind.CommandLineAccepted => true,
            _ => false,
        };
    }

    /// <summary>



    /// Get the predictive suggestions. It indicates the start of a 
suggestion rendering session.
    /// </summary>
    /// <param name="client">Represents the client that initiates the call.
</param>
    /// <param name="context">The <see cref="PredictionContext"/> object to 
be used for prediction.</param>
    /// <param name="cancellationToken">The cancellation token to cancel the 
prediction.</param>
    /// <returns>An instance of <see cref="SuggestionPackage"/>.</returns>
    public SuggestionPackage GetSuggestion(
        PredictionClient client,
        PredictionContext context,
        CancellationToken cancellationToken)
    {
        if (_candidates is not null)
        {
            string input = context.InputAst.Extent.Text;
            List<PredictiveSuggestion>? result = null;

            foreach (string c in _candidates)
            {
                if (c.StartsWith(input, StringComparison.OrdinalIgnoreCase))
                {
                    result ??= new List<PredictiveSuggestion>
(_candidates.Count);
                    result.Add(new PredictiveSuggestion(c));
                }
            }

            if (result is not null)
            {
                return new SuggestionPackage(result);
            }
        }

        return default;
    }

    /// <summary>
    /// A command line was accepted to execute.
    /// The predictor can start processing early as needed with the latest 
history.
    /// </summary>
    /// <param name="client">Represents the client that initiates the call.
</param>
    /// <param name="history">History command lines provided as references 
for prediction.</param>
    public void OnCommandLineAccepted(PredictionClient client, 
IReadOnlyList<string> history)
    {
        // Reset the candidate state once the command is accepted.
        _candidates = null;
    }



    #endregion;
}

public class Init : IModuleAssemblyInitializer, IModuleAssemblyCleanup
{
    private const string Id = "<ADD YOUR GUID HERE>";

    public void OnImport()
    {
        var feedback = new myFeedbackProvider(Id);
        SubsystemManager.RegisterSubsystem(SubsystemKind.FeedbackProvider, 
feedback);
        SubsystemManager.RegisterSubsystem(SubsystemKind.CommandPredictor, 
feedback);
    }

    public void OnRemove(PSModuleInfo psModuleInfo)
    {
        SubsystemManager.UnregisterSubsystem<ICommandPredictor>(new 
Guid(Id));
        SubsystemManager.UnregisterSubsystem<IFeedbackProvider>(new 
Guid(Id));
    }
}



Create XML-based help using PlatyPS
Article • 12/12/2024

When creating a PowerShell module, it's always recommended that you include detailed
help for the cmdlets you create. If your cmdlets are implemented in compiled code, you
must use the XML-based help. This XML format is known as the Microsoft Assistance
Markup Language (MAML).

The legacy PowerShell SDK documentation covers the details of creating help for
PowerShell cmdlets packaged into modules. However, PowerShell doesn't provide any
tools for creating the XML-based help. The SDK documentation explains the structure of
MAML help, but leaves you the task of creating the complex, and deeply nested, MAML
content by hand.

This is where the PlatyPS  module can help.

PlatyPS is an open-source  tool that started as a hackathon project to make the
creation and maintenance of MAML easier. PlatyPS documents the syntax of parameter
sets and the individual parameters for each cmdlet in your module. PlatyPS creates
structured Markdown  files that contain the syntax information. It can't create
descriptions or provide examples.

PlatyPS creates placeholders for you to fill in descriptions and examples. After adding
the required information, PlatyPS compiles the Markdown files into MAML files.
PowerShell's help system also allows for plain-text conceptual help files (about topics).
PlatyPS has a cmdlet to create a structured Markdown template for a new about file, but
these about_*.help.txt  files must be maintained manually.

You can include the MAML and Text help files with your module. You can also use
PlatyPS to compile the help files into a CAB package that can be hosted for updateable
help.

First you must install PlatyPS from the PowerShell Gallery.

PowerShell

What is PlatyPS?

Get started using PlatyPS

https://www.powershellgallery.com/packages/platyPS/
https://www.powershellgallery.com/packages/platyPS/
https://github.com/PowerShell/platyps
https://github.com/PowerShell/platyps
https://commonmark.org/
https://commonmark.org/


After installing PlatyPS, import the module into your session.

PowerShell

The following flowchart outlines the process for creating or updating PowerShell
reference content.

1. Import your new module into the session. Repeat this step for each module you
need to document.

Run the following command to import your modules:

PowerShell

# Install using PowerShellGet 2.x
Install-Module platyps -Force

# Install using PSResourceGet 1.x
Install-PSResource platyps -Reinstall

Import-Module platyps

Create Markdown content for a PowerShell
module



2. Use PlatyPS to generate Markdown files for your module page and all associated
cmdlets within the module. Repeat this step for each module you need to
document.

PowerShell

If the output folder doesn't exist, New-MarkdownHelp  creates it. In this example, New-
MarkdownHelp  creates a Markdown file for each cmdlet in the module. It also
creates the module page in a file named <ModuleName>.md . This module page
contains a list of the cmdlets contained in the module and placeholders for the
Synopsis description. The metadata in the module page comes from the module
manifest and is used by PlatyPS to create the HelpInfo XML file (as explained
below).

New-MarkdownAboutHelp  creates a new about file named about_topic_name.md .

For more information, see New-MarkdownHelp and New-MarkdownAboutHelp.

PlatyPS can also update existing Markdown files for a module. Use this step to update
existing modules that have new cmdlets, new parameters, or parameters that have
changed.

1. Import your new module into the session. Repeat this step for each module you
need to document.

Import-Module <your module name>

$OutputFolder = <output path>
$parameters = @{
    Module = <ModuleName>
    OutputFolder = $OutputFolder
    AlphabeticParamsOrder = $true
    WithModulePage = $true
    ExcludeDontShow = $true
    Encoding = [System.Text.Encoding]::UTF8
}
New-MarkdownHelp @parameters

New-MarkdownAboutHelp -OutputFolder $OutputFolder -AboutName 
"topic_name"

Update existing Markdown content when the module
changes

https://learn.microsoft.com/en-us/powershell/module/platyps/new-markdownhelp
https://learn.microsoft.com/en-us/powershell/module/platyps/new-markdownabouthelp


Run the following command to import your modules:

PowerShell

2. Use PlatyPS to update Markdown files for your module landing page and all
associated cmdlets within the module. Repeat this step for each module you need
to document.

PowerShell

Update-MarkdownHelpModule  updates the cmdlet and module Markdown files in the
specified folder. It doesn't update the about_*.md  files. The module file
( ModuleName.md ) receives any new Synopsis text that has been added to the cmdlet
files. Updates to cmdlet files include the following change:

New parameter sets
New parameters
Updated parameter metadata
Updated input and output type information

For more information, see Update-MarkdownHelpModule.

PlatyPS documents the syntax of the parameter sets and the individual parameters. It
can't create descriptions or provide examples. The specific areas where content is
needed are contained in curly braces. For example: {{ Fill in the Description }}

Import-Module <your module name>

$parameters = @{
    Path = <folder with Markdown>
    RefreshModulePage = $true
    AlphabeticParamsOrder = $true
    UpdateInputOutput = $true
    ExcludeDontShow = $true
    LogPath = <path to store log file>
    Encoding = [System.Text.Encoding]::UTF8
}
Update-MarkdownHelpModule @parameters

Edit the new or updated Markdown files

https://learn.microsoft.com/en-us/powershell/module/platyps/update-markdownhelpmodule


You need to add a synopsis, a description of the cmdlet, descriptions for each
parameter, and at least one example.

For detailed information about writing PowerShell content, see the following articles:

PowerShell style guide
Editing reference articles

After providing the required content for each of your cmdlets, you need to make sure
that you update the module landing page. Verify your module has the correct Module
Guid  and Download Help Link  values in the YAML metadata of the <module-name>.md  file.
Add any missing metadata.

７ Note

PlatyPS has a specific schema that's uses for cmdlet reference. That schema only
allows certain Markdown blocks in specific sections of the document. If you put
content in the wrong location, the PlatyPS build step fails. For more information,
see the schema  documentation in the PlatyPS repository. For a complete
example of well-formed cmdlet reference, see Get-Item.

https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/editing-cmdlet-ref
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-item


Also, you may notice that some cmdlets may be missing a Synopsis (short description).
The following command updates the module landing page with your Synopsis
description text. Open the module landing page to verify the descriptions.

PowerShell

Now that you have entered all the content, you can create the MAML help files that are
displayed by Get-Help  in the PowerShell console.

This step creates the MAML help files that are displayed by Get-Help  in the PowerShell
console.

To build the MAML files, run the following command:

PowerShell

New-ExternalHelp  converts all cmdlet Markdown files into one (or more) MAML files.
About files are converted to plain-text files with the following name format:
about_topic_name.help.txt . The Markdown content must meet the requirement of the
PlatyPS schema. New-ExternalHelp  exits with errors when the content doesn't follow the
schema. You must edit the files to fix the schema violations.

Once this step is complete, you will see *-help.xml  and about_*.help.txt  files in the
target output folder.

For more information, see New-ExternalHelp

Update-MarkdownHelpModule -Path <full path output folder> -RefreshModulePage

Create the external help files

New-ExternalHelp -Path <folder with MDs> -OutputPath <output help folder>

Ｕ Caution

PlatyPS does a poor job converting the about_*.md  files to plain text. You must use
very simple Markdown to get acceptable results. You may want to maintain the files
in plain-text about_topic_name.help.txt  format, rather than allowing PlatyPS to
convert them.

Test the compiled help files

https://learn.microsoft.com/en-us/powershell/module/platyps/new-externalhelp


You can verify the content with the Get-HelpPreview cmdlet:

PowerShell

The cmdlet reads the compiled MAML file and outputs the content in the same format
you would receive from Get-Help . This allows you to inspect the results to verify that the
Markdown files compiled correctly and produce the desired results. If you find an error,
re-edit the Markdown files and recompile the MAML.

Now you are ready to publish your help files.

Now that you have compiled the Markdown files into PowerShell help files, you are
ready to make the files available to users. There are two options for providing help in
the PowerShell console.

Package the help files with the module
Create an updateable help package that users install with the Update-Help  cmdlet

The help files can be packaged with your module. See Writing Help for Modules for
details of the folder structure. You should include the list of Help files in the value of the
FileList key in the module manifest.

At a high level, the steps to create updateable help include:

1. Find an internet site to host your help files
2. Add a HelpInfoURI key to your module manifest
3. Create a HelpInfo XML file
4. Create CAB files
5. Upload your files

For more information, see Supporting Updateable Help: Step-by-step.

PlatyPS assists you with some of these steps.

Get-HelpPreview -Path "<ModuleName>-Help.xml"

Publishing your help

Packaging help with the module

Creating an updateable help package

https://learn.microsoft.com/en-us/powershell/module/platyps/Get-HelpPreview
https://learn.microsoft.com/en-us/powershell/scripting/developer/help/writing-help-for-windows-powershell-modules
https://learn.microsoft.com/en-us/powershell/scripting/developer/help/updatable-help-authoring-step-by-step


The HelpInfoURI is a URL that points to location where your help files are hosted on the
internet. This value is configured in the module manifest. Update-Help  reads the module
manifest to get this URL and download the updateable help content. This URL should
only point to the folder location and not to individual files. Update-Help  constructs the
filenames to download based on other information from the module manifest and the
HelpInfo XML file.

The New-ExternalHelp  cmdlet creates the HelpInfo XML file in the output folder. The
HelpInfo XML file is built using YAML metadata contained in the module Markdown files
( ModuleName.md ).

The New-ExternalHelpCab  cmdlet creates ZIP and CAB files containing the MAML and

about_*.help.txt  files you compiled. CAB files are compatible with all versions of
PowerShell. PowerShell 6 and higher can use ZIP files.

PowerShell

After creating the ZIP and CAB files, upload the ZIP, CAB, and HelpInfo XML files to your
HTTP file server. Put the files in the location indicated by the HelpInfoURI.

For more information, see New-ExternalHelpCab.

Markdown is a versatile format that's easy to transform to other formats for publishing.
Using a tool like Pandoc , you can convert your Markdown help files to many different
document formats, including plain text, HTML, PDF, and Office document formats.

） Important

The HelpInfoURI must end with a forward-slash character ( / ). Without that
character, Update-Help  can't construct the correct file paths to download the
content. Also, most HTTP-based file services are case-sensitive. It's important that
the module metadata in the HelpInfo XML file contains the proper letter case.

$helpCabParameters = @{
    CabFilesFolder = $MamlOutputFolder
    LandingPagePath = $LandingPage
    OutputFolder = $CabOutputFolder
}
New-ExternalHelpCab @helpCabParameters

Other publishing options

https://learn.microsoft.com/en-us/powershell/module/platyps/new-externalhelpcab
https://pandoc.org/
https://pandoc.org/


Also, the cmdlets ConvertFrom-Markdown and Show-Markdown in PowerShell 6 and
higher can be used to convert Markdown to HTML or create a colorful display in the
PowerShell console.

PlatyPS is very sensitive to the schema  for the structure of the Markdown files it
creates and compiles. It's very easy write valid Markdown that violates this schema. For
more information, see the PowerShell style guide and Editing reference articles.

Known issues

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-markdown
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/show-markdown
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/editing-cmdlet-ref


Windows PowerShell Language
Specification 3.0
Article • 01/08/2025

PowerShell is a command-line shell and scripting language, designed especially for
system administrators.

Most shells operate by executing a command or utility in a new process, and presenting
the results to the user as text. These shells also have commands that are built into the
shell and run in the shell process. Because there are few built-in commands, many
utilities have been created to supplement them. PowerShell is very different. Instead of
processing text, the shell processes objects. PowerShell also includes a large set of built-
in commands with each having a consistent interface and these can work with user-
written commands.

An object is a data entity that has properties (i.e., characteristics) and methods (i.e.,
actions that can be performed on the object). All objects of the same type have the
same base set of properties and methods, but each instance of an object can have
different property values.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

1. Introduction

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


A major advantage of using objects is that it is much easier to pipeline commands; that
is, to write the output of one command to another command as input. (In a traditional
command-line environment, the text output from one command needs to be
manipulated to meet the input format of another.)

PowerShell includes a very rich scripting language that supports constructs for looping,
conditions, flow-control, and variable assignment. This language has syntax features and
keywords similar to those used in the C# programming language (§C.).

There are four kinds of commands in PowerShell: scripts, functions and methods,
cmdlets, and native commands.

A file of commands is called a script. By convention, a script has a filename
extension of .ps1. The top-most level of a PowerShell program is a script, which, in
turn, can invoke other commands.

PowerShell supports modular programming via named procedures. A procedure
written in PowerShell is called a function, while an external procedure made
available by the execution environment (and typically written in some other
language) is called a method.

A cmdlet (pronounced "command-let") is a simple, single-task command-line tool.
Although a cmdlet can be used on its own, the full power of cmdlets is realized
when they are used in combination to perform complex tasks.

A native command is part of the host environment.

Each time the PowerShell runtime environment begins execution, it begins what is called
a session. Commands then execute within the context of that session.

This specification defines the PowerShell language, the built-in cmdlets, and the use of
objects via the pipeline.

Unlike most shells, which accept and return text, Windows PowerShell is built on top of
the .NET Framework common language runtime (CLR) and the .NET Framework, and
accepts and returns .NET Framework objects.



2. Lexical Structure
Article • 04/23/2024

This specification shows the syntax of the PowerShell language using two grammars.
The lexical grammar (§B.1) shows how Unicode characters are combined to form line
terminators, comments, white space, and tokens. The syntactic grammar (§B.2) shows
how the tokens resulting from the lexical grammar are combined to form PowerShell
scripts.

For convenience, fragments of these grammars are replicated in appropriate places
throughout this specification.

Any use of the characters 'a' through 'z' in the grammars is case insensitive. This means
that letter case in variables, aliases, function names, keywords, statements, and
operators is ignored. However, throughout this specification, such names are written in
lowercase, except for some automatic and preference variables.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

2.1 Grammars

2.2 Lexical analysis

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Syntax:

Syntax

Description:

The input source stream to a PowerShell translator is the input in a script, which contains
a sequence of Unicode characters. The lexical processing of this stream involves the
reduction of those characters into a sequence of tokens, which go on to become the
input of syntactic analysis.

A script is a group of PowerShell commands stored in a script-file. The script itself has no
name, per se, and takes its name from its source file. The end of that file indicates the
end of the script.

2.2.1 Scripts

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

input:
    input-elements~opt~   signature-block~opt~

input-elements:
    input-element
    input-elements   input-element

input-element:
    whitespace
    comment
    token

signature-block:
    signature-begin   signature   signature-end

signature-begin:
    new-line-character   # SIG # Begin signature block   new-line-character

signature:
    base64 encoded signature blob in multiple single-line-comments

signature-end:
    new-line-character   # SIG # End signature block   new-line-character



A script may optionally contain a digital signature. A host environment is not required to
process any text that follows a signature or anything that looks like a signature. The
creation and use of digital signatures are not covered by this specification.

Syntax:

Syntax

Description:

The presence of new-line-characters in the input source stream divides it into lines that
can be used for such things as error reporting and the detection of the end of a single-
line comment.

A line terminator can be treated as white space (§2.2.4).

Syntax:

Syntax

2.2.2 Line terminators

new-line-character:
    Carriage return character (U+000D)
    Line feed character (U+000A)
    Carriage return character (U+000D) followed by line feed character 
(U+000A)

new-lines:
    new-line-character
    new-lines new-line-character

2.2.3 Comments

comment:
    single-line-comment
    requires-comment
    delimited-comment

single-line-comment:
    # input-characters~opt~

input-characters:
    input-character
    input-characters input-character

input-character:
    Any Unicode character except a new-line-character



Description:

Source code can be annotated by the use of comments.

A single-line-comment begins with the character #  and ends with a new-line-character.

A delimited-comment begins with the character pair <#  and ends with the character pair

#> . It can occur as part of a source line, as a whole source line, or it can span any
number of source lines.

A comment is treated as white space.

The productions above imply that

Comments do not nest.
The character sequences <# and #> have no special meaning in a single-line
comment.
The character # has no special meaning in a delimited comment.

requires-comment:
    #Requires whitespace command-arguments

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

dashdash:
    dash dash

delimited-comment:
    < # delimited-comment-text~opt~ hashes >

delimited-comment-text:
    delimited-comment-section
    delimited-comment-text delimited-comment-section

delimited-comment-section:
    >
    hashes~opt~  not-greater-than-or-hash

hashes:
    #
    hashes #

not-greater-than-or-hash:
    Any Unicode character except > or #



The lexical grammar implies that comments cannot occur inside tokens.

(See §A for information about creating script files that contain special-valued comments
that are used to generate documentation from script files.)

A requires-comment specifies the criteria that have to be met for its containing script to
be allowed to run. The primary criterion is the version of PowerShell being used to run
the script. The minimum version requirement is specified as follows:

#Requires -Version N[.n]

Where N is the (required) major version and n is the (optional) minor version.

A requires-comment can be present in any script file; however, it cannot be present
inside a function or cmdlet. It must be the first item on a source line. A script can
contain multiple requires-comments.

A character sequence is only recognized as a comment if that sequence begins with #
or <# . For example, hello#there is considered a single token whereas hello #there is
considered the token hello followed by a single-line comment. As well as following
white space, the comment start sequence can also be preceded by any expression-
terminating or statement-terminating character (such as ) , } , ] , ' , " , or ; ).

A requires-comment cannot be present inside a snap-in.

There are four other forms of a requires-comment:

Syntax

Syntax:

Syntax

#Requires -Assembly AssemblyId
#Requires -Module ModuleName
#Requires -PSSnapin PSSnapin [ -Version *N* [.n] ]
#Requires -ShellId ShellId

2.2.4 White space

whitespace:
    Any character with Unicode class Zs, Zl, or Zp
    Horizontal tab character (U+0009)
    Vertical tab character (U+000B)



Description:

White space consists of any sequence of one or more whitespace characters.

Except for the fact that white space may act as a separator for tokens, it is ignored.

Unlike some popular languages, PowerShell does not consider line-terminator
characters (§2.2.2) to be white space. However, a line terminator can be treated as white
space by preceding it immediately by a backtick character, `  (U+0060). This is necessary
when the contents of a line are complete syntactically, yet the following line contains
tokens intended to be associated with the previous line. For example,

PowerShell

In this example, the backtick indicates the source line is continued. The following
expression is equivalent to $number = 10 + 20 - 50 .

PowerShell

Syntax:

Syntax

    Form feed character (U+000C)
    ` (The backtick character U+0060) followed by new-line-character

$number = 10 # assigns 10 to $number; nothing is written to the pipeline
+ 20 # writes 20 to the pipeline
- 50 # writes -50 to the pipeline
$number # writes $number's value, 10, to the pipeline

$number = 10 `
+ 20 `
- 50
$number # writes $number's value to the pipeline
-20

2.3 Tokens

token:
    keyword
    variable
    command
    command-parameter
    command-argument-token
    integer-literal



Description:

A token is the smallest lexical element within the PowerShell language.

Tokens can be separated by new-lines, comments, white space, or any combination
thereof.

Syntax:

Syntax

Description:

A keyword is a sequence of characters that has a special meaning when used in a
context-dependent place. Most often, this is as the first token in a statement; however,
there are other locations, as indicated by the grammar. (A token that looks like a
keyword, but is not being used in a keyword context, is a command-name or a
command-argument.)

The keywords class , define , from , using , and var  are reserved for future use.

    real-literal
    string-literal
    type-literal
    operator-or-punctuator

2.3.1 Keywords

keyword: one of
    begin          break          catch       class
    continue       data           define      do
    dynamicparam   else           elseif      end
    exit           filter         finally     for
    foreach        from           function    if
    in             inlinescript   parallel    param
    process        return         switch      throw
    trap           try            until       using
    var            while          workflow

７ Note

Editor's Note: The class  and using  keywords were introduced in PowerShell 5.0.
See about_Classes and about_Using.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_classes
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_using


Syntax:

Syntax

2.3.2 Variables

variable:
    $$
    $?
    $^
    $   variable-scope~opt~  variable-characters
    @   variable-scope~opt~  variable-characters
    braced-variable

braced-variable:
    ${   variable-scope~opt~   braced-variable-characters   }

variable-scope:
    Global:
    Local:
    Private:
    Script:
    Using:
    Workflow:
    variable-namespace

variable-namespace:
    variable-characters   :

variable-characters:
    variable-character
    variable-characters   variable-character

variable-character:
    A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nd
    _   (The underscore character U+005F)
    ?

braced-variable-characters:
    braced-variable-character
    braced-variable-characters   braced-variable-character

braced-variable-character:
    Any Unicode character except
        }   (The closing curly brace character U+007D)
        `   (The backtick character U+0060)
    escaped-character

escaped-character:
    `   (The backtick character U+0060) followed by any Unicode character



Description:

Variables are discussed in detail in (§5). The variable $? is discussed in §2.3.2.2. Scopes
are discussed in §3.5.

The variables $$  and $^  are reserved for use in an interactive environment, which is
outside the scope of this specification.

There are two ways of writing a variable name: A braced variable name, which begins
with $ , followed by a curly bracket-delimited set of one or more almost-arbitrary
characters; and an ordinary variable name, which also begins with $ , followed by a set
of one or more characters from a more restrictive set than a braced variable name
allows. Every ordinary variable name can be expressed using a corresponding braced
variable name.

PowerShell

There is no limit on the length of a variable name, all characters in a variable name are
significant, and letter case is not distinct.

There are several different kinds of variables: user-defined (§2.3.2.1), automatic (§2.3.2.2),
and preference (§2.3.2.3). They can all coexist in the same scope (§3.5).

Consider the following function definition and calls:

PowerShell

Each argument is passed by position or name, one at a time. However, a set of
arguments can be passed as a group with expansion into individual arguments being

$totalCost
$Maximum_Count_26

$végösszeg # Hungarian
$итог # Russian
$総計 # Japanese (Kanji)

${Maximum_Count_26}
${Name with`twhite space and `{punctuation`}}
${E:\\File.txt}

function Get-Power ([long]$Base, [int]$Exponent) { ... }

Get-Power 5 3 # $Base is 5, $Exponent is 3
Get-Power -Exponent 3 -Base 5 # " " "



handled by the runtime environment. This automatic argument expansion is known as
splatting. For example,

PowerShell

This is achieved by using @  instead of $  as the first character of the variable being
passed. This notation can only be used in an argument to a command.

Names are partitioned into various namespaces each of which is stored on a virtual drive
(§3.1). For example, variables are stored on Variable: , environment variables are stored
on Env: , functions are stored on Function: , and aliases are stored on Alias: . All of
these names can be accessed as variables using the variable-namespace production
within variable-scope. For example,

PowerShell

Any use of a variable name with an explicit Variable:  namespace is equivalent to the
use of that same variable name without that qualification. For example, $v  and
$Variable:v  are interchangeable.

As well as being defined in the language, variables can also be defined by the cmdlet
New-Variable.

$values = 5,3 # put arguments into an array
Get-Power @values

$hash = @{ Exponent = 3; Base = 5 } # put arguments into a Hashtable
Get-Power @hash

function Get-Power2 { Get-Power @args } # arguments are in an array

Get-Power2 -Exponent 3 -Base 5 # named arguments splatted named in
@args
Get-Power2 5 3 # position arguments splatted positionally in @args

function F { "Hello from F" }
$Function:F # invokes function F

Set-Alias A F
$Alias:A # invokes function F via A

$Count = 10
$Variable:Count # accesses variable Count
$Env:PATH # accesses environment variable PATH

2.3.2.1 User-defined variables

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-variable?view=powershell-7.5


Any variable name allowed by the grammar but not used by automatic or preference
variables is available for user-defined variables.

User-defined variables are created and managed by user-defined script.

Automatic variables store state information about the PowerShell environment. Their
values can be read in user-written script but not written.

Preference variables store user preferences for the session. They are created and
initialized by the PowerShell runtime environment. Their values can be read and written
in user-written script.

Syntax:

Syntax

2.3.2.2 Automatic variables

７ Note

The table originally found in this document was removed to reduce duplication. For
a complete list of automatic variables, see about_Automatic_Variables.

2.3.2.3 Preference variables

７ Note

The table originally found in this document was removed to reduce duplication. For
a complete list of preference variables, see about_Preference_Variables.

2.3.3 Commands

generic-token:
    generic-token-parts

generic-token-parts:
    generic-token-part
    generic-token-parts generic-token-part

generic-token-part:
    expandable-string-literal
    verbatim-here-string-literal
    variable

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_automatic_variables
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_preference_variables


Syntax:

Syntax

    generic-token-char

generic-token-char:
    Any Unicode character except
        {   }   (   )   ;   ,   |   &   $
        ` (The backtick character U+0060)
        double-quote-character
        single-quote-character
        whitespace
        new-line-character
        escaped-character

generic-token-with-subexpr-start:
    generic-token-parts $(

2.3.4 Parameters

command-parameter:
    dash first-parameter-char parameter-chars colon~opt~

first-parameter-char:
    A Unicode character of classes Lu, Ll, Lt, Lm, or Lo
    _ (The underscore character U+005F)
    ?

parameter-chars:
    parameter-char
    parameter-chars parameter-char

parameter-char:
    Any Unicode character except
        { } ( ) ; , \| & . [
        colon
        whitespace
        new-line-character

colon:
    : (The colon character U+003A)

verbatim-command-argument-chars:
    verbatim-command-argument-part
    verbatim-command-argument-chars verbatim-command-argument-part

verbatim-command-argument-part:
    verbatim-command-string
    & non-ampersand-character
    Any Unicode character except
        |



Description:

When a command is invoked, information may be passed to it via one or more
arguments whose values are accessed from within the command through a set of
corresponding parameters. The process of matching parameters to arguments is called
parameter binding.

There are three kinds of argument:

Switch parameter (§8.10.5) -- This has the form command-parameter where first-
parameter-char and parameter-chars together make up the switch name, which
corresponds to the name of a parameter (without its leading - ) in the command
being invoked. If the trailing colon is omitted, the presence of this argument
indicates that the corresponding parameter be set to $true . If the trailing colon is
present, the argument immediately following must designate a value of type bool,
and the corresponding parameter is set to that value. For example, the following
invocations are equivalent:

PowerShell

Parameter with argument (§8.10.2) -- This has the form command-parameter where
first-parameter-char and parameter-chars together make up the parameter name,
which corresponds to the name of a parameter (without its leading -) in the
command being invoked. There must be no trailing colon. The argument
immediately following designates an associated value. For example, given a

        new-line-character

non-ampersand-character:
    Any Unicode character except &

verbatim-command-string:
    double-quote-character non-double-quote-chars
    double-quote-character

non-double-quote-chars:
    non-double-quote-char
    non-double-quote-chars non-double-quote-char

non-double-quote-char:
    Any Unicode character except
        double-quote-character

Set-MyProcess -Strict
Set-MyProcess -Strict: $true



command Get-Power , which has parameters $Base  and $Exponent , the following
invocations are equivalent:

PowerShell

Positional argument (§8.10.2) - Arguments and their corresponding parameters
inside commands have positions with the first having position zero. The argument
in position 0 is bound to the parameter in position 0; the argument in position 1 is
bound to the parameter in position 1; and so on. For example, given a command
Get-Power , that has parameters $Base  and $Exponent  in positions 0 and 1,
respectively, the following invokes that command:

PowerShell

See §8.2 for details of the special parameters --  and --% .

When a command is invoked, a parameter name may be abbreviated; any distinct
leading part of the full name may be used, provided that is unambiguous with respect
to the names of the other parameters accepted by the same command.

For information about parameter binding see §8.14.

Syntax:

Syntax

There are two kinds of numeric literals: integer (§2.3.5.1.1) and real (§2.3.5.1.2). Both can
have multiplier suffixes (§2.3.5.1.3).

Get-Power -Base 5 -Exponent 3
Get-Power -Exponent 3 -Base 5

Get-Power 5 3

2.3.5 Literals

literal:
    integer-literal
    real-literal
    string-literal

2.3.5.1 Numeric literals



Syntax:

Syntax

Description:

The type of an integer literal is determined by its value, the presence or absence of long-
type-suffix, and the presence of a numeric-multiplier (§2.3.5.1.3).

For an integer literal with no long-type-suffix

If its value can be represented by type int (§4.2.3), that is its type;
Otherwise, if its value can be represented by type long (§4.2.3), that is its type.

2.3.5.1.1 Integer literals

integer-literal:
    decimal-integer-literal
    hexadecimal-integer-literal

decimal-integer-literal:
    decimal-digits numeric-type-suffix~opt~ numeric-multiplier~opt~

decimal-digits:
    decimal-digit
    decimal-digit decimal-digits

decimal-digit: one of
    0  1  2  3  4  5  6  7  8  9

numeric-type-suffix:
    long-type-suffix
    decimal-type-suffix

hexadecimal-integer-literal:
    0x hexadecimal-digits long-type-suffix~opt~
    numeric-multiplier~opt~

hexadecimal-digits:
    hexadecimal-digit
    hexadecimal-digit decimal-digits

hexadecimal-digit: one of
    0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

long-type-suffix:
    l

numeric-multiplier: one of
    kb mb gb tb pb



Otherwise, if its value can be represented by type decimal (§2.3.5.1.2), that is its
type.
Otherwise, it is represented by type double (§2.3.5.1.2).

For an integer literal with long-type-suffix

If its value can be represented by type long (§4.2.3), that is its type;
Otherwise, that literal is ill formed.

In the twos-complement representation of integer values, there is one more negative
value than there is positive. For the int type, that extra value is ‑2147483648. For the
long type, that extra value is ‑9223372036854775808. Even though the token
2147483648 would ordinarily be treated as a literal of type long, if it is preceded
immediately by the unary - operator, that operator and literal are treated as a literal of
type int having the smallest value. Similarly, even though the token
9223372036854775808 would ordinarily be treated as a real literal of type decimal, if it
is immediately preceded by the unary - operator, that operator and literal are treated as
a literal of type long having the smallest value.

Some examples of integer literals are 123 (int), 123L (long), and 200000000000 (long).

There is no such thing as an integer literal of type byte.

Syntax:

Syntax

2.3.5.1.2 Real literals

real-literal:
    decimal-digits . decimal-digits exponent-part~opt~ decimal-type-
suffix~opt~ numeric-multiplier~opt~
    . decimal-digits exponent-part~opt~ decimal-type-suffix~opt~ numeric-
multiplier~opt~
    decimal-digits exponent-part decimal-type-suffix~opt~ numeric-
multiplier~opt~

exponent-part:
    e sign~opt~  decimal-digits

sign: one of
    +
    dash

decimal-type-suffix:
    d
    l



Description:

A real literal may contain a numeric-multiplier (§2.3.5.1.3).

There are two kinds of real literal: double and decimal. These are indicated by the
absence or presence, respectively, of decimal-type-suffix. (There is no such thing as a
float real literal.)

A double real literal has type double (§4.2.4.1). A decimal real literal has type decimal
(§4.2.4.2). Trailing zeros in the fraction part of a decimal real literal are significant.

If the value of exponent-part's decimal-digits in a double real literal is less than the
minimum supported, the value of that double real literal is 0. If the value of exponent-
part's decimal-digits in a decimal real literal is less than the minimum supported, that
literal is ill formed. If the value of exponent-part's decimal-digits in a double or decimal
real literal is greater than the maximum supported, that literal is ill formed.

Some examples of double real literals are 1., 1.23, .45e35, 32.e+12, and 123.456E-231.

Some examples of decimal real literals are 1d (which has scale 0), 1.20d (which has scale
2), 1.23450e1d (i.e., 12.3450, which has scale 4), 1.2345e3d (i.e., 1234.5, which has scale
1), 1.2345e-1d (i.e., 0.12345, which has scale 5), and 1.2345e-3d (i.e., 0.0012345, which
has scale 7).

numeric-multiplier: one of
    kb mb gb tb pb

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

７ Note

Because a double real literal need not have a fraction or exponent part, the
grouping parentheses in (123).M are needed to ensure that the property or method
M is being selected for the integer object whose value is 123. Without those
parentheses, the real literal would be ill-formed.

７ Note

Although PowerShell does not provide literals for infinities and NaNs, double real
literal-like equivalents can be obtained from the static read-only properties



The grammar permits what starts out as a double real literal to have an l  or L  type
suffix. Such a token is really an integer literal whose value is represented by type long.

Syntax:

Syntax

Description:

For convenience, integer and real literals can contain a numeric-multiplier, which
indicates one of a set of commonly used powers of 10. numeric-multiplier can be written
in any combination of upper- or lowercase letters.

Multiplier Meaning Example

kb kilobyte (1024) 1kb ≡ 1024

mb megabyte (1024 x 1024) 1.30Dmb ≡ 1363148.80

gb gigabyte (1024 x 1024 x 1024) 0x10Gb ≡ 17179869184

tb terabyte (1024 x 1024 x 1024 x 1024) 1.4e23tb ≡ 1.5393162788864E+35

pb petabyte (1024 x 1024 x 1024 x 1024 x 1024) 0x12Lpb ≡ 20266198323167232

PositiveInfinity, NegativeInfinity, and NaN of the types float and double (§4.2.4.1).

７ Note

This feature has been retained for backwards compatibility with earlier versions of
PowerShell. However, programmers are discouraged from using integer literals of
this form as they can easily obscure the literal's actual value. For example, 1.2L has
value 1, 1.2345e1L has value 12, and 1.2345e-5L has value 0, none of which is
immediately obvious.

2.3.5.1.3 Multiplier suffixes

numeric-multiplier: *one of*
    kb mb gb tb pb

ﾉ Expand table

2.3.5.2 String literals



Syntax:

Syntax

string-literal:
    expandable-string-literal
    expandable-here-string-literal
    verbatim-string-literal
    verbatim-here-string-literal

expandable-string-literal:
    double-quote-character expandable-string-characters~opt~  dollars~opt~ 
double-quote-character

double-quote-character:
    " (U+0022)
    Left double quotation mark (U+201C)
    Right double quotation mark (U+201D)
    Double low-9 quotation mark (U+201E)

expandable-string-characters:
      expandable-string-part
      expandable-string-characters
      expandable-string-part

expandable-string-part:
    Any Unicode character except
        $
        double-quote-character
        ` (The backtick character U+0060)
    braced-variable
    $ Any Unicode character except
        (
        {
        double-quote-character
        ` (The backtick character U+0060)*
    $ escaped-character
    escaped-character
    double-quote-character double-quote-character

dollars:
    $
    dollars $

expandable-here-string-literal:
    @  double-quote-character  whitespace~opt~  new-line-character
        expandable-here-string-characters~opt~  new-line-character  double-
quote-character  @

expandable-here-string-characters:
    expandable-here-string-part
    expandable-here-string-characters  expandable-here-string-part

expandable-here-string-part:



    Any Unicode character except
        $
        new-line-character
    braced-variable
    $ Any Unicode character except
        (
        new-line-character
    $ new-line-character  Any Unicode character except double-quote-char
    $ new-line-character double-quote-char  Any Unicode character except @
    new-line-character  Any Unicode character except double-quote-char
    new-line-character double-quote-char  Any Unicode character except @

expandable-string-with-subexpr-start:
    double-quote-character  expandable-string-chars~opt~  $(

expandable-string-with-subexpr-end:
    double-quote-char

expandable-here-string-with-subexpr-start:
    @  double-quote-character  whitespace~opt~  new-line-character  
expandable-here-string-chars~opt~  $(

expandable-here-string-with-subexpr-end:
    new-line-character  double-quote-character  @

verbatim-string-literal:
    single-quote-character verbatim-string-characters~opt~ single-quote-char

single-quote-character:
    ' (U+0027)
    Left single quotation mark (U+2018)
    Right single quotation mark (U+2019)
    Single low-9 quotation mark (U+201A)
    Single high-reversed-9 quotation mark (U+201B)

verbatim-string-characters:
    verbatim-string-part
    verbatim-string-characters verbatim-string-part

verbatim-string-part:
    *Any Unicode character except* single-quote-character
    single-quote-character  single-quote-character

verbatim-here-string-literal:
    @ single-quote-character whitespace~opt~  new-line-character
        verbatim-here-string-characters~opt~  new-line-character
            single-quote-character *@*

verbatim-*here-string-characters:
    verbatim-here-string-part
    verbatim-here-string-characters  verbatim-here-string-part

verbatim-here-string-part:
    Any Unicode character except* new-line-character
    new-line-character  Any Unicode character except single-quote-character



Description:

There are four kinds of string literals:

verbatim-string-literal (single-line single-quoted), which is a sequence of zero or
more characters delimited by a pair of single-quote-characters. Examples are '' and
'red'.

expandable-string-literal (single-line double-quoted), which is a sequence of zero
or more characters delimited by a pair of double-quote-characters. Examples are ""
and "red".

verbatim-here-string-literal (multi-line single-quoted), which is a sequence of zero
or more characters delimited by the character pairs @single-quote-character and
single-quote-character@, respectively, all contained on two or more source lines.
Examples are:

PowerShell

expandable-here-string-literal (multi-line double-quoted), which is a sequence of
zero or more characters delimited by the character pairs @double-quote-character
and double-quote-character@, respectively, all contained on two or more source
lines. Examples are:

PowerShell

    new-line-character  single-quote-character  Any Unicode character except 
@

@'
'@

@'
line 1
'@

@'
line 1
line 2
'@

@"
"@

@"
line 1
"@



For verbatim-here-string-literals and expandable-here-string-literals, except for white
space (which is ignored) no characters may follow on the same source line as the
opening delimiter-character pair, and no characters may precede on the same source
line as the closing delimiter character pair.

The body of a verbatim-here-string-literal or an expandable-here-string-literal begins at
the start of the first source line following the opening delimiter, and ends at the end of
the last source line preceding the closing delimiter. The body may be empty. The line
terminator on the last source line preceding the closing delimiter is not part of that
literal's body.

A literal of any of these kinds has type string (§4.3.1).

The character used to delimit a verbatim-string-literal or expandable-string-literal can be
contained in such a string literal by writing that character twice, in succession. For
example, 'What''s the time?'  and "I said, ""Hello""." . However, a single-quote-
character has no special meaning inside an expandable-string-literal, and a double-
quote-character has no special meaning inside a verbatim-string-literal.

An expandable-string-literal and an expandable-here-string-literal may contain escaped-
characters (§2.3.7). For example, when the following string literal is written to the
pipeline, the result is as shown below:

PowerShell

Output

If an expandable-string-literal or expandable-here-string-literal contains the name of a
variable, unless that name is preceded immediately by an escape character, it is replaced
by the string representation of that variable's value (§6.7). This is known as variable
substitution.

@"
line 1
line 2
"@

"column1`tcolumn2`nsecond line, `"Hello`", ```Q`5`!"

column1<horizontal-tab>column2<new-line>
second line, "Hello", `Q5!



For example, the source code

PowerShell

results in the expandable-string-literal

Output

Consider the following:

PowerShell

The result is

Output

expandable-string-literals and expandable-here-string-literals also support a kind of
substitution called sub-expression expansion, by treating text of the form $( ... )  as a
sub-expression (§7.1.6). Such text is replaced by the string representation of that
expression's value (§6.8). Any white space used to separate tokens within sub-
expression's statement-list is ignored as far as the result string's construction is
concerned.

The examples,

７ Note

If the variable name is part of some larger expression, only the variable name is
replaced. For example, if $a  is an array containing the elements 100 and 200,
">$a.Length<"  results in >100 200.Length<  while ">$($a.Length)<"  results in >2< .
See sub-expression expansion below.

$count = 10
"The value of `$count is $count"

The value of $count is 10.

$a = "red","blue"
"`$a[0] is $a[0], `$a[0] is $($a[0])" # second [0] is taken literally

$a[0] is red blue[0], $a[0] is red



PowerShell

result in the following expandable-string-literals:

Output

The following source,

PowerShell

results in the following expandable-string-literal:

Output

These four lines could have been written more succinctly as follows:

PowerShell

In the following example,

PowerShell

the resulting expandable-string-literal is as follows:

Output

$count = 10
"$count + 5 is $($count + 5)"
"$count + 5 is `$($count + 5)"
"$count + 5 is `$(`$count + 5)"

10 + 5 is 15
10 + 5 is $(10 + 5)
10 + 5 is $($count + 5)

$i = 5; $j = 10; $k = 15
"`$i, `$j, and `$k have the values $( $i; $j; $k )"

$i, $j, and $k have the values 5 10 15

"`$i, `$j, and `$k have the values $(($i = 5); ($j = 10); ($k = 15))"

"First 10 squares: $(for ($i = 1; $i -le 10; ++$i) { "$i $($i*$i) " })"



As shown, a sub-expression can contain string literals having both variable substitution
and sub-expression expansion. Note also that the inner expandable-string-literal's
delimiters need not be escaped; the fact that they are inside a sub-expression means
they cannot be terminators for the outer expandable-string-literal.

An expandable-string-literal or expandable-here-string-literal containing a variable
substitution or sub-expression expansion is evaluated each time that literal is used; for
example,

PowerShell

which results in the following expandable-string-literals:

Output

The contents of a verbatim-here-string-literal are taken verbatim, including any leading
or trailing white space within the body. As such, embedded single-quote-characters need
not be doubled-up, and there is no substitution or expansion. For example,

PowerShell

which results in the literal

Output

First 10 squares: 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100

$a = 10
$s1 = "`$a = $($a; ++$a)"
"`$s1 = >$s1<"
$s2 = "`$a = $($a; ++$a)"
"`$s2 = >$s2<"
$s2 = $s1
"`$s2 = >$s2<"

$s1 = >$a = 10<
$s2 = >$a = 11<
$s2 = >$a = 10<

$lit = @'
That's it!
2 * 3 = $(2*3)
'@



The contents of an expandable-here-string-literal are subject to substitution and
expansion, but any leading or trailing white space within the body but outside any sub-
expressions is taken verbatim, and embedded double-quote-characters need not be
doubled-up. For example,

PowerShell

which results in the following literal when expanded:

PowerShell

For both verbatim-here-string-literals and expandable-here-string-literals, each line
terminator within the body is represented in the resulting literal in an implementation-
defined manner. For example, in

PowerShell

the second line of the body has two leading spaces, and the first and second lines of the
body have line terminators; however, the terminator for the second line of the body is
not part of that body. The resulting literal is equivalent to: "abc<implementation-defined
character sequence>xyz" .

That's it!
2 * 3 = $(2*3)

$lit = @"
That's it!
2 * 3 = $(2*3)
"@

That's it!
2 * 3 = 6

$lit = @"
abc
xyz
"@

７ Note

To aid readability of source, long string literals can be broken across multiple
source lines without line terminators being inserted. This is done by writing each



For both verbatim-here-string-literals and expandable-here-string-literals, each line
terminator within the body is represented exactly as it was provided.

See the automatic variable $null  (§2.3.2.2).

See the automatic variables $false  and $true  (§2.3.2.2).

PowerShell allows expressions of array type (§9) to be written using the unary comma
operator (§7.2.1), array-expression (§7.1.7), the binary comma operator (§7.3), and the
range operator (§7.4).

PowerShell allows expressions of type Hashtable (§10) to be written using a hash-literal-
expression (§7.1.9)

Syntax:

Syntax

part as a separate literal and concatenating the parts with the + operator (§7.7.2).
This operator allows its operands to designate any of the four kinds of string literal.

７ Note

Although there is no such thing as a character literal per se, the same effect can be
achieved by accessing the first character in a 1-character string, as follows:
[char]"A"  or "A"[0] .

2.3.5.3 Null literal

2.3.5.4 Boolean literals

2.3.5.5 Array literals

2.3.5.6 Hash literals

2.3.5.7 Type names

type-name:
    type-identifier
    type-name . type-identifier



Syntax:

Syntax

type-identifier:
    type-characters

type-characters:
    type-character
    type-characters type-character

type-character:
    A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nd
    _ (The underscore character U+005F)

array-type-name:
    type-name [

generic-type-name:
    type-name [

2.3.6 Operators and punctuators

operator-or-punctuator: one of
    {   }   [   ]   (   )   @(   @{   $(   ;
    &&  ||  &   |   ,   ++  ..   ::   .
    !   *   /   %   +   -   --
    -and   -band   -bnot   -bor
    -bxor   -not   -or     -xor
    assignment-operator
    merging-redirection-operator
    file-redirection-operator
    comparison-operator
    format-operator

assignment-operator: one of
    =  -=  +=  *=  /=  %=

file-redirection-operator: one of
    >  >>  2>  2>>  3>  3>>  4>  4>>
    5>  5>>  6>  6>>  *>  *>>  <

merging-redirection-operator: one of
    *>&1  2>&1  3>&1  4>&1  5>&1  6>&1
    *>&2  1>&2  3>&2  4>&2  5>&2  6>&2

comparison-operator: *one of
    -as           -ccontains      -ceq
    -cge          -cgt            -cle
    -clike        -clt            -cmatch
    -cne          -cnotcontains   -cnotlike
    -cnotmatch    -contains       -creplace



Description:

&&  and ||  are reserved for future use.

The name following dash in an operator is reserved for that purpose only in an operator
context.

An operator that begins with dash must not have any white space between that dash
and the token that follows it.

Syntax:

Syntax

Description:

An escaped character is a way to assign a special interpretation to a character by giving
it a prefix Backtick character (U+0060). The following table shows the meaning of each
escaped-character:

    -csplit       -eq             -ge
    -gt           -icontains      -ieq
    -ige          -igt            -ile
    -ilike        -ilt            -imatch
    -in           -ine            -inotcontains
    -inotlike     -inotmatch      -ireplace
    -is           -isnot          -isplit
    -join         -le             -like
    -lt           -match          -ne
    -notcontains  -notin         -notlike
    -notmatch     -replace       -shl*
    -shr          -split

format-operator:
    -f

７ Note

Editor's Note: The pipeline chain operators &&  and ||  were introduced in
PowerShell 7. See about_Pipeline_Chain_Operators.

2.3.7 Escaped characters

escaped-character:
    ` (The backtick character U+0060) followed by any Unicode character

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_pipeline_chain_operators


Escaped
Character

Meaning

`a Alert (U+0007)

`b Backspace (U+0008)

`f Form-feed (U+000C)

`n New-line (U+000A)

`r Carriage return (U+000D)

`t Horizontal tab (U+0009)

`v Vertical tab (U+0009)

`' Single quote (U+0027)

`" Double quote (U+0022)

`` Backtick (U+0060)

`0 NUL (U+0000)

`x If x  is a character other than those characters shown above, the backtick
character is ignored and x  is taken literally.

The implication of the final entry in the table above is that spaces that would otherwise
separate tokens can be made part of a token instead. For example, a file name
containing a space can be written as Test` Data.txt  (as well as 'Test Data.txt'  or
"Test Data.txt" ).

ﾉ Expand table



3. Basic concepts
Article • 09/15/2023

A provider allows access to data and components that would not otherwise be easily
accessible at the command line. The data is presented in a consistent format that
resembles a file system drive.

The data that a provider exposes appears on a drive, and the data is accessed via a path
just like with a disk drive. Built-in cmdlets for each provider manage the data on the
provider drive.

PowerShell includes the following set of built-in providers to access the different types
of data stores:

Provider Drive Name Description Ref.

Alias Alias: PowerShell aliases §3.1.1

Environment Env: Environment variables §3.1.2

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

3.1 Providers and drives

ﾉ Expand table

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Provider Drive Name Description Ref.

FileSystem A:, B:, C:, ... Disk drives, directories, and files §3.1.3

Function Function: PowerShell functions §3.1.4

Variable Variable: PowerShell variables §3.1.5

Windows PowerShell:

Provider Drive Name Description

Certificate Cert: x509 certificates for digital
signatures

Registry HKLM: (HKEY_LOCAL_MACHINE), HKCU:
(HKEY_CURRENT_USER)

Windows registry

WSMan WSMan: WS-Management configuration
information

The following cmdlets deal with providers and drives:

Get-PSProvider: Gets information about one or more providers
Get-PSDrive: Gets information about one or more drives

The type of an object that represents a provider is described in §4.5.1. The type of an
object that represents a drive is described in §4.5.2.

An alias is an alternate name for a command. A command can have multiple aliases, and
the original name and all of its aliases can be used interchangeably. An alias can be
reassigned. An alias is an item (§3.3).

An alias can be assigned to another alias; however, the new alias is not an alias of the
original command.

The provider Alias is a flat namespace that contains only objects that represent the
aliases. The variables have no child items.

PowerShell comes with a set of built-in aliases.

The following cmdlets deal with aliases:

ﾉ Expand table

3.1.1 Aliases

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-psprovider?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-psdrive?view=powershell-7.5


New-Alias: Creates an alias
Set-Alias: Creates or changes one or more aliases
Get-Alias: Gets information about one or more aliases
Export-Alias: Exports one or more aliases to a file

When an alias is created for a command using New-Alias , parameters to that command
cannot be included in that alias. However, direct assignment to a variable in the Alias:
namespace does permit parameters to be included.

The type of an object that represents an alias is described in §4.5.4.

Alias objects are stored on the drive Alias: (§3.1).

The PowerShell Environment provider allows operating system environment variables to
be retrieved, added, changed, cleared, and deleted.

The provider Environment is a flat namespace that contains only objects that represent
the environment variables. The variables have no child items.

An environment variable's name cannot include the equal sign ( = ).

Changes to the environment variables affect the current session only.

An environment variable is an item (§3.3).

The type of an object that represents an environment variable is described in §4.5.6.

Environment variable objects are stored on the drive Env: (§3.1).

The PowerShell FileSystem provider allows directories and files to be created, opened,
changed, and deleted.

７ Note

It is a simple matter, however, to create a function that does nothing more than
contain the invocation of that command with all desired parameters, and to assign
an alias to that function.

3.1.2 Environment variables

3.1.3 File system

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-alias?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/set-alias?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-alias?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-alias?view=powershell-7.5


The FileSystem provider is a hierarchical namespace that contains objects that represent
the underlying file system.

Files are stored on drives with names like A:, B:, C:, and so on (§3.1). Directories and files
are accessed using path notation (§3.4).

A directory or file is an item (§3.3).

The PowerShell Function provider allows functions (§8.10) and filters (§8.10.1) to be
retrieved, added, changed, cleared, and deleted.

The provider Function is a flat namespace that contains only the function and filter
objects. Neither functions nor filters have child items.

Changes to the functions affect the current session only.

A function is an item (§3.3).

The type of an object that represents a function is described in §4.5.10. The type of an
object that represents a filter is described in §4.5.11.

Function objects are stored on drive Function: (§3.1).

Variables can be defined and manipulated directly in the PowerShell language.

The provider Variable is a flat namespace that contains only objects that represent the
variables. The variables have no child items.

The following cmdlets also deal with variables:

New-Variable: Creates a variable
Set-Variable: Creates or changes the characteristics of one or more variables
Get-Variable: Gets information about one or more variables
Clear-Variable: Deletes the value of one or more variables
Remove-Variable: Deletes one or more variables

As a variable is an item (§3.3), it can be manipulated by most Item-related cmdlets.

The type of an object that represents a variable is described in §4.5.3.

Variable objects are stored on drive Variable: (§3.1).

3.1.4 Functions

3.1.5 Variables

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-variable?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/set-variable?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-variable?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/clear-variable?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/remove-variable?view=powershell-7.5


The current working location is the default location to which commands point. This is the
location used if an explicit path (§3.4) is not supplied when a command is invoked. This
location includes the current drive.

A PowerShell host may have multiple drives, in which case, each drive has its own
current location.

When a drive name is specified without a directory, the current location for that drive is
implied.

The current working location can be saved on a stack, and then set to a new location.
Later, that saved location can be restored from that stack and made the current working
location. There are two kinds of location stacks: the default working location stack, and
zero or more user-defined named working location stacks. When a session begins, the
default working location stack is also the current working location stack. However, any
named working location stack can be made the current working location stack.

The following cmdlets deal with locations:

Set-Location: Establishes the current working location
Get-Location: Determines the current working location for the specified drive(s), or
the working locations for the specified stack(s)
Push-Location: Saves the current working location on the top of a specified stack
of locations
Pop-Location: Restores the current working location from the top of a specified
stack of locations

The object types that represents a working location and a stack of working locations are
described in §4.5.5.

An item is an alias (§3.1.1), a variable (§3.1.5), a function (§3.1.4), an environment variable
(§3.1.2), or a file or directory in a file system (§3.1.3).

The following cmdlets deal with items:

New-Item: Creates a new item
Set-Item: Changes the value of one or more items
Get-Item: Gets the items at the specified location
Get-ChildItem: Gets the items and child items at the specified location

3.2 Working locations

3.3 Items

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-location?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-location?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/push-location?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/pop-location?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-childitem?view=powershell-7.5


Copy-Item: Copies one or more items from one location to another
Move-Item: Moves one or more items from one location to another
Rename-Item: Renames an item
Invoke-Item: Performs the default action on one or more items
Clear-Item: Deletes the contents of one or more items, but does not delete the
items (see
Remove-Item: Deletes the specified items

The following cmdlets deal with the content of items:

Get-Content: Gets the content of the item
Add-Content: Adds content to the specified items
Set-Content: Writes or replaces the content in an item
Clear-Content: Deletes the contents of an item

The type of an object that represents a directory is described in §4.5.17. The type of an
object that represents a file is described in §4.5.18.

All items in a data store accessible through a PowerShell provider can be identified
uniquely by their path names. A path name is a combination of the item name, the
container and subcontainers in which the item is located, and the PowerShell drive
through which the containers are accessed.

Path names are divided into one of two types: fully qualified and relative. A fully
qualified path name consists of all elements that make up a path. The following syntax
shows the elements in a fully qualified path name:

Syntax

3.4 Path names

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

path:
    provider~opt~   drive~opt~   containers~opt~   item

provider:
    module~opt~   provider   ::

module:
    module-name   \

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/copy-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/move-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/rename-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/invoke-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/clear-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-item?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-content?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/clear-content?view=powershell-7.5


module-name refers to the parent module.

provider refers to the PowerShell provider through which the data store is accessed.

drive refers to the PowerShell drive that is supported by a particular PowerShell provider.

A container can contain other containers, which can contain other containers, and so on,
with the final container holding an item. Containers must be specified in the hierarchical
order in which they exist in the data store.

Here is an example of a path name:

E:\Accounting\InvoiceSystem\Production\MasterAccount\MasterFile.dat

If the final element in a path contains other elements, it is a container element;
otherwise, it's a leaf element.

In some cases, a fully qualified path name is not needed; a relative path name will
suffice. A relative path name is based on the current working location. PowerShell allows
an item to be identified based on its location relative to the current working location. A
relative path name involves the use of some special characters. The following table
describes each of these characters and provides examples of relative path names and
fully qualified path names. The examples in the table are based on the current working
directory being set to C:\Windows:

Symbol Description Relative path Fully qualified path

. Current working location .\System C:\Windows\System

.. Parent of the current working location ..\Program Files C:\Program Files

\ Drive root of the current working location \Program Files C:\Program Files

none No special characters System C:\Windows\System

To use a path name in a command, enter that name as a fully qualified or relative path
name.

drive:
    drive-name   :

containers:
    container   \
    containers container   \

ﾉ Expand table



The following cmdlets deal with paths:

Convert-Path: Converts a path from a PowerShell path to a PowerShell provider
path
Join-Path: Combines a path and a child path into a single path
Resolve-Path: Resolves the wildcard characters in a path
Split-Path: Returns the specified part of a path
Test-Path: Determines whether the elements of a path exist or if a path is well
formed

Some cmdlets (such as Add-Content and Copy-Item  use file filters. A file filter is a
mechanism for specifying the criteria for selecting from a set of paths.

The object type that represents a resolved path is described in §4.5.5. Paths are often
manipulated as strings.

A name can denote a variable, a function, an alias, an environment variable, or a drive.
The same name may denote different items at different places in a script. For each
different item that a name denotes, that name is visible only within the region of script
text called its scope. Different items denoted by the same name either have different
scopes, or are in different name spaces.

Scopes may nest, in which case, an outer scope is referred to as a parent scope, and any
nested scopes are child scopes of that parent. The scope of a name is the scope in which
it is defined and all child scopes, unless it is made private. Within a child scope, a name
defined there hides any items defined with the same name in parent scopes.

Unless dot source notation (§3.5.5) is used, each of the following creates a new scope:

A script file
A script block
A function or filter

Consider the following example:

PowerShell

3.5 Scopes

3.5.1 Introduction

# Start of script
$x = 2; $y = 3
Get-Power $x $y

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/convert-path?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/join-path?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/resolve-path?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/split-path?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-path?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content?view=powershell-7.5


The scope of the variables $x  and $y  created in the script is the body of that script,
including the function defined inside it. Function Get-Power  defines two parameters with
those same names. As each function has its own scope, these variables are different
from those defined in the parent scope, and they hide those from the parent scope. The
function scope is nested inside the script scope.

Note that the function calls itself recursively. Each time it does so, it creates yet another
nested scope, each with its own variables $x  and $y .

Here is a more complex example, which also shows nested scopes and reuse of names:

PowerShell

# Function defined in script
function Get-Power([int]$x, [int]$y) {
    if ($y -gt 0) {
        return $x * (Get-Power $x (--$y))
    } else {
        return 1
    }
}
# End of script

# start of script scope
$x = 2              # top-level script-scope $x created
                    # $x is 2
F1                  # create nested scope with call to function F1
                    # $x is 2
F3                  # create nested scope with call to function F3
                    # $x is 2

function F1 {       # start of function scope
                    # $x is 2
    $x = $true      # function-scope $x created
                    # $x is $true

    & {             # create nested scope with script block
                    # $x is $true
        $x = 12.345 # scriptblock-scope $x created
                    # $x is 12.345
    }               # end of scriptblock scope, local $x goes away

                    # $x is $true
    F2              # create nested scope with call to function F2
                    # $x is $true
}                   # end of function scope, local $x goes away

function F2 {       # start of function scope
                    # $x is $true
    $x = "red"      # function-scope $x created



PowerShell supports the following scopes:

Global: This is the top-most level scope. All automatic and preference variables are
defined in this scope. The global scope is the parent scope of all other scopes, and
all other scopes are child scopes of the global scope.

Local: This is the current scope at any execution point within a script, script block,
or function. Any scope can be the local scope.

Script: This scope exists for each script file that is executed. The script scope is the
parent scope of all scopes created from within it. A script block does not have its
own script scope; instead, its script scope is that of its nearest ancestor script file.
Although there is no such thing as module scope, script scope provides the
equivalent.

Names can be declared private, in which case, they are not visible outside of their parent
scope, not even to child scopes. The concept of private is not a separate scope; it's an
alias for local scope with the addition of hiding the name if used as a writable location.

Scopes can be referred to by a number, which describes the relative position of one
scope to another. Scope 0 denotes the local scope, scope 1 denotes a 1-generation
ancestor scope, scope 2 denotes a 2-generation ancestor scope, and so on. (Scope
numbers are used by cmdlets that manipulate variables.)

As shown by the following production, a variable name can be specified with any one of
six different scopes:

                    # $x is "red"
}                   # end of function scope, local $x goes away

function F3 {       # start of function scope
                    # $x is 2
    if ($x -gt 0) {
                    # $x is 2
        $x = "green"
                    # $x is "green"
    }               # end of block, but not end of any scope
                    # $x is still "green"
}                   # end of function scope, local $x goes away
# end of script scope

3.5.2 Scope names and numbers

3.5.3 Variable name scope



Syntax

The scope is optional. The following table shows the meaning of each in all possible
contexts. It also shows the scope when no scope is specified explicitly:

Scope
Modifier

Within a Script File Within a Script Block Within a Function

Global Global scope Global scope Global scope

Script Nearest ancestor script file's
scope or Global if there is
no nearest ancestor script
file

Nearest ancestor script
file's scope or Global if
there is no nearest
ancestor script file

Nearest ancestor script
file's scope or Global if
there is no nearest
ancestor script file

Private Global/Script/Local scope Local scope Local scope

Local Global/Script/Local scope Local scope Local scope

Using Implementation defined Implementation defined Implementation defined

Workflow Implementation defined Implementation defined Implementation defined

None Global/Script/Local scope Local scope Local scope

Variable scope information can also be specified when using the family of cmdlets listed
in (§3.1.5). In particular, refer to the parameter Scope , and the parameters Option
Private  and Option AllScope  for more information.

The Using:  scope modifier is used to access variables defined in another scope while
running scripts via cmdlets like Start-Job , Invoke-Command , or within an inlinescript-
statement. For example:

PowerShell

variable-scope:
    Global:
    Local:
    Private:
    Script:
    Using:
    Workflow:
    variable-namespace

ﾉ Expand table

$a = 42
Invoke-Command --ComputerName RemoteServer { $Using:a } # returns 42



The scope workflow is used with a parallel-statement or sequence-statement to access a
variable defined in the workflow.

A function name may also have one of the four different scopes, and the visibility of that
name is the same as for variables (§3.5.3).

When a script file, script block, or function is executed from within another script file,
script block, or function, the executed script file creates a new nested scope. For
example,

PowerShell

However, when dot source notation is used, no new scope is created before the
command is executed, so additions/changes it would have made to its own local scope
are made to the current scope instead. For example,

PowerShell

Just like a top-level script file is at the root of a hierarchical nested scope tree, so too is
each module (§3.14). However, by default, only those names exported by a module are

workflow foo
{
    $b = "Hello"
    inlinescript { $Using:b }
}
foo # returns "Hello"

3.5.4 Function name scope

3.5.5 Dot source notation

Script1.ps1
& "Script1.ps1"
& { ... }
FunctionA

. Script2.ps1

. "Script2.ps1"

. { ... }

. FunctionA

3.5.6 Modules



available by name from within the importing context. The Global parameter of the
cmdlet Import-Module allows exported names to have increased visibility.

Variables and aliases are described by objects that contain a number of properties.
These properties are set and manipulated by two families of cmdlets (§3.1.5, §3.1.1). One
such property is Options, which can be set to ReadOnly or Constant (using the Option
parameter). A variable or alias marked ReadOnly can be removed, and its properties can
changed provided the Force parameter is specified. However, a variable or alias marked
Constant cannot be removed nor have its properties changed.

As stated in §1, an external procedure made available by the execution environment
(and written in some language other than PowerShell) is called a method.

The name of a method along with the number and types of its parameters are
collectively called that method's signature. (Note that the signature does not include the
method's return type.) The execution environment may allow a type to have multiple
methods with the same name provided each has a different signature. When multiple
versions of some method are defined, that method is said to be overloaded. For
example, the type Math (§4.3.8) contains a set of methods called Abs , which computes
the absolute value of a specified number, where the specified number can have one of a
number of types. The methods in that set have the following signatures:

PowerShell

In this case, all of the methods have the same number of arguments; their signatures
differ by argument type only.

3.6 ReadOnly and Constant Properties

3.7 Method overloads and call resolution

3.7.1 Introduction

Abs(decimal)
Abs(float)
Abs(double)
Abs(int)
Abs(long)
Abs(SByte)
Abs(Int16)

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5


Another example involves the type Array (§4.3.2), which contains a set of methods called
Copy that copies a range of elements from one array to another, starting at the
beginning of each array (by default) or at some designated element. The methods in
that set have the following signatures:

PowerShell

In this case, the signatures differ by argument type and, in some cases, by argument
number as well.

In most calls to overloaded methods, the number and type of the arguments passed
exactly match one of the overloads, and the method selected is obvious. However, if
that is not the case, there needs to be a way to resolve which overloaded version to call,
if any. For example,

PowerShell

Other examples include the type string (i.e.; System.String), which has numerous
overloaded methods.

Although PowerShell has rules for resolving method calls that do not match an
overloaded signature exactly, PowerShell does not itself provide a way to define
overloaded methods.

Given a method call (§7.1.3) having a list of argument expressions, and a set of candidate
methods (i.e., those methods that could be called), the mechanism for selecting the best
method is called overload resolution.

Copy(Array, Array, int)
Copy(Array, Array, long)
Copy(Array, int, Array, int, int)
Copy(Array, long, Array, long, long)

[Math]::Abs([byte]10) # no overload takes type byte
[array]::Copy($source, 3, $dest, 5L, 4) # both int and long indexes

７ Note

Editor's Note: PowerShell 5.0 added the ability to define script-based classes. These
classes can contain overloaded methods.

3.7.2 Method overload resolution



Given the set of applicable candidate methods (§3.7.3), the best method in that set is
selected. If the set contains only one method, then that method is the best method.
Otherwise, the best method is the one method that is better than all other methods with
respect to the given argument list using the rules shown in §3.7.4. If there is not exactly
one method that is better than all other methods, then the method invocation is
ambiguous and an error is reported.

The best method must be accessible in the context in which it is called. For example, a
PowerShell script cannot call a method that is private or protected.

The best method for a call to a static method must be a static method, and the best
method for a call to an instance method must be an instance method.

A method is said to be applicable with respect to an argument list A when one of the
following is true:

The number of arguments in A is identical to the number of parameters that the
method accepts.
The method has M required parameters and N optional parameters, and the
number of arguments in A is greater than or equal to M, but less than N.
The method accepts a variable number of arguments and the number of
arguments in A is greater than the number of parameters that the method accepts.

In addition to having an appropriate number of arguments, each argument in A must
match the parameter-passing mode of the argument, and the argument type must
match the parameter type, or there must be a conversion from the argument type to the
parameter type.

If the argument type is ref (§4.3.6), the corresponding parameter must also be ref, and
the argument type for conversion purposes is the type of the property Value from the
ref argument.

If the argument type is ref , the corresponding parameter could be out  instead of ref .

If the method accepts a variable number of arguments, the method may be applicable
in either normal form or expanded form. If the number of arguments in A is identical to
the number of parameters that the method accepts and the last parameter is an array,
then the form depends on the rank of one of two possible conversions:

The rank of the conversion from the type of the last argument in A to the array
type for the last parameter.

3.7.3 Applicable method



The rank of the conversion from the type of the last argument in A to the element
type of the array type for the last parameter.

If the first conversion (to the array type) is better than the second conversion (to the
element type of the array), then the method is applicable in normal form, otherwise it is
applicable in expanded form.

If there are more arguments than parameters, the method may be applicable in
expanded form only. To be applicable in expanded form, the last parameter must have
array type. The method is replaced with an equivalent method that has the last
parameter replaced with sufficient parameters to account for each unmatched argument
in A. Each additional parameter type is the element type of the array type for the last
parameter in the original method. The above rules for an applicable method are applied
to this new method and argument list A.

Given an argument list A with a set of argument expressions { E~1~, E~2~, ..., E~N~ }
and two application methods M~P~  and M~Q~  with parameter types { P~1~, P~2~, ...,
P~N~ }  and { Q~1~, Q~2~, ..., Q~N~ } , M~P~  is defined to be a better method than
M~Q~  if the cumulative ranking of conversions for M~P~  is better than that for M~Q~ .

The cumulative ranking of conversions is calculated as follows. Each conversion is worth
a different value depending on the number of parameters, with the conversion of E~1~
worth N, E~2~  worth N-1, down to E~N~  worth 1. If the conversion from E~X~  to P~X~  is
better than that from E~X~  to Q~X~ , the M~P~  accumulates N-X+1; otherwise, M~Q~
accumulates N-X+1. If M~P~  and M~Q~  have the same value, then the following tie
breaking rules are used, applied in order:

The cumulative ranking of conversions between parameter types (ignoring
argument types) is computed in a manner similar to the previous ranking, so P~1~
is compared against Q~1~ , P~2~  against Q~2~ , ..., and P~N~  against Q~N~ . The
comparison is skipped if the argument was $null , or if the parameter types are
not numeric types. The comparison is also skipped if the argument conversion
E~X~  loses information when converted to P~X~  but does not lose information
when converted to Q~X~ , or vice versa. If the parameter conversion types are
compared, then if the conversion from P~X~  to Q~X~  is better than that from Q~X~
to P~X~ , the M~P~  accumulates N-X+1; otherwise, M~Q~  accumulates N-X+1. This
tie breaking rule is intended to prefer the most specific method (i.e., the method
with parameters having the smallest data types) if no information is lost in

3.7.4 Better method



conversions, or to prefer the most general method (i.e., the method with the
parameters with the largest data types) if conversions result in loss of information.
If both methods use their expanded form, the method with more parameters is the
better method.
If one method uses the expanded form and the other uses normal form, the
method using normal form is the better method.

The text below marked like this is specific to Windows PowerShell.

Conversions are ranked in the following manner, from lowest to highest:

T~1~[]  to T~2~[]  where no assignable conversion between T~1~  and T~2~  exists
T to string where T is any type
T~1~  to T~2~  where T~1~  or T~2~  define a custom conversion in an
implementation-defined manner
T~1~  to T~2~  where T~1~  implements IConvertible
T~1~  to T~2~  where T~1~  or T~2~  implements the method T~2~ op_Implicit(T1)
T~1~  to T~2~  where T~1~  or T~2~  implements the method T~2~ op_Explicit(T1)
T~1~  to T~2~  where T~2~  implements a constructor taking a single argument of
type T~1~
Either of the following conversions:

string to T  where T  implements a static method T Parse(string)  or T
Parse(string, IFormatProvider)

T~1~  to T~2~  where T~2~  is any enum and T~1~  is either string or a collection
of objects that can be converted to string

T  to PSObject where T  is any type
Any of the following conversions: Language

T to bool where T  is any numeric type
string to T  where T  is regex , wmisearcher , wmi , wmiclass , adsi , adsisearcher ,
or type
T  to bool
T~1~ to Nullable[T~2~]  where a conversion from T~1~  to T~2~  exists
T  to void
T~1~[]  to T~2~[]  where an assignable conversion between T~1~  and T~2~
exists
T~1~  to T~2~[]  where T~1~  is a collection
IDictionary  to Hashtable

3.7.5 Better conversion



T  to ref
T  to xml
scriptblock  to delegate
T~1~  to T~2~  where T~1~  is an integer type and T~2~  is an enum

$null  to T  where T  is any value type

$null  to T  where T  is any reference type
Any of the following conversions:

byte to T  where T  is SByte

UInt16  to T  where T  is SByte , byte , or Int16

Int16  to T  where T  is SByte  or byte

UInt32  to T  where T  is SByte , byte , Int16 , UInt16 , or int

int  to T  where T  is SByte , byte , Int16 , or UInt16

UInt64  to T  where T  is SByte , byte , Int16 , UInt16 , int , UInt32 , or long

long  to T  where T  is SByte , byte , Int16 , UInt16 , int , or UInt32

float  to T  where T  is any integer type or decimal

double  to T  where T  is any integer type or decimal

decimal  to T  where T  is any integer type
Any of the following conversions:

SByte  to T  where T  is byte , uint6 , UInt32 , or UInt64
Int16  to T  where T  is UInt16 , UInt32 , or UInt64
int  to T  where T  is UInt32  or UInt64
long  to UInt64
decimal  to T  where T  is float  or double

Any of the following conversions:
T  to string  where T  is any numeric type
T  to char  where T  is any numeric type
string  to T  where T  is any numeric type

Any of the following conversions, these conversion are considered an assignable
conversions:

byte  to T  where T  is Int16 , UInt16 , int , UInt32 , long , UInt64 , single ,
double , or decimal



SByte  to T  where T  is Int16 , UInt16 , int , UInt32 , long , UInt64 , single ,
double , or decimal
UInt16  to T  where T  is int , UInt32 , long , or UInt64 , single , double , or
decimal

Int16  to T  where T  is int , UInt32 , long , or UInt64 , single , double , or

decimal

UInt32  to T  where T  is long , or UInt64 , single , double , or decimal
int  to T  where T  is long , UInt64 , single , double , or decimal
single  to double

T~1~  to T~2~  where T~2~  is a base class or interface of T~1~ . This conversion is
considered an assignable conversion.
string  to char[]
T  to T  -- This conversion is considered an assignable conversion.

For each conversion of the form T~1~  to T~2~[]  where T~1~  is not an array and no
other conversion applies, if there is a conversion from T~1~  to T~2~ , the rank of the
conversion is worse than the conversion from T~1~  to T~2~ , but better than any
conversion ranked less than the conversion from T~1~  to T~2~

It is possible to have commands of different kinds all having the same name. The order
in which name lookup is performed in such a case is alias, function, cmdlet, and external
command.

§7.1.10 contains the statement, "A type-literal is represented in an implementation by
some unspecified underlying type. As a result, a type name is a synonym for its
underlying type." Example of types are int , double , long[] , and Hashtable .

Type names are matched as follows: Compare a given type name with the list of built-in
type accelerators, such as int, long, double. If a match is found, that is the type.
Otherwise, presume the type name is fully qualified and see if such a type exists on the
host system. If a match is found, that is the type. Otherwise, add the namespace prefix
System. . If a match is found, that is the type. Otherwise, the type name is in error. This
algorithm is applied for each type argument for generic types. However, there is no
need to specify the arity (the number of arguments or operands taken by a function or
operator).

3.8 Name lookup

3.9 Type name lookup



Various operators and cmdlets result in the allocation of memory for reference-type
objects, such as strings and arrays. The allocation and freeing of this memory is
managed by the PowerShell runtime system. That is, PowerShell provides automatic
garbage collection.

A side effect is a change in the state of a command's execution environment. A change
to the value of a variable (via the assignment operators or the pre- and post-increment
and decrement operators) is a side effect, as is a change to the contents of a file.

Unless specified otherwise, statements are executed in lexical order.

Except as specified for some operators, the order of evaluation of terms in an expression
and the order in which side effects take place are both unspecified.

An expression that invokes a command involves the expression that designates the
command, and zero or more expressions that designate the arguments whose values
are to be passed to that command. The order in which these expressions are evaluated
relative to each other is unspecified.

When a command fails, this is considered an error, and information about that error is
recorded in an error record, whose type is unspecified (§4.5.15); however, this type
supports subscripting.

An error falls into one of two categories. Either it terminates the operation (a
terminating error) or it doesn't (a non-terminating error). With a terminating error, the
error is recorded and the operation stops. With a non-terminating error, the error is
recorded and the operation continues.

Non-terminating errors are written to the error stream. Although that information can
be redirected to a file, the error objects are first converted to strings and important
information in those objects would not be captured making diagnosis difficult if not
impossible. Instead, the error text can be redirected (§7.12) and the error object saved in
a variable, as in $Error1 = command 2>&1 .

The automatic variable $Error  contains a collection of error records that represent
recent errors, and the most recent error is in $Error[0] . This collection is maintained in

3.10 Automatic memory management

3.11 Execution order

3.12 Error handling



a buffer such that old records are discarded as new ones are added. The automatic
variable $MaximumErrorCount  controls the number of records that can be stored.

$Error  contains all of the errors from all commands mixed in together in one collection.
To collect the errors from a specific command, use the common parameter ErrorVariable,
which allows a user-defined variable to be specified to hold the collection.

A pipeline is a series of one or more commands each separated by the pipe operator |
(U+007C). Each command receives input from its predecessor and writes output to its
successor. Unless the output at the end of the pipeline is discarded or redirected to a
file, it is sent to the host environment, which may choose to write it to standard output.
Commands in a pipeline may also receive input from arguments. For example, consider
the following use of commands Get-ChildItem , Sort-Object , and Process-File , which
create a list of file names in a given file system directory, sort a set of text records, and
perform some processing on a text record, respectively:

PowerShell

In the first case, Get-ChildItem  creates a collection of names of the files in the
current/default directory. That collection is sent to the host environment, which, by
default, writes each element's value to standard output.

In the second case, Get-ChildItem  creates a collection of names of the files in the
directory specified, using the argument E:*.txt . That collection is written to the
command Sort-Object , which, by default, sorts them in ascending order, sensitive to
case (by virtue of the CaseSensitive argument). The resulting collection is then written to
command Process-File , which performs some (unknown) processing. The output from
that command is then redirected to the file results.txt .

If a command writes a single object, its successor receives that object and then
terminates after writing its own object(s) to its successor. If, however, a command writes
multiple objects, they are delivered one at a time to the successor command, which
executes once per object. This behavior is called streaming. In stream processing, objects
are written along the pipeline as soon as they become available, not when the entire
collection has been produced.

3.13 Pipelines

Get-ChildItem
Get-ChildItem E:*.txt | Sort-Object -CaseSensitive | Process-File 
>results.txt

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


When processing a collection, a command can be written such that it can do special
processing before the initial element and after the final element.

A module is a self-contained reusable unit that allows PowerShell code to be partitioned,
organized, and abstracted. A module can contain commands (such as cmdlets and
functions) and items (such as variables and aliases) that can be used as a single unit.

Once a module has been created, it must be imported into a session before the
commands and items within it can be used. Once imported, commands and items
behave as if they were defined locally. A module is imported explicitly with the Import-
Module  command. A module may also be imported automatically as determined in an
implementation defined manner.

The type of an object that represents a module is described in §4.5.12.

Modules are discussed in detail in §11.

A wildcard expression may contain zero or more of the following elements:

Element Description

Character
other than *,
?, or [

Matches that one character

* Matches zero or more characters. To match a * character, use [*].

? Matches any one character. To match a ? character, use [?].

[set] Matches any one character from set, which cannot be empty.

If set begins with ], that right square bracket is considered part of set and the next
right square bracket terminates the set; otherwise, the first right square bracket
terminates the set.

If set begins or ends with -, that hyphen-minus is considered part of set;
otherwise, it indicates a range of consecutive Unicode code points with the
characters either side of the hyphen-minus being the inclusive range delimiters.

3.14 Modules

3.15 Wildcard expressions

ﾉ Expand table



Element Description

For example, A-Z indicates the 26 uppercase English letters, and 0-9 indicates the
10 decimal digits.

A regular expression may contain zero or more of the following elements:

Element Description

Character
other than ., [,
^, *, $, or \

Matches that one character

. Matches any one character. To match a . character, use \..

[set]
[^set]

The [set] form matches any one character from set. The [^set] form matches no
characters from set. set cannot be empty.

If set begins with ] or ^], that right square bracket is considered part of set and
the next right square bracket terminates the set; otherwise, the first right square
bracket terminates the set.

If set begins with - or ^-, or ends with -, that hyphen-minus is considered part of
set; otherwise, it indicates a range of consecutive Unicode code points with the
characters either side of the hyphen-minus being the inclusive range delimiters.
For example, A-Z indicates the 26 uppercase English letters, and 0-9 indicates
the 10 decimal digits.

* Matches zero of more occurrences of the preceding element.

+ Matches one of more occurrences of the preceding element.

? Matches zero of one occurrences of the preceding element.

^ Matches at the start of the string. To match a ^ character, use \^.

$ Matches at the end of the string. To match a $ character, use $.

７ Note

More information can be found in, The Open Group Base Specifications: Pattern
Matching", IEEE Std 1003.1, 2004 Edition. . However, in PowerShell, the escape
character is backtick, not backslash.

3.16 Regular expressions

ﾉ Expand table

http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01


Element Description

\c Escapes character c, so it isn't recognized as a regular expression element.

Windows PowerShell: Character classes available in Microsoft .NET Framework regular
expressions are supported, as follows:

Element Description

\p{name} Matches any character in the named character class specified by name. Supported
names are Unicode groups and block ranges such as Ll, Nd, Z, IsGreek, and
IsBoxDrawing.

\P{name} Matches text not included in the groups and block ranges specified in name.

\w Matches any word character. Equivalent to the Unicode character categories
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] . If ECMAScript-compliant behavior is
specified with the ECMAScript option, \w is equivalent to [a-zA-Z_0-9] .

\W Matches any non-word character. Equivalent to the Unicode categories
[\^\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}] .

\s Matches any white space character. Equivalent to the Unicode character categories
[\f\n\r\t\v\x85\p{Z}] .

\S Matches any non-white-space character. Equivalent to the Unicode character
categories [\^\f\n\r\t\v\x85\p{Z}] .

\d Matches any decimal digit. Equivalent to \p{Nd}  for Unicode and [0-9]  for non-
Unicode behavior.

\D Matches any non-digit. Equivalent to \P{Nd}  for Unicode and [\^0-9]  for non-
Unicode behavior.

Quantifiers available in Microsoft .NET Framework regular expressions are supported, as
follows:

７ Note

More information can be found in, The Open Group Base Specifications: Regular
Expressions, IEEE Std 1003.1, 2004 Edition. .

ﾉ Expand table

ﾉ Expand table

http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html


Element Description

* Specifies zero or more matches; for example, \w* or (abc)*.  Equivalent to {0,} .

+ Matches repeating instances of the preceding characters.

? Specifies zero or one matches; for example, \w?  or (abc)? . Equivalent to {0,1} .

{n} Specifies exactly n matches; for example, (pizza){2} .

{n,} Specifies at least n matches; for example, (abc){2,} .

{n,m} Specifies at least n, but no more than m, matches.



4. Types
Article • 09/15/2023

In PowerShell, each value has a type, and types fall into one of two main categories:
value types and reference types. Consider the type int , which is typical of value types.
A value of type int  is completely self-contained; all the bits needed to represent that
value are stored in that value, and every bit pattern in that value represents a valid value
for its type. Now, consider the array type int[] , which is typical of reference types. A so-
called value of an array type can hold either a reference to an object that actually
contains the array elements, or the null reference whose value is $null . The important
distinction between the two type categories is best demonstrated by the differences in
their semantics during assignment. For example,

PowerShell

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

$i = 100 # $i designates an int value 100
$j = $i # $j designates an int value 100, which is a copy

$a = 10,20,30 # $a designates an object[], Length 3, value 10,20,30
$b = $a # $b designates exactly the same array as does $a, not a copy
$a[1] = 50 # element 1 (which has a value type) is changed from 20 to 50
$b[1] # $b refers to the same array as $a, so $b[1] is 50

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


As we can see, the assignment of a reference type value involves a shallow copy; that is,
a copy of the reference to the object rather than its actual value. In contrast, a deep
copy requires making a copy of the object as well.

A numeric type is one that allows representation of integer or fractional values, and that
supports arithmetic operations on those values. The set of numerical types includes the
integer (§4.2.3) and real number (§4.2.4) types, but does not include bool (§4.2.1) or char
(§4.2.2). An implementation may provide other numeric types (such as signed byte,
unsigned integer, and integers of other sizes).

A collection is a group of one or more related items, which need not have the same
type. Examples of collection types are arrays, stacks, queues, lists, and hash tables. A
program can enumerate (or iterate) over the elements in a collection, getting access to
each element one at a time. Common ways to do this are with the foreach  statement
(§8.4.4) and the ForEach-Object cmdlet. The type of an object that represents an
enumerator is described in §4.5.16.

In this chapter, there are tables that list the accessible members for a given type. For
methods, the Type is written with the following form: returnType/argumentTypeList. If
the argument type list is too long to fit in that column, it is shown in the Purpose
column instead.

Other integer types are SByte , Int16 , UInt16 , UInt32 , and UInt64 , all in the namespace
System.

Many collection classes are defined as part of the System.Collections or
System.Collections.Generic namespaces. Most collection classes implement the
interfaces ICollection , IComparer , IEnumerable , IList , IDictionary , and
IDictionaryEnumerator  and their generic equivalents.

You can also use shorthand names for some types. For more information, see
about_Type_Accelerators.

This type cannot be instantiated. It provides a means to discard a value explicitly using
the cast operator (§7.2.9).

4.1 Special types

4.1.1 The void type

4.1.2 The null type

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_type_accelerators


The null type has one instance, the automatic variable $null (§2.3.2.2), also known as the
null value. This value provides a means for expressing "nothingness" in reference
contexts. The characteristics of this type are unspecified.

Every type in PowerShell except the null type (§4.1.2) is derived directly or indirectly from
the type object, so object is the ultimate base type of all non-null types. A variable
constrained (§5.3) to type object is really not constrained at all, as it can contain a value
of any type.

The Boolean type is bool . There are only two values of this type, False and True,
represented by the automatic variables $false  and $true , respectively (§2.3.2.2).

In PowerShell, bool  maps to System.Boolean .

A character value has type char, which is capable of storing any UTF-16-encoded 16-bit
Unicode code point.

The type char has the following accessible members:

Member Member Kind Type Purpose

MaxValue Static property
(read-only)

char The largest possible value of type char

MinValue Static property
(read-only)

char The smallest possible value of type char

IsControl Static method bool/char Tests if the character is a control character

IsDigit Static method bool/char Tests if the character is a decimal digit

IsLetter Static method bool/char Tests if the character is an alphabetic letter

4.1.3 The object type

4.2 Value types

4.2.1 Boolean

4.2.2 Character

ﾉ Expand table



Member Member Kind Type Purpose

IsLetterOrDigit Static method bool/char Tests if the character is a decimal digit or
alphabetic letter

IsLower Static method bool/char Tests if the character is a lowercase
alphabetic letter

IsPunctuation Static method bool/char Tests if the character is a punctuation mark

IsUpper Static method bool/char Tests if the character is an uppercase
alphabetic letter

IsWhiteSpace Static method bool/char Tests if the character is a white space
character.

ToLower Static method char/string Converts the character to lowercase

ToUpper Static method char/string Converts the character to uppercase

Windows PowerShell: char maps to System.Char.

There are two signed integer types, both of use two's-complement representation for
negative values:

Type int , which uses 32 bits giving it a range of -2147483648 to +2147483647,
inclusive.
Type long , which uses 64 bits giving it a range of -9223372036854775808 to
+9223372036854775807, inclusive.

Type int has the following accessible members:

Member Member Kind Type Purpose

MaxValue Static property (read-only) int The largest possible value of type int

MinValue Static property (read-only) int The smallest possible value of type int

Type long has the following accessible members:

4.2.3 Integer

ﾉ Expand table

ﾉ Expand table



Member Member Kind Type Purpose

MaxValue Static property (read-only) long The largest possible value of type long

MinValue Static property (read-only) long The smallest possible value of type long

There is one unsigned integer type:

Type byte , which uses 8 bits giving it a range of 0 to 255, inclusive.

Type byte  has the following accessible members:

Member Member Kind Type Purpose

MaxValue Static property (read-only) byte The largest possible value of type byte

MinValue Static property (read-only) byte The smallest possible value of type byte

In PowerShell, byte , int , and long  map to System.Byte , System.Int32 , and

System.Int64 , respectively.

There are two real (or floating-point) types:

Type float  uses the 32-bit IEEE single-precision representation.
Type double  uses the 64-bit IEEE double-precision representation.

A third type name, single , is a synonym for type float ; float  is used throughout this
specification.

Although the size and representation of the types float  and double  are defined by this
specification, an implementation may use extended precision for intermediate results.

Type float has the following accessible members:

Member Member Kind Type Purpose

MaxValue Static property (read-only) float The largest possible value of type float

ﾉ Expand table

4.2.4 Real number

4.2.4.1 float and double

ﾉ Expand table



Member Member Kind Type Purpose

MinValue Static property (read-only) float The smallest possible value of type float

NaN Static property (read-only) float The constant value Not-a-Number

NegativeInfinity Static property (read-only) float The constant value negative infinity

PositiveInfinity Static property (read-only) float The constant value positive infinity

Type double has the following accessible members:

Member Member Kind Type Purpose

MaxValue Static property (read-
only)

double The largest possible value of type double

MinValue Static property (read-
only)

double The smallest possible value of type
double

NaN Static property (read-
only)

double The constant value Not-a-Number

NegativeInfinity Static property (read-
only)

double The constant value negative infinity

PositiveInfinity Static property (read-
only)

double The constant value positive infinity

In PowerShell, float  and double  map to System.Single  and System.Double ,
respectively.

Type decimal uses a 128-bit representation. At a minimum it must support a scale s such
that 0 <= s <= at least 28, and a value range -79228162514264337593543950335 to
79228162514264337593543950335. The actual representation of decimal is
implementation defined.

Type decimal has the following accessible members:

ﾉ Expand table

4.2.4.2 decimal

ﾉ Expand table



Member Member Kind Type Purpose

MaxValue Static property (read-only) decimal The largest possible value of type decimal

MinValue Static property (read-only) decimal The smallest possible value of type decimal

In PowerShell, decimal  maps to System.Decimal . The representation of decimal is as
follows:

When considered as an array of four int  values it contains the following elements:
Index 0 (bits 0‑31) contains the low-order 32 bits of the decimal's coefficient.
Index 1 (bits 32‑63) contains the middle 32 bits of the decimal's coefficient.
Index 2 (bits 64‑95) contains the high-order 32 bits of the decimal's coefficient.
Index 3 (bits 96‑127) contains the sign bit and scale, as follows:

bits 0--15 are zero
bits 16‑23 contains the scale as a value 0--28
bits 24‑30 are zero
bit 31 is the sign (0 for positive, 1 for negative)

This type is used to constrain the type of a parameter in a command (§8.10.5). If an
argument having the corresponding parameter name is present the parameter tests
$true; otherwise, it tests $false .

In PowerShell, switch  maps to System.Management.Automation.SwitchParameter .

７ Note

Decimal real numbers have a characteristic called scale, which represents the
number of digits to the right of the decimal point. For example, the value 2.340 has
a scale of 3 where trailing zeros are significant. When two decimal real numbers are
added or subtracted, the scale of the result is the larger of the two scales. For
example, 1.0 + 2.000 is 3.000, while 5.0 - 2.00 is 3.00. When two decimal real
numbers are multiplied, the scale of the result is the sum of the two scales. For
example, 1.0 * 2.000 is 2.0000. When two decimal real numbers are divided, the
scale of the result is the scale of the first less the scale of the second. For example,
4.00000/2.000 is 2.00. However, a scale cannot be less than that needed to preserve
the correct result. For example, 3.000/2.000, 3.00/2.000, 3.0/2.000, and 3/2 are all
1.5.

4.2.5 The switch type



An enumeration type is one that defines a set of named constants representing all the
possible values that can be assigned to an object of that enumeration type. In some
cases, the set of values are such that only one value can be represented at a time. In
other cases, the set of values are distinct powers of two, and by using the -bor operator
(§7.8.5), multiple values can be encoded in the same object.

The PowerShell environment provides a number of enumeration types, as described in
the following sections.

This implementation-defined type has the following mutually exclusive-valued
accessible members:

Member Member Kind Purpose

Continue Enumeration
constant

The PowerShell runtime will continue processing and notify
the user that an action has occurred.

Inquire Enumeration
constant

The PowerShell runtime will stop processing and ask the
user how it should proceed.

SilentlyContinue Enumeration
constant

The PowerShell runtime will continue processing without
notifying the user that an action has occurred.

Stop Enumeration
constant

The PowerShell runtime will stop processing when an
action occurs.

In PowerShell, this type is System.Management.Automation.ActionPreference .

This implementation-defined type has the following mutually exclusive-valued
accessible members:

Member Member Kind Purpose

High Enumeration
constant

The action performed has a high risk of losing data, such as
reformatting a hard disk.

4.2.6 Enumeration types

4.2.6.1 Action-Preference type

ﾉ Expand table

4.2.6.2 Confirm-Impact type

ﾉ Expand table



Member Member Kind Purpose

Low Enumeration
constant

The action performed has a low risk of losing data.

Medium Enumeration
constant

The action performed has a medium risk of losing data.

None Enumeration
constant

Do not confirm any actions (suppress all requests for
confirmation).

In PowerShell, this type is System.Management.Automation.ConfirmImpact .

This implementation-defined type has the following accessible members, which can be
combined:

Member Member Kind Purpose

Archive Enumeration
constant

The file's archive status. Applications use this attribute to
mark files for backup or removal.

Compressed Enumeration
constant

The file is compressed.

Device Reserved for future use.

Directory Enumeration
constant

The file is a directory.

Encrypted Enumeration
constant

The file or directory is encrypted. For a file, this means that
all data in the file is encrypted. For a directory, this means
that encryption is the default for newly created files and
directories.

Hidden Enumeration
constant

The file is hidden, and thus is not included in an ordinary
directory listing.

Normal Enumeration
constant

The file is normal and has no other attributes set. This
attribute is valid only if used alone.

NotContentIndexed Enumeration
constant

The file will not be indexed by the operating system's
content indexing service.

Offline Enumeration
constant

The file is offline. The data of the file is not immediately
available.

4.2.6.3 File-Attributes type

ﾉ Expand table



Member Member Kind Purpose

ReadOnly Enumeration
constant

The file is read-only.

ReparsePoint Enumeration
constant

The file contains a reparse point, which is a block of user-
defined data associated with a file or a directory.

SparseFile Enumeration
constant

The file is a sparse file. Sparse files are typically large files
whose data are mostly zeros.

System Enumeration
constant

The file is a system file. The file is part of the operating
system or is used exclusively by the operating system.

Temporary Enumeration
constant

The file is temporary. File systems attempt to keep all of
the data in memory for quicker access rather than flushing
the data back to mass storage. A temporary file should be
deleted by the application as soon as it is no longer
needed.

In PowerShell, this type is System.IO.FileAttributes with attribute FlagsAttribute.

This implementation-defined type has the following accessible members, which can be
combined:

Member Member Kind Purpose

IgnoreCase Enumeration constant Specifies that the matching is case-insensitive.

None Enumeration constant Specifies that no options are set.

An implementation may provide other values.

In PowerShell, this type is System.Text.RegularExpressions.RegexOptions  with attribute

FlagsAttribute . The following extra values are defined: Compiled , CultureInvariant ,
ECMAScript , ExplicitCapture , IgnorePatternWhitespace , Multiline , RightToLeft ,
Singleline .

4.2.6.4 Regular-Expression-Option type

ﾉ Expand table

4.3 Reference types

4.3.1 Strings



A string value has type string and is an immutable sequence of zero or more characters
of type char each containing a UTF-16-encoded 16-bit Unicode code point.

Type string has the following accessible members:

Member Member Kind Type Purpose

Length Instance
Property

int (read-
only)

Gets the number of characters in the string

ToLower Instance
Method

string Creates a new string that contains the lowercase
equivalent

ToUpper Instance
Method

string Creates a new string that contains the uppercase
equivalent

In PowerShell, string  maps to System.String .

All array types are derived from the type array . This type has the following accessible
members:

Member Member
Kind

Type Purpose

Length Instance
Property
(read-only)

int Number of elements in the array

Rank Instance
Property
(read-only)

int Number of dimensions in the array

Copy Static
Method

void/see
Purpose
column

Copies a range of elements from one array to another.
There are four versions, where source is the source array,
destination is the destination array, count is the number
of elements to copy, and sourceIndex and
destinationIndex are the starting locations in their
respective arrays:

Copy(source, destination, int count)
Copy(source, destination, long count)
Copy(source, sourceIndex, destination, destinationIndex,

ﾉ Expand table

4.3.2 Arrays

ﾉ Expand table



Member Member
Kind

Type Purpose

int count)
Copy(source, sourceIndex, destination, destinationIndex,
long count)

GetLength Instance
Method
(read-only)

int/none Number of elements in a given dimension

GetLength(int dimension)

For more details on arrays, see §9.

In PowerShell, array  maps to System.Array .

Type Hashtable has the following accessible members:

Member Member Kind Type Purpose

Count Instance
Property

int Gets the number of key/value pairs in the
Hashtable

Keys Instance
Property

Implementation-
defined

Gets a collection of all the keys

Values Instance
Property

Implementation-
defined

Gets a collection of all the values

Remove Instance
Method

void/none Removes the designated key/value

For more details on Hashtables, see §10.

In PowerShell, Hashtable  maps to System.Collections.Hashtable . Hashtable  elements
are stored in an object of type DictionaryEntry , and the collections returned by Keys
and Values have type ICollection .

Type xml implements the W3C Document Object Model (DOM) Level 1 Core and the
Core DOM Level 2. The DOM is an in-memory (cache) tree representation of an XML

4.3.3 Hashtables

ﾉ Expand table

4.3.4 The xml type



document and enables the navigation and editing of this document. This type supports
the subscript operator [] (§7.1.4.4).

In PowerShell, xml  maps to System.Xml.XmlDocument .

Type regex  provides machinery for supporting regular expression processing. It is used
to constrain the type of a parameter (§5.3) whose corresponding argument might
contain a regular expression.

In PowerShell, regex  maps to System.Text.RegularExpressions.Regex .

Ordinarily, arguments are passed to commands by value. In the case of an argument
having some value type a copy of the value is passed. In the case of an argument having
some reference type a copy of the reference is passed.

Type ref provides machinery to allow arguments to be passed to commands by
reference, so the commands can modify the argument's value. Type ref has the following
accessible members:

Member Member Kind Type Purpose

Value Instance property
(read-write)

The type of the value being
referenced.

Gets/sets the value being
referenced.

Consider the following function definition and call:

PowerShell

Consider the case in which $number is type-constrained:

4.3.5 The regex type

4.3.6 The ref type

ﾉ Expand table

function Doubler {
    param ([ref]$x) # parameter received by reference
    $x.Value *= 2.0 # note that 2.0 has type double
}

$number = 8 # designates a value of type int, value 8
Doubler([ref]$number) # argument received by reference
$number # designates a value of type double, value 8.0



PowerShell

As shown, both the argument and its corresponding parameter must be declared ref .

In PowerShell, ref  maps to System.Management.Automation.PSReference .

Type scriptblock  represents a precompiled block of script text (§7.1.8) that can be used
as a single unit. It has the following accessible members:

Member Member
Kind

Type Purpose

Attributes Instance
property
(read-only)

Collection of
attributes

Gets the attributes of the script block.

File Instance
property
(read-only)

string Gets the name of the file in which the
script block is defined.

Module Instance
property
(read-only)

implementation
defined ([§4.5.12]
[§4.5.12])

Gets information about the module in
which the script block is defined.

GetNewClosure Instance
method

scriptblock
/none

Retrieves a script block that is bound
to a module. Any local variables that
are in the context of the caller will be
copied into the module.

Invoke Instance
method

Collection of
object/object[]

Invokes the script block with the
specified arguments and returns the
results.

InvokeReturnAsIs Instance
method

object/object[] Invokes the script block with the
specified arguments and returns any
objects generated.

Create Static
method

scriptblock
/string

Creates a new scriptblock object that
contains the specified script.

[int]$number = 8 # designates a value of type int, value 8
Doubler([ref]$number) # argument received by reference
$number # designates a value of type int, value 8

4.3.7 The scriptblock type

ﾉ Expand table



In PowerShell, scriptblock  maps to System.Management.Automation.ScriptBlock . Invoke
returns a collection of PSObject .

Type math  provides access to some constants and methods useful in mathematical
computations. It has the following accessible members:

Member Member Kind Type Purpose

E Static
property
(read-only)

double Natural logarithmic base

PI Static
property
(read-only)

double Ratio of the circumference of a circle to its
diameter

Abs Static method numeric/numeric Absolute value (the return type is the same
as the type of the argument passed in)

Acos Static method double / double Angle whose cosine is the specified
number

Asin Static method double / double Angle whose sine is the specified number

Atan Static method double / double Angle whose tangent is the specified
number

Atan2 Static method double / double y,
double x

Angle whose tangent is the quotient of
two specified numbers x and y

Ceiling Static method decimal / decimal

double / double

smallest integer greater than or equal to
the specified number

Cos Static method double / double Cosine of the specified angle

Cosh Static method double / double Hyperbolic cosine of the specified angle

Exp Static method double / double e raised to the specified power

Floor Static method decimal / decimal

double / double

Largest integer less than or equal to the
specified number

Log Static method double / double
number

Logarithm of number using base e or base
base

4.3.8 The math type

ﾉ Expand table



Member Member Kind Type Purpose

double / double
number, double base

Log10 Static method double / double Base-10 logarithm of a specified number

Max Static method numeric/numeric Larger of two specified numbers (the
return type is the same as the type of the
arguments passed in)

Min Static method numeric/numeric,
numeric

Smaller of two specified numbers (the
return type is the same as the type of the
arguments passed in)

Pow Static method double / double x,
double y

A specified number x raised to the
specified power y

Sin Static method double / double Sine of the specified angle

Sinh Static method double / double Hyperbolic sine of the specified angle

Sqrt Static method double / double Square root of a specified number

Tan Static method double / double Tangent of the specified angle

Tanh Static method double / double Hyperbolic tangent of the specified angle

In PowerShell, Math  maps to System.Math .

Type ordered  is a pseudo type used only for conversions.

Type pscustomobject  is a pseudo type used only for conversions.

A number of programming languages and environments provide types that can be
specialized. Many of these types are referred to as container types, as instances of them
are able to contain objects of some other type. Consider a type called Stack that can
represent a stack of values, which can be pushed on and popped off. Typically, the user
of a stack wants to store only one kind of object on that stack. However, if the language
or environment does not support type specialization, multiple distinct variants of the

4.3.9 The ordered type

4.3.10 The pscustomobject type

4.4 Generic types



type Stack must be implemented even though they all perform the same task, just with
different type elements.

Type specialization allows a generic type to be implemented such that it can be
constrained to handling some subset of types when it is used. For example,

A generic stack type that is specialized to hold strings might be written as
Stack[string] .
A generic dictionary type that is specialized to hold int keys with associated string
values might be written as Dictionary[int,string] .
A stack of stack of strings might be written as Stack[Stack[string]] .

Although PowerShell does not define any built-in generic types, it can use such types if
they are provided by the host environment. See the syntax in §7.1.10.

The complete name for the type Stack[string]  suggested above is
System.Collections.Generic.Stack[string] . The complete name for the type
Dictionary[int,string]  suggested above is
System.Collections.Generic.Dictionary[int,string] .

In some circumstances, an implementation of PowerShell creates objects of some type,
and those objects have members accessible to script. However, the actual name of those
types need not be specified, so long as the accessible members are specified sufficiently
for them to be used. That is, scripts can save objects of those types and access their
members without actually knowing those types' names. The following subsections
specify these types.

This type encapsulates the state of a provider. It has the following accessible members:

Member Member Kind Type Purpose

Drives Instance property
(read-only)

Implementation defined
(§4.5.2)

A collection of drive
description objects

Name Instance property
(read-only)

string The name of the provider

4.5 Anonymous types

4.5.1 Provider description type

ﾉ Expand table



In PowerShell, this type is System.Management.Automation.ProviderInfo .

This type encapsulates the state of a drive. It has the following accessible members:

Member Member Kind Type Purpose

CurrentLocation Instance property (read-
write)

string The current working location (§3.1.4) of
the drive

Description Instance property (read-
write)

string The description of the drive

Name Instance property (read-
only)

string The name of the drive

Root Instance property (read-
only)

string The name of the drive

In PowerShell, this type is System.Management.Automation.PSDriveInfo .

This type encapsulates the state of a variable. It has the following accessible members:

Member Member Kind Type Purpose

Attributes Instance
property
(read-only)

Implementation
defined

A collection of attributes

Description Instance
property
(read-write)

string The description assigned to the variable
via the New-Variable or Set-Variable
cmdlets.

Module Instance
property
(read-only)

Implementation
defined (§4.5.12)

The module from which this variable was
exported

ModuleName Instance
property
(read-only)

string The module in which this variable was
defined

4.5.2 Drive description type

ﾉ Expand table

4.5.3 Variable description type

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-variable?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/set-variable?view=powershell-7.5


Member Member Kind Type Purpose

Name Instance
property
(read-only)

string The name assigned to the variable when it
was created in the PowerShell language or
via the New-Variable  and Set-Variable
cmdlets.

Options Instance
property
(read-write)

string The options assigned to the variable via
the New-Variable  and Set-Variable
cmdlets.

Value Instance
property
(read-write)

object The value assigned to the variable when it
was assigned in the PowerShell language
or via the New-Variable  and Set-Variable
cmdlets.

In PowerShell, this type is System.Management.Automation.PSVariable .

Windows PowerShell: The type of the attribute collection is
System.Management.Automation.PSVariableAttributeCollection.

This type encapsulates the state of an alias. It has the following accessible members:

Member Member Kind Type Purpose

CommandType Instance
property
(read-only)

Implementation
defined

Should compare equal with
"Alias".

Definition Instance
property
(read-only)

string The command or alias to which
the alias was assigned via the
New-Alias or Set-Alias cmdlets.

Description Instance
property
(read-write)

string The description assigned to the
alias via the New-Alias  or Set-
Alias  cmdlets.

Module Instance
property
(read-only)

Implementation
defined (§4.5.12)

The module from which this alias
was exported

ModuleName Instance
property
(read-only)

string The module in which this alias
was defined

4.5.4 Alias description type

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-alias?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/set-alias?view=powershell-7.5


Member Member Kind Type Purpose

Name Instance
property
(read-only)

string The name assigned to the alias
when it was created via the New-
Alias  or Set-Alias  cmdlets.

Options Instance
property
(read-write)

string The options assigned to the alias
via the New-Alias New-Alias  or
Set-Alias  cmdlets.

OutputType Instance
property
(read-only)

Implementation
defined collection

Specifies the types of the values
output by the command to which
the alias refers.

Parameters Instance
property
(read-only)

Implementation
defined collection

The parameters of the command.

ParameterSets Instance
property
(read-only)

Implementation
defined collection

Information about the parameter
sets associated with the
command.

ReferencedCommand Instance
property
(read-only)

Implementation
defined

Information about the command
that is immediately referenced by
this alias.

ResolvedCommand Instance
property
(read-only)

Implementation
defined

Information about the command
to which the alias eventually
resolves.

In PowerShell, this type is System.Management.Automation.AliasInfo .

This type encapsulates the state of a working location. It has the following accessible
members:

Member Member Kind Type Purpose

Drive Instance property
(read-only)

Implementation defined
(§4.5.2)

A drive description object

Path Instance property
(read-only)

string The working location

Provider Instance property Implementation defined The provider

4.5.5 Working location description type

ﾉ Expand table



Member Member Kind Type Purpose

(read-only) (§4.5.1)

ProviderPath Instance property
(read-only)

string The current path of the
provider

A stack of working locations is a collection of working location objects, as described
above.

In PowerShell, a current working location is represented by an object of type
System.Management.Automation.PathInfo . A stack of working locations is represented by
an object of type System.Management.Automation.PathInfoStack , which is a collection of
PathInfo  objects.

This type encapsulates the state of an environment variable. It has the following
accessible members:

Member Member Kind Type Purpose

Name Instance property (read-write) string The name of the environment variable

Value Instance property (read-write) string The value of the environment variable

In PowerShell, this type is System.Collections.DictionaryEntry . The name of the
variable is the dictionary key. The value of the environment variable is the dictionary
value. Name is an AliasProperty  that equates to Key.

This type encapsulates the state of an application. It has the following accessible
members:

Member Member Kind Type Purpose

CommandType Instance
property (read-
only)

Implementation
defined

Should compare equal with
"Application".

4.5.6 Environment variable description type

ﾉ Expand table

4.5.7 Application description type

ﾉ Expand table



Member Member Kind Type Purpose

Definition Instance
property (read-
only)

string A description of the application.

Extension Instance
property (read-
write)

string The extension of the application
file.

Module Instance
property (read-
only)

Implementation
defined (§4.5.12)

The module that defines this
command.

ModuleName Instance
property (read-
only)

string The name of the module that
defines the command.

Name Instance
property (read-
only)

string The name of the command.

OutputType Instance
property (read-
only)

Implementation
defined collection

Specifies the types of the values
output by the command.

Parameters Instance
property (read-
only)

Implementation
defined collection

The parameters of the command.

ParameterSets Instance
property (read-
only)

Implementation
defined collection

Information about the parameter
sets associated with the command.

Path Instance
property (read-
only)

string Gets the path of the application
file.

In PowerShell, this type is System.Management.Automation.ApplicationInfo .

This type encapsulates the state of a cmdlet. It has the following accessible members:

4.5.8 Cmdlet description type

ﾉ Expand table



Member Member
Kind

Type Purpose

CommandType Instance
property
(read-only)

Implementation
defined

Should compare equal with
"Cmdlet".

DefaultParameterSet Instance
property
(read-only)

Implementation
defined

The default parameter set that is
used if PowerShell cannot determine
which parameter set to use based on
the supplied arguments.

Definition Instance
property
(read-only)

string A description of the cmdlet.

HelpFile Instance
property
(read-write)

string The path to the Help file for the
cmdlet.

ImplementingType Instance
property
(read-write)

Implementation
defined

The type that implements the
cmdlet.

Module Instance
property
(read-only)

Implementation
defined (§4.5.12)

The module that defines this cmdlet.

ModuleName Instance
property
(read-only)

string The name of the module that
defines the cmdlet.

Name Instance
property
(read-only)

string The name of the cmdlet.

Noun Instance
property
(read-only)

string The noun name of the cmdlet.

OutputType Instance
property
(read-only)

Implementation
defined collection

Specifies the types of the values
output by the cmdlet.

Parameters Instance
property
(read-only)

Implementation
defined collection

The parameters of the cmdlet.

ParameterSets Instance
property
(read-only)

Implementation
defined collection

Information about the parameter
sets associated with the cmdlet.



Member Member
Kind

Type Purpose

Verb Instance
property
(read-only)

string The verb name of the cmdlet.

PSSnapIn Instance
property
(read-only)

Implementation
defined

Windows PowerShell: Information
about the Windows PowerShell
snap-in that is used to register the
cmdlet.

In PowerShell, this type is System.Management.Automation.CmdletInfo .

This type encapsulates the state of an external script (one that is directly executable by
PowerShell, but is not built-in). It has the following accessible members:

Member Member Kind Type Purpose

CommandType Instance
property (read-
only)

Implementation
defined

Should compare equal with
"ExternalScript".

Definition Instance
property (read-
only)

string A definition of the script.

Module Instance
property (read-
only)

Implementation
defined (§4.5.12)

The module that defines this script.

ModuleName Instance
property (read-
only)

string The name of the module that
defines the script.

Name Instance
property (read-
only)

string The name of the script.

OriginalEncoding Instance
property (read-
only)

Implementation
defined

The original encoding used to
convert the characters of the script
to bytes.

4.5.9 External script description type

ﾉ Expand table



Member Member Kind Type Purpose

OutputType Instance
property (read-
only)

Implementation
defined collection

Specifies the types of the values
output by the script.

Parameters Instance
property (read-
only)

Implementation
defined collection

The parameters of the script.

ParameterSets Instance
property (read-
only)

Implementation
defined collection

Information about the parameter
sets associated with the script.

Path Instance
property (read-
only)

string The path to the script file.

ScriptBlock Instance
property (read-
only)

scriptblock The external script.

ScriptContents Instance
property (read-
only)

string The original contents of the script.

In PowerShell, this type is System.Management.Automation.ExternalScriptInfo .

This type encapsulates the state of a function. It has the following accessible members:

Member Member
Kind

Type Purpose

CmdletBinding Instance
property
(read-
only)

bool Indicates whether the function uses the
same parameter binding that compiled
cmdlets use (see §12.3.5).

CommandType Instance
property
(read-
only)

Implementation
defined

Can be compared for equality with
"Function" or "Filter" to see which of
those this object represents.

DefaultParameterSet Instance
property

string Specifies the parameter set to use if that
cannot be determined from the

4.5.10 Function description type

ﾉ Expand table



Member Member
Kind

Type Purpose

(read-
only)

arguments (see §12.3.5).

Definition Instance
property
(read-
only)

string A string version of ScriptBlock

Description Instance
property
(read-
write)

string The description of the function.

Module Instance
property
(read-
only)

Implementation
defined (§4.5.12)

The module from which this function was
exported

ModuleName Instance
property
(read-
only)

string The module in which this function was
defined

Name Instance
property
(read-
only)

string The name of the function

Options Instance
property
(read-
write)

Implementation
defined

The scope options for the function
(§3.5.4).

OutputType Instance
property
(read-
only)

Implementation
defined
collection

Specifies the types of the values output,
in order (see §12.3.6).

Parameters Instance
property
(read-
only)

Implementation
defined
collection

Specifies the parameter names, in order.
If the function acts like a cmdlet (see
CmdletBinding above) the common
parameters are included at the end of the
collection.

ParameterSets Instance
property
(read-
only)

Implementation
defined
collection

Information about the parameter sets
associated with the command. For each
parameter, the result shows the
parameter name and type, and indicates

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


Member Member
Kind

Type Purpose

if the parameter is mandatory, by
position or a switch parameter. If the
function acts like a cmdlet (see
CmdletBinding above) the common
parameters are included at the end of the
collection.

ScriptBlock Instance
property
(read-
only)

scriptblock
(§4.3.6)

The body of the function

In PowerShell, this type is System.Management.Automation.FunctionInfo .

CommandType  has type System.Management.Automation.CommandTypes .
Options  has type System.Management.Automation.ScopedItemOptions .
OutputType  has type

System.Collections.ObjectModel.ReadOnlyCollection``1[[System.Management.Automa

tion.PSTypeName,System.Management.Automation]] .

Parameters  has type
System.Collections.Generic.Dictionary``2[[System.String,mscorlib],

[System.Management.Automation.ParameterMetadata,System.Management.Automation]]

.
ParameterSets  has type

System.Collections.ObjectModel.ReadOnlyCollection``1[[System.Management.Automa

tion.CommandParameterSetInfo,System.Management.Automation]] .
Visibility has type System.Management.Automation.SessionStateEntryVisibility .
PowerShell also has a property called Visibility.

This type encapsulates the state of a filter. It has the same set of accessible members as
the function description type (§4.5.10).

In PowerShell, this type is System.Management.Automation.FilterInfo . It has the same set
of properties as System.Management.Automation.FunctionInfo  (§4.5.11).

This type encapsulates the state of a module. It has the following accessible members:

4.5.11 Filter description type

4.5.12 Module description type

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


Member Member Kind Type Purpose

Description Instance property
(read-write)

string The description of the module (set
by the manifest)

ModuleType Instance property
(read-only)

Implementation
defined

The type of the module (Manifest,
Script, or Binary)

Name Instance property
(read-only)

string The name of the module

Path Instance property
(read-only)

string The module's path

In PowerShell, this type is System.Management.Automation.PSModuleInfo . The type of
ModuleType  is System.Management.Automation.ModuleType .

This type encapsulates the state of a custom object. It has no accessible members.

In PowerShell, this type is System.Management.Automation.PSCustomObject . The cmdlets
Import-Module  and New-Object  can generate an object of this type.

The automatic variable $PSCmdlet  is an object that represents the cmdlet or function
being executed. The type of this object is implementation defined; it has the following
accessible members:

Member Member Kind Type Purpose

ParameterSetName Instance
property (read-
only)

string Name of the current parameter set (see
ParameterSetName)

ShouldContinue Instance method Overloaded

/bool

Requests confirmation of an operation
from the user.

ShouldProcess Instance method Overloaded Requests confirmation from the user
before an operation is performed.

ﾉ Expand table

4.5.13 Custom object description type

4.5.14 Command description type

ﾉ Expand table



Member Member Kind Type Purpose

/bool

In PowerShell, this type is System.Management.Automation.PSScriptCmdlet.

The automatic variable $Error  contains a collection of error records that represent
recent errors (§3.12). Although the type of this collection is unspecified, it does support
subscripting to get access to individual error records.

In PowerShell, the collection type is System.Collections.ArrayList . The type of an
individual error record in the collection is System.Management.Automation.ErrorRecord .
This type has the following public properties:

CategoryInfo - Gets information about the category of the error.
ErrorDetails - Gets and sets more detailed error information, such as a replacement
error message.
Exception - Gets the exception that is associated with this error record.
FullyQualifiedErrorId - Gets the fully qualified error identifier for this error record.
InvocationInfo - Gets information about the command that was invoked when the
error occurred.
PipelineIterationInfo - Gets the status of the pipeline when this error record was
created
TargetObject - Gets the object that was being processed when the error occurred.

A number of variables are enumerators for collections (§4). The automatic variable
$foreach  is the enumerator created for any foreach  statement. The automatic variable
$input  is the enumerator for a collection delivered to a function from the pipeline. The
automatic variable $switch  is the enumerator created for any switch  statement.

The type of an enumerator is implementation defined; it has the following accessible
members:

4.5.15 Error record description type

4.5.16 Enumerator description type

ﾉ Expand table



Member Member
Kind

Type Purpose

Current Instance
property
(read-only)

object Gets the current element in the collection. If the
enumerator is not currently positioned at an element of
the collection, the behavior is implementation defined.

MoveNext Instance
method

None/bool Advances the enumerator to the next element of the
collection. Returns $true if the enumerator was
successfully advanced to the next element; $false if the
enumerator has passed the end of the collection.

In PowerShell, these members are defined in the interface System.IEnumerator , which is
implemented by the types identified below. If the enumerator is not currently positioned
at an element of the collection, an exception of type InvalidOperationException  is
raised. For $foreach , this type is System.Array+SZArrayEnumerator . For $input , this type
is System.Collections.ArrayList+ArrayListEnumeratorSimple . For $switch , this type is

System.Array+SZArrayEnumerator .

The cmdlet New-Item can create items of various kinds including FileSystem directories.
The type of a directory description object is implementation defined; it has the following
accessible members:

Member Member Kind Type Purpose

Attributes Instance property
(read-write)

Implementation
defined (§4.2.6.3)

Gets or sets one or more of the
attributes of the directory object.

CreationTime Instance property
(read-write)

Implementation
defined (§4.5.19)

Gets and sets the creation time of
the directory object.

Extension Instance property
(read- only)

string Gets the extension part of the
directory name.

FullName Instance property
(read-only)

string Gets the full path of the directory.

LastWriteTime Instance property
(read-write)

Implementation
defined (§4.5.19)

Gets and sets the time when the
directory was last written to.

Name Instance property
(read- only)

string Gets the name of the directory.

4.5.17 Directory description type

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-item?view=powershell-7.5


In PowerShell, this type is System.IO.DirectoryInfo . The type of the Attributes property
is System.IO.FileAttributes .

The cmdlet New-Item  can create items of various kinds including FileSystem files. The
type of a file description object is implementation defined; it has the following
accessible members:

Member Member
Kind

Type Purpose

Attributes Instance
property
(read-write)

Implementation
defined (§4.2.6.3)

Gets or sets one or more of the attributes of
the file object.

BaseName Instance
property
(read- only)

string Gets the name of the file excluding the
extension.

CreationTime Instance
property
(read-write)

Implementation
defined (§4.5.19)

Gets and sets the creation time of the file
object.

Extension Instance
property
(read- only)

string Gets the extension part of the file name.

FullName Instance
property
(read-only)

string Gets the full path of the file.

LastWriteTime Instance
property
(read-write)

Implementation
defined (§4.5.19)

Gets and sets the time when the file was last
written to.

Length Instance
property
(read- only)

long Gets the size of the file, in bytes.

Name Instance
property
(read- only)

string Gets the name of the file.

VersionInfo Instance
property

Implementation
defined

Windows PowerShell: This ScriptProperty
returns a System.Diagnostics.FileVersionInfo

4.5.18 File description type

ﾉ Expand table



Member Member
Kind

Type Purpose

(read- only) for the file.

In PowerShell, this type is System.IO.FileInfo .

The type of a date-time description object is implementation defined; it has the
following accessible members:

Member Member Kind Type Purpose

Day Instance property
(read-only)

int Gets the day component of the month represented
by this instance.

Hour Instance property
(read-only)

int Gets the hour component of the date represented by
this instance.

Minute Instance property
(read-only)

int Gets the minute component of the date represented
by this instance.

Month Instance property
(read-only)

int Gets the month component of the date represented
by this instance.

Second Instance property
(read-only)

int Gets the seconds component of the date represented
by this instance.

Year Instance property
(read-only)

int Gets the year component of the date represented by
this instance.

An object of this type can be created by cmdlet Get-Date.

In PowerShell, this type is System.DateTime .

The type of a group-info description object is implementation defined; it has the
following accessible members:

4.5.19 Date-Time description type

ﾉ Expand table

4.5.20 Group-Info description type

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-date?view=powershell-7.5


Member Member Kind Type Purpose

Count Instance property
(read-only)

int Gets the number of elements in
the group.

Group Instance property
(read-only)

Implementation-defined
collection

Gets the elements of the
group.

Name Instance property
(read-only)

string Gets the name of the group.

Values Instance property
(read-only)

Implementation-defined
collection

Gets the values of the elements
of the group.

An object of this type can be created by cmdlet Group-Object.

In PowerShell, this type is Microsoft.PowerShell.Commands.GroupInfo .

The type of a generic-measure-info description object is implementation defined; it has
the following accessible members:

Member Member Kind Type Purpose

Average Instance property
(read-only)

double Gets the average of the values of the properties
that are measured.

Count Instance property
(read-only)

int Gets the number of objects with the specified
properties.

Maximum Instance property
(read-only)

double Gets the maximum value of the specified
properties.

Minimum Instance property
(read-only)

double Gets the minimum value of the specified
properties.

Property Instance property
(read-only)

string Gets the property to be measured.

Sum Instance property
(read-only)

double Gets the sum of the values of the specified
properties.

An object of this type can be created by cmdlet Measure-Object.

In PowerShell, this type is Microsoft.PowerShell.Commands.GenericMeasureInfo .

4.5.21 Generic-Measure-Info description type

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/group-object?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-object?view=powershell-7.5


The type of a text-info description object is implementation defined; it has the following
accessible members:

Member Member Kind Type Purpose

Characters Instance property (read-
only)

int Gets the number of characters in the target
object.

Lines Instance property (read-
only)

int Gets the number of lines in the target object.

Property Instance property (read-
only)

string Gets the property to be measured.

Words Instance property (read-
only)

int Gets the number of words in the target object.

An object of this type can be created by cmdlet Measure-Object .

In PowerShell, this type is Microsoft.PowerShell.Commands.TextMeasureInfo .

A credential object can then be used in various security operations. The type of a
credential object is implementation defined; it has the following accessible members:

Member Member Kind Type Purpose

Password Instance property (read-only) Implementation defined Gets the password.

UserName Instance property (read-only) string Gets the username.

An object of this type can be created by cmdlet Get-Credential.

In PowerShell, this type is System.Management.Automation.PSCredential .

The type of a method designator is implementation defined; it has the following
accessible members:

4.5.22 Text-Measure-Info description type

ﾉ Expand table

4.5.23 Credential type

ﾉ Expand table

4.5.24 Method designator type

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-credential?view=powershell-7.5


Member Member
Kind

Type Purpose

Invoke Instance
method

object/variable
number and type

Takes a variable number of arguments, and
indirectly calls the method referred to by the
parent method designator, passing in the
arguments.

An object of this type can be created by an invocation-expression (§7.1.3).

In PowerShell, this type is System.Management.Automation.PSMethod.

This type encapsulates the definition of a member. It has the following accessible
members:

Member Member Kind Type Purpose

Definition Instance property
(read-only)

string Gets the definition of the
member.

MemberType Instance property
(read-only)

Implementation
defined

Gets the PowerShell type of the
member.

Name Instance property
(read-only)

string Gets the name of the member.

TypeName Instance property
(read-only)

string Gets the type name of the
member.

In PowerShell, this type is Microsoft.PowerShell.Commands.MemberDefinition .

A PowerShell implementation includes a family of core types (which are documented in
this chapter) that each contain their own set of base members. Those members can be
methods or properties, and they can be instance or static members. For example, the
base members of the type string (§4.3.1) are the instance property Length and the
instance methods ToLower and ToUpper.

ﾉ Expand table

4.5.25 Member definition type

ﾉ Expand table

4.6 Type extension and adaptation



When an object is created, it contains all the instance properties of that object's type,
and the instance methods of that type can be called on that object. An object may be
customized via the addition of instance members at runtime. The result is called a
custom object. Any members added to an instance exist only for the life of that instance;
other instances of the same core type are unaffected.

The base member set of a type can be augmented by the addition of the following kinds
of members:

adapted members, via the Extended Type System (ETS), most details of which are
unspecified.
extended members, via the cmdlet Add-Member.

In PowerShell, extended members can also be added via types.ps1xml  files. Adapted
and extended members are collectively called synthetic members.

The ETS adds the following members to all PowerShell objects: psbase, psadapted,
psextended, and pstypenames. See the Force and View parameters in the cmdlet Get-
Member for more information on these members.

An instance member may hide an extended and/or adapted member of the same name,
and an extended member may hide an adapted member. In such cases, the member
sets psadapted and psextended can be used to access those hidden members.

If a types.ps1xml  specifies a member called Supports, obj.psextended  provides access
to just that member and not to a member added via Add-Member .

There are three ways create a custom object having a new member M:

1. This approach can be used to add one or more NoteProperty members.

PowerShell

2. This approach can be used to add NoteProperty or ScriptMethod members.

PowerShell

3. This approach can be used to add any kind of member.

PowerShell

$x = New-Object PSObject -Property @{M = 123}

$x = New-Module -AsCustomObject {$M = 123 ; Export-ModuleMember --
Variable M}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-member?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member?view=powershell-7.5


PSObject  is the base type of all PowerShell types.

$x = New-Object PSObject
Add-Member -InputObject $x -Name M -MemberType NoteProperty -Value 123



5. Variables
Article • 01/08/2025

A variable represents a storage location for a value, and that value has a type. Traditional
procedural programming languages are statically typed; that is, the runtime type of a
variable is that with which it was declared at compile time. Object-oriented languages
add the idea of inheritance, which allows the runtime type of a variable to be that with
which it was declared at compile time or some type derived from that type. Being a
dynamically typed language, PowerShell's variables do not have types, per se. In fact,
variables are not defined; they simply come into being when they are first assigned a
value. And while a variable may be constrained (§5.3) to holding a value of a given type,
type information in an assignment cannot always be verified statically.

At different times, a variable may be associated with values of different types either
through assignment (§7.11) or the use of the ++  and --  operators (§7.1.5, §7.2.6). When
the value associated with a variable is changed, that value's type may change. For
example,

PowerShell

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

$i = "abc"        # $i holds a value of type string
$i = 2147483647   # $i holds a value of type int

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Any use of a variable that has not been created results in the value $null. To see if a
variable has been defined, use the Test-Path cmdlet.

A writable location is an expression that designates a resource to which a command has
both read and write access. A writable location may be a variable (§5), an array element
(§9), an associated value in a Hashtable accessed via a subscript (§10), a property (§7.1.2),
or storage managed by a provider (§3.1).

PowerShell defines the following categories of variables: static variables, instance
variables, array elements, Hashtable key/value pairs, parameters, ordinary variables, and
variables on provider drives. The subsections that follow describe each of these
categories.

In the following example

PowerShell

[Math::PI]  is a static variable

++$i              # $i now holds a value of type double because
                  # 2147483648 is too big to fit in type int

5.1 Writable location

5.2 Variable categories

function F ($p1, $p2) {
    $radius = 2.45
    $circumference = 2 * ([Math]::PI) * $radius

    $date = Get-Date -Date "2010-2-1 10:12:14 pm"
    $month = $date.Month

    $values = 10, 55, 93, 102
    $value = $values[2]

    $h1 = @{ FirstName = "James"; LastName = "Anderson" }
    $h1.FirstName = "Smith"

    $Alias:A = "Help"
    $Env:MyPath = "E:\Temp"
    ${E:output.txt} = 123
    $Function:F = { "Hello there" }
    $Variable:v = 10
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-path?view=powershell-7.5


$date.Month  is an instance variable
$values[2]  is an array element
$h1.FirstName  is a Hashtable  key whose corresponding value is $h1['FirstName']`
$p1  and $p2  are parameters
$radius , $circumference , $date , $month , $values , $value , and $h1  are ordinary
variables
$Alias:A , $Env:MyPath , ${E:output.txt} , and $Function:F  are variables on the
corresponding provider drives.
$Variable:v  is actually an ordinary variable written with its fully qualified provider
drive.

A data member of an object that belongs to the object's type rather than to that
particular instance of the type is called a static variable. See §4.2.3, §4.2.4.1, and §4.3.8
for some examples.

PowerShell provides no way to create new types that contain static variables; however,
objects of such types may be provided by the host environment.

Memory for creating and deleting objects containing static variables is managed by the
host environment and the garbage collection system.

See §7.1.2 for information about accessing a static variable.

A static data member can be a field or a property.

A data member of an object that belongs to a particular instance of the object's type
rather than to the type itself is called an instance variable. See §4.3.1, §4.3.2, and §4.3.3
for some examples.

A PowerShell host environment might provide a way to create new types that contain
instance variables or to add new instance variables to existing types.

Memory for creating and deleting objects containing static variables is managed by the
host environment and the garbage collection system.

See §7.1.2 for information about accessing an instance variable.

An instance data member can be a field or a property.

5.2.1 Static variables

5.2.2 Instance variables



An array can be created via a unary comma operator (§7.2.1), sub-expression (§7.1.6),
array-expression (§7.1.7), binary comma operator (§7.3), range operator (§7.4), or New-
Object cmdlet.

Memory for creating and deleting arrays is managed by the host environment and the
garbage collection system.

Arrays and array elements are discussed in §9.

A Hashtable is created via a hash literal (§2.3.5.6) or the New-Object cmdlet. A new
key/value pair can be added via the []  operator (§7.1.4.3).

Memory for creating and deleting Hashtables is managed by the host environment and
the garbage collection system.

Hashtables are discussed in §10.

A parameter is created when its parent command is invoked, and it is initialized with the
value of the argument provided in the invocation or by the host environment. A
parameter ceases to exist when its parent command terminates.

Parameters are discussed in §8.10.

An ordinary variable is defined by an assignment-expression (§7.11) or a foreach-
statement (§8.4.4). Some ordinary variables are predefined by the host environment
while others are transient, coming and going as needed at runtime.

The lifetime of an ordinary variable is that part of program execution during which
storage is guaranteed to be reserved for it. This lifetime begins at entry into the scope
with which it is associated, and ends no sooner than the end of the execution of that
scope. If the parent scope is entered recursively or iteratively, a new instance of the local
variable is created each time.

The storage referred to by an ordinary variable is reclaimed independently of the
lifetime of that variable.

5.2.3 Array elements

5.2.4 Hashtable key/value pairs

5.2.5 Parameters

5.2.6 Ordinary variables

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5


An ordinary variable can be named explicitly with a Variable: namespace prefix (§5.2.7).

The concept of providers and drives is introduced in §3.1, with each provider being able
to provide its own namespace drive(s). This allows resources on those drives to be
accessed as though they were ordinary variables (§5.2.6). In fact, an ordinary variable is
stored on the file system provider drive Variable: (§3.1.5) and can be accessed by its
ordinary name or its fully qualified namespace name.

Some namespace variable types are constrained implicitly (§5.3).

By default, a variable may designate a value of any type. However, a variable may be
constrained to designating values of a given type by specifying that type as a type literal
before its name in an assignment or a parameter. For example,

PowerShell

Any variable belonging to the namespace Env:, Alias:, or to the file system namespace
(§2.3.2, §3.1) is constrained implicitly to the type string . Any variable belonging to the
namespace Function: (§2.3.2, §3.1) is constrained implicitly to the type scriptblock .

5.2.7 Variables on provider drives

5.3 Constrained variables

[int]$i = 10   # constrains $i to designating ints only
$i = "Hello"   # error, no conversion to int
$i = "0x10"    # ok, conversion to int
$i = $true     # ok, conversion to int

function F ([int]$p1, [switch]$p2, [regex]$p3) { ... }



6. Conversions
Article • 03/24/2025

A type conversion is performed when a value of one type is used in a context that
requires a different type. If such a conversion happens automatically it is known as
implicit conversion. (A common example of this is with some operators that need to
convert one or more of the values designated by their operands.) Implicit conversion is
permitted provided the sense of the source value is preserved, such as no loss of
precision of a number when it is converted.

The cast operator (§7.2.9) allows for explicit conversion.

Conversions are discussed below, with supplementary information being provided as
necessary in the description of each operator in §6.19.

Explicit conversion of a value to the type it already has causes no change to that value
or its representation.

The rules for handing conversion when the value of an expression is being bound to a
parameter are covered in §6.17.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

6.1 Conversion to void

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


A value of any type can be discarded explicitly by casting it to type void. There is no
result.

The rules for converting any value to type bool are as follows:

A numeric or char value of zero is converted to False; a numeric or char value of
non-zero is converted to True.
A value of null type is converted to False.
A string of length 0 is converted to False; a string of length > 0 is converted to
True.
A switch parameter with value $true  is converted to True, and one with value

$false  is converted to False.
All other non-null reference type values are converted to True.

If the type implements IList:

If the object's Length > 2, the value is converted to True.
If the object's Length is 1 and that first element is not itself an IList, then if that
element's value is true, the value is converted to True.
Otherwise, if the first element's Count >= 1, the value is converted to True.
Otherwise, the value is converted to False.

The rules for converting any value to type char are as follows:

The conversion of a value of type bool, decimal, float, or double is in error.
A value of null type is converted to the null (U+0000) character.
An integer type value whose value can be represented in type char has that value;
otherwise, the conversion is in error.
The conversion of a string value having a length other than 1 is in error.
A string value having a length 1 is converted to a char having that one character's
value.
A numeric type value whose value after rounding of any fractional part can be
represented in the destination type has that rounded value; otherwise, the
conversion is in error.
For other reference type values, if the reference type supports such a conversion,
that conversion is used; otherwise, the conversion is in error.

6.2 Conversion to bool

6.3 Conversion to char



The rules for converting any value to type byte, int, or long are as follows:

The bool value False is converted to zero; the bool value True is converted to 1.
A char type value whose value can be represented in the destination type has that
value; otherwise, the conversion is in error.
A numeric type value whose value after rounding of any fractional part can be
represented in the destination type has that rounded value; otherwise, the
conversion is in error.
A value of null type is converted to zero.
A string that represents a number is converted as described in §6.16. If after
truncation of the fractional part the result can be represented in the destination
type the string is well formed and it has the destination type; otherwise, the
conversion is in error. If the string does not represent a number, the conversion is
in error.
For other reference type values, if the reference type supports such a conversion,
that conversion is used; otherwise, the conversion is in error.

The rules for converting any value to type float or double are as follows:

The bool value False is converted to zero; the bool value True is converted to 1.
A char value is represented exactly.
A numeric type value is represented exactly, if possible; however, for int, long, and
decimal conversions to float, and for long and decimal conversions to double,
some of the least significant bits of the integer value may be lost.
A value of null type is converted to zero.
A string that represents a number is converted as described in §6.16; otherwise, the
conversion is in error.
For other reference type values, if the reference type supports such a conversion,
that conversion is used; otherwise, the conversion is in error.

The rules for converting any value to type decimal are as follows:

The bool value False is converted to zero; the bool value True is converted to 1.
A char type value is represented exactly.

6.4 Conversion to integer

6.5 Conversion to float and double

6.6 Conversion to decimal



A numeric type value is represented exactly; however, if that value is too large or
too small to fit in the destination type, the conversion is in error.
A value of null type is converted to zero.
A string that represents a number is converted as described in §6.16; otherwise, the
conversion is in error.
For other reference type values, if the reference type supports such a conversion,
that conversion is used; otherwise, the conversion is in error.
The scale of the result of a successful conversion is such that the fractional part has
no trailing zeros.

The value of any type except the null type (4.1.2) can be converted to type object. The
value retains its type and representation.

The rules for converting any value to type string are as follows:

The bool value $false  is converted to "False"; the bool value $true  is converted to
"True".
A char type value is converted to a 1-character string containing that char.
A numeric type value is converted to a string having the form of a corresponding
numeric literal. However, the result has no leading or trailing spaces, no leading
plus sign, integers have base 10, and there is no type suffix. For a decimal
conversion, the scale is preserved. For values of -∞, +∞, and NaN, the resulting
strings are "-Infinity", "Infinity", and "NaN", respectively.
A value of null type is converted to the empty string.
For a 1-dimensional array, the result is a string containing the value of each
element in that array, from start to end, converted to string, with elements being
separated by the current Output Field Separator (§2.3.2.2). For an array having
elements that are themselves arrays, only the top-level elements are converted.
The string used to represent the value of an element that is an array, is
implementation defined. For a multi-dimensional array, it is flattened (§9.12) and
then treated as a 1‑dimensional array.
A value of null type is converted to the empty string.
A scriptblock type value is converted to a string containing the text of that block
without the delimiting { and } characters.
For an enumeration type value, the result is a string containing the name of each
enumeration constant encoded in that value, separated by commas.

6.7 Conversion to object

6.8 Conversion to string



For other reference type values, if the reference type supports such a conversion,
that conversion is used; otherwise, the conversion is in error.

The string used to represent the value of an element that is an array has the form
System.Type[] , System.Type[,] , and so on. For other reference types, the method
ToString  is called. For other enumerable types, the source value is treated like a 1-
dimensional array.

The rules for converting any value to an array type are as follows:

The target type may not be a multidimensional array.
A value of null type is retained as is.
For a scalar value other than $null  or a value of type hashtable, a new 1-element
array is created whose value is the scalar after conversion to the target element
type.
For a 1-dimensional array value, a new array of the target type is created, and each
element is copied with conversion from the source array to the corresponding
element in the target array.
For a multi-dimensional array value, that array is first flattened (§9.12), and then
treated as a 1-dimensional array value.
A string value is converted to an array of char having the same length with
successive characters from the string occupying corresponding positions in the
array.

For other enumerable types, a new 1-element array is created whose value is the
corresponding element after conversion to the target element type, if such a conversion
exists. Otherwise, the conversion is in error.

The object is converted to type string and then into an XML Document object of type
xml .

An expression that designates a value of type string may be converted to type regex .

6.9 Conversion to array

6.10 Conversion to xml

6.11 Conversion to regex

6.12 Conversion to scriptblock



The rules for converting any value to type scriptblock  are as follows:

A string value is treated as the name of a command optionally following by
arguments to a call to that command.

The rules for converting any value to an enumeration type are as follows:

A value of type string that contains one of the named values (with regard for case)
for an enumeration type is converted to that named value.
A value of type string that contains a comma-separated list of named values (with
regard for case) for an enumeration type is converted to the bitwise-OR of all
those named values.

The rules for converting any value to a reference type other than an array type or string
are as follows:

A value of null type is retained as is.
Otherwise, the behavior is implementation defined.

A number of pieces of machinery come in to play here; these include the possible use of
single argument constructors or default constructors if the value is a hashtable, implicit
and explicit conversion operators, and Parse methods for the target type; the use of
Convert.ConvertTo; and the ETS conversion mechanism.

If neither operand designates a value having numeric type, then

If the left operand designates a value of type bool, the conversion is in error.
Otherwise, all operands designating the value $null  are converted to zero of type
int and the process continues with the numeric conversions listed below.
Otherwise, if the left operand designates a value of type char and the right
operand designates a value of type bool, the conversion is in error.
Otherwise, if the left operand designates a value of type string but does not
represent a number (§6.16), the conversion is in error.
Otherwise, if the right operand designates a value of type string but does not
represent a number (§6.16), the conversion is in error.

6.13 Conversion to enumeration types

6.14 Conversion to other reference types

6.15 Usual arithmetic conversions



Otherwise, all operands designating values of type string are converted to
numbers (§6.16), and the process continues with the numeric conversions listed
below.
Otherwise, the conversion is in error.

Numeric conversions:

If one operand designates a value of type decimal, the value designated by the
other operand is converted to that type, if necessary. The result has type decimal.
Otherwise, if one operand designates a value of type double, the value designated
by the other operand is converted to that type, if necessary. The result has type
double.
Otherwise, if one operand designates a value of type float, the values designated
by both operands are converted to type double, if necessary. The result has type
double.
Otherwise, if one operand designates a value of type long, the value designated by
the other operand value is converted to that type, if necessary. The result has the
type first in the sequence long and double that can represent its value.
Otherwise, the values designated by both operands are converted to type int, if
necessary. The result has the first in the sequence int, long, double that can
represent its value without truncation.

Depending on its contents, a string can be converted explicitly or implicitly to a numeric
value. Specifically,

An empty string is converted to the value zero.
Leading and trailing spaces are ignored; however, a string may not consist of
spaces only.
A string containing only white space and/or line terminators is converted to the
value zero.
One leading + or - sign is permitted.
An integer number may have a hexadecimal prefix (0x or 0X).
An optionally signed exponent is permitted.
Type suffixes and multipliers are not permitted.
The case-distinct strings "-Infinity", "Infinity", and "NaN" are recognized as the
values -∞, +∞, and NaN, respectively.

6.16 Conversion from string to numeric type

6.17 Conversion during parameter binding



For information about parameter binding see §8.14.

When the value of an expression is being bound to a parameter, there are extra
conversion considerations, as described below:

If the parameter type is switch (§4.2.5, §8.10.5) and the parameter has no
argument, the value of the parameter in the called command is set to $true . If the
parameter type is other than switch, a parameter having no argument is in error.
If the parameter type is switch and the argument value is $null , the parameter
value is set to $false .
If the parameter type is object or is the same as the type of the argument, the
argument's value is passed without conversion.
If the parameter type is not object or scriptblock, an argument having type
scriptblock is evaluated and its result is passed as the argument's value. (This is
known as delayed script block binding.) If the parameter type is object or
scriptblock, an argument having type scriptblock is passed as is.
If the parameter type is a collection of type T2, and the argument is a scalar of type
T1, that scalar is converted to a collection of type T2 containing one element. If
necessary, the scalar value is converted to type T2 using the conversion rules of
this section.
If the parameter type is a scalar type other than object and the argument is a
collection, the argument is in error.
If the expected parameter type is a collection of type T2, and the argument is a
collection of type T1, the argument is converted to a collection of type T2 having
the same length as the argument collection. If necessary, the argument collection
element values are converted to type T2 using the conversion rules of this section.
If the steps above and the conversions specified earlier in this chapter do not
suffice, the rules in §6.18 are applied. If those fail, the parameter binding fails.

For an implicit conversion, PowerShell's built-in conversions are tried first. If they cannot
resolve the conversion, the .NET custom converters below are tried, in order, from top to
bottom. If a conversion is found, but it throws an exception, the conversion has failed.

PSTypeConverter: There are two ways of associating the implementation of the
PSTypeConverter class with its target class: through the type configuration file
(types.ps1xml) or by applying the System.ComponentModel.TypeConverterAttribute
attribute to the target class. Refer to the PowerShell SDK documentation for more
information.

6.18 .NET Conversion



TypeConverter: This CLR type provides a unified way of converting types of values
to other types, as well as for accessing standard values and sub-properties. The
most common type of converter is one that converts to and from a text
representation. The type converter for a class is bound to the class with a
System.ComponentModel.TypeConverterAttribute . Unless this attribute is overridden,
all classes that inherit from this class use the same type converter as the base class.
Refer to the PowerShell SDK and the Microsoft .NET framework documentation for
more information.

Parse Method: If the source type is string and the destination type has a method
called Parse , that method is called to perform the conversion.

Constructors: If the destination type has a constructor taking a single argument
whose type is that of the source type, that constructor is called to perform the
conversion.

Implicit Cast Operator: If the source type has an implicit cast operator that
converts to the destination type, that operator is called to perform the conversion.

Explicit Cast Operator: If the source type has an explicit cast operator that converts
to the destination type, that operator is called to perform the conversion. If the
destination type has an explicit cast operator that converts from the source type,
that operator is called to perform the conversion.

IConvertable: System.Convert.ChangeType  is called to perform the conversion.

The rules for converting any value to the pseudo-type ordered are as follows:

If the value is a hash literal (§2.3.5.6), the result is an object with an implementation
defined type that behaves like a hashtable and the order of the keys matches the
order specified in the hash literal.
Otherwise, the behavior is implementation defined.

Only hash literals (§2.3.5.6) can be converted to ordered. The result is an instance of
System.Collections.Specialized.OrderedDictionary .

The rules for converting any value to the pseudo-type pscustomobject are as follows:

6.19 Conversion to ordered

6.20 Conversion to pscustomobject



A value of type hashtable is converted to a PowerShell object. Each key in the
hashtable becomes a NoteProperty with the corresponding value.
Otherwise, the behavior is implementation defined.

The conversion is always allowed but does not change the type of the value.



7. Expressions
Article • 04/25/2024

Syntax:

Syntax

Description:

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

expression:
    primary-expression
    bitwise-expression
    logical-expression
    comparison-expression
    additive-expression
    multiplicative-expression

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

dashdash:
    dash dash

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


An expression is a sequence of operators and operands that designates a method, a
function, a writable location, or a value; specifies the computation of a value; produces
one or more side effects; or performs some combination thereof. For example,

The literal 123 is an expression that designates the int value 123.
The expression 1,2,3,4  designates the 4-element array object having the values
shown.
The expression 10.4 * $a  specifies a computation.
The expression $a++  produces a side effect.
The expression $a[$i--] = $b[++$j]  performs a combination of these things.

Except as specified for some operators, the order of evaluation of terms in an expression
and the order in which side effects take place are both unspecified. Examples of
unspecified behavior include the following: $i++ + $i , $i + --$i , and $w[$j++] =
$v[$j] .

An implementation of PowerShell may provide support for user-defined types, and
those types may have operations defined on them. All details of such types and
operations are implementation defined.

A top-level expression is one that is not part of some larger expression. If a top-level
expression contains a side-effect operator the value of that expression is not written to
the pipeline; otherwise, it is. See §7.1.1 for a detailed discussion of this.

Ordinarily, an expression that designates a collection ([§4§4]) is enumerated into its
constituent elements when the value of that expression is used. However, this is not the
case when the expression is a cmdlet invocation. For example,

PowerShell

In the first two uses of the $(...)  operator, the expression designating the collection is
the variable $x , which is enumerated resulting in three int  values, plus the int  99.
However, in the third case, the expression is a direct call to a cmdlet, so the result is not
enumerated, and $a  is an array of two elements, int[3]  and int .

$x = 10,20,30
$a = $($x; 99)                     # $a.Length is 4

$x = New-Object 'int[]' 3
$a = $($x; 99)                     # equivalent, $a.Length is 4

$a = $(New-Object 'int[]' 3; 99)   # $a.Length is 2



If an operation is not defined by PowerShell, the type of the value designated by the left
operand is inspected to see if it has a corresponding op_<operation>  method.

Syntax:

Syntax

Syntax:

Syntax

Description:

A parenthesized expression is a primary-expression whose type and value are the same
as those of the expression without the parentheses. If the expression designates a

7.1 Primary expressions

primary-expression:
    value
    member-access
    element-access
    invocation-expression
    post-increment-expression
    post-decrement-expression

value:
    parenthesized-expression
    sub-expression
    array-expression
    script-block-expression
    hash-literal-expression
    literal
    type-literal
    variable

7.1.1 Grouping parentheses

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

parenthesized-expression:
    ( new-lines~opt~ pipeline new-lines~opt~ )



variable then the parenthesized expression designates that same variable. For example,
$x.m  and ($x).m  are equivalent.

Grouping parentheses may be used in an expression to document the default
precedence and associativity within that expression. They can also be used to override
that default precedence and associativity. For example,

PowerShell

Ordinarily, grouping parentheses at the top-most level are redundant. However, that is
not always the case. Consider the following example:

PowerShell

In the second case, the parentheses change the semantics, resulting in an array whose
two elements are an array of 2 ints and the scalar int 6.

Here's another exception:

PowerShell

In the first and third cases, the value of the result is written to the pipeline. However,
although the expression in the second case is evaluated, the result is not written to the
pipeline due to the presence of the side-effect operator =  at the top level. (Removal of
the $a = part allows the value to be written, as *  is not a side-effect operator.)

To stop a value of any expression not containing top-level side effects from being
written to the pipeline, discard it explicitly, as follows:

PowerShell

4 + 6 * 2    # 16
4 + (6 * 2)  # 16 document default precedence
(4 + 6) * 2  # 20 override default precedence

2,4,6       # Length 3; values 2,4,6
(2,4),6     # Length 2; values [Object[]],int

23.5/2.4          # pipeline gets 9.79166666666667
$a = 1234 * 3.5   # value not written to pipeline
$a                # pipeline gets 4319

# None of these value are written to pipeline
[void](23.5/2.4)
[void]$a



To write to the pipeline the value of any expression containing top-level side effects,
enclose that expression in parentheses, as follows:

PowerShell

As such, the grouping parentheses in this case are not redundant.

In the following example, we have variable substitution (§2.3.5.2) taking place in a string
literal:

PowerShell

In the first case, the parentheses represent a sub-expression's delimiters not grouping
parentheses, and as the top-level expression contains a side-effect operator, the
expression's value is not written to the pipeline. Of course, the >  and <  characters are
still written.) If grouping parenthesis are added -- as shown in the second case -- writing
is enabled.

The following examples each contain top-level side-effect operators:

PowerShell

The use of grouping parentheses around an expression containing no top-level side
effects makes those parentheses redundant. For example;

PowerShell

$null = $a
$a > $null

($a = 1234 * 3.5) # pipeline gets 4319

">$($a = -23)<"    # value not written to pipeline, get ><
">$(($a = -23))<"  # pipeline gets >-23<

$a = $b = 0      # value not written to pipeline
$a = ($b = 0)    # value not written to pipeline
($a = ($b = 0))  # pipeline gets 0

++$a             # value not written to pipeline
(++$b)           # pipeline gets 1

$a--             # value not written to pipeline
($b--)           # pipeline gets 1



Consider the following example that has two side effects, neither of which is at the top
level:

PowerShell

The result is written to the pipeline, as the top-level expression has no side effects.

Syntax:

Syntax

Note that no whitespace is allowed after primary-expression.

Description:

The operator .  is used to select an instance member from an object, or a key from a

Hashtable . The left operand must designate an object, and the right operand must
designate an accessible instance member.

Either the right operand designates an accessible instance member within the type of
the object designated by the left operand or, if the left operand designates an array, the
right operand designates accessible instance members within each element of the array.

Whitespace is not permitted before the .  operator.

This operator is left associative.

The operator ::  is used to select a static member from a given type. The left operand
must designate a type, and the right-hand operand must designate an accessible static
member within that type.

Whitespace is not permitted before the ::  operator.

$a      # pipeline gets 0
($a)    # no side effect, so () redundant

12.6 + ($a = 10 - ++$b) # pipeline gets 21.6.

7.1.2 Member access

member-access:
    primary-expression . new-line~opt~ member-name
    primary-expression :: new-line~opt~ member-name



This operator is left associative.

If the right-hand operand designates a writable location within the type of the object
designated by the left operand, then the whole expression designates a writable
location.

Examples:

PowerShell

Syntax:

Syntax

Note that no whitespace is allowed after primary-expression.

$a = 10, 20, 30
$a.Length                    # get instance property

(10, 20, 30).Length

$property = "Length"
$a.$property                 # property name is a variable

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123
}
$h1.FirstName                # designates the key FirstName
$h1.Keys                     # gets the collection of keys

[int]::MinValue              # get static property
[double]::PositiveInfinity   # get static property
$property = "MinValue"
[long]::$property            # property name is a variable

foreach ($t in [byte], [int], [long]) {
    $t::MaxValue             # get static property
}

$a = @{ID = 1 }, @{ID = 2 }, @{ID = 3 }
$a.ID                        # get ID from each element in the array

7.1.3 Invocation expressions

invocation-expression:
    primary-expression . new-line~opt~ member-name argument-list
    primary-expression :: new-line~opt~ member-name argument-list

argument-list:
    ( argument-expression-list~opt~ new-lines~opt~ )



Description:

An invocation-expression calls the method designated by primary-expression.member-
name  or primary-expression::member-name . The parentheses in argument-list contain a
possibly empty, comma-separated list of expressions that designate the arguments
whose values are passed to the method. Before the method is called, the arguments are
evaluated and converted according to the rules of §6, if necessary, to match the types
expected by the method. The order of evaluation of primary-expression.member-name ,
primary-expression::member-name , and the arguments is unspecified.

This operator is left associative.

The type of the result of an invocation-expression is a method-designator (§4.5.24).

Examples:

PowerShell

Syntax:

Syntax

Description:

[Math]::Sqrt(2.0)            # call method with argument 2.0
[char]::IsUpper("a")         # call method
$b = "abc#$%XYZabc"
$b.ToUpper()                 # call instance method

[Math]::Sqrt(2)              # convert 2 to 2.0 and call method
[Math]::Sqrt(2D)             # convert 2D to 2.0 and call method
[Math]::Sqrt($true)          # convert $true to 1.0 and call method
[Math]::Sqrt("20")           # convert "20" to 20 and call method

$a = [Math]::Sqrt            # get method descriptor for Sqrt
$a.Invoke(2.0)               # call Sqrt via the descriptor
$a = [Math]::("Sq"+"rt")     # get method descriptor for Sqrt
$a.Invoke(2.0)               # call Sqrt via the descriptor
$a = [char]::ToLower         # get method descriptor for ToLower
$a.Invoke("X")               # call ToLower via the descriptor

7.1.4 Element access

element-access:
    primary-expression [ new-lines~opt~ expression new-lines~opt~ ]



There must not be any whitespace between primary-expression and the left square
bracket ( [ ).

Description:

Arrays are discussed in detail in §9. If expression is a 1-dimensional array, see §7.1.4.5.

When primary-expression designates a 1-dimensional array A, the operator []  returns
the element located at A[0 + expression]  after the value of expression has been
converted to int . The result has the element type of the array being subscripted. If
expression is negative, A[expression]  designates the element located at A[A.Length +
expression] .

When primary-expression designates a 2-dimensional array B, the operator []  returns
the element located at B[0 + row,0 + column]  after the value of the row and column
components of expression (which are specified as a comma-separated list) have been
converted to int . The result has the element type of the array being subscripted. Unlike
for a 1-dimensional array, negative positions have no special meaning.

When primary-expression designates an array of three or more dimensions, the rules for
2-dimensional arrays apply and the dimension positions are specified as a comma-
separated list of values.

If a read access on a non-existing element is attempted, the result is $null . It is an error
to write to a non-existing element.

For a multidimensional-array subscript expression, the order of evaluation of the
dimension position expressions is unspecified. For example, given a 3-dimensional array
$a , the behavior of $a[$i++,$i,++$i]  is unspecified.

If expression is an array, see §7.1.4.5.

This operator is left associative.

Examples:

PowerShell

7.1.4.1 Subscripting an array

$a = [int[]](10,20,30) # [int[]], Length 3
$a[1] # returns int 20
$a[20] # no such position, returns $null
$a[-1] # returns int 30, i.e., $a[$a.Length-1]
$a[2] = 5 # changes int 30 to int 5



If a write access to a non-existing element is attempted, an IndexOutOfRange exception
is raised.

Description:

When primary-expression designates a string S, the operator []  returns the character
located in the zero-based position indicated by expression, as a char. If expression is
greater than or equal to that string's length, the result is $null . If expression is negative,
S[expression]  designates the element located at S[S.Length + expression] .

Examples:

PowerShell

Description:

When primary-expression designates a Hashtable, the operator []  returns the value(s)
associated with the key(s) designated by expression. The type of expression is not
restricted.

When expression is a single key name, the result is the associated value and has that
type, unless no such key exists, in which case, the result is $null . If $null  is used as the

$a[20] = 5 # implementation-defined behavior

$a = New-Object 'double[,]' 3,2
$a[0,0] = 10.5 # changes 0.0 to 10.5
$a[0,0]++ # changes 10.5 to 10.6

$list = ("red",$true,10),20,(1.2, "yes")
$list[2][1] # returns string "yes"

$a = @{ A = 10 },@{ B = $true },@{ C = 123.45 }
$a[1]["B"] # $a[1] is a Hashtable, where B is a key

$a = "red","green"
$a[1][4] # returns string "n" from string in $a[1]

7.1.4.2 Subscripting a string

$s = "Hello"   # string, Length 5, positions 0-4
$c = $s[1]     # returns "e" as a string
$c = $s[20]    # no such position, returns $null
$c = $s[-1]    # returns "o", i.e., $s[$s.Length-1]

7.1.4.3 Subscripting a Hashtable



key the behavior is implementation defined. If expression is an array of key names, see
§7.1.4.5.

If expression is an array, see §7.1.4.5.

Examples:

PowerShell

When expression is a single key name, if $null  is used as the only value to subscript a
Hashtable, a NullArrayIndex exception is raised.

Description:

When primary-expression designates an object of type xml, expression is converted to
string, if necessary, and the operator []  returns the first child element having the name
specified by expression. The type of expression must be string. The type of the result is
implementation defined. The result can be subscripted to return its first child element. If
no child element exists with the name specified by expression, the result is $null . The
result does not designate a writable location.

Examples:

PowerShell

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h1['FirstName']     # the value associated with key FirstName
$h1['BirthDate']     # no such key, returns $null

$h1 = @{ 10 = "James"; 20.5 = "Anderson"; $true = 123 }
$h1[10]              # returns value "James" using key 10
$h1[20.5]            # returns value "Anderson" using key 20.5
$h1[$true]           # returns value 123 using key $true

7.1.4.4 Subscripting an XML document

$x = [xml]@"
<Name>
<FirstName>Mary</FirstName>
<LastName>King</LastName>
</Name>
"@

$x['Name']                # refers to the element Name
$x['Name']['FirstName']   # refers to the element FirstName within Name
$x['FirstName']           # No such child element at the top level, result 
is $null



The type of the result is System.Xml.XmlElement  or System.String .

When primary-expression designates an object of a type that is enumerable (§4) or a
Hashtable, and expression is a 1-dimensional array, the result is an array slice (§9.9)
containing the elements of primary-expression designated by the elements of
expression.

In the case of a Hashtable, the array slice contains the associated values to the keys
provided, unless no such key exists, in which case, the corresponding element is $null .
If $null  is used as any key name the behavior is implementation defined.

Examples:

PowerShell

Windows PowerShell: When expression is a collection of two or more key names, if
$null  is used as any key name that key is ignored and has no corresponding element in
the resulting array.

Syntax:

Syntax

7.1.4.5 Generating array slices

$a = [int[]](30,40,50,60,70,80,90)
$a[1,3,5]                 # slice has Length 3, value 40,60,80
$a[,5]                    # slice with Length 1
$a[@()]                   # slice with Length 0
$a[-1..-3]                # slice with Length 3, value 90,80,70
$a = New-Object 'int[,]' 3,2
$a[0,0] = 10; $a[0,1] = 20; $a[1,0] = 30
$a[1,1] = 40; $a[2,0] = 50; $a[2,1] = 60
$a[(0,1),(1,0)]           # slice with Length 2, value 20,30, parens needed
$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h1['FirstName']          # the value associated with key FirstName
$h1['BirthDate']          # no such key, returns $null
$h1['FirstName','IDNum']  # returns [Object[]], Length 2 (James/123)
$h1['FirstName','xxx']    # returns [Object[]], Length 2 (James/$null)
$h1[$null,'IDNum']        # returns [Object[]], Length 2 ($null/123)

7.1.5 Postfix increment and decrement operators

post-increment-expression:
    primary-expression ++



Description:

The primary-expression must designate a writable location having a value of numeric
type (§4) or the value $null . If the value designated by the operand is $null , that value
is converted to type int and value zero before the operator is evaluated. The type of the
value designated by primary-expression may change when the result is stored. See §7.11
for a discussion of type change via assignment.

The result produced by the postfix ++  operator is the value designated by the operand.
After that result is obtained, the value designated by the operand is incremented by 1 of
the appropriate type. The type of the result of expression E++  is the same as for the
result of the expression E + 1  (§7.7).

The result produced by the postfix --  operator is the value designated by the operand.
After that result is obtained, the value designated by the operand is decremented by 1
of the appropriate type. The type of the result of expression E--  is the same as for the
result of the expression E - 1  (§7.7).

These operators are left associative.

Examples:

PowerShell

post-decrement-expression:
    primary-expression dashdash

$i = 0                # $i = 0
$i++                  # $i is incremented by 1
$j = $i--             # $j takes on the value of $i before the decrement

$a = 1,2,3
$b = 9,8,7
$i = 0
$j = 1
$b[$j--] = $a[$i++]   # $b[1] takes on the value of $a[0], then $j is
                      # decremented, $i incremented

$i = 2147483647       # $i holds a value of type int
$i++                  # $i now holds a value of type double because
                      # 2147483648 is too big to fit in type int

[int]$k = 0           # $k is constrained to int
$k = [int]::MaxValue  # $k is set to 2147483647
$k++                  # 2147483648 is too big to fit, imp-def behavior



Syntax:

Syntax

Description:

If statement-list is omitted, the result is $null . Otherwise, statement-list is evaluated.
Any objects written to the pipeline as part of the evaluation are collected in an
unconstrained 1-dimensional array, in order. If the array of collected objects is empty,
the result is $null . If the array of collected objects contains a single element, the result
is that element; otherwise, the result is the unconstrained 1-dimensional array of
collected results.

Examples:

PowerShell

Syntax:

Syntax

$x = $null            # target is unconstrained, $null goes to [int]0
$x++                  # value treated as int, 0->1

7.1.6 $(...) operator

sub-expression:
    $( new-lines~opt~ statement-list~opt~ new-lines~opt~ )

$j = 20
$($i = 10) # pipeline gets nothing
$(($i = 10)) # pipeline gets int 10
$($i = 10; $j) # pipeline gets int 20
$(($i = 10); $j) # pipeline gets [Object[]](10,20)
$(($i = 10); ++$j) # pipeline gets int 10
$(($i = 10); (++$j)) # pipeline gets [Object[]](10,22)
$($i = 10; ++$j) # pipeline gets nothing
$(2,4,6) # pipeline gets [Object[]](2,4,6)

7.1.7 @(...) operator

array-expression:
    @( new-lines~opt~ statement-list~opt~ new-lines~opt~ )



Description:

If statement-list is omitted, the result is an unconstrained 1-dimensional array of length
zero. Otherwise, statement-list is evaluated, and any objects written to the pipeline as
part of the evaluation are collected in an unconstrained 1-dimensional array, in order.
The result is the (possibly empty) unconstrained 1-dimensional array.

Examples:

PowerShell

Syntax:

Syntax

Description:

param-block is described in §8.10.9. named-block-list is described in §8.10.7.

A script block is an unnamed block of statements that can be used as a single unit.
Script blocks can be used to invoke a block of code as if it was a single command, or
they can be assigned to variables that can be executed.

$j = 20
@($i = 10)             # 10 not written to pipeline, result is array of 0
@(($i = 10))           # pipeline gets 10, result is array of 1
@($i = 10; $j)         # 10 not written to pipeline, result is array of 1
@(($i = 10); $j)       # pipeline gets 10, result is array of 2
@(($i = 10); ++$j)     # pipeline gets 10, result is array of 1
@(($i = 10); (++$j))   # pipeline gets both values, result is array of 2
@($i = 10; ++$j)       # pipeline gets nothing, result is array of 0

$a = @(2,4,6)          # result is array of 3
@($a)                  # result is the same array of 3
@(@($a))               # result is the same array of 3

7.1.8 Script block expression

script-block-expression:
    { new-lines~opt~ script-block new-lines~opt~ }

script-block:
    param-block~opt~ statement-terminators~opt~ script-block-body~opt~

script-block-body:
    named-block-list
    statement-list



The named-block-list or statement-list is executed and the type and value(s) of the result
are the type and value(s) of the results of those statement sets.

A script-block-expression has type scriptblock (§4.3.7).

If param-block is omitted, any arguments passed to the script block are available via
$args  (§8.10.1).

During parameter binding, a script block can be passed either as a script block object or
as the result after the script block has been evaluated. See §6.17 for further information.

Syntax:

Syntax

Description:

A hash-literal-expression is used to create a Hashtable (§10) of zero or more elements
each of which is a key/value pair.

The key may have any type except the null type. The associated values may have any
type, including the null type, and each of those values may be any expression that
designates the desired value, including $null .

7.1.9 Hash literal expression

hash-literal-expression:
    @{ new-lines~opt~ hash-literal-body~opt~ new-lines~opt~ }

hash-literal-body:
    hash-entry
    hash-literal-body statement-terminators hash-entry

hash-entry:
    key-expression = new-lines~opt~ statement

key-expression:
    simple-name
    unary-expression

statement-terminators:
    statement-terminator
    statement-terminators statement-terminator

statement-terminator:
    ;
    new-line-character



The ordering of the key/value pairs is not significant.

Examples:

PowerShell

which creates two Hashtables, $h1  and $h2 , each containing three key/value pairs, and
a third, $h3 , that is empty. Hashtable $h4  has keys of various types.

Syntax:

Syntax

Description:

A type-literal is represented in an implementation by some unspecified underlying type.
As a result, a type name is a synonym for its underlying type.

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$last = "Anderson"; $IDNum = 120
$h2 = @{ FirstName = "James"; LastName = $last; IDNum = $IDNum + 3 }
$h3 = @{ }
$h4 = @{ 10 = "James"; 20.5 = "Anderson"; $true = 123 }

7.1.10 Type literal expression

type-literal:
    [ type-spec ]

type-spec:
    array-type-name new-lines~opt~ dimension~opt~ ]
    generic-type-name new-lines~opt~ generic-type-arguments ]
    type-name

dimension:
    ,
    dimension ,

generic-type-arguments:
    type-spec new-lines~opt~
    generic-type-arguments , new-lines~opt~ type-spec

array-type-name:
    type-name [

generic-type-name:
    type-name [



Type literals are used in a number of contexts:

Specifying an explicit conversion (§6, §7.2.9)
Creating a type-constrained array (§9.4)
Accessing the static members of an object (§7.1.2)
Specifying a type constraint on a variable (§5.3) or a function parameter (§8.10.2)

Examples:

PowerShell

A generic stack type (§4.4) that is specialized to hold strings might be written as
[Stack[string]] , and a generic dictionary type that is specialized to hold int  keys with
associated string values might be written as [Dictionary[int,string]] .

The type of a type-literal is System.Type . The complete name for the type Stack[string]
suggested above is System.Collections.Generic.Stack[int] . The complete name for the
type Dictionary[int,string]  suggested above is

System.Collections.Generic.Dictionary[int,string] .

Syntax:

Syntax

[int].IsPrimitive        # $true
[Object[]].FullName      # "System.Object[]"
[int[,,]].GetArrayRank() # 3

7.2 Unary operators

unary-expression:
    primary-expression
    expression-with-unary-operator

expression-with-unary-operator:
    , new-lines~opt~ unary-expression
    -not new-lines~opt~ unary-expression
    ! new-lines~opt~ unary-expression
    -bnot new-lines~opt~ unary-expression
    + new-lines~opt~ unary-expression
    dash new-lines~opt~ unary-expression
    pre-increment-expression
    pre-decrement-expression
    cast-expression
    -split new-lines~opt~ unary-expression
    -join new-lines~opt~ unary-expression



Description:

The comma operator ( , ) creates an unconstrained 1-dimensional array having one
element, whose type and value are that of unary-expression.

This operator is right associative.

Examples:

PowerShell

Syntax:

Syntax

pre-increment-expression:
    ++ new-lines~opt~ unary-expression

pre-decrement-expression:
    dashdash new-lines~opt~ unary-expression

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

cast-expression:
    type-literal unary-expression

dashdash:
    dash dash

7.2.1 Unary comma operator

$a = ,10         # create an unconstrained array of 1 element, $a[0],
                 # which has type int

$a = ,(10,"red") # create an unconstrained array of 1 element,
$a[0],
                 # which is an unconstrained array of 2 elements,
                 # $a[0][0] an int, and $a[0][1] a string

$a = ,,10        # create an unconstrained array of 1 element, which is
                 # an unconstrained array of 1 element, which is an int
                 # $a[0][0] is the int. Contrast this with @(@(10))

7.2.2 Logical NOT



Description:

The operator -not  converts the value designated by unary-expression to type bool
(§6.2), if necessary, and produces a result of that type. If unary-expression's value is True,
the result is False, and vice versa. The operator !  is an alternate spelling for -not .

This operator is right associative.

Examples:

PowerShell

Syntax:

Syntax

Description:

The operator -bnot  converts the value designated by unary-expression to an integer
type (§6.4), if necessary. If the converted value can be represented in type int then that is

logical-not-operator:
    dash not

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

-not $true         # False
-not -not $false   # False
-not 0             # True
-not 1.23          # False
!"xyz"             # False

7.2.3 Bitwise NOT

bitwise-not-operator:
    dash bnot

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



the result type. Else, if the converted value can be represented in type long then that is
the result type. Otherwise, the expression is ill-formed. The resulting value is the ones-
complement of the converted value.

This operator is right associative.

Examples:

PowerShell

Description:

An expression of the form + unary-expression  is treated as if it were written as 0 +
unary-expression  (§7.7). The integer literal 0  has type int .

This operator is right associative.

Examples:

PowerShell

Description:

An expression of the form - unary-expression  is treated as if it were written as 0 -
unary-expression  (§7.7). The integer literal 0 has type int . The minus operator can be
any one of the dash characters listed in §7.2.

This operator is right associative.

Examples:

-bnot $true         # int with value 0xFFFFFFFE
-bnot 10            # int with value 0xFFFFFFF5
-bnot 2147483648.1  # long with value 0xFFFFFFFF7FFFFFFF
-bnot $null         # int with value 0xFFFFFFFF
-bnot "0xabc"       # int with value 0xFFFFF543

7.2.4 Unary plus

+123L         # type long, value 123
+0.12340D     # type decimal, value 0.12340
+"0xabc"      # type int, value 2748

7.2.5 Unary minus



PowerShell

Description:

The unary-expression must designate a writable location having a value of numeric type
(§4) or the value $null . If the value designated by its unary-expression is $null , unary-
expression's value is converted to type int and value zero before the operator is
evaluated.

For the prefix increment operator ++  , the value of unary-expression is incremented by
1  of the appropriate type. The result is the new value after incrementing has taken
place. The expression ++E  is equivalent to E += 1  (§7.11.2).

For the prefix decrement operator --  , the value of unary-expression is decremented by
1  of the appropriate type. The result is the new value after decrementing has taken
place. The expression --E  is equivalent to E -= 1  (§7.11.2). The prefix decrement
operator can be any of the patterns matching the dashdash pattern in §7.2.

These operators are right associative.

Examples:

PowerShell

-$true     # type int, value -1
-123L      # type long, value -123
-0.12340D  # type decimal, value -0.12340

7.2.6 Prefix increment and decrement operators

７ Note

The type of the value designated by unary-expression may change when the result
is stored. See §7.11 for a discussion of type change via assignment.

$i = 0                # $i = 0
++$i                  # $i is incremented by 1
$j = --$i             # $i is decremented then $j takes on the value of $i

$a = 1,2,3
$b = 9,8,7
$i = 0;
$j = 1
$b[--$j] = $a[++$i]   # $j is # decremented, $i incremented, then $b[0]
                      # takes on the value of $a[1]



Syntax:

Syntax

Description:

The unary -join  operator produces a string that is the concatenation of the value of
one or more objects designated by unary-expression. (A separator can be inserted by
using the binary version of this operator (§7.8.4.4).)

unary-expression can be a scalar value or a collection.

Examples:

PowerShell

Syntax:

$i = 2147483647       # $i holds a value of type int
++$i                  # $i now holds a value of type double because
                      # 2147483648 is too big to fit in type int

[int]$k = 0           # $k is constrained to int
$k = [int]::MinValue  # $k is set to -2147483648
--$k                  # -2147483649 is too small to fit, imp-def behavior

$x = $null            # target is unconstrained, $null goes to [int]0
--$x                  # value treated as int, 0 becomes -1

7.2.7 The unary -join operator

join-operator:
    dash join

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

-join (10, 20, 30)             # result is "102030"
-join (123, $false, 19.34e17)  # result is "123False1.934E+18"
-join 12345                    # result is "12345"
-join $null                    # result is ""

7.2.8 The unary -split operator



Syntax

Description:

The unary -split  operator splits one or more strings designated by unary-expression,
returning their subparts in a constrained 1-dimensional array of string. It treats any
contiguous group of whitespace characters as the delimiter between successive
subparts. An explicit delimiter string can be specified by using the binary version of this
operator (§7.8.4.5) or its two variants (§7.8).

The delimiter text is not included in the resulting strings. Leading and trailing
whitespace in the input string is ignored. An input string that is empty or contains
whitespace only results in an array of one string, which is empty.

unary-expression can designate a scalar value or an array of strings.

Examples:

PowerShell

Description:

This operator converts explicitly (§6) the value designated by unary-expression to the
type designated by type-literal (§7.1.10). If type-literal is other than void, the type of the
result is the named type, and the value is the value after conversion. If type-literal is
void, no object is written to the pipeline and there is no result.

When an expression of any type is cast to that same type, the resulting type and value is
the unary-expression's type and value.

split-operator:
    dash split

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

-split " red`tblue`ngreen " # 3 strings: "red", "blue", "green"
-split ("yes no", "up down") # 4 strings: "yes", "no", "up", "down"
-split " " # 1 (empty) string

7.2.9 Cast operator



This operator is right associative.

Examples:

PowerShell

Syntax:

Syntax

Description:

The binary comma operator creates a 1-dimensional array whose elements are the
values designated by its operands, in lexical order. The array has unconstrained type.

Examples:

PowerShell

The addition of grouping parentheses to certain binary comma expressions does not
document the default precedence; instead, it changes the result.

Syntax:

Syntax

[bool]-10        # a bool with value True
[int]-10.70D     # a decimal with value -10
[int]10.7        # an int with value 11
[long]"+2.3e+3"  # a long with value 2300
[char[]]"Hello"  # an array of 5 char with values H, e, l, l, and o.

7.3 Binary comma operator

array-literal-expression:
    unary-expression , new-lines~opt~ array-literal-expression

2,4,6                    # Length 3; values 2,4,6
(2,4),6                  # Length 2; values [Object[]],int
(2,4,6),12,(2..4)        # Length 3; [Object[]],int,[Object[]]
2,4,6,"red",$null,$true  # Length 6

7.4 Range operator



Description:

A range-expression creates an unconstrained 1-dimensional array whose elements are
the values of the int sequence specified by the range bounds. The values designated by
the operands are converted to int, if necessary (§6.4). The operand designating the lower
value after conversion is the lower bound, while the operand designating the higher
value after conversion is the upper bound. Both bounds may be the same, in which case,
the resulting array has length 1 . If the left operand designates the lower bound, the
sequence is in ascending order. If the left operand designates the upper bound, the
sequence is in descending order.

Conceptually, this operator is a shortcut for the corresponding binary comma operator
sequence. For example, the range 5..8  can also be generated using 5,6,7,8 . However,
if an ascending or descending sequence is needed without having an array, an
implementation may avoid generating an actual array. For example, in foreach ($i in
1..5) { ... } , no array need be created.

A range-expression can be used to specify an array slice (§9.9).

Examples:

PowerShell

Syntax:

Syntax

range-expression:
    unary-expression .. new-lines~opt~ unary-expression

1..10        # ascending range 1..10
-495..-500   # descending range -495..-500
16..16       # sequence of 1

$x = 1.5
$x..5.40D    # ascending range 2..5

$true..3     # ascending range 1..3
-2..$null    # ascending range -2..0
0xf..0xa     # descending range 15..10

7.5 Format operator



Description:

A format-expression formats one or more values designated by range-expression
according to a format-specification-string designated by format-expression. The
positions of the values designated by range-expression are numbered starting at zero
and increasing in lexical order. The result has type string .

A format specification string may contain zero or more format specifications each
having the following form:

{N [ ,M ][ : FormatString ]}

N represents a (required) range-expression value position, M represents the (optional)
minimum display width, and FormatString indicates the (optional) format. If the width of
a formatted value exceeds the specified width, the width is increased accordingly. Values
whose positions are not referenced in FormatString are ignored after being evaluated
for any side effects. If N refers to a non-existent position, the behavior is
implementation defined. Value of type $null  and void are formatted as empty strings.
Arrays are formatted as for sub-expression (§7.1.6). To include the characters {  and }  in
a format specification without their being interpreted as format delimiters, write them as
{{  and }} , respectively.

For a complete definition of format specifications, see the type System.IFormattable  in
Ecma Technical Report TR/84 .

Examples:

PowerShell

format-expression:
    format-specification-string format-operator new-lines~opt~ range-
expression

format-operator:
    dash f

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

"__{0,3}__" -f 5                         # __ 5__
"__{0,-3}__" -f 5                        # __5 __
"__{0,3:000}__" -f 5                     # __005__
"__{0,5:0.00}__" -f 5.0                  # __ 5.00__

https://ecma-international.org/publications-and-standards/technical-reports/ecma-tr-84/
https://ecma-international.org/publications-and-standards/technical-reports/ecma-tr-84/


In a format specification, if N refers to a non-existent position, a FormatError is raised.

Syntax:

Syntax

Description:

The result of the multiplication operator *  is the product of the values designated by
the two operands after the usual arithmetic conversions (§6.15) have been applied.

This operator is left associative.

Examples:

PowerShell

Description:

"__{0:C}__" -f 1234567.888               # __$1,234,567.89__
"__{0:C}__" -f -1234.56                  # __($1,234.56)__
"__{0,12:e2}__" -f 123.456e2             # __ 1.23e+004__
"__{0,-12:p}__" -f -0.252                # __-25.20 % __

$i = 5; $j = 3
"__{0} + {1} <= {2}__" -f $i,$j,($i+$j)  # __5 + 3 <= 8__

$format = "__0x{0:X8}__"
$format -f 65535                         # __0x0000FFFF__

7.6 Multiplicative operators

multiplicative-expression:
    multiplicative-expression * new-lines~opt~ format-expression
    multiplicative-expression / new-lines~opt~ format-expression
    multiplicative-expression % new-lines~opt~ format-expression

7.6.1 Multiplication

12 * -10L      # long result -120
-10.300D * 12  # decimal result -123.600
10.6 * 12      # double result 127.2
12 * "0xabc"   # int result 32976

7.6.2 String replication



When the left operand designates a string the binary *  operator creates a new string
that contains the one designated by the left operand replicated the number of times
designated by the value of the right operand as converted to integer type (§6.4).

This operator is left associative.

Examples:

PowerShell

Description:

When the left operand designates an array the binary *  operator creates a new
unconstrained 1-dimensional array that contains the value designated by the left
operand replicated the number of times designated by the value of the right operand as
converted to integer type (§6.4). A replication count of zero results in an array of length
1. If the left operand designates a multidimensional array, it is flattened (§9.12) before
being used.

This operator is left associative.

Examples:

PowerShell

Description:

"red" * "3"       # string replicated 3 times
"red" * 4         # string replicated 4 times
"red" * 0         # results in an empty string
"red" * 2.3450D   # string replicated twice
"red" * 2.7       # string replicated 3 times

7.6.3 Array replication

$a = [int[]](10,20)              # [int[]], Length 2*1
$a * "3"                         # [Object[]], Length 2*3
$a * 4                           # [Object[]], Length 2*4
$a * 0                           # [Object[]], Length 2*0
$a * 2.3450D                     # [Object[]], Length 2*2
$a * 2.7                         # [Object[]], Length 2*3
(New-Object 'float[,]' 2,3) * 2  # [Object[]], Length 2*2

7.6.4 Division



The result of the division operator /  is the quotient when the value designated by the
left operand is divided by the value designated by the right operand after the usual
arithmetic conversions (§6.15) have been applied.

If an attempt is made to perform integer or decimal division by zero, an
implementation-defined terminating error is raised.

This operator is left associative.

Examples:

PowerShell

If an attempt is made to perform integer or decimal division by zero, a
RuntimeException exception is raised.

Description:

The result of the remainder operator %  is the remainder when the value designated by
the left operand is divided by the value designated by the right operand after the usual
arithmetic conversions (§6.15) have been applied.

If an attempt is made to perform integer or decimal division by zero, an
implementation-defined terminating error is raised.

Examples:

PowerShell

If an attempt is made to perform integer or decimal division by zero, a
RuntimeException exception is raised.

10/-10      # int result -1
12/-10      # double result -1.2
12/-10D     # decimal result 1.2
12/10.6     # double result 1.13207547169811
12/"0xabc"  # double result 0.00436681222707424

7.6.5 Remainder

10 % 3          # int result 1
10.0 % 0.3      # double result 0.1
10.00D % "0x4"  # decimal result 2.00



Syntax:

Syntax

Description:

The result of the addition operator +  is the sum of the values designated by the two
operands after the usual arithmetic conversions (§6.15) have been applied.

This operator is left associative.

Examples:

PowerShell

Description:

When the left operand designates a string the binary +  operator creates a new string
that contains the value designated by the left operand followed immediately by the
value(s) designated by the right operand as converted to type string (§6.8).

This operator is left associative.

Examples:

7.7 Additive operators

additive-expression:
    primary-expression + new-lines~opt~ expression
    primary-expression dash new-lines~opt~ expression

dash: one of
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

7.7.1 Addition

12 + -10L       # long result 2
-10.300D + 12   # decimal result 1.700
10.6 + 12       # double result 22.6
12 + "0xabc"    # int result 2760

7.7.2 String concatenation



PowerShell

Description:

When the left operand designates an array the binary +  operator creates a new
unconstrained 1-dimensional array that contains the elements designated by the left
operand followed immediately by the value(s) designated by the right operand.
Multidimensional arrays present in either operand are flattened (§9.12) before being
used.

This operator is left associative.

Examples:

PowerShell

Description:

When both operands designate Hashtables the binary +  operator creates a new
Hashtable that contains the elements designated by the left operand followed
immediately by the elements designated by the right operand.

If the Hashtables contain the same key, an implementation-defined terminating error is
raised.

This operator is left associative.

Examples:

"red" + "blue"      # "redblue"
"red" + "123"       # "red123"
"red" + 123         # "red123"
"red" + 123.456e+5  # "red12345600"
"red" + (20,30,40)  # "red20 30 40"

7.7.3 Array concatenation

$a = [int[]](10,20)               # [int[]], Length 2
$a + "red"                        # [Object[]], Length 3
$a + 12.5,$true                   # [Object[]], Length 4
$a + (New-Object 'float[,]' 2,3)  # [Object[]], Length 8
(New-Object 'float[,]' 2,3) + $a  # [Object[]], Length 8

7.7.4 Hashtable concatenation



PowerShell

If the Hashtables contain the same key, an exception of type BadOperatorArgument is
raised.

Description:

The result of the subtraction operator -  is the difference when the value designated by
the right operand is subtracted from the value designated by the left operand after the
usual arithmetic conversions (§6.15) have been applied. The subtraction operator can be
any one of the dash characters listed in §7.7.

This operator is left associative.

Examples:

PowerShell

Syntax:

Syntax

$h1 = @{ FirstName = "James"; LastName = "Anderson" }
$h2 = @{ Dept = "Personnel" }
$h3 = $h1 + $h2      # new Hashtable, Count = 3

7.7.5 Subtraction

12 - -10L      # long result 22
-10.300D - 12  # decimal result -22.300
10.6 - 12      # double result -1.4
12 - "0xabc"   # int result -2736

7.8 Comparison operators

comparison-expression:
    primary-expression comparison-operator new-lines~opt~ expression

comparison-operator:
    equality-operator
    relational-operator
    containment-operator
    type-operator
    like-operator
    match-operator



Description:

The type of the value designated by the left operand determines how the value
designated by the right operand is converted (§6), if necessary, before the comparison is
done.

Some comparison operators have two variants, one that is case sensitive ( -c<operator> ),
and one that isn't case sensitive ( -i<operator> ). The -<operator>  version is equivalent
to -i<operator> . Case sensitivity is meaningful only with comparisons of values of type
string. In non-string comparison contexts, the two variants behave the same.

These operators are left associative.

Syntax:

Syntax

Description:

There are two equality operators: equality ( -eq ) and inequality ( -ne ); and four relational
operators: less-than ( -lt ), less-than-or-equal-to ( -le ), greater-than ( -gt ), and greater-
than-or-equal-to ( -ge ). Each of these has two variants (§7.8).

For two strings to compare equal, they must have the same length and contents, and
letter case, if appropriate.

If the value designated by the left operand is not a collection, the result has type bool .
Otherwise, the result is a possibly empty unconstrained 1-dimensional array containing

7.8.1 Equality and relational operators

equality-operator: one of
    dash eq     dash ceq    dash ieq
    dash ne     dash cne    dash ine

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

relational-operator: one of
    dash lt     dash clt    dash ilt
    dash le     dash cle    dash ile
    dash gt     dash cgt    dash igt
    dash ge     dash cge    dash ige



the elements of the collection that test True when compared to the value designated by
the right operand.

Examples:

PowerShell

Syntax:

Syntax

Description:

There are four containment operators: contains ( -contains ), does-not-contain ( -
notcontains ), in ( -in ) and not-in ( -notin ). Each of these has two variants (§7.8).

The containment operators return a result of type bool that indicates whether a value
occurs (or does not occur) at least once in the elements of an array. With -contains  and

-notcontains , the value is designated by the right operand and the array is designated

10 -eq "010"           # True, int comparison
"010" -eq 10           # False, string comparison
"RED" -eq "Red"        # True, case-insensitive comparison
"RED" -ceq "Red"       # False, case-sensitive comparison
"ab" -lt "abc"         # True

10,20,30,20,10 -ne 20  # 10,30,10, Length 3
10,20,30,20,10 -eq 40  # Length 0
10,20,30,20,10 -ne 40  # 10,20,30,20,10, Length 5
10,20,30,20,10 -gt 25  # 30, Length 1
0,1,30 -ne $true       # 0,30, Length 2
0,"00" -eq "0"         # 0 (int), Length 1

7.8.2 Containment operators

containment-operator: one of
    dash contains       dash ccontains      dash icontains
    dash notcontains    dash cnotcontains   dash inotcontains
    dash in             dash cin            dash iin
    dash notin          dash cnotin         dash inotin

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



by the left operand. With -in and -notin , the operands are reversed. The value is
designated by the left operand and the array is designated by the right operand.

For the purposes of these operators, if the array operand has a scalar value, the scalar
value is treated as an array of one element.

Examples:

PowerShell

Syntax:

Syntax

Description:

The type operator -is  tests whether the value designated by the left operand has the
type, or is derived from a type that has the type, designated by the right operand. The
right operand must designate a type or a value that can be converted to a type (such as
a string that names a type). The type of the result is bool . The type operator -isnot
returns the logical negation of the corresponding -is  form.

The type operator -as  attempts to convert the value designated by the left operand to
the type designated by the right operand. The right operand must designate a type or a
value that can be converted to a type (such as a string that names a type). If the

10,20,30,20,10 -contains 20     # True
10,20,30,20,10 -contains 42.9   # False
10,20,30 -contains "10"         # True
"10",20,30 -contains 10         # True
"010",20,30 -contains 10        # False
10,20,30,20,10 -notcontains 15  # True
"Red",20,30 -ccontains "RED"    # False

7.8.3 Type testing and conversion operators

type-operator: one of
    dash is
    dash as

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



conversion fails, $null  is returned; otherwise, the converted value is returned and the
return type of that result is the runtime type of the converted value.

Examples:

PowerShell

Syntax:

Syntax

Description:

If the left operand does not designate a collection, the result has type bool . Otherwise,
the result is a possibly empty unconstrained 1-dimensional array containing the

$a = 10            # value 10 has type int
$a -is [int]       # True

$t = [int]
$a -isnot $t       # False
$a -is "int"       # True
$a -isnot [double] # True

$x = [int[]](10,20)
$x -is [int[]]     # True

$a = "abcd"        # string is derived from object
$a -is [Object]    # True

$x = [double]
foreach ($t in [int],$x,[decimal],"string") {
    $b = (10.60D -as $t) * 2  # results in int 22, double 21.2
}                             # decimal 21.20, and string "10.6010.60"

7.8.4 Pattern matching and text manipulation operators

7.8.4.1 The -like and -notlike operators

like-operator: one of
    dash like       dash clike      dash ilike
    dash notlike    dash cnotlike   dash inotlike

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



elements of the collection that test True when compared to the value designated by the
right operand. The right operand may designate a string that contains wildcard
expressions (§3.15). These operators have two variants (§7.8).

Examples:

PowerShell

Syntax:

Syntax

Description:

If the left operand does not designate a collection, the result has type bool  and if that
result is $true , the elements of the Hashtable $Matches  are set to the strings that match
(or do-not-match) the value designated by the right operand. Otherwise, the result is a
possibly empty unconstrained 1-dimensional array containing the elements of the
collection that test True when compared to the value designated by the right operand,

"Hello" -like "h*"                   # True, starts with h
"Hello" -clike "h*"                  # False, does not start with lowercase 
h
"Hello" -like "*l*"                  # True, has an l in it somewhere
"Hello" -like "??l"                  # False, no length match

"-abc" -like "[-xz]*"                # True, - is not a range separator
"#$%\^&" -notlike "*[A-Za-z]"        # True, does not end with alphabetic 
character
"He" -like "h[aeiou]?*"              # False, need at least 3 characters
"When" -like "*[?]"                  # False, ? is not a wildcard character
"When?" -like "*[?]"                 # True, ? is not a wildcard character

"abc","abbcde","abcgh" -like "abc*"  # object[2], values
"abc" and "abcgh"

7.8.4.2 The -match and -notmatch operators

match-operator: one of
    dash match      dash cmatch     dash imatch
    dash notmatch   dash cnotmatch  dash inotmatch

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



and $Matches  is not set. The right operand may designate a string that contains regular
expressions (§3.16), in which case, it is referred to as a pattern. These operators have two
variants (§7.8).

These operators support submatches (§7.8.4.6).

Examples:

PowerShell

Syntax:

Syntax

Description:

The -replace  operator allows text replacement in one or more strings designated by
the left operand using the values designated by the right operand. This operator has
two variants (§7.8). The right operand has one of the following forms:

The string to be located, which may contain regular expressions (§3.16). In this
case, the replacement string is implicitly "".
An array of 2 objects containing the string to be located, followed by the
replacement string.

"Hello" -match ".l"                    # True, $Matches key/value is 0/"el"
"Hello" -match '\^h.*o$'               # True, $Matches key/value is
0/"Hello"
"Hello" -cmatch '\^h.*o$'              # False, $Matches not set
"abc\^ef" -match ".\\\^e"              # True, $Matches key/value is 
0/"c\^e"

"abc" -notmatch "[A-Za-z]"             # False
"abc" -match "[\^A-Za-z]"              # False
"He" -match "h[aeiou]."                # False, need at least 3 characters
"abc","abbcde","abcgh" -match "abc.*"  # Length is 2, values "abc", "abcgh"

7.8.4.3 The -replace operator

binary-replace-operator: one of
    dash replace    dash creplace   dash ireplace

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



If the left operand designates a string, the result has type string. If the left operand
designates a 1-dimensional array of string, the result is an unconstrained 1-dimensional
array, whose length is the same as for left operand's array, containing the input strings
after replacement has completed.

This operator supports submatches (§7.8.4.6).

Examples:

PowerShell

Syntax:

Syntax

Description:

The binary -join  operator produces a string that is the concatenation of the value of
one or more objects designated by the left operand after having been converted to
string (§6.7), if necessary. The string designated by the right operand is used to separate
the (possibly empty) values in the resulting string.

The left operand can be a scalar value or a collection.

Examples:

PowerShell

"Analogous","an apple" -replace "a","*"      # "*n*logous","*n *pple"
"Analogous" -creplace "[aeiou]","?"          # "An?l?g??s"
"Analogous","an apple" -replace '\^a',"%%A"  # "%%Analogous","%%An apple"
"Analogous" -replace "[aeiou]",'$&$&'        # "AAnaaloogoouus"

7.8.4.4 The binary -join operator

binary-join-operator: one of
    dash join

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

(10, 20, 30) -join "\|"    # result is "10\|20\|30"
12345 -join ","            # result is "12345", no separator needed



Syntax:

Syntax

Description:

The binary -split  operator splits one or more strings designated by the left operand,
returning their subparts in a constrained 1-dimensional array of string. This operator has
two variants (§7.8). The left operand can designate a scalar value or an array of strings.
The right operand has one of the following forms:

A delimiter string
An array of 2 objects containing a delimiter string followed by a numeric split count
An array of 3 objects containing a delimiter string, a numeric split count, and an
options string
A script block
An array of 2 objects containing a script block followed by a numeric split count

The delimiter string may contain regular expressions (§3.16). It is used to locate subparts
with the input strings. The delimiter is not included in the resulting strings. If the left
operand designates an empty string, that results in an empty string element. If the
delimiter string is an empty string, it is found at every character position in the input
strings.

By default, all subparts of the input strings are placed into the result as separate
elements; however, the split count can be used to modify this behavior. If that count is
negative, zero, or greater than or equal to the number of subparts in an input string,
each subpart goes into a separate element. If that count is less than the number of
subparts in the input string, there are count elements in the result, with the final element
containing all of the subparts beyond the first count - 1 subparts.

($null,$null) -join "<->"  # result is "<->", two zero-length values

7.8.4.5 The binary -split operator

binary-split-operator: one of
    dash split      dash csplit     dash isplit

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



An options string contains zero or more option names with each adjacent pair separated
by a comma. Leading, trailing, and embedded whitespace is ignored. Option names may
be in any order and are case-sensitive.

If an options string contains the option name SimpleMatch, it may also contain the
option name IgnoreCase. If an options string contains the option name RegexMatch or
it does not contain either RegexMatch or SimpleMatch, it may contain any option name
except SimpleMatch. However, it must not contain both Multiline and Singleline.

Here is the set of option names:

Option Description

CultureInvariant Ignores cultural differences in language when evaluating the delimiter.

ExplicitCapture Ignores non-named match groups so that only explicit capture groups
are returned in the result list.

IgnoreCase Force case-insensitive matching, even if -csplit  is used.

IgnorePatternWhitespace Ignores unescaped whitespace and comments marked with the
number sign ( # ).

Multiline This mode recognizes the start and end of lines and strings. The
default mode is Singleline.

RegexMatch Use regular expression matching to evaluate the delimiter. This is the
default.

SimpleMatch Use simple string comparison when evaluating the delimiter.

Singleline This mode recognizes only the start and end of strings. It is the
default mode.

The script block (§7.1.8) specifies the rules for determining the delimiter, and must
evaluate to type bool.

Examples:

PowerShell

ﾉ Expand table

"one,forty two,," -split ","              # 5 strings: "one" "forty two" "" 
""

"abc","de" -split ""                      # 9 strings: "" "a" "b" "c" "" "" 
"d" "e" ""



The pattern being matched by -match , -notmatch , and -replace  may contain subparts
(called submatches) delimited by parentheses. Consider the following example:

"red" -match "red"

The result is $true  and key 0 of $Matches  contains "red", that part of the string
designated by the left operand that exactly matched the pattern designated by the right
operand.

In the following example, the whole pattern is a submatch:

"red" -match "(red)"

As before, key 0 contains "red"; however, key 1 also contains "red", which is that part of
the string designated by the left operand that exactly matched the submatch.

Consider the following, more complex, pattern:

"red" -match "((r)e)(d)"

This pattern allows submatches of "re", "r", "d", or "red".

Again, key 0 contains "red". Key 1 contains "re", key 2 contains "r", and key 3 contains
"d". The key/value pairs are in matching order from left-to-right in the pattern, with
longer string matches preceding shorter ones.

In the case of -replace , the replacement text can access the submatches via names of
the form $n , where the first match is $1 , the second is $3 , and so on. For example,

PowerShell

"ab,cd","1,5,7,8" -split ",", 2           # 4 strings: "ab" "cd" "1" "5,7,8"

"10X20x30" -csplit "X", 0, "SimpleMatch"  # 2 strings: "10" "20x30"

"analogous" -split "[AEIOU]", 0, "RegexMatch, IgnoreCase"
                                          # 6 strings: "" "n" "l" "g" "" "s"

"analogous" -split { $_ -eq "a" -or $_ -eq "o" }, 4
                                          # 4 strings: "" "n" "l" "gous"

7.8.4.6 Submatches

"Monday morning" -replace '(Monday|Tuesday) 
(morning|afternoon|evening)','the $2 of $1'



The resulting string is "the morning of Monday".

Instead of having keys in $Matches  be zero-based indexes, submatches can be named
using the form ?<*name*> . For example, "((r)e)(d)"  can be written with three named
submatches, m1 , m2 , and m3 , as follows: "(?<m1>(?<m2>r)e)(?<m3>d)" .

Syntax:

Syntax

Description:

The shift left ( -shl ) operator and shift right ( -shr ) operator convert the value designed
by the left operand to an integer type and the value designated by the right operand to
int, if necessary, using the usual arithmetic conversions (§6.15).

The shift left operator shifts the left operand left by a number of bits computed as
described below. The low-order empty bit positions are set to zero.

The shift right operator shifts the left operand right by a number of bits computed as
described below. The low-order bits of the left operand are discarded, the remaining
bits shifted right. When the left operand is a signed value, the high-order empty bit
positions are set to zero if the left operand is non-negative and set to one if the left
operand is negative. When the left operand is an unsigned value, the high-order empty
bit positions are set to zero.

When the left operand has type int, the shift count is given by the low-order five bits of
the right operand. When the right operand has type long, the shift count is given by the
low-order six bits of the right operand.

Examples:

PowerShell

7.8.5 Shift operators

shift-operator: one of
    dash shl
    dash shr

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)



Syntax:

Syntax

Description:

The bitwise AND operator -band , the bitwise OR operator -bor , and the bitwise XOR
operator -bxor  convert the values designated by their operands to integer types, if
necessary, using the usual arithmetic conversions (§6.15). After conversion, if both values
have type int that is the type of the result. Otherwise, if both values have type long, that
is the type of the result. If one value has type int and the other has type long, the type
of the result is long. Otherwise, the expression is ill formed. The result is the bitwise
AND, bitwise OR, or bitwise XOR, respectively, of the possibly converted operand values.

These operators are left associative. They are commutative if neither operand contains a
side effect.

Examples:

PowerShell

0x0408 -shl 1             # int with value 0x0810
0x0408 -shr 3             # int with value 0x0081
0x100000000 -shr 0xfff81  # long with value 0x80000000

7.9 Bitwise operators

bitwise-expression:
    unary-expression -band new-lines~opt~ unary-expression
    unary-expression -bor new-lines~opt~ unary-expression
    unary-expression -bxor new-lines~opt~ unary-expression

0x0F0F -band 0xFE    # int with value 0xE
0x0F0F -band 0xFEL   # long with value 0xE
0x0F0F -band 14.6    # long with value 0xF

0x0F0F -bor 0xFE     # int with value 0xFFF
0x0F0F -bor 0xFEL    # long with value 0xFFF
0x0F0F -bor 14.40D   # long with value 0xF0F

0x0F0F -bxor 0xFE    # int with value 0xFF1
0x0F0F -bxor 0xFEL   # long with value 0xFF1
0x0F0F -bxor 14.40D  # long with value 0xF01
0x0F0F -bxor 14.6    # long with value 0xF00



Syntax:

Syntax

Description:

The logical AND operator -and  converts the values designated by its operands to bool ,
if necessary (§6.2). The result is the logical AND of the possibly converted operand
values, and has type bool . If the left operand evaluates to False the right operand is not
evaluated.

The logical OR operator -or  converts the values designated by its operands to bool , if
necessary (§6.2). The result is the logical OR of the possibly converted operand values,
and has type bool . If the left operand evaluates to True the right operand is not
evaluated.

The logical XOR operator -xor  converts the values designated by its operands to bool
(§6.2). The result is the logical XOR of the possibly converted operand values, and has
type bool .

These operators are left associative.

Examples:

PowerShell

7.10 Logical operators

logical-expression:
    unary-expression -and new-lines~opt~ unary-expression
    unary-expression -or new-lines~opt~ unary-expression
    unary-expression -xor new-lines~opt~ unary-expression

$j = 10
$k = 20
($j -gt 5) -and (++$k -lt 15)   # True -and False -> False
($j -gt 5) -and ($k -le 21)     # True -and True -> True
($j++ -gt 5) -and ($j -le 10)   # True -and False -> False
($j -eq 5) -and (++$k -gt 15)   # False -and True -> False

$j = 10
$k = 20
($j++ -gt 5) -or (++$k -lt 15)  # True -or False -> True
($j -eq 10) -or ($k -gt 15)     # False -or True -> True
($j -eq 10) -or (++$k -le 20)   # False -or False -> False

$j = 10



Syntax:

Syntax

Description:

An assignment operator stores a value in the writable location designated by expression.
For a discussion of assignment-operator =  see §7.11.1. For a discussion of all other
assignment operators see §7.11.2.

An assignment expression has the value designated by expression after the assignment
has taken place; however, that assignment expression does not itself designate a
writable location. If expression is type-constrained (§5.3), the type used in that constraint
is the type of the result; otherwise, the type of the result is the type after the usual
arithmetic conversions (§6.15) have been applied.

This operator is right associative.

Description:

In simple assignment ( = ), the value designated by statement replaces the value stored in
the writable location designated by expression. However, if expression designates a non-
existent key in a Hashtable, that key is added to the Hashtable with an associated value
of the value designated by statement.

As shown by the grammar, expression may designate a comma-separated list of writable
locations. This is known as multiple assignment. statement designates a list of one or
more comma-separated values. The commas in either operand list are part of the
multiple-assignment syntax and do not represent the binary comma operator. Values are

$k = 20
($j++ -gt 5) -xor (++$k -lt 15) # True -xor False -> True
($j -eq 10) -xor ($k -gt 15)    # False -xor True -> True
($j -gt 10) -xor (++$k -le 25)  # True -xor True -> False

7.11 Assignment operators

assignment-expression:
    expression assignment-operator statement

assignment-operator: *one of
    =   dash =   +=   *=   /=   %=

7.11.1 Simple assignment



taken from the list designated by statement, in lexical order, and stored in the
corresponding writable location designated by expression. If the list designated by
statement has fewer values than there are expression writable locations, the excess
locations take on the value $null . If the list designated by statement has more values
than there are expression writable locations, all but the right-most expression location
take on the corresponding statement value and the right-most expression location
becomes an unconstrained 1-dimensional array with all the remaining statement values
as elements.

For statements that have values (§8.1.2), statement can be a statement.

Examples:

PowerShell

Description:

$a = 20; $b = $a + 12L             # $b has type long, value 22
$hypot = [Math]::Sqrt(3*3 + 4*4)   # type double, value 5
$a = $b = $c = 10.20D              # all have type decimal, value 10.20
$a = (10,20,30),(1,2)              # type [Object[]], Length 2
[int]$x = 10.6                     # type int, value 11
[long]$x = "0xabc"                 # type long, value 0xabc
$a = [float]                       # value type literal [float]
$i,$j,$k = 10,"red",$true          # $i is 10, $j is "red", $k is True
$i,$j = 10,"red",$true             # $i is 10, $j is [Object[]], Length 2
$i,$j = (10,"red"),$true           # $i is [Object[]], Length 2, $j is True
$i,$j,$k = 10                      # $i is 10, $j is $null, $k is $null

$h = @{}
[int] $h.Lower, [int] $h.Upper = -split "10 100"

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h1.Dept = "Finance"               # adds element Finance
$h1["City"] = "New York"           # adds element City

[int]$Variable:v = 123.456         # v takes on the value 123
${E:output.txt} = "a"              # write text to the given file
$Env:MyPath = "X:\data\file.txt"   # define the environment variable
$Function:F = { param ($a, $b) "Hello there, $a, $b" }
F 10 "red"                         # define and invoke a function
function Demo { "Hi there from inside Demo" }
$Alias:A = "Demo"                  # create alias for function Demo
A                                  # invoke function Demo via the alias

7.11.2 Compound assignment



A compound assignment has the form E1 op= E2 , and is equivalent to the simple
assignment expression E1 = E1 op (E2)  except that in the compound assignment case
the expression E1 is evaluated only once. If expression is type-constrained (§5.3), the
type used in that constraint is the type of the result; otherwise, the type of the result is
determined by op. For *= , see §7.6.1, §7.6.2, §7.6.3; for /= , see §7.6.4; for %= , see §7.6.5;
for += , see §7.7.1, §7.7.2, §7.7.3; for -= , see §7.7.5.

Examples:

PowerShell

Syntax:

Syntax

７ Note

An operand designating an unconstrained value of numeric type may have its type
changed by an assignment operator when the result is stored.

$a = 1234; $a *= (3 + 2)  # type is int, value is 1234 * (3 + 2)
$b = 10,20,30             # $b[1] has type int, value 20
$b[1] /= 6                # $b[1] has type double, value 3.33...

$i = 0
$b = 10,20,30
$b[++$i] += 2             # side effect evaluated only once

[int]$Variable:v = 10     # v takes on the value 10
$Variable:v -= 3          # 3 is subtracted from v

${E:output.txt} = "a"     # write text to the given file
${E:output.txt} += "b"    # append text to the file giving ab
${E:output.txt} *= 4      # replicate ab 4 times giving abababab

7.12 Redirection operators

pipeline:
    expression redirections~opt~ pipeline-tail~opt~
    command verbatim-command-argument~opt~ pipeline-tail~opt~

redirections:
    redirection
    redirections redirection

redirection:



Description:

The redirection operator >  takes the standard output from the pipeline and redirects it
to the location designated by redirected-file-name, overwriting that location's current
contents.

The redirection operator >>  takes the standard output from the pipeline and redirects it
to the location designated by redirected-file-name, appending to that location's current
contents, if any. If that location does not exist, it is created.

The redirection operator with the form n>  takes the output of stream n from the
pipeline and redirects it to the location designated by redirected-file-name, overwriting
that location's current contents.

The redirection operator with the form n>>  takes the output of stream n from the
pipeline and redirects it to the location designated by redirected-file-name, appending
to that location's current contents, if any. If that location does not exist, it is created.

The redirection operator with the form m>&n  writes output from stream m to the same
location as stream n.

The following are the valid streams:

Stream Description

1 Standard output stream

2 Error output stream

3 Warning output stream

    merging-redirection-operator
    file-redirection-operator redirected-file-name

redirected-file-name:
    command-argument
    primary-expression

file-redirection-operator: one of
    >   >>   2>   2>>   3>   3>>   4>   4>>
    5>  5>>  6>   6>>   >    >>    <

merging-redirection-operator: one of
    >&1   2>&1   3>&1   4>&1   5>&1   6>&1
    >&2   1>&2   3>&2   4>&2   5>&2   6>&2

ﾉ Expand table



Stream Description

4 Verbose output stream

5 Debug output stream

* Standard output, error output, warning output, verbose output, and debug output
streams

The redirection operators 1>&2 , 6> , 6>>  and <  are reserved for future use.

If on output the value of redirected-file-name is $null , the output is discarded.

Ordinarily, the value of an expression containing a top-level side effect is not written to
the pipeline unless that expression is enclosed in a pair of parentheses. However, if such
an expression is the left operand of an operator that redirects standard output, the value
is written.

Examples:

PowerShell

$i = 200                       # pipeline gets nothing
$i                             # pipeline gets result
$i > output1.txt               # result redirected to named file
++$i >> output1.txt            # result appended to named file
type file1.txt 2> error1.txt   # error output redirected to named file
type file2.txt 2>> error1.txt  # error output appended to named file
dir -Verbose 4> verbose1.txt   # verbose output redirected to named file

# Send all output to output2.txt
dir -Verbose -Debug -WarningAction Continue *> output2.txt

# error output redirected to named file, verbose output redirected
# to the same location as error output
dir -Verbose 4>&2 2> error2.txt



8. Statements
Article • 07/15/2024

Syntax:

Syntax

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

8.1 Statement blocks and lists

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

statement-block:
    new-lines~opt~ { statement-list~opt~ new-lines~opt~ }

statement-list:
    statement
    statement-list statement

statement:
    if-statement

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Description:

A statement specifies some sort of action that is to be performed. Unless indicated
otherwise within this clause, statements are executed in lexical order.

A statement-block allows a set of statements to be grouped into a single syntactic unit.

Syntax:

Syntax

Description:

An iteration statement (§8.4) or a switch statement (§8.6) may optionally be preceded
immediately by one statement label, label. A statement label is used as the optional
target of a break (§8.5.1) or continue (§8.5.2) statement. However, a label does not alter
the flow of control.

White space is not permitted between the colon ( : ) and the token that follows it.

Examples:

PowerShell

    label~opt~ labeled-statement
    function-statement
    flow-control-statement statement-terminator
    trap-statement
    try-statement
    data-statement
    inlinescript-statement
    parallel-statement
    sequence-statement
    pipeline statement-terminator

statement-terminator:
    ;
    new-line-character

8.1.1 Labeled statements

labeled-statement:
    switch-statement
    foreach-statement
    for-statement
    while-statement
    do-statement



The value of a statement is the cumulative set of values that it writes to the pipeline. If
the statement writes a single scalar value, that is the value of the statement. If the
statement writes multiple values, the value of the statement is that set of values stored
in elements of an unconstrained 1-dimensional array, in the order in which they were
written. Consider the following example:

$v = for ($i = 10; $i -le 5; ++$i) { }

There are no iterations of the loop and nothing is written to the pipeline. The value of
the statement is $null .

$v = for ($i = 1; $i -le 5; ++$i) { }

Although the loop iterates five times nothing is written to the pipeline. The value of the
statement is $null.

$v = for ($i = 1; $i -le 5; ++$i) { $i }

The loop iterates five times each time writing to the pipeline the int  value $i . The
value of the statement is object[]  of Length 5.

$v = for ($i = 1; $i -le 5; ) { ++$i }

Although the loop iterates five times nothing is written to the pipeline. The value of the
statement is $null .

$v = for ($i = 1; $i -le 5; ) { (++$i) }

:go_here while ($j -le 100) {
    # ...
}

:labelA
for ($i = 1; $i -le 5; ++$i) {
    :labelB
    for ($j = 1; $j -le 3; ++$j) {
        :labelC
        for ($k = 1; $k -le 2; ++$k) {
            # ...
        }
    }
}

8.1.2 Statement values



The loop iterates five times with each value being written to the pipeline. The value of
the statement is object[]  of Length 5.

$i = 1; $v = while ($i++ -lt 2) { $i }

The loop iterates once. The value of the statement is the int  with value 2.

Here are some other examples:

PowerShell

Syntax:

Syntax

# if $count is not currently defined then define it with int value 10
$count = if ($count -eq $null) { 10 } else { $count }

$i = 1
$v = while ($i -le 5) {
    $i                   # $i is written to the pipeline
    if ($i -band 1) {

        "odd"            # conditionally written to the pipeline

    }

    ++$i                 # not written to the pipeline

}
# $v is object[], Length 8, value 1,"odd",2,3,"odd",4,5,"odd"

8.2 Pipeline statements

pipeline:
    assignment-expression
    expression redirections~opt~ pipeline-tail~opt~
    command verbatim-command-argument~opt~ pipeline-tail~opt~

assignment-expression:
    expression assignment-operator statement

pipeline-tail:
    | new-lines~opt~ command
    | new-lines~opt~ command pipeline-tail

command:
    command-name command-elements~opt~
    command-invocation-operator command-module~opt~ command-name-expr 
command-elements~opt~



Description:

redirections is discussed in §7.12; assignment-expression is discussed in §7.11; and the
command-invocation-operator dot ( . ) is discussed in §3.5.5. For a discussion of
argument-to-parameter mapping in command invocations, see §8.14.

The first command in a pipeline is an expression or a command invocation. Typically, a
command invocation begins with a command-name, which is usually a bare identifier.
command-elements represents the argument list to the command. A newline or n
unescaped semicolon terminates a pipeline.

A command invocation consists of the command's name followed by zero or more
arguments. The rules governing arguments are as follows:

An argument that is not an expression, but which contains arbitrary text without
unescaped white space, is treated as though it were double quoted. Letter case is
preserved.

command-invocation-operator: one of
    &   .

command-module:
    primary-expression

command-name:
    generic-token
    generic-token-with-subexpr

generic-token-with-subexpr:
    No whitespace is allowed between ) and command-name.
    generic-token-with-subexpr-start statement-list~opt~ )

command-namecommand-name-expr:
    command-name

primary-expressioncommand-elements:
    command-element
    command-elements command-element

command-element:
    command-parameter
    command-argument
    redirection

command-argument:
    command-name-expr

verbatim-command-argument:
    --% verbatim-command-argument-chars



Variable substitution and sub-expression expansion (§2.3.5.2) takes place inside
expandable-string-literals and expandable-here-string-literals.

Text inside quotes allows leading, trailing, and embedded white space to be
included in the argument's value. [Note: The presence of whitespace in a quoted
argument does not turn a single argument into multiple arguments. end note]

Putting parentheses around an argument causes that expression to be evaluated
with the result being passed instead of the text of the original expression.

To pass an argument that looks like a switch parameter (§2.3.4) but is not intended
as such, enclose that argument in quotes.

When specifying an argument that matches a parameter having the [switch]  type
constraint (§8.10.5), the presence of the argument name on its own causes that
parameter to be set to $true . However, the parameter's value can be set explicitly
by appending a suffix to the argument. For example, given a type constrained
parameter p, an argument of -p:$true  sets p to True, while -p:$false  sets p to
False.

An argument of --  indicates that all arguments following it are to be passed in
their actual form as though double quotes were placed around them.

An argument of --%  indicates that all arguments following it are to be passed with
minimal parsing and processing. This argument is called the verbatim parameter.
Arguments after the verbatim parameter are not PowerShell expressions even if
they are syntactically valid PowerShell expressions.

If the command type is Application, the parameter --%  is not passed to the command.
The arguments after --%  have any environment variables (strings surrounded by % )
expanded. For example:

PowerShell

The order of evaluation of arguments is unspecified.

For information about parameter binding see §8.14. For information about name lookup
see §3.8.

Once argument processing has been completed, the command is invoked. If the invoked
command terminates normally (§8.5.4), control reverts to the point in the script or
function immediately following the command invocation. For a description of the

echoargs.exe --% "%path%" # %path% is replaced with the value $Env:path



behavior on abnormal termination see break  (§8.5.1), continue  (§8.5.2), throw  (§8.5.3),
exit  (§8.5.5), try  (§8.7), and trap  (§8.8).

Ordinarily, a command is invoked by using its name followed by any arguments.
However, the command-invocation operator, &, can be used. If the command name
contains unescaped white space, it must be quoted and invoked with this operator. As a
script block has no name, it too must be invoked with this operator. For example, the
following invocations of a command call Get-Factorial  are equivalent:

PowerShell

Direct and indirect recursive function calls are permitted. For example,

PowerShell

Examples:

PowerShell

Syntax:

Syntax

Get-Factorial 5
& Get-Factorial 5
& "Get-Factorial" 5

function Get-Power([int]$x, [int]$y) {
    if ($y -gt 0) { return $x * (Get-Power $x (--$y)) }
    else { return 1 }
}

New-Object 'int[,]' 3,2
New-Object -ArgumentList 3,2 -TypeName 'int[,]'

dir E:\PowerShell\Scripts\*statement*.ps1 | ForEach-Object {$_.Length}

dir E:\PowerShell\Scripts\*.ps1 |
    Select-String -List "catch" |
    Format-Table Path, LineNumber -AutoSize

8.3 The if statement

if-statement:
    if new-lines~opt~ ( new-lines~opt~ pipeline new-lines~opt~ ) statement-



Description:

The pipeline controlling expressions must have type bool or be implicitly convertible to
that type. The else-clause is optional. There may be zero or more elseif-clauses.

If the top-level pipeline tests True, then its statement-block is executed and execution of
the statement terminates. Otherwise, if an elseif-clause is present, if its pipeline tests
True, then its statement-block is executed and execution of the statement terminates.
Otherwise, if an else-clause is present, its statement-block is executed.

Examples:

PowerShell

Syntax:

Syntax

block
        elseif-clauses~opt~ else-clause~opt~

elseif-clauses:
    elseif-clause
    elseif-clauses elseif-clause

elseif-clause:
    new-lines~opt~ elseif new-lines~opt~ ( new-lines~opt~ pipeline new-
lines~opt~ ) statement-block

else-clause:
    new-lines~opt~ else statement-block

$grade = 92
if ($grade -ge 90) { "Grade A" }
elseif ($grade -ge 80) { "Grade B" }
elseif ($grade -ge 70) { "Grade C" }
elseif ($grade -ge 60) { "Grade D" }
else { "Grade F" }

8.4 Iteration statements

8.4.1 The while statement

while-statement:
    while new-lines~opt~ ( new-lines~opt~ while-condition new-lines~opt~ ) 
statement-block



Description:

The controlling expression while-condition must have type bool or be implicitly
convertible to that type. The loop body, which consists of statement-block, is executed
repeatedly until the controlling expression tests False. The controlling expression is
evaluated before each execution of the loop body.

Examples:

PowerShell

Syntax:

Syntax

Description:

The controlling expression while-condition must have type bool or be implicitly
convertible to that type. In the while form, the loop body, which consists of statement-
block, is executed repeatedly while the controlling expression tests True. In the until
form, the loop body is executed repeatedly until the controlling expression tests True.
The controlling expression is evaluated after each execution of the loop body.

Examples:

PowerShell

while-condition:
    new-lines~opt~ pipeline

$i = 1
while ($i -le 5) {                     # loop 5 times
    "{0,1}`t{1,2}" -f $i, ($i*$i)
    ++$i
}

8.4.2 The do statement

do-statement:
    do statement-block new-lines~opt~ while new-lines~opt~ ( while-condition 
new-lines~opt~ )
    do statement-block new-lines~opt~ until new-lines~opt~ ( while-condition 
new-lines~opt~ )

while-condition:
    new-lines~opt~ pipeline



Syntax:

Syntax

Description:

The controlling expression for-condition must have type bool or be implicitly convertible
to that type. The loop body, which consists of statement-block, is executed repeatedly
while the controlling expression tests True. The controlling expression is evaluated
before each execution of the loop body.

$i = 1
do {
    "{0,1}`t{1,2}" -f $i, ($i * $i)
}
while (++$i -le 5)                 # loop 5 times

$i = 1
do {
    "{0,1}`t{1,2}" -f $i, ($i * $i)
}
until (++$i -gt 5)                 # loop 5 times

8.4.3 The for statement

for-statement:
    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~ statement-terminator
        new-lines~opt~ for-condition~opt~ statement-terminator
        new-lines~opt~ for-iterator~opt~
        new-lines~opt~ ) statement-block

    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~ statement-terminator
        new-lines~opt~ for-condition~opt~
        new-lines~opt~ ) statement-block

    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~
        new-lines~opt~ ) statement-block

for-initializer:
    pipeline

for-condition:
    pipeline

for-iterator:
    pipeline



Expression for-initializer is evaluated before the first evaluation of the controlling
expression. Expression for-initializer is evaluated for its side effects only; any value it
produces is discarded and is not written to the pipeline.

Expression for-iterator is evaluated after each execution of the loop body. Expression for-
iterator is evaluated for its side effects only; any value it produces is discarded and is not
written to the pipeline.

If expression for-condition is omitted, the controlling expression tests True.

Examples:

PowerShell

Syntax:

Syntax

Description:

The loop body, which consists of statement-block, is executed for each element
designated by the variable variable in the collection designated by pipeline. The scope
of variable is not limited to the foreach statement. As such, it retains its final value after
the loop body has finished executing. If pipeline designates a scalar (excluding the value

for ($i = 5; $i -ge 1; --$i) { # loop 5 times
    "{0,1}`t{1,2}" -f $i, ($i * $i)
}

$i = 5
for (; $i -ge 1; ) { # equivalent behavior
    "{0,1}`t{1,2}" -f $i, ($i * $i)
    --$i
}

8.4.4 The foreach statement

foreach-statement:
    foreach new-lines~opt~ foreach-parameter~opt~ new-lines~opt~
        ( new-lines~opt~ variable new-lines~opt~ *in* new-lines~opt~ 
pipeline
        new-lines~opt~ ) statement-block

foreach-parameter:
    -parallel



$null) instead of a collection, that scalar is treated as a collection of one element. If
pipeline designates the value $null , pipeline is treated as a collection of zero elements.

If the foreach-parameter -parallel  is specified, the behavior is implementation defined.

The foreach-parameter -parallel  is only allowed in a workflow (§8.10.2).

Every foreach statement has its own enumerator, $foreach  (§2.3.2.2, §4.5.16), which
exists only while that loop is executing.

The objects produced by pipeline are collected before statement-block begins to
execute. However, with the ForEach-Object cmdlet, statement-block is executed on each
object as it is produced.

Examples:

PowerShell

Syntax:

Syntax

$a = 10, 53, 16, -43
foreach ($e in $a) {
    ...
}
$e # the int value -43

foreach ($e in -5..5) {
    ...
}

foreach ($t in [byte], [int], [long]) {
    $t::MaxValue # get static property
}

foreach ($f in Get-ChildItem *.txt) {
    ...
}

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
foreach ($e in $h1.Keys) {
    "Key is " + $e + ", Value is " + $h1[$e]
}

8.5 Flow control statements

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/foreach-object?view=powershell-7.5


Description:

A flow-control statement causes an unconditional transfer of control to some other
location.

Description:

A break statement with a label-expression is referred to as a labeled break statement. A
break statement without a label-expression is referred to as an unlabeled break
statement.

Outside a trap statement, an unlabeled break statement directly within an iteration
statement (§8.4) terminates execution of that smallest enclosing iteration statement. An
unlabeled break statement directly within a switch statement (§8.6) terminates pattern
matching for the current switch's switch-condition. See (§8.8) for details of using break
from within a trap statement.

An iteration statement or a switch statement may optionally be preceded immediately
by one statement label (§8.1.1).Such a statement label may be used as the target of a
labeled break statement, in which case, that statement terminates execution of the
targeted enclosing iteration statement.

A labeled break need not be resolved in any local scope; the search for a matching label
may continue up the calling stack even across script and function-call boundaries. If no
matching label is found, the current command invocation is terminated.

The name of the label designated by label-expression need not have a constant value.

If label-expression is a unary-expression, it is converted to a string.

Examples:

flow-control-statement:
    break label-expression~opt~
    continue label-expression~opt~
    throw pipeline~opt~
    return pipeline~opt~
    exit pipeline~opt~

label-expression:
    simple-name
    unary-expression

8.5.1 The break statement



PowerShell

Description:

A continue  statement with a label-expression is referred to as a labeled continue
statement. A continue statement without a label-expression is referred to as an unlabeled
continue statement.

The use of continue  from within a trap statement is discussed in §8.8.

An unlabeled continue  statement within a loop terminates execution of the current loop
and transfers control to the closing brace of the smallest enclosing iteration statement
(§8.4). An unlabeled continue  statement within a switch terminates execution of the
current switch  iteration and transfers control to the smallest enclosing switch 's switch-
condition (§8.6).

$i = 1
while ($true) { # infinite loop
    if ($i * $i -gt 100) {
        break # break out of current while loop
    }
    ++$i
}

$lab = "go_here"
:go_here
for ($i = 1; ; ++$i) {
    if ($i * $i -gt 50) {
        break $lab # use a string value as target
    }
}

:labelA
for ($i = 1; $i -le 2; $i++) {

    :labelB
    for ($j = 1; $j -le 2; $j++) {

        :labelC
        for ($k = 1; $k -le 3; $k++) {
            if (...) { break labelA }
        }
    }
}

8.5.2 The continue statement



An iteration statement or a switch  statement (§8.6) may optionally be preceded
immediately by one statement label (§8.1.1). Such a statement label may be used as the
target of an enclosed labeled continue  statement, in which case, that statement
terminates execution of the current loop or switch  iteration, and transfers control to the
targeted enclosing iteration or switch  statement label.

A labeled continue  need not be resolved in any local scope; the search for a matching
label may continue  up the calling stack even across script and function-call boundaries.
If no matching label is found, the current command invocation is terminated.

The name of the label designated by label-expression need not have a constant value.

If label-expression is a unary-expression, it is converted to a string.

Examples:

PowerShell

$i = 1
while (...) {
    ...
    if (...) {
        continue # start next iteration of current loop
    }
    ...
}

$lab = "go_here"
:go_here
for (...; ...; ...) {
    if (...) {
        continue $lab # start next iteration of labeled loop
    }
}

:labelA
for ($i = 1; $i -le 2; $i++) {

    :labelB
    for ($j = 1; $j -le 2; $j++) {

        :labelC
        for ($k = 1; $k -le 3; $k++) {
            if (...) { continue labelB }
        }
    }
}



Description:

An exception is a way of handling a system- or application-level error condition. The
throw statement raises an exception. (See §8.7 for a discussion of exception handling.)

If pipeline is omitted and the throw statement is not in a catch-clause, the behavior is
implementation defined. If pipeline is present and the throw statement is in a catch-
clause, the exception that was caught by that catch-clause is re-thrown after any finally-
clause associated with the catch-clause is executed.

If pipeline is present, the type of the exception thrown is implementation defined.

When an exception is thrown, control is transferred to the first catch clause in an
enclosing try statement that can handle the exception. The location at which the
exception is thrown initially is called the throw point. Once an exception is thrown the
steps described in §8.7 are followed repeatedly until a catch clause that matches the
exception is found or none can be found.

Examples:

PowerShell

If pipeline is omitted and the throw statement is not from within a catch-clause, the text
"ScriptHalted" is written to the pipeline, and the type of the exception raised is
System.Management.Automation.RuntimeException .

If pipeline is present, the exception raised is wrapped in an object of type
System.Management.Automation.RuntimeException , which includes information about the
exception as a System.Management.Automation.ErrorRecord  object (accessible via $_ ).

Example 1: throw 123  results in an exception of type RuntimeException. From within the
catch block, $_.TargetObject  contains the object wrapped inside, in this case, a

System.Int32  with value 123.

Example 2: throw "xxx"  results in an exception of type RuntimeException. From within
the catch block, $_.TargetObject  contains the object wrapped inside, in this case, a
System.String  with value "xxx".

8.5.3 The throw statement

throw
throw 100
throw "No such record in file"



Example 3: throw 10,20  results in an exception of type RuntimeException. From within
the catch block, $_.TargetObject  contains the object wrapped inside, in this case, a
System.Object[] , an unconstrained array of two elements with the System .Int32` values
10 and 20.

Description:

The return  statement writes to the pipeline the value(s) designated by pipeline, if any,
and returns control to the function or script's caller. A function or script may have zero
or more return  statements.

If execution reaches the closing brace of a function an implied return  without pipeline is
assumed.

The return  statement is a bit of "syntactic sugar" to allow programmers to express
themselves as they can in other languages; however, the value returned from a function
or script is actually all of the values written to the pipeline by that function or script plus
any value(s) specified by pipeline. If only a scalar value is written to the pipeline, its type
is the type of the value returned; otherwise, the return type is an unconstrained 1-
dimensional array containing all the values written to the pipeline.

Examples:

PowerShell

The caller to Get-Factorial  gets back an int .

PowerShell

8.5.4 The return statement

function Get-Factorial ($v) {
    if ($v -eq 1) {
        return 1 # return is not optional
    }

    return $v * (Get-Factorial ($v - 1)) # return is optional
}

function Test {
    "text1" # "text1" is written to the pipeline
    # ...
    "text2" # "text2" is written to the pipeline
    # ...



The caller to Test  gets back an unconstrained 1-dimensional array of three elements.

Description:

The exit statement terminates the current script and returns control and an exit code to
the host environment or the calling script. If pipeline is provided, the value it designates
is converted to int, if necessary. If no such conversion exists, or if pipeline is omitted, the
int value zero is returned.

Examples:

PowerShell

Syntax:

Syntax

    return 123 # 123 is written to the pipeline
}

8.5.5 The exit statement

exit $count # terminate the script with some accumulated count

8.6 The switch statement

switch-statement:
    switch new-lines~opt~ switch-parameters~opt~ switch-condition switch-
body

switch-parameters:
    switch-parameter
    switch-parameters switch-parameter

switch-parameter:
    -Regex
    -Wildcard
    -Exact
    -CaseSensitive
    -Parallel

switch-condition:
    ( new-lines~opt~ pipeline new-lines~opt~ )
    -File new-lines~opt~ switch-filename

switch-filename:
    command-argument



Description:

If switch-condition designates a single value, control is passed to one or more matching
pattern statement blocks. If no patterns match, some default action can be taken.

A switch must contain one or more switch-clauses, each starting with a pattern (a non-
default switch clause), or the keyword default  (a default switch clause). A switch must
contain zero or one default  switch clauses, and zero or more non-default switch
clauses. Switch clauses may be written in any order.

Multiple patterns may have the same value. A pattern need not be a literal, and a switch
may have patterns with different types.

If the value of switch-condition matches a pattern value, that pattern's statement-block is
executed. If multiple pattern values match the value of switch-condition, each matching
pattern's statement-block is executed, in lexical order, unless any of those statement-
blocks contains a break  statement (§8.5.1).

If the value of switch-condition does not match any pattern value, if a default  switch
clause exists, its statement-block is executed; otherwise, pattern matching for that
switch-condition is terminated.

Switches may be nested, with each switch having its own set of switch clauses. In such
instances, a switch clause belongs to the innermost switch currently in scope.

On entry to each statement-block, $_  is automatically assigned the value of the switch-
condition that caused control to go to that statement-block. $_  is also available in that
statement-block's switch-clause-condition.

Matching of non-strings is done by testing for equality (§7.8.1).

    primary-expression

switch-body:
    new-lines~opt~ { new-lines~opt~ switch-clauses }

switch-clauses:
    switch-clause
    switch-clauses switch-clause

switch-clause:
    switch-clause-condition statement-block statement-terimators~opt~

switch-clause-condition:
    command-argument
    primary-expression



If the matching involves strings, by default, the comparison is case-insensitive. The
presence of the switch-parameter -CaseSensitive  makes the comparison case-sensitive.

A pattern may contain wildcard characters (§3.15), in which case, wildcard string
comparisons are performed, but only if the switch-parameter -Wildcard  is present. By
default, the comparison is case-insensitive.

A pattern may contain a regular expression (§3.16), in which case, regular expression
string comparisons are performed, but only if the switch-parameter -Regex  is present. By
default, the comparison is case-insensitive. If -Regex  is present and a pattern is
matched, $Matches  is defined in the switch-clause statement-block for that pattern.

A switch-parameter may be abbreviated; any distinct leading part of a parameter may be
used. For example, -Regex , -Rege , -Reg , -Re , and -R  are equivalent.

If conflicting switch-parameters are specified, the lexically final one prevails. The
presence of -Exact  disables -Regex  and -Wildcard ; it has no affect on -Case , however.

If the switch-parameter -Parallel  is specified, the behavior is implementation defined.

The switch-parameter -Parallel  is only allowed in a workflow (§8.10.2).

If a pattern is a script-block-expression, that block is evaluated and the result is converted
to bool, if necessary. If the result has the value $true , the corresponding statement-
block is executed; otherwise, it is not.

If switch-condition designates multiple values, the switch is applied to each value in
lexical order using the rules described above for a switch-condition that designates a
single value. Every switch statement has its own enumerator, $switch  (§2.3.2.2, §4.5.16),
which exists only while that switch is executing.

A switch statement may have a label, and it may contain labeled and unlabeled break
(§8.5.1) and continue (§8.5.2) statements.

If switch-condition is -File  switch-filename, instead of iterating over the values in an
expression, the switch iterates over the values in the file designated by switch-
filename.The file is read a line at a time with each line comprising a value. Line
terminator characters are not included in the values.

Examples:

PowerShell

$s = "ABC def`nghi`tjkl`fmno @#$"
$charCount = 0; $pageCount = 0; $lineCount = 0; $otherCount = 0



Syntax:

Syntax

for ($i = 0; $i -lt $s.Length; ++$i) {
    ++$charCount
    switch ($s[$i]) {
        "`n" { ++$lineCount }
        "`f" { ++$pageCount }
        "`t" { }
        " " { }
        default { ++$otherCount }
    }
}

switch -Wildcard ("abc") {
    a* { "a*, $_" }
    ?B? { "?B? , $_" }
    default { "default, $_" }
}

switch -Regex -CaseSensitive ("abc") {
    ^a* { "a*" }
    ^A* { "A*" }
}

switch (0, 1, 19, 20, 21) {
    { $_ -lt 20 } { "-lt 20" }
    { $_ -band 1 } { "Odd" }
    { $_ -eq 19 } { "-eq 19" }
    default { "default" }
}

8.7 The try/finally statement

try-statement:
    try statement-block catch-clauses
    try statement-block finally-clause
    try statement-block catch-clauses finally-clause

catch-clauses:
    catch-clause
    catch-clauses catch-clause

catch-clause:
    new-lines~opt~ catch catch-type-list~opt~
    statement-block

catch-type-list:
    new-lines~opt~ type-literal
    catch-type-list new-lines~opt~ , new-lines~opt~



Description:

The try statement provides a mechanism for catching exceptions that occur during
execution of a block. The try statement also provides the ability to specify a block of
code that is always executed when control leaves the try statement. The process of
raising an exception via the throw statement is described in §8.5.3.

A try block is the statement-block associated with the try statement. A catch block is the
statement-block associated with a catch-clause. A finally block is the statement-block
associated with a finally-clause.

A catch-clause without a catch-type-list is called a general catch clause.

Each catch-clause is an exception handler, and a catch-clause whose catch-type-list
contains the type of the raised exception is a matching catch clause. A general catch
clause matches all exception types.

Although catch-clauses and finally-clause are optional, at least one of them must be
present.

The processing of a thrown exception consists of evaluating the following steps
repeatedly until a catch clause that matches the exception is found.

In the current scope, each try statement that encloses the throw point is examined.
For each try statement S, starting with the innermost try statement and ending
with the outermost try statement, the following steps are evaluated:

If the try  block of S encloses the throw point and if S has one or more catch
clauses, the catch clauses are examined in lexical order to locate a suitable
handler for the exception. The first catch clause that specifies the exception type
or a base type of the exception type is considered a match. A general catch
clause is considered a match for any exception type. If a matching catch clause
is located, the exception processing is completed by transferring control to the
block of that catch clause. Within a matching catch clause, the variable $_
contains a description of the current exception.

Otherwise, if the try  block or a catch  block of S encloses the throw point and if
S has a finally  block, control is transferred to the finally block. If the finally
block throws another exception, processing of the current exception is
terminated. Otherwise, when control reaches the end of the finally  block,
processing of the current exception is continued.

type-literalfinally-clause:
    new-lines~opt~ finally statement-block



If an exception handler was not located in the current scope, the steps above are
then repeated for the enclosing scope with a throw point corresponding to the
statement from which the current scope was invoked.

If the exception processing ends up terminating all scopes, indicating that no
handler exists for the exception, then the behavior is unspecified.

To prevent unreachable catch clauses in a try block, a catch clause may not specify an
exception type that is equal to or derived from a type that was specified in an earlier
catch clause within that same try block.

The statements of a finally  block are always executed when control leaves a try
statement. This is true whether the control transfer occurs as a result of normal
execution, as a result of executing a break , continue , or return  statement, or as a result
of an exception being thrown out of the try  statement.

If an exception is thrown during execution of a finally  block, the exception is thrown
out to the next enclosing try  statement. If another exception was in the process of
being handled, that exception is lost. The process of generating an exception is further
discussed in the description of the throw  statement.

try  statements can co-exist with trap  statements; see §8.8 for details.

Examples:

PowerShell

$a = New-Object 'int[]' 10
$i = 20 # out-of-bounds subscript

while ($true) {
    try {
        $a[$i] = 10
        "Assignment completed without error"
        break
    }

    catch [IndexOutOfRangeException] {
        "Handling out-of-bounds index, >$_<`n"
        $i = 5
    }

    catch {
        "Caught unexpected exception"
    }

    finally {
        # ...



Each exception thrown is raised as a System.Management.Automation.RuntimeException . If
there are type-specific catch-clauses in the try  block, the InnerException property of
the exception is inspected to try and find a match, such as with the type
System.IndexOutOfRangeException  above.

Syntax:

Syntax

Description:

A trap  statement with and without type-literal is analogous to a catch  block (§8.7) with
and without catch-type-list, respectively, except that a trap  statement can trap only one
type at a time.

Multiple trap  statements can be defined in the same statement-block, and their order of
definition is irrelevant. If two trap  statements with the same type-literal are defined in
the same scope, the lexically first one is used to process an exception of matching type.

Unlike a catch  block, a trap  statement matches an exception type exactly; no derived
type matching is performed.

When an exception occurs, if no matching trap  statement is present in the current
scope, a matching trap statement is searched for in the enclosing scope, which may
involve looking in the calling script, function, or filter, and then in its caller, and so on. If
the lookup ends up terminating all scopes, indicating that no handler exists for the
exception, then the behavior is unspecified.

A trap  statement's statement-body only executes to process the corresponding
exception; otherwise, execution passes over it.

If a trap 's statement-body exits normally, by default, an error object is written to the
error stream, the exception is considered handled, and execution continues with the
statement immediately following the one in the scope containing the trap  statement

    }
}

8.8 The trap statement

trap-statement:
    *trap* new-lines~opt~ type-literal~opt~ new-lines~opt~ statement-block



that made the exception visible. The cause of the exception might be in a command
called by the command containing the trap  statement.

If the final statement executed in a trap 's statement-body is continue (§8.5.2), the
writing of the error object to the error stream is suppressed, and execution continues
with the statement immediately following the one in the scope containing the trap
statement that made the exception visible. If the final statement executed in a trap 's
statement-body is break (§8.5.1), the writing of the error object to the error stream is
suppressed, and the exception is re-thrown.

Within a trap  statement the variable $_  contains a description of the current error.

Consider the case in which an exception raised from within a try  block does not have a
matching catch  block, but a matching trap  statement exists at a higher block level.
After the try  block's finally clause is executed, the trap  statement gets control even if
any parent scope has a matching catch  block. If a trap  statement is defined within the
try  block itself, and that try  block has a matching catch  block, the trap  statement
gets control.

Examples:

In the following example, the error object is written and execution continues with the
statement immediately following the one that caused the trap; that is, "Done" is written
to the pipeline.

PowerShell

In the following example, the writing of the error object is suppressed and execution
continues with the statement immediately following the one that caused the trap; that
is, "Done" is written to the pipeline.

PowerShell

In the following example, the writing of the error object is suppressed and the exception
is re-thrown.

PowerShell

$j = 0; $v = 10/$j; "Done"
trap { $j = 2 }

$j = 0; $v = 10/$j; "Done"
trap { $j = 2; continue }



In the following example, the trap and exception-generating statements are in the same
scope. After the exception is caught and handled, execution resumes with writing 1 to
the pipeline.

PowerShell

In the following example, the trap and exception-generating statements are in different
scopes. After the exception is caught and handled, execution resumes with writing 2
(not 1) to the pipeline.

PowerShell

Syntax:

Syntax

Description:

$j = 0; $v = 10/$j; "Done"
trap { $j = 2; break }

&{trap{}; throw '\...'; 1}

trap{} &{throw '\...'; 1}; 2

8.9 The data statement

data-statement:
    data new-lines~opt~ data-name data-commands-allowed~opt~ statement-block

data-name:
    simple-name

data-commands-allowed:
    new-lines~opt~ -SupportedCommand data-commands-list

data-commands-list:
    new-lines~opt~ data-command
    data-commands-list , new-lines~opt~ data-command

data-command:
    command-name-expr



A data statement creates a data section, keeping that section's data separate from the
code. This separation supports facilities like separate string resource files for text, such
as error messages and Help strings. It also helps support internationalization by making
it easier to isolate, locate, and process strings that will be translated into different
languages.

A script or function can have zero or more data sections.

The statement-block of a data section is limited to containing the following PowerShell
features only:

All operators except -match
The if  statement
The following automatic variables: $PSCulture , $PSUICulture , $true , $false , and
$null .
Comments
Pipelines
Statements separated by semicolons ( ; )
Literals
Calls to the ConvertFrom-StringData cmdlet
Any other cmdlets identified via the SupportedCommand parameter

If the ConvertFrom-StringData  cmdlet is used, the key/value pairs can be expressed
using any form of string literal. However, expandable-string-literals and expandable-
here-string-literals must not contain any variable substitutions or sub-expression
expansions.

Examples:

The SupportedCommand parameter indicates that the given cmdlets or functions
generate data only. For example, the following data section includes a user-written
cmdlet, ConvertTo-Xml , which formats data in an XML file:

PowerShell

Consider the following example, in which the data section contains a ConvertFrom-
StringData  command that converts the strings into a hash table, whose value is
assigned to $messages .

data -SupportedCommand ConvertTo-Xml {
    Format-Xml -Strings string1, string2, string3
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-stringdata?view=powershell-7.5


PowerShell

The keys and values of the hash table are accessed using $messages.Greeting ,

$messages.Yes , and $messages.No , respectively.

Now, this can be saved as an English-language resource. German- and Spanish-
language resources can be created in separate files, with the following data sections:

PowerShell

If dataname is present, it names the variable (without using a leading $ ) into which the
value of the data statement is to be stored. Specifically, $name = data { ... }  is
equivalent to data name { ... } .

Syntax:

Syntax

$messages = data {
    ConvertFrom-StringData -StringData @'
    Greeting = Hello
    Yes = yes
    No = no
'@
}

$messages = data {
    ConvertFrom-StringData -StringData @"
    Greeting = Guten Tag
    Yes = ja
    No = nein
"@
}

$messagesS = data {
    ConvertFrom-StringData -StringData @"
    Greeting = Buenos días
    Yes = sí
    No = no
"@
}

8.10 Function definitions

function-statement:
    function new-lines~opt~ function-name function-parameter-
declaration~opt~ { script-block }



Description:

    filter new-lines~opt~ function-name function-parameter-declaration~opt~ 
{ script-block }
    workflow new-lines~opt~ function-name function-parameter-
declaration~opt~ { script-block }

function-name:
    command-argument

command-argument:
    command-name-expr

function-parameter-declaration:
    new-lines~opt~ ( parameter-list new-lines~opt~ )

parameter-list:
    script-parameter
    parameter-list new-lines~opt~ , script-parameter

script-parameter:
    new-lines~opt~ attribute-list~opt~ new-lines~opt~ variable script-
parameter-default~opt~

script-block:
    param-block~opt~ statement-terminators~opt~ script-block-body~opt~

param-block:
    new-lines~opt~ attribute-list~opt~ new-lines~opt~ param new-lines~opt~
        ( parameter-list~opt~ new-lines~opt~ )

parameter-list:
    script-parameter
    parameter-list new-lines~opt~ , script-parameter

script-parameter-default:
    new-lines~opt~ = new-lines~opt~ expression

script-block-body:
    named-block-list
    statement-list

named-block-list:
    named-block
    named-block-list named-block

named-block:
    block-name statement-block statement-terminators~opt~

block-name: one of
    dynamicparam   begin   process   end



A function definition specifies the name of the function, filter, or workflow being defined
and the names of its parameters, if any. It also contains zero or more statements that are
executed to achieve that function's purpose.

Each function is an instance of the class System.Management.Automation.FunctionInfo .

Whereas an ordinary function runs once in a pipeline and accesses the input collection
via $input , a filter is a special kind of function that executes once for each object in the
input collection. The object currently being processed is available via the variable $_ .

A filter with no named blocks (§8.10.7) is equivalent to a function with a process block,
but without any begin block or end block.

Consider the following filter function definition and calls:

PowerShell

Each filter is an instance of the class System.Management.Automation.FilterInfo  (§4.5.11).

A workflow function is like an ordinary function with implementation defined semantics.
A workflow function is translated to a sequence of Windows Workflow Foundation
activities and executed in the Windows Workflow Foundation engine.

Consider the following definition for a function called Get-Power :

PowerShell

8.10.1 Filter functions

filter Get-Square2 { # make the function a filter
    $_ * $_ # access current object from the collection
}

-3..3 | Get-Square2 # collection has 7 elements
6, 10, -3 | Get-Square2 # collection has 3 elements

8.10.2 Workflow functions

8.10.3 Argument processing

function Get-Power ([long]$Base, [int]$Exponent) {
    $result = 1
    for ($i = 1; $i -le $Exponent; ++$i) {
        $result *= $Base



This function has two parameters, $Base  and $Exponent . It also contains a set of
statements that, for non-negative exponent values, computes $Base^$Exponent^  and
returns the result to Get-Power 's caller.

When a script, function, or filter begins execution, each parameter is initialized to its
corresponding argument's value. If there is no corresponding argument and a default
value (§8.10.4) is supplied, that value is used; otherwise, the value $null  is used. As such,
each parameter is a new variable just as if it was initialized by assignment at the start of
the script-block.

If a script-parameter contains a type constraint (such as [long]  and [int]  above), the
value of the corresponding argument is converted to that type, if necessary; otherwise,
no conversion occurs.

When a script, function, or filter begins execution, variable $args  is defined inside it as
an unconstrained 1-dimensional array, which contains all arguments not bound by name
or position, in lexical order.

Consider the following function definition and calls:

PowerShell

For more information about parameter binding see §8.14.

The declaration of a parameter p may contain an initializer, in which case, that
initializer's value is used to initialize p provided p is not bound to any arguments in the
call.

Consider the following function definition and calls:

PowerShell

    }
    return $result
}

function F ($a, $b, $c, $d) { ... }

F -b 3 -d 5 2 4       # $a is 2, $b is 3, $c is 4, $d is 5, $args Length 0
F -a 2 -d 3 4 5       # $a is 2, $b is 4, $c is 5, $d is 3, $args Length 0
F 2 3 4 5 -c 7 -a 1   # $a is 1, $b is 2, $c is 7, $d is 3, $args Length 2

8.10.4 Parameter initializers



When a switch parameter is passed, the corresponding parameter in the command must
be constrained by the type switch. Type switch has two values, True and False.

Consider the following function definition and calls:

PowerShell

When a script, function, or filter is used in a pipeline, a collection of values is delivered
to that script or function. The script, function, or filter gets access to that collection via
the enumerator $input (§2.3.2.2, §4.5.16), which is defined on entry to that script,
function, or filter.

Consider the following function definition and calls:

PowerShell

function Find-Str ([string]$Str, [int]$StartPos = 0) { ... }

Find-Str "abcabc" # 2nd argument omitted, 0 used for $StartPos
Find-Str "abcabc" 2 # 2nd argument present, so it is used for $StartPos

8.10.5 The [switch] type constraint

function Process ([switch]$Trace, $P1, $P2) { ... }

Process 10 20                # $Trace is False, $P1 is 10, $P2 is 20
Process 10 -Trace 20         # $Trace is True, $P1 is 10, $P2 is 20
Process 10 20 -Trace         # $Trace is True, $P1 is 10, $P2 is 20
Process 10 20 -Trace:$false  # $Trace is False, $P1 is 10, $P2 is 20
Process 10 20 -Trace:$true   # $Trace is True, $P1 is 10, $P2 is 20

8.10.6 Pipelines and functions

function Get-Square1 {
    foreach ($i in $input) {   # iterate over the collection
        $i * $i
    }
}

-3..3 | Get-Square1            # collection has 7 elements
6, 10, -3 | Get-Square1        # collection has 3 elements

8.10.7 Named blocks



The statements within a script-block can belong to one large unnamed block, or they
can be distributed into one or more named blocks. Named blocks allow custom
processing of collections coming from pipelines; named blocks can be defined in any
order.

The statements in a begin block (i.e.; one marked with the keyword begin) are executed
once, before the first pipeline object is delivered.

The statements in a process block (i.e.; one marked with the keyword process) are
executed for each pipeline object delivered. ( $_  provides access to the current object
being processed from the input collection coming from the pipeline.) This means that if
a collection of zero elements is sent via the pipeline, the process block is not executed
at all. However, if the script or function is called outside a pipeline context, this block is
executed exactly once, and $_  is set to $null , as there is no current collection object.

The statements in an end block (i.e.; one marked with the keyword end) are executed
once, after the last pipeline object has been delivered.

The subsections of §8.10 thus far deal with static parameters, which are defined as part
of the source code. It is also possible to define dynamic parameters via a dynamicparam
block, another form of named block (§8.10.7), which is marked with the keyword
dynamicparam . Much of this machinery is implementation defined.

Dynamic parameters are parameters of a cmdlet, function, filter, or script that are
available under certain conditions only. One such case is the Encoding parameter of the
Set-Item  cmdlet.

In the statement-block, use an if statement to specify the conditions under which the
parameter is available in the function. Use the New-Object cmdlet to create an object of
an implementation-defined type to represent the parameter, and specify its name. Also,
use New-Object  to create an object of a different implementation-defined type to
represent the implementation-defined attributes of the parameter.

The following example shows a function with standard parameters called Name and
Path, and an optional dynamic parameter named DP1. The DP1 parameter is in the PSet1
parameter set and has a type of Int32 . The DP1 parameter is available in the Sample
function only when the value of the Path parameter contains "HKLM:", indicating that it
is being used in the HKEY_LOCAL_MACHINE  registry drive.

PowerShell

8.10.8 dynamicparam block

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5


The type used to create an object to represent a dynamic parameter is
System.Management.Automation.RuntimeDefinedParameter .

The type used to create an object to represent the attributes of the parameter is
System.Management.Automation.ParameterAttribute .

The implementation-defined attributes of the parameter include Mandatory, Position,
and ValueFromPipeline.

A param-block provides an alternate way of declaring parameters. For example, the
following sets of parameter declarations are equivalent:

PowerShell

function Sample {
    param ([string]$Name, [string]$Path)
    dynamicparam {
        if ($Path -match "*HKLM*:") {
            $dynParam1 = New-Object 
System.Management.Automation.RuntimeDefinedParameter("dp1", [int32], 
$attributeCollection)

            $attributes = New-Object 
System.Management.Automation.ParameterAttribute
            $attributes.ParameterSetName = 'pset1'
            $attributes.Mandatory = $false

            $attributeCollection = New-Object -Type 
System.Collections.ObjectModel.Collection``1[System.Attribute]
            $attributeCollection.Add($attributes)

            $paramDictionary = New-Object 
System.Management.Automation.RuntimeDefinedParameterDictionary
            $paramDictionary.Add("dp1", $dynParam1)
            return $paramDictionary
        }
    }
}

8.10.9 param block

function FindStr1 ([string]$Str, [int]$StartPos = 0) { ... }
function FindStr2 {
    param ([string]$Str, [int]$StartPos = 0) ...
}



A param-block allows an attribute-list on the param-block whereas a function-
parameter-declaration does not.

A script may have a param-block but not a function-parameter-declaration. A function or
filter definition may have a function-parameter-declaration or a param-block, but not
both.

Consider the following example:

PowerShell

The one parameter, $ComputerName , has type string[] , it is required, and it takes input
from the pipeline.

See §12.3.7 for a discussion of the Parameter attribute and for more examples.

Syntax:

Syntax

The parallel statement contains zero or more statements that are executed in an
implementation defined manner.

A parallel statement is only allowed in a workflow (§8.10.2).

Syntax:

Syntax

param ( [Parameter(Mandatory = $true, ValueFromPipeline=$true)]
        [string[]] $ComputerName )

8.11 The parallel statement

parallel-statement:
    *parallel* statement-block

8.12 The sequence statement

sequence-statement:
    *sequence* statement-block



The sequence statement contains zero or more statements that are executed in an
implementation defined manner.

A sequence statement is only allowed in a workflow (§8.10.2).

Syntax:

Syntax

The inlinescript statement contains zero or more statements that are executed in an
implementation defined manner.

An inlinescript statement is only allowed in a workflow (§8.10.2).

When a script, function, filter, or cmdlet is invoked, each argument can be bound to the
corresponding parameter by position, with the first parameter having position zero.

Consider the following definition fragment for a function called Get-Power , and the calls
to it:

PowerShell

8.13 The inlinescript statement

inlinescript-statement:
    inlinescript statement-block

8.14 Parameter binding

function Get-Power ([long]$Base, [int]$Exponent) { ... }

Get-Power 5 3       # argument 5 is bound to parameter $Base in position 0
                    # argument 3 is bound to parameter $Exponent in position 
1
                    # no conversion is needed, and the result is 5 to the 
power 3

Get-Power 4.7 3.2   # double argument 4.7 is rounded to int 5, double 
argument
                    # 3.2 is rounded to int 3, and result is 5 to the power 
3

Get-Power 5         # $Exponent has value $null, which is converted to int 0

Get-Power           # both parameters have value $null, which is converted 
to int 0



When a script, function, filter, or cmdlet is invoked, an argument can be bound to the
corresponding parameter by name. This is done by using a parameter with argument,
which is an argument that is the parameter's name with a leading dash (-), followed by
the associated value for that argument. The parameter name used can have any case-
insensitive spelling and can use any prefix that uniquely designates the corresponding
parameter. When choosing parameter names, avoid using the names of the common
parameters.

Consider the following calls to function Get-Power :

PowerShell

On the other hand, calls to the following function

PowerShell

must use parameters -Side1  and -Side2 , as there is no prefix that uniquely designates
the parameter.

The same parameter name cannot be used multiple times with or without different
associated argument values.

Parameters can have attributes (§12). For information about the individual attributes see
the sections within §12.3. For information about parameter sets see §12.3.7.

A script, function, filter, or cmdlet can receive arguments via the invocation command
line, from the pipeline, or from both. Here are the steps, in order, for resolving
parameter binding:

1. Bind all named parameters, then
2. Bind positional parameters, then
3. Bind from the pipeline by value (§12.3.7) with exact match, then
4. Bind from the pipeline by value (§12.3.7) with conversion, then

Get-Power -Base 5 -Exponent 3   # -Base designates $Base, so 5 is
                                # bound to that, -Exponent designates
                                # $Exponent, so 3 is bound to that

Get-Power -Exp 3 -Bas 5         # $Base takes on 5 and $Exponent takes on 3

Get-Power -E 3 -B 5             # $Base takes on 5 and $Exponent takes on 3

function Get-Hypot ([double]$Side1, [double]$Side2) {
    return [Math]::Sqrt($Side1 * $Side1 + $Side2 * $Side2)
}

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


5. Bind from the pipeline by name (§12.3.7) with exact match, then
6. Bind from the pipeline by name (§12.3.7) with conversion

Several of these steps involve conversion, as described in §6. However, the set of
conversions used in binding is not exactly the same as that used in language
conversions. Specifically,

Although the value $null  can be cast to bool, $null  cannot be bound to bool .
When the value $null  is passed to a switch parameter for a cmdlet, it is treated as
if $true  was passed. However, when passed to a switch parameter for a function, it
is treated as if $false  was passed.
Parameters of type bool or switch can only bind to numeric or bool arguments.
If the parameter type is not a collection, but the argument is some sort of
collection, no conversion is attempted unless the parameter type is object or
PsObject. (The main point of this restriction is to disallow converting a collection to
a string parameter.) Otherwise, the usual conversions are attempted.

If the parameter type is IList  or ICollection<T> , only those conversions via
Constructor, op_Implicit, and op_Explicit are attempted. If no such conversions exist, a
special conversion for parameters of "collection" type is used, which includes IList ,
ICollection<T> , and arrays.

Positional parameters prefer to be bound without type conversion, if possible. For
example,

PowerShell

function Test {
    [CmdletBinding(DefaultParameterSetName = "SetB")]
    param([Parameter(Position = 0, ParameterSetName = "SetA")]
        [decimal]$Dec,
        [Parameter(Position = 0, ParameterSetName = "SetB")]
        [int]$In
    )
    $PSCmdlet.ParameterSetName
}

Test 42d   # outputs "SetA"
Test 42    # outputs "SetB"



9. Arrays
Article • 01/08/2025

PowerShell supports arrays of one or more dimensions with each dimension having zero
or more elements. Within a dimension, elements are numbered in ascending integer
order starting at zero. Any individual element can be accessed via the array subscript
operator []  (§7.1.4). The number of dimensions in an array is called its rank.

An element can contain a value of any type including an array type. An array having one
or more elements whose values are of any array type is called a jagged array. A
multidimensional array has multiple dimensions, in which case, the number of elements
in each row of a dimension is the same. An element of a jagged array may contain a
multidimensional array, and vice versa.

Multidimensional arrays are stored in row-major order. The number of elements in an
array is called that array's length, which is fixed when the array is created. As such, the
elements in a 1-dimensional array A having length N can be accessed (i.e., subscripted)
using the expressions A[0], A[1], ..., A[N-1] . The elements in a 2-dimensional array B
having M rows, with each row having N columns, can be accessed using the expressions

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

9.1 Introduction

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


B[0,0], B[0,1], ..., B[0,N-1], B[1,0], B[1,1], ..., B[1,N-1], ..., B[M-1,0], B[M-

1,1], ..., B[M-1,N-1] . And so on for arrays with three or more dimensions.

By default, an array is polymorphic; i.e., its elements do not need to all have the same
type. For example,

PowerShell

A 1-dimensional array has type type[] , a 2-dimensional array has type type[,] , a 3-
dimensional array has type type[,,] , and so on, where type is object for an
unconstrained type array, or the constrained type for a constrained array (§9.4).

All array types are derived from the type Array (§4.3.2).

An array is created via an array creation expression, which has the following forms: unary
comma operator (§7.2.1) ,array-expression (§7.1.7), binary comma operator (§7.3), range
operator (§7.4), or New-Object cmdlet.

Here are some examples of array creation and usage:

PowerShell

$items = 10,"blue",12.54e3,16.30D # 1-D array of length 4
$items[1] = -2.345
$items[2] = "green"

$a = New-Object 'object[,]' 2,2 # 2-D array of length 4
$a[0,0] = 10
$a[0,1] = $false
$a[1,0] = "red"
$a[1,1] = $null

9.2 Array creation

$values = 10, 20, 30
for ($i = 0; $i -lt $values.Length; ++$i) {
    "`$values[$i] = $($values[$i])"
}

$x = , 10                         # x refers to an array of length 1
$x = @(10)                        # x refers to an array of length 1
$x = @()                          # x refers to an array of length 0

$a = New-Object 'object[,]' 2, 2  # create a 2x2 array of anything
$a[0, 0] = 10                     # set to an int value
$a[0, 1] = $false                 # set to a boolean value
$a[1, 0] = "red"                  # set to a string value
$a[1, 1] = 10.50D                 # set to a decimal value

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5


The following is written to the pipeline:

Output

The default initial value of any element not explicitly initialized is the default value for
that element's type (that is, $false , zero, or $null ).

Arrays of arbitrary type and length can be concatenated via the +  and +=  operators,
both of which result in the creation of a new unconstrained 1-dimensional array. The
existing arrays are unchanged. See §7.7.3 for more information, and §9.4 for a discussion
of adding to an array of constrained type.

A 1-dimensional array can be created so that it is type-constrained by prefixing the
array-creation expression with an array type cast. For example,

PowerShell

The syntax for creating a multidimensional array requires the specification of a type, and
that type becomes the constraint type for that array. However, by specifying type
object[] , there really is no constraint as a value of any type can be assigned to an
element of an array of that type.

foreach ($e in $a) {              # enumerate over the whole array
    $e
}

$values[0] = 10
$values[1] = 20
$values[2] = 30

10
False
red
10.50

9.3 Array concatenation

9.4 Constraining element types

$a = [int[]](1,2,3,4)   # constrained to int
$a[1] = "abc"           # implementation-defined behavior
$a += 1.23              # new array is unconstrained



Concatenating two arrays (§7.7.3) always results in a new array that is unconstrained
even if both arrays are constrained by the same type. For example,

PowerShell

As array types are reference types, a variable designating an array can be made to refer
to any array of any rank, length, and element type. For example,

PowerShell

Assignment of an array involves a shallow copy; that is, the variable assigned to refers to
the same array, no copy of the array is made. For example,

PowerShell

The following is written to the pipeline:

Output

$a = [int[]](1,2,3)    # constrained to int
$b = [int[]](10,20)    # constrained to int
$c = $a + $b           # constraint not preserved
$c = [int[]]($a + $b)  # result explicitly constrained to int

9.5 Arrays as reference types

$a = 10,20                     # $a refers to an array of length 2
$a = 10,20,30                  # $a refers to a different array, of length 3
$a = "red",10.6                # $a refers to a different array, of length 2
$a = New-Object 'int[,]' 2,3   # $a refers to an array of rank 2

$a = 10,20,30
">$a<"
$b = $a         # make $b refer to the same array as $a
">$b<"

$a[0] = 6       # change value of [0] via $a
">$a<"
">$b<"          # change is reflected in $b

$b += 40        # make $b refer to a new array
$a[0] = 8       # change value of [0] via $a
">$a<"
">$b<"          # change is not reflected in $b

>10 20 30<
>10 20 30<



Any element of an array can itself be an array. For example,

PowerShell

The following is written to the pipeline:

Output

$list[1]  refers to an array of 1 element, the integer 7, which is accessed via $list[1]
[0] , as shown. Compare this with the following subtly different case:

PowerShell

Here, $list[1]  refers to a scalar, the integer 7, which is accessed via $list[1] .

Consider the following example,

PowerShell

>6 20 30<
>6 20 30<
>8 20 30<
>6 20 30 40<

9.6 Arrays as array elements

$colors = "red", "blue", "green"
$list = $colors, (,7), (1.2, "yes") # parens in (,7) are redundant; they
                                    # are intended to aid readability
"`$list refers to an array of length $($list.Length)"
">$($list[1][0])<"
">$($list[2][1])<"

$list refers to an array of length 3
>7<
>yes<

$list = $colors, 7, (1.2, "yes") # 7 has no prefix comma
">$($list[1])<"

$x = [string[]]("red","green")
$y = 12.5, $true, "blue"
$a = New-Object 'object[,]' 2,2
$a[0,0] = $x               # element is an array of 2 strings
$a[0,1] = 20               # element is an int



This is discussed in §7.1.4.1.

This is discussed in §7.1.4.1.

An array slice is an unconstrained 1-dimensional array whose elements are copies of
zero or more elements from a collection. An array slice is created via the subscript
operator []  (§7.1.4.5).

A contiguous set of elements can be copied from one array to another using the
method [array]::Copy . For example,

PowerShell

Although it is possible to loop through an array accessing each of its elements via the
subscript operator, we can enumerate over that array's elements using the foreach
statement. For a multidimensional array, the elements are processed in row-major order.
For example,

PowerShell

$a[1,0] = $y               # element is an array of 3 objects
$a[1,1] = [int[]](92,93)   # element is an array of 2 ints

9.7 Negative subscripting

9.8 Bounds checking

9.9 Array slices

9.10 Copying an array

$a = [int[]](10,20,30)
$b = [int[]](0,1,2,3,4,5)
[array]::Copy($a, $b, 2)        # $a[0]->$b[0],
$a[1]->$b[1]
[array]::Copy($a, 1, $b, 3, 2)  # $a[1]->$b[3],
$a[2]->$b[4]

9.11 Enumerating over an array



Some operations on a multidimensional array (such as replication (§7.6.3) and
concatenation (§7.7.3)) require that array to be flattened; that is, to be turned into a 1-
dimensional array of unconstrained type. The resulting array takes on all the elements in
row-major order.

Consider the following example:

PowerShell

The array designated by $c  contains the elements "red", $true , 10, 20, 30, and 40.

$a = 10, 53, 16, -43
foreach ($elem in $a) {
    # do something with element via $elem
}

foreach ($elem in -5..5) {
    # do something with element via $elem
}

$a = New-Object 'int[,]' 3, 2
foreach ($elem in $a) {
    # do something with element via $elem
}

9.12 Multidimensional array flattening

$a = "red",$true
$b = (New-Object 'int[,]' 2,2)
$b[0,0] = 10
$b[0,1] = 20
$b[1,0] = 30
$b[1,1] = 40
$c = $a + $b



10. Hashtables
Article • 01/08/2025

Syntax:

Syntax

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

hash-literal-expression:
    @{ new-lines~opt~ hash-literal-body~opt~ new-lines~opt~ }

hash-literal-body:
    hash-entry
    hash-literal-body statement-terminators hash-entry

hash-entry:
    key-expression = new-lines~opt~ statement

key-expression:
    simple-name
    unary-expression

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


The type Hashtable represents a collection of key/value pair objects that supports
efficient retrieval of a value when indexed by the key. Each key/value pair is an element,
which is stored in some implementation-defined object type.

An element's key cannot be the null value. There are no restrictions on the type of a key
or value. Duplicate keys are not supported.

Given a key/value pair object, the key and associated value can be obtained by using the
instance properties Key and Value, respectively.

Given one or more keys, the corresponding value(s) can be accessed via the Hashtable
subscript operator []  (§7.1.4.3).

All Hashtables have type Hashtable  (§4.3.3).

The order of the keys in the collection returned by Keys is unspecified; however, it is the
same order as the associated values in the collection returned by Values.

Here are some examples involving Hashtables:

PowerShell

Hashtable  elements are stored in an object of type DictionaryEntry, and the collections
returned by Keys and Values have type ICollection.

A Hashtable  is created via a hash literal (§7.1.9) or the New-Object cmdlet. It can be
created with zero or more elements. The Count property returns the current element
count.

statement-terminator:
    ;
    new-line-character

10.1 Introduction

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h1.FirstName # designates the key FirstName
$h1["LastName"] # designates the associated value for key LastName
$h1.Keys # gets the collection of keys

10.2 Hashtable creation

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-7.5


An element can be added to a Hashtable  by assigning (§7.11.1) a value to a non-existent
key name or to a subscript (§7.1.4.3) that uses a non-existent key name. Removal of an
element requires the use of the Remove method. For example,

PowerShell

Hashtables can be concatenated via the +  and +=  operators, both of which result in the
creation of a new Hashtable . The existing Hashtables are unchanged. See §7.7.4 for
more information.

As Hashtable  is a reference type, assignment of a Hashtable  involves a shallow copy;
that is, the variable assigned to refers to the same Hashtable ; no copy of the Hashtable
is made. For example,

PowerShell

To process every pair in a Hashtable , use the Keys property to retrieve the list of keys as
an array, and then enumerate over the elements of that array getting the associated
value via the Value property or a subscript, as follows

PowerShell

10.3 Adding and removing Hashtable elements

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h1.Dept = "Finance" # adds element Finance
$h1["Salaried"] = $false # adds element Salaried
$h1.Remove("Salaried") # removes element Salaried

10.4 Hashtable concatenation

10.5 Hashtables as reference types

$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123 }
$h2 = $h1
$h1.FirstName = "John" # change key's value in $h1
$h2.FirstName # change is reflected in $h2

10.6 Enumerating over a Hashtable



$h1 = @{ FirstName = "James"; LastName = "Anderson"; IDNum = 123}
foreach ($e in $h1.Keys) {
   "Key is " + $e + ", Value is " + $h1[$e]
}



11. Modules
Article • 01/08/2025

As stated in §3.14, a module is a self-contained reusable unit that allows PowerShell
code to be partitioned, organized, and abstracted. A module can contain one or more
module members, which are commands (such as cmdlets and functions) and items (such
as variables and aliases). The names of these members can be kept private to the
module or they may be exported to the session into which the module is imported.

There are three different module types: manifest, script, and binary. A manifest module is
a file that contains information about a module, and controls certain aspects of that
module's use. A script module is a PowerShell script file with a file extension of .psm1
instead of .ps1 . A binary module contains class types that define cmdlets and providers.
Unlike script modules, binary modules are written in compiled languages. Binary
modules are not covered by this specification.

A binary module is a .NET assembly (i.e.; a DLL) that was compiled against the
PowerShell libraries.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

11.1 Introduction

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Modules may nest; that is, one module may import another module. A module that has
associated nested modules is a root module.

When a PowerShell session is created, by default, no modules are imported.

When modules are imported, the search path used to locate them is defined by the
environment variable PSModulePath.

The following cmdlets deal with modules:

Get-Module: Identifies the modules that have been, or can be imported
Import-Module: Adds one or more modules to the current session (see §11.4)
Export-ModuleMember: Identifies the module members that are to be exported
Remove-Module: Removes one or more modules from the current session (see
§11.5)
New-Module: Creates a dynamic module (see §11.7)

A script module is a script file. Consider the following script module:

PowerShell

This module contains two functions, each of which has an alias. By default, all function
names, and only function names are exported. However, once the cmdlet Export-
ModuleMember  has been used to export anything, then only those things exported
explicitly will be exported. A series of commands and items can be exported in one call
or a number of calls to this cmdlet; such calls are cumulative for the current session.

11.2 Writing a script module

function Convert-CentigradeToFahrenheit ([double]$tempC) {
    return ($tempC * (9.0 / 5.0)) + 32.0
}
New-Alias c2f Convert-CentigradeToFahrenheit

function Convert-FahrenheitToCentigrade ([double]$tempF) {
    return ($tempF - 32.0) * (5.0 / 9.0)
}
New-Alias f2c Convert-FahrenheitToCentigrade

Export-ModuleMember -Function Convert-CentigradeToFahrenheit
Export-ModuleMember -Function Convert-FahrenheitToCentigrade
Export-ModuleMember -Alias c2f, f2c

11.3 Installing a script module

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-module?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/export-modulemember?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/remove-module?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-module?view=powershell-7.5


A script module is defined in a script file, and modules can be stored in any directory.
The environment variable PSModulePath points to a set of directories to be searched
when module-related cmdlets look for modules whose names do not include a fully
qualified path. Additional lookup paths can be provided; for example,

$Env:PSModulePath = $Env:PSModulePath + ";<additional-path>"

Any additional paths added affect the current session only.

Alternatively, a fully qualified path can be specified when a module is imported.

Before the resources in a module can be used, that module must be imported into the
current session, using the cmdlet Import-Module . Import-Module  can restrict the
resources that it actually imports.

When a module is imported, its script file is executed. That process can be configured by
defining one or more parameters in the script file, and passing in corresponding
arguments via the ArgumentList parameter of Import-Module .

Consider the following script that uses these functions and aliases defined in §11.2:

Import-Module  "E:\Scripts\Modules\PSTest_Temperature" -Verbose

PowerShell

Importing a module causes a name conflict when commands or items in the module
have the same names as commands or items in the session. A name conflict results in a
name being hidden or replaced. The Prefix parameter of Import-Module  can be used to
avoid naming conflicts. Also, the Alias, Cmdlet, Function, and Variable parameters can
limit the selection of commands to be imported, thereby reducing the chances of name
conflict.

Even if a command is hidden, it can be run by qualifying its name with the name of the
module in which it originated. For example, & M\F 100  invokes the function F in module
M, and passes it the argument 100.

11.4 Importing a script module

"0 degrees C is " + (Convert-CentigradeToFahrenheit 0) + " degrees F"
"100 degrees C is " + (c2f 100) + " degrees F"
"32 degrees F is " + (Convert-FahrenheitToCentigrade 32) + " degrees C"
"212 degrees F is " + (f2c 212) + " degrees C"



When the session includes commands of the same kind with the same name, such as
two cmdlets with the same name, by default it runs the most recently added command.

See §3.5.6 for a discussion of scope as it relates to modules.

One or more modules can be removed from a session via the cmdlet Remove-Module .

Removing a module does not uninstall the module.

In a script module, it is possible to specify code that is to be executed prior to that
module's removal, as follows:

$MyInvocation.MyCommand.ScriptBlock.Module.OnRemove = { *on-removal-code* }

As stated in §11.1, a manifest module is a file that contains information about a module,
and controls certain aspects of that module's use.

A module need not have a corresponding manifest, but if it does, that manifest has the
same name as the module it describes, but with a .psd1  file extension.

A manifest contains a limited subset of PowerShell script, which returns a Hashtable
containing a set of keys. These keys and their values specify the manifest elements for
that module. That is, they describe the contents and attributes of the module, define any
prerequisites, and determine how the components are processed.

Essentially, a manifest is a data file; however, it can contain references to data types, the
if statement, and the arithmetic and comparison operators. (Assignments, function
definitions and loops are not permitted.) A manifest also has read access to
environment variables and it can contain calls to the cmdlet Join-Path , so paths can be
constructed.

The only key that is required is ModuleVersion.

11.5 Removing a script module

11.6 Module manifests

７ Note

Editor's Note: The original document contains a list of keys allowed in a module
manifest file. That list is outdated and incomplete. For a complete list of keys in a
module manifest, see New-ModuleManifest.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest


Here is an example of a simple manifest:

PowerShell

The key GUID has a string  value. This specifies a Globally Unique IDentifier (GUID) for
the module. The GUID can be used to distinguish among modules having the same
name. To create a new GUID, call the method [guid]::NewGuid() .

A dynamic module is a module that is created in memory at runtime by the cmdlet New-
Module ; it is not loaded from disk. Consider the following example:

PowerShell

The script block $sb  defines the contents of the module, in this case, two functions and
two aliases to those functions. As with an on-disk module, only functions are exported

@{
ModuleVersion = '1.0'
Author = 'John Doe'
RequiredModules = @()
FunctionsToExport = 'Set*','Get*','Process*'
}

11.7 Dynamic modules

$sb = {
    function Convert-CentigradeToFahrenheit ([double]$tempC) {
        return ($tempC * (9.0 / 5.0)) + 32.0
    }

    New-Alias c2f Convert-CentigradeToFahrenheit

    function Convert-FahrenheitToCentigrade ([double]$tempF) {
        return ($tempF - 32.0) * (5.0 / 9.0)
    }

    New-Alias f2c Convert-FahrenheitToCentigrade

    Export-ModuleMember -Function Convert-CentigradeToFahrenheit
    Export-ModuleMember -Function Convert-FahrenheitToCentigrade
    Export-ModuleMember -Alias c2f, f2c
}

New-Module -Name MyDynMod -ScriptBlock $sb
Convert-CentigradeToFahrenheit 100
c2f 100



by default, so Export-ModuleMember  cmdlets calls exist to export both the functions and
the aliases.

Once New-Module  runs, the four names exported are available for use in the session, as is
shown by the calls to the Convert-CentigradeToFahrenheit  and c2f.

Like all modules, the members of dynamic modules run in a private module scope that is
a child of the global scope. Get-Module  cannot get a dynamic module, but Get-Command
can get the exported members.

To make a dynamic module available to Get-Module , pipe a New-Module  command to
Import-Module , or pipe the module object that New-Module  returns, to Import-Module .
This action adds the dynamic module to the Get-Module  list, but it does not save the
module to disk or make it persistent.

A dynamic module can be used to create a closure, a function with attached data.
Consider the following example:

PowerShell

The intent here is that Get-NextID  return the next ID in a sequence whose start value
can be specified. However, multiple sequences must be supported, each with its own
$StartValue  and $nextID  context. This is achieved by the call to the method
[scriptblock]::GetNewClosure  (§4.3.7).

Each time a new closure is created by GetNewClosure , a new dynamic module is created,
and the variables in the caller's scope (in this case, the script block containing the
increment) are copied into this new module. To ensure that the nextId defined inside the

11.8 Closures

function Get-NextID ([int]$StartValue = 1) {
    $nextID = $StartValue
    {
        ($Script:nextID++)
    }.GetNewClosure()
}

$v1 = Get-NextID      # get a scriptblock with $StartValue of 0
& $v1                 # invoke Get-NextID getting back 1
& $v1                 # invoke Get-NextID getting back 2

$v2 = Get-NextID 100  # get a scriptblock with $StartValue of 100
& $v2                 # invoke Get-NextID getting back 100
& $v2                 # invoke Get-NextID getting back 101



parent function (but outside the script block) is incremented, the explicit Script: scope
prefix is needed.

Of course, the script block need not be a named function; for example:

PowerShell

$v3 = & {      # get a scriptblock with $StartValue of 200
    param ([int]$StartValue = 1)
    $nextID = $StartValue
    {
        ($Script:nextID++)
    }.GetNewClosure()
} 200

& $v3          # invoke script getting back 200
& $v3          # invoke script getting back 201



12. Attributes
Article • 03/24/2025

An attribute object associates predefined system information with a target element,
which can be a param block or a parameter (§8.10). Each attribute object has an attribute
type.

Information provided by an attribute is also known as metadata. Metadata can be
examined by the command or the execution environment to control how the command
processes data or before run time by external tools to control how the command itself is
processed or maintained.

Multiple attributes can be applied to the same target element.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

12.1 Attribute specification

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Syntax

An attribute consists of an attribute-name and an optional list of positional and named
arguments. The positional arguments (if any) precede the named arguments. A named
argument consists of a simple-name, optionally followed by an equal sign and followed
by an expression. If the expression is omitted, the value $true  is assumed.

The attribute-name is a reserved attribute type (§12.3) or some implementation-defined
attribute type.

An attribute instance is an object of an attribute type. The instance represents an
attribute at run-time.

To create an object of some attribute type A, use the notation A() . An attribute is
declared by enclosing its instance inside [] , as in [A()] . Some attribute types have
positional and named parameters (§8.14), just like functions and cmdlets. For example,

[A(10,IgnoreCase=$true)]

shows an instance of type A being created using a positional parameter whose
argument value is 10, and a named parameter, IgnoreCase, whose argument value is
$true .

attribute-list:
    attribute
    attribute-list new-lines~opt~ attribute

attribute:
    [ new-lines~opt~ attribute-name ( attribute-arguments new-lines~opt~ ) 
new-lines~opt~ ]
    type-literal

attribute-name:
    type-spec

attribute-arguments:
    attribute-argument
    attribute-argument new-lines~opt~ ,
    attribute-arguments

attribute-argument:
    new-lines~opt~ expression
    new-lines~opt~ simple-name
    new-lines~opt~ simple-name = new-lines~opt~ expression

12.2 Attribute instances



The attributes described in the following sections can be used to augment or modify the
behavior of PowerShell functions, filters, scripts, and cmdlets.

This attribute is used in a script-parameter to specify an alternate name for a parameter.
A parameter may have multiple aliases, and each alias name must be unique within a
parameter-list. One possible use is to have different names for a parameter in different
parameter sets (see ParameterSetName).

The attribute argument has type string[].

Consider a function call Test1  that has the following param block, and which is called as
shown:

PowerShell

Consider a function call Test2  that has the following param block, and which is called as
shown:

PowerShell

12.3 Reserved attributes

12.3.1 The Alias attribute

param (
    [Parameter(Mandatory = $true)]
    [Alias("CN")]
    [Alias("Name", "System")]
    [string[]] $ComputerName
)

Test1 "Mars", "Saturn"                # pass argument by position
Test1 -ComputerName "Mars", "Saturn"  # pass argument by name
Test1 -CN "Mars", "Saturn"            # pass argument using first alias
Test1 -Name "Mars", "Saturn"          # pass argument using second alias
Test1 -Sys "Mars", "Saturn"           # pass argument using third alias

param (
    [Parameter(Mandatory = $true, ValueFromPipelineByPropertyName = $true)]
    [Alias('PSPath')]
    [string] $LiteralPath
)

Get-ChildItem "E:\*.txt" | Test2 -LiteralPath { $_ ; "`n`t";
    $_.FullName + ".bak" }
Get-ChildItem "E:\*.txt" | Test2



Cmdlet Get-ChildItem  (alias dir ) adds to the object it returns a new NoteProperty of
type string , called PSPath.

This attribute is used in a script-parameter to allow an empty collection as the argument
of a mandatory parameter.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

This attribute is used in a script-parameter to allow an empty string as the argument of a
mandatory parameter.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

12.3.2 The AllowEmptyCollection attribute

param (
    [Parameter(Mandatory = $true)]
    [AllowEmptyCollection()]
    [string[]] $ComputerName
)

Test "Red", "Green" # $ComputerName has Length 2
Test "Red" # $ComputerName has Length 1
Test -Comp @() # $ComputerName has Length 0

12.3.3 The AllowEmptyString attribute

param (
    [Parameter(Mandatory = $true)]
    [AllowEmptyString()]
    [string] $ComputerName
)

Test "Red" # $ComputerName is "Red"
Test "" # empty string is permitted
Test -Comp "" # empty string is permitted

12.3.4 The AllowNull attribute



This attribute is used in a script-parameter to allow $null as the argument of a
mandatory parameter for which no implicit conversion is available.

Consider a function call Test that has the following param block, and which is called as
shown:

PowerShell

Note that the second case above does not need this attribute; there is already an
implicit conversion from $null  to int.

This attribute is used in the attribute-list of param-block of a function to indicate that
function acts similar to a cmdlet. Specifically, it allows functions to access a number of
methods and properties through the $PSCmdlet variable by using begin, process, and
end named blocks (§8.10.7).

When this attribute is present, positional arguments that have no matching positional
parameters cause parameter binding to fail and $args is not defined. (Without this
attribute $args would take on any unmatched positional argument values.)

The following arguments are used to define the characteristics of the parameter:

Parameter Name Purpose

SupportsShouldProcess
(named)

Type: bool; Default value: $false

Specifies whether the function supports calls to the ShouldProcess
method, which is used to prompt the user for feedback before the
function makes a change to the system. A value of $true indicates
that it does. A value of $false indicates that it doesn't.

ConfirmImpact (named) Type: string; Default value: "Medium"

param (
    [Parameter(Mandatory = $true)]
    [AllowNull()]
    [int[]] $Values
)

Test 10, 20, 30     # $values has Length 3, values 10, 20, 30
Test 10, $null, 30  # $values has Length 3, values 10, 0, 30
Test -Val $null     # $values has value $null

12.3.5 The CmdletBinding attribute

ﾉ Expand table



Parameter Name Purpose

Specifies the impact level of the action performed. The call to the
ShouldProcess method displays a confirmation prompt only when
the ConfirmImpact argument is greater than or equal to the value
of the $ConfirmPreference preference variable.

The possible values of this argument are:

None: Suppress all requests for confirmation.

Low: The action performed has a low risk of losing data.

Medium: The action performed has a medium risk of losing data.

High: The action performed has a high risk of losing data.

The value of $ConfirmPreference can be set so that only cmdlets
with an equal or higher impact level can request confirmation
before they perform their operation. For example, if
$ConfirmPreference is set to Medium, cmdlets with a Medium or
High impact level can request confirmation. Requests from cmdlets
with a low impact level are suppressed.

DefaultParameterSetName
(named)

Type: string; Default value: "__AllParameterSets"

Specifies the parameter set to use if that cannot be determined
from the arguments. See the named argument ParameterSetName
in the attribute Parameter ([§12.3.7][§12.3.7]).

PositionalBinding (named) Type: bool; Default value: $true

Specifies whether positional binding is supported or not. The value
of this argument is ignored if any parameters specify non-default
values for either the named argument Position or the named
argument ParameterSetName in the attribute Parameter ([§12.3.7]
[§12.3.7]). Otherwise, if the argument is $false then no parameters
are positional, otherwise parameters are assigned a position based
on the order the parameters are specified.

Here's is an example of the framework for using this attribute:

PowerShell

[CmdletBinding(SupportsShouldProcess = $true, ConfirmImpact = "Low")]
param ( ... )

begin { ... }
Get-process { ... }
end { ... }



This attribute is used in the attribute-list of param-block to specify the types returned.
The following arguments are used to define the characteristics of the parameter:

Parameter Name Purpose

Type (position 0) Type: string[] or array of type literals

A list of the types of the values that are returned.

ParameterSetName
(named)

Type: string[]

Specifies the parameter sets that return the types indicated by the
corresponding elements of the Type parameter.

Here are several examples of this attribute's use:

PowerShell

This attribute is used in a script-parameter. The following named arguments are used to
define the characteristics of the parameter:

Parameter Purpose

HelpMessage (named) Type: string

This argument specifies a message that is intended to
contain a short description of the parameter. This message
is used in an implementation-defined manner when the
function or cmdlet is run yet a mandatory parameter having
a HelpMessage does not have a corresponding argument.

The following example shows a parameter declaration that
provides a description of the parameter.

12.3.6 The OutputType attribute

ﾉ Expand table

[OutputType([int])] param ( ... )
[OutputType("double")] param ( ... )
[OutputType("string","string")] param ( ... )

12.3.7 The Parameter attribute

ﾉ Expand table



Parameter Purpose

param ( [Parameter(Mandatory = $true,
HelpMessage = "An array of computer names.")]
[string[]] $ComputerName )

Windows PowerShell: If a required parameter is not
provided the runtime prompts the user for a parameter
value. The prompt dialog box includes the HelpMessage
text.

Mandatory (named) Type: bool; Default value: $false

This argument specifies whether the parameter is required
within the given parameter set (see ParameterSetName
argument below). A value of $true indicates that it is. A
value of $false indicates that it isn't.

param ( [Parameter(Mandatory = $true)]
[string[]] $ComputerName )

Windows PowerShell: If a required parameter is not
provided the runtime prompts the user for a parameter
value. The prompt dialog box includes the HelpMessage
text, if any.

ParameterSetName (named) Type: string; Default value: "__AllParameterSets"

It is possible to write a single function or cmdlet that can
perform different actions for different scenarios. It does this
by exposing different groups of parameters depending on
the action it wants to take. Such parameter groupings are
called parameter sets.

The argument ParameterSetName specifies the parameter
set to which a parameter belongs. This behavior means that
each parameter set must have one unique parameter that is
not a member of any other parameter set.

For parameters that belong to multiple parameter sets, add
a Parameter attribute for each parameter set. This allows
the parameter to be defined differently for each parameter
set.

A parameter set that contains multiple positional
parameters must define unique positions for each
parameter. No two positional parameters can specify the
same position.

If no parameter set is specified for a parameter, the
parameter belongs to all parameter sets.



Parameter Purpose

When multiple parameter sets are defined, the named
argument DefaultParameterSetName of the attribute
CmdletBinding ([§12.3.5][§12.3.5]) is used to specify the
default parameter set. The runtime uses the default
parameter set if it cannot determine the parameter set to
use based on the information provided by the command, or
raises an exception if no default parameter set has been
specified.

The following example shows a function Test with a
parameter declaration of two parameters that belong to
two different parameter sets, and a third parameter that
belongs to both sets:

param ( [Parameter(Mandatory = $true,
ParameterSetName = "Computer")]
[string[]] $ComputerName,

[Parameter(Mandatory = $true,
ParameterSetName = "User")]
[string[]] $UserName,

[Parameter(Mandatory = $true,
ParameterSetName = "Computer")]
[Parameter(ParameterSetName = "User")]
[int] $SharedParam = 5 )

if ($PSCmdlet.ParameterSetName -eq "Computer")
{
# handle "Computer" parameter set
}

elseif ($PSCmdlet.ParameterSetName -eq "User")
{
# handle "User" parameter set
}
…
}

Test -ComputerName "Mars","Venus" -SharedParam 10
Test -UserName "Mary","Jack"
Test -UserName "Mary","Jack" -SharedParam 20

Position (named) Type: int

This argument specifies the position of the parameter in the
argument list. If this argument is not specified, the
parameter name or its alias must be specified explicitly
when the parameter is set. If none of the parameters of a



Parameter Purpose

function has positions, positions are assigned to each
parameter based on the order in which they are received.

The following example shows the declaration of a
parameter whose value must be specified as the first
argument when the function is called.

param ( [Parameter(Position = 0)]
[string[]] $ComputerName )

ValueFromPipeline (named) Type: bool; Default value: $false

This argument specifies whether the parameter accepts
input from a pipeline object. A value of $true indicates that
it does. A value of $false indicates that it does not.

Specify $true if the function or cmdlet accesses the
complete object, not just a property of the object.

Only one parameter in a parameter set can declare
ValueFromPipeline as $true.

The following example shows the parameter declaration of
a mandatory parameter, $ComputerName, that accepts the
input object that is passed to the function from the
pipeline.

param ( [Parameter(Mandatory = $true,
ValueFromPipeline=$true)]
[string[]] $ComputerName )

For an example of using this parameter in conjunction with
the Alias attribute see [§12.3.1][§12.3.1].

ValueFromPipelineByPropertyName
(named)

Type: bool; Default value: $false

This argument specifies whether the parameter takes its
value from a property of a pipeline object that has either
the same name or the same alias as this parameter. A value
of $true indicates that it does. A value of $false indicates
that it does not.

Specify $true if the following conditions are true: the
parameter accesses a property of the piped object, and the
property has the same name as the parameter, or the
property has the same alias as the parameter.

A parameter having ValueFromPipelineByPropertyName set
to $true need not have a parameter in the same set with
ValueFromPipeline set to $true.



Parameter Purpose

If a function has a parameter $ComputerName, and the
piped object has a ComputerName property, the value of
the ComputerName property is assigned to the
$ComputerName parameter of the Function:

param ( [Parameter(Mandatory = $true,
ValueFromPipelineByPropertyName = $true)]
[string[]] $ComputerName )

Multiple parameters in a parameter set can define the
ValueFromPipelineByPropertyName as $true. Although, a
single input object cannot be bound to multiple
parameters, different properties in that input object may be
bound to different parameters.

When binding a parameter with a property of an input
object, the runtime environment first looks for a property
with the same name as the parameter.  If such a property
does not exist, the runtime environment looks for aliases to
that parameter, in their declaration order, picking the first
such alias for which a property exists.

function Process-Date
{
param(
[Parameter(ValueFromPipelineByPropertyName=$true)]
[int]$Year,

[Parameter(ValueFromPipelineByPropertyName=$true)]
[int]$Month,

[Parameter(ValueFromPipelineByPropertyName=$true)]
[int]$Day
)

process { … }
}

Get-Date | Process-Date

ValueFromRemainingArguments
(named)

Type: bool; Default value: $false

This argument specifies whether the parameter accepts all
of the remaining arguments that are not bound to the
parameters of the function. A value of $true indicates that it
does. A value of $false indicates that it does not.

The following example shows a parameter $Others that
accepts all the remaining arguments of the input object
that is passed to the function Test:



Parameter Purpose

param ( [Parameter(Mandatory = $true)][int] $p1,
[Parameter(Mandatory = $true)][int] $p2,
[Parameter(ValueFromRemainingArguments = $true)]
[string[]] $Others )

Test 10 20 # $Others has Length 0
Test 10 20 30 40 # $Others has Length 2, value 30,40

An implementation may define other attributes as well.

The following attributes are provided as well:

HelpMessageBaseName: Specifies the location where resource identifiers reside.
For example, this parameter could specify a resource assembly that contains Help
messages that are to be localized.
HelpMessageResourceId: Specifies the resource identifier for a Help message.

This attribute is used in a script-parameter to provide additional information about the
parameter. The attribute is used in an implementation defined manner. The following
arguments are used to define the characteristics of the parameter:

Parameter
Name

Purpose

Help
(named)

Type: string

This argument specifies a message that is intended to contain a short description
of the default value of a parameter. This message is used in an implementation-
defined manner.

Windows PowerShell: The message is used as part of the description of the
parameter for the help topic displayed by the [Get-Help]
(xref:Microsoft.PowerShell.Core.Get-Help) cmdlet.

Value
(named)

Type: object

This argument specifies a value that is intended to be the default value of a
parameter. The value is used in an implementation-defined manner.

Windows PowerShell: The value is used as part of the description of the parameter
for the help topic displayed by the [Get-Help](xref:Microsoft.PowerShell.Core.Get-
Help)cmdlet when the Help property is not specified.

12.3.8 The PSDefaultValue attribute

ﾉ Expand table



This attribute is used in a script-parameter to provide additional information about the
parameter. The attribute is used in an implementation defined manner.

This attribute is used as part of the description of the parameter for the help topic
displayed by the Get-Help cmdlet.

This attribute is used in a script-parameter to specify the minimum and maximum
number of argument values that the parameter can accept. The following arguments are
used to define the characteristics of the parameter:

Parameter Name Purpose

MinLength
(position 0)

Type: int

This argument specifies the minimum number of argument values
allowed.

MaxLength
(position 1)

Type: int

This argument specifies the maximum number of argument values
allowed.

In the absence of this attribute, the parameter's corresponding argument value list can
be of any length.

Consider a function call Test that has the following param block, and which is called as
shown:

PowerShell

12.3.9 The SupportsWildcards attribute

12.3.10 The ValidateCount attribute

ﾉ Expand table

param (
    [ValidateCount(2, 5)]
    [int[]] $Values
)

Temp 10, 20, 30
Temp 10                         # too few argument values
Temp 10, 20, 30, 40, 50, 60     # too many argument values

[ValidateCount(3, 4)]$Array = 1..3

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help?view=powershell-7.5


This attribute is used in a script-parameter or variable to specify the minimum and
maximum length of the parameter's argument, which must have type string. The
following arguments are used to define the characteristics of the parameter:

Parameter Name Purpose

MinLength (position 0) Type: int

This argument specifies the minimum number of characters allowed.

MaxLength (position 1) Type: int

This argument specifies the maximum number of characters allowed.

In the absence of this attribute, the parameter's corresponding argument can be of any
length.

Consider a function call Test that has the following param block, and which is called as
shown:

PowerShell

This attribute is used in a script-parameter or variable to specify that the argument of
the parameter cannot be $null  or be a collection containing a null-valued element.

Consider a function call Test  that has the following param block, and which is called as
`shown:

$Array = 10                     # too few argument values
$Array = 1..100                 # too many argument values

12.3.11 The ValidateLength attribute

ﾉ Expand table

param ( [Parameter(Mandatory = $true)]
[ValidateLength(3,6)]
[string[]] $ComputerName )

Test "Thor","Mars"     # length is ok
Test "Io","Mars"       # "Io" is too short
Test "Thor","Jupiter"  # "Jupiter" is too long

12.3.12 The ValidateNotNull attribute



PowerShell

This attribute is used in a script-parameter or variable to specify that the argument if the
parameter cannot be $null, an empty string, or an empty array, or be a collection
containing a $null-valued or empty string element.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

This attribute is used in a script-parameter or variable to specify a regular expression for
matching the pattern of the parameter's argument. The following arguments are used to
define the characteristics of the parameter:

param (
    [ValidateNotNull()]
    [string[]] $Names
)

Test "Jack", "Jill"     # ok
Test "Jane", $null      # $null array element value not allowed
Test $null              # null array not allowed

[ValidateNotNull()]$Name = "Jack" # ok
$Name = $null           # null value not allowed

12.3.13 The ValidateNotNullOrEmpty attribute

param (
    [ValidateNotNullOrEmpty()]
    [string[]] $Names
)

Test "Jack", "Jill"    # ok
Test "Mary", ""        # empty string not allowed
Test "Jane", $null     # $null array element value not allowed
Test $null             # null array not allowed
Test @()               # empty array not allowed

[ValidateNotNullOrEmpty()]$Name = "Jack" # ok
$Name = ""             # empty string not allowed
$Name = $null          # null value not allowed

12.3.14 The ValidatePattern attribute



Parameter Name Purpose

RegexString (position 0) Type: String

A regular expression that is used to validate the parameter's argument

Options (named) Type: Regular-Expression-Option

See [§4.2.6.4][§4.2.6.4] for the allowed values.

If the argument is a collection, each element in the collection must match the pattern.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

This attribute is used in a script-parameter or variable to specify the minimum and
maximum values of the parameter's argument. The following arguments are used to
define the characteristics of the parameter:

ﾉ Expand table

param (
    [ValidatePattern('\^[A-Z][1-5][0-9]$')]
    [string] $Code,

    [ValidatePattern('\^(0x|0X)([A-F]|[a-f]|[0-9])([A-F]|[a-f]|[0-9])$')]
    [string] $HexNum,

    [ValidatePattern('\^[+|-]?[1-9]$')]
    [int] $Minimum
)

Test -C A12 # matches pattern
Test -C A63 # does not match pattern

Test -H 0x4f # matches pattern
Test -H "0XB2" # matches pattern
Test -H 0xK3 # does not match pattern

Test -M -4 # matches pattern
Test -M "+7" # matches pattern
Test -M -12 # matches pattern, but is too long

[ValidatePattern('\^[a-z][a-z0-9]\*$')]$ident = "abc"
$ident = "123" # does not match pattern

12.3.15 The ValidateRange attribute



Parameter Name Purpose

MinRange (position 0) Type: object

This argument specifies the minimum value allowed.

MaxRange (position 1) Type: object

This argument specifies the maximum value allowed.

In the absence of this attribute, there is no range restriction.

Consider a function call Test1  that has the following param block, and which is called as
shown:

PowerShell

Consider a function call Test2 that has the following param block and calls:

PowerShell

Consider a function call Test3  that has the following param block, and which is called as
shown:

PowerShell

ﾉ Expand table

param (
    [Parameter(Mandatory = $true)]
    [ValidateRange(1, 10)]
    [int] $StartValue
)

Test1 2
Test1 -St 7
Test1 -3 # value is too small
Test1 12 # value is too large

param (
    [Parameter(Mandatory = $true)]
    [ValidateRange("b", "f")]
    [string] $Name
)

Test2 "Bravo" # ok
Test2 "Alpha" # value compares less than the minimum
Test2 "Hotel" # value compares greater than the maximum



This attribute is used in a script-parameter or variable to specify a script that is to be
used to validate the parameter's argument.

The argument in position 1 is a script-block-expression.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

This attribute is used in a script-parameter or variable to specify a set of valid values for
the argument of the parameter. The following arguments are used to define the
characteristics of the parameter:

param (
    [Parameter(Mandatory = $true)]
    [ValidateRange(0.002, 0.003)]
    [double] $Distance
)

Test3 0.002
Test3 0.0019    # value is too small
Test3 "0.005"   # value is too large

[ValidateRange(13, 19)]$teenager = 15
$teenager = 20  # value is too large

12.3.16 The ValidateScript attribute

param (
    [Parameter(Mandatory = $true)]
    [ValidateScript( { ($_ -ge 1 -and $_ -le 3) -or ($_ -ge 20) })]
    [int] $Count
)

Test 2 # ok, valid value
Test 25 # ok, valid value
Test 5 # invalid value
Test 0 # invalid value

[ValidateScript({$_.Length --gt 7})]$password = "password" # ok
$password = "abc123" # invalid value

12.3.17 The ValidateSet attribute



Parameter Name Purpose

ValidValues (position 0) Type: string[]

The set of valid values.

IgnoreCase (named) Type: bool; Default value: $true

Specifies whether case should be ignored for parameters of type string.

If the parameter has an array type, every element of the corresponding argument array
must match an element of the value set.

Consider a function call Test  that has the following param block, and which is called as
shown:

PowerShell

ﾉ Expand table

param ( [ValidateSet("Red", "Green", "Blue")]
    [string] $Color,

    [ValidateSet("up", "down", "left", "right", IgnoreCase =
        $false)]
    [string] $Direction

)

Test -Col "RED"    # case is ignored, is a member of the set
Test -Col "white"  # case is ignored, is not a member of the set

Test -Dir "up"     # case is not ignored, is a member of the set
Test -Dir "Up"     # case is not ignored, is not a member of the set

[ValidateSet(("Red", "Green", "Blue")]$color = "RED" # ok, case is ignored
$color = "Purple"  # case is ignored, is not a member of the set



13. Cmdlets
Article • 01/08/2025

A cmdlet is a single-feature command that manipulates objects in PowerShell. Cmdlets
can be recognized by their name format, a verb and noun separated by a dash ( - ), such
as Get-Help , Get-Process , and Start-Service . A verb pattern is a verb expressed using
wildcards, as in W* . A noun pattern is a noun expressed using wildcards, as in event.

Cmdlets should be simple and be designed to be used in combination with other
cmdlets. For example, Get cmdlets should only retrieve data, Set cmdlets should only
establish or change data, Format cmdlets should only format data, and Out cmdlets
should only direct the output to a specified destination.

For each cmdlet, provide a help file that can be accessed by typing:

Get-Help *cmdlet-name* -Detailed

The detailed view of the cmdlet help file should include a description of the cmdlet, the
command syntax, descriptions of the parameters, and an example that demonstrate the
use of that cmdlet.

Cmdlets are used similarly to operating system commands and utilities. PowerShell
commands are not case-sensitive.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


The common parameters are a set of cmdlet parameters that can be used with any
cmdlet. They are implemented by the PowerShell runtime environment itself, not by the
cmdlet developer, and they are automatically available to any cmdlet or function that
uses the Parameter attribute (§12.3.7) or CmdletBinding attribute (§12.3.5).

Although the common parameters are accepted by any cmdlet, they might not have any
semantics for that cmdlet. For example, if a cmdlet does not generate any verbose
output, using the Verbose common parameter has no effect.

Several common parameters override system defaults or preferences that can be set via
preference variables (§2.3.2.3). Unlike the preference variables, the common parameters
affect only the commands in which they are used.

７ Note

Editor's note: The original document contains a list of cmdlet with descriptions,
syntax diagrams, parameter definitions, and examples. This information is
incomplete and out dated. For current information about cmdlet, consult the
Reference section of the PowerShell documentation.

13.1 Common parameters

７ Note

Editor's note: The original document contains a list of the Common Parameters.
This information is incomplete and out dated. For current information see
about_CommonParameters.

https://learn.microsoft.com/en-us/powershell/scripting/overview
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


A. Comment-Based Help
Article • 01/08/2025

PowerShell provides a mechanism for programmers to document their scripts using
special comment directives. Comments using such syntax are called help comments. The
cmdlet Get-Help generates documentation from these directives.

A help comment contains a help directive of the form .name followed on one or more
subsequent lines by the help content text. The help comment can be made up of a
series of single-line-comments or a delimited-comment (§2.2.3). The set of comments
comprising the documentation for a single entity is called a help topic.

For example,

PowerShell

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

A.1 Introduction

# <help-directive-1>
# <help-content-1>
...

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-help?view=powershell-7.5
https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


or

PowerShell

All of the lines in a help topic must be contiguous. If a help topic follows a comment
that is not part of that topic, there must be at least one blank line between the two.

The directives can appear in any order, and some of the directives may appear multiple
times.

Directive names are not case-sensitive.

When documenting a function, help topics may appear in one of three locations:

Immediately before the function definition with no more than one blank line
between the last line of the function help and the line containing the function
statement.
Inside the function's body immediately following the opening curly bracket.
Inside the function's body immediately preceding the closing curly bracket.

When documenting a script file, help topics may appear in one of two locations:

At the beginning of the script file, optionally preceded by comments and blank
lines only. If the first item in the script after the help is a function definition, there
must be at least two blank lines between the end of the script help and that
function declaration. Otherwise, the help will be interpreted as applying to the
function instead of the script file.
At the end of the script file.

# <help-directive-n>
# <help-content-n>

<#
<help-directive-1>
<help-content-1>
...

<help-directive-n>
<help-content-n>
#>

A.2 Help directives

A.2.1 .DESCRIPTION



Syntax:

Syntax

Description:

This directive allows for a detailed description of the function or script. (The .SYNOPSIS
directive (§A.2.11) is intended for a brief description.) This directive can be used only
once in each topic.

Examples:

PowerShell

Syntax:

Syntax

Description:

This directive allows an example of command usage to be shown.

If this directive occurs multiple times, each associated help content block is displayed as
a separate example.

Examples:

PowerShell

.DESCRIPTION

<#
.DESCRIPTION
Computes Base to the power Exponent. Supports non-negative integer
powers only.
#>

A.2.2 .EXAMPLE

.EXAMPLE

<#
.EXAMPLE
Get-Power 3 4
81



Syntax:

Syntax

Description:

This directive specifies the path to an XML-based help file for the script or function.

Although comment-based help is easier to implement, XML-based Help is required if
more precise control is needed over help content or if help topics are to be translated
into multiple languages. The details of XML-based help are not defined by this
specification.

Examples:

PowerShell

Syntax:

Syntax

Description:

Specifies the help category of the item in ForwardHelpTargetName (§A.2.5). Valid values
are Alias, All, Cmdlet, ExternalScript, FAQ, Filter, Function, General, Glossary, HelpFile,
Provider, and ScriptCommand. Use this directive to avoid conflicts when there are
commands with the same name.

.EXAMPLE
Get-Power -Base 3 -Exponent 4
81
#>

A.2.3 .EXTERNALHELP

.EXTERNALHELP <XMLHelpFilePath>

<#
.EXTERNALHELP C:\MyScripts\Update-Month-Help.xml
#>

A.2.4 .FORWARDHELPCATEGORY

.FORWARDHELPCATEGORY <Category>



Examples:

See §A.2.5.

Syntax:

Syntax

Description:

Redirects to the help topic specified by <Command-Name> .

Examples:

PowerShell

The command Get-Help help  is treated as if it were Get-Help Get-Help  instead.

Syntax:

Syntax

Description:

The pipeline can be used to pipe one or more objects to a script or function. This
directive is used to describe such objects and their types.

If this directive occurs multiple times, each associated help content block is collected in
the one documentation entry, in the directives' lexical order.

A.2.5 .FORWARDHELPTARGETNAME

.FORWARDHELPTARGETNAME <Command-Name>

function Help {
<#
.FORWARDHELPTARGETNAME Get-Help
.FORWARDHELPCATEGORY Cmdlet
#>
    ...
}

A.2.6 .INPUTS

.INPUTS



Examples:

PowerShell

Syntax:

Syntax

Description:

This directive specifies the name of a related topic.

If this directive occurs multiple times, each associated help content block is collected in
the one documentation entry, in the directives' lexical order.

The Link directive content can also include a URI to an online version of the same help
topic. The online version is opens when Get-Help is invoked with the Online parameter.
The URI must begin with "http" or "https".

Examples:

PowerShell

<#
.INPUTS
None. You cannot pipe objects to Get-Power.

.INPUTS
For the Value parameter, one or more objects of any kind can be written
to the pipeline. However, the object is converted to a string before it
is added to the item.
#>
function Process-Thing {
    param ( ...
        [Parameter(ValueFromPipeline=$true)]
        [Object[]]$Value,
        ...
    )
    ...
}

A.2.7 .LINK

.LINK

<#
.LINK
Online version: http://www.acmecorp.com/widget.html



Syntax:

Syntax

Description:

This directive allows additional information about the function or script to be provided.
This directive can be used only once in each topic.

Examples:

PowerShell

Syntax:

Syntax

Description:

This directive is used to describe the objects output by a command.

If this directive occurs multiple times, each associated help content block is collected in
the one documentation entry, in the directives' lexical order.

Examples:

.LINK
Set-ProcedureName
#>

A.2.8 .NOTES

.NOTES

<#
.NOTES
*arbitrary text goes here*
#>

A.2.9 .OUTPUTS

.OUTPUTS



PowerShell

Syntax:

Syntax

Description:

This directive allows for a detailed description of the given parameter. This directive can
be used once for each parameter. Parameter directives can appear in any order in the
comment block; however, the order in which their corresponding parameters are
actually defined in the source determines the order in which the parameters and their
descriptions appear in the resulting documentation.

An alternate format involves placing a parameter description comment immediately
before the declaration of the corresponding parameter variable's name. If the source
contains both a parameter description comment and a Parameter directive, the
description associated with the Parameter directive is used.

Examples:

PowerShell

<#
.OUTPUTS
double - Get-Power returns Base to the power Exponent.

.OUTPUTS
None unless the -PassThru switch parameter is used.
#>

A.2.10 .PARAMETER

.PARAMETER <Parameter-Name>

<#
.PARAMETER Base
The integer value to be raised to the Exponent-th power.

.PARAMETER Exponent
The integer exponent to which Base is to be raised.
#>

function Get-Power {
    param ([long]$Base, [int]$Exponent)
    ...
}



Syntax:

PowerShell

Description:

This directive allows for a brief description of the function or script. (The .DESCRIPTION
directive (§A.2.1) is intended for a detailed description.) This directive can be used only
once in each topic.

Examples:

PowerShell

function Get-Power {
    param ([long]
        # The integer value to be raised to the Exponent-th power.
        $Base,
        [int]
        # The integer exponent to which Base is to be raised.
        $Exponent
    )
    ...
}

A.2.11 .SYNOPSIS

.SYNOPSIS

<#
.SYNOPSIS
Computes Base to the power Exponent.
#>



B. Grammar
Article • 01/08/2025

This appendix contains summaries of the lexical and syntactic grammars found in the
main document.

Syntax

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

 Tip

The ~opt~  notation in the syntax definitions indicates that the lexical entity is
optional in the syntax.

B.1 Lexical grammar

input:
    input-elements~opt~ signature-block~opt~

input-elements:
    input-element
    input-elements input-element

input-element:

https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


Syntax

Syntax

    whitespace
    comment
    token

signature-block:
    signature-begin signature signature-end

signature-begin:
    new-line-character # SIG # Begin signature block new-line-character

signature:
    base64 encoded signature blob in multiple single-line-comments

signature-end:
    new-line-character # SIG # End signature block new-line-character

B.1.1 Line terminators

new-line-character:
    Carriage return character (U+000D)
    Line feed character (U+000A)
    Carriage return character (U+000D) followed by line feed character 
(U+000A)

new-lines:
    new-line-character
    new-lines new-line-character

B.1.2 Comments

comment:
    single-line-comment
    requires-comment
    delimited-comment

single-line-comment:
    # input-characters~opt~

input-characters:
    input-character
    input-characters input-character

input-character:
    Any Unicode character except a new-line-character



Syntax

Syntax

requires-comment:
    #Requires whitespace command-arguments

dash:
    - (U+002D)
    EnDash character (U+2013)
    EmDash character (U+2014)
    Horizontal bar character (U+2015)

dashdash:
    dash dash

delimited-comment:
    <# delimited-comment-text~opt~ hashes >

delimited-comment-text:
    delimited-comment-section
    delimited-comment-text delimited-comment-section

delimited-comment-section:
    >
    hashes~opt~ not-greater-than-or-hash

hashes:
    #
    hashes #

not-greater-than-or-hash:
    Any Unicode character except > or #

B.1.3 White space

whitespace:
    Any character with Unicode class Zs, Zl, or Zp
    Horizontal tab character (U+0009)
    Vertical tab character (U+000B)
    Form feed character (U+000C)
    ` (The backtick character U+0060) followed by new-line-character

B.1.4 Tokens

token:
    keyword
    variable
    command



Syntax

Syntax

    command-parameter
    command-argument-token
    integer-literal
    real-literal
    string-literal
    type-literal
    operator-or-punctuator

B.1.5 Keywords

keyword: one of
    begin          break          catch       class
    continue       data           define      do
    dynamicparam   else           elseif      end
    exit           filter         finally     for
    foreach        from           function    if
    in             inlinescript   parallel    param
    process        return         switch      throw
    trap           try            until       using
    var            while          workflow

B.1.6 Variables

variable:
    $$
    $?
    $^
    $   variable-scope~opt~  variable-characters
    @   variable-scope~opt~  variable-characters
    braced-variable

braced-variable:
    ${   variable-scope~opt~   braced-variable-characters   }

variable-scope:
    Global:
    Local:
    Private:
    Script:
    Using:
    Workflow:
    variable-namespace

variable-namespace:



Syntax

    variable-characters   :

variable-characters:
    variable-character
    variable-characters   variable-character

variable-character:
    A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nd
    _   (The underscore character U+005F)
    ?

braced-variable-characters:
    braced-variable-character
    braced-variable-characters   braced-variable-character

braced-variable-character:
    Any Unicode character except
        }   (The closing curly brace character U+007D)
        `   (The backtick character U+0060)
    escaped-character

escaped-character:
    `   (The backtick character U+0060) followed by any Unicode character

B.1.7 Commands

generic-token:
    generic-token-parts

generic-token-parts:
    generic-token-part
    generic-token-parts generic-token-part

generic-token-part:
    expandable-string-literal
    verbatim-here-string-literal
    variable
    generic-token-char

generic-token-char:
    Any Unicode character except
        {   }   (   )   ;   ,   |   &   $
        ` (The backtick character U+0060)
        double-quote-character
        single-quote-character
        whitespace
        new-line-character
        escaped-character



Syntax

generic-token-with-subexpr-start:
    generic-token-parts $(

B.1.8 Parameters

command-parameter:
    dash first-parameter-char parameter-chars colon~opt~

first-parameter-char:
    A Unicode character of classes Lu, Ll, Lt, Lm, or Lo
    _ (The underscore character U+005F)
    ?

parameter-chars:
    parameter-char
    parameter-chars parameter-char

parameter-char:
    Any Unicode character except
        { } ( ) ; , | & . [
        colon
        whitespace
        new-line-character

colon:
    : (The colon character U+003A)

verbatim-command-argument-chars:
    verbatim-command-argument-part
    verbatim-command-argument-chars verbatim-command-argument-part

verbatim-command-argument-part:
    verbatim-command-string
    & non-ampersand-character
    Any Unicode character except
        |
        new-line-character

non-ampersand-character:
    Any Unicode character except &

verbatim-command-string:
    double-quote-character non-double-quote-chars
    double-quote-character

non-double-quote-chars:
    non-double-quote-char
    non-double-quote-chars non-double-quote-char

non-double-quote-char:



Syntax

Syntax

    Any Unicode character except
        double-quote-character

B.1.9 Literals

literal:
    integer-literal
    real-literal
    string-literal

B.1.9.1 Integer Literals

integer-literal:
    decimal-integer-literal
    hexadecimal-integer-literal

decimal-integer-literal:
    decimal-digits numeric-type-suffix~opt~ numeric-multiplier~opt~

decimal-digits:
    decimal-digit
    decimal-digit decimal-digits

decimal-digit: one of
    0  1  2  3  4  5  6  7  8  9

numeric-type-suffix:
    long-type-suffix
    decimal-type-suffix

hexadecimal-integer-literal:
    0x hexadecimal-digits long-type-suffix~opt~
    numeric-multiplier~opt~

hexadecimal-digits:
    hexadecimal-digit
    hexadecimal-digit decimal-digits

hexadecimal-digit: one of
    0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f

long-type-suffix:
    l



Syntax

Syntax

numeric-multiplier: one of
    kb mb gb tb pb

B.1.9.2 Real Literals

real-literal:
    decimal-digits . decimal-digits exponent-part~opt~ decimal-type-
suffix~opt~ numeric-multiplier~opt~
    . decimal-digits exponent-part~opt~ decimal-type-suffix~opt~ numeric-
multiplier~opt~
    decimal-digits exponent-part decimal-type-suffix~opt~ numeric-
multiplier~opt~

exponent-part:
    e sign~opt~  decimal-digits

sign: one of
    +
    dash

decimal-type-suffix:
    d
    l

B.1.9.3 String Literals

string-literal:
    expandable-string-literal
    expandable-here-string-literal
    verbatim-string-literal
    verbatim-here-string-literal

expandable-string-literal:
    double-quote-character expandable-string-characters~opt~  dollars~opt~ 
double-quote-character

double-quote-character:
    " (U+0022)
    Left double quotation mark (U+201C)
    Right double quotation mark (U+201D)
    Double low-9 quotation mark (U+201E)

expandable-string-characters:
      expandable-string-part
      expandable-string-characters



      expandable-string-part

expandable-string-part:
    Any Unicode character except
        $
        double-quote-character
        ` (The backtick character U+0060)
    braced-variable
    $ Any Unicode character except
        (
        {
        double-quote-character
        ` (The backtick character U+0060)*
    $ escaped-character
    escaped-character
    double-quote-character double-quote-character

dollars:
    $
    dollars $

expandable-here-string-literal:
    @  double-quote-character  whitespace~opt~  new-line-character
        expandable-here-string-characters~opt~  new-line-character  double-
quote-character  @

expandable-here-string-characters:
    expandable-here-string-part
    expandable-here-string-characters  expandable-here-string-part

expandable-here-string-part:
    Any Unicode character except
        $
        new-line-character
    braced-variable
    $ Any Unicode character except
        (
        new-line-character
    $ new-line-character  Any Unicode character except double-quote-char
    $ new-line-character double-quote-char  Any Unicode character except @
    new-line-character  Any Unicode character except double-quote-char
    new-line-character double-quote-char  Any Unicode character except @

expandable-string-with-subexpr-start:
    double-quote-character  expandable-string-chars~opt~  $(

expandable-string-with-subexpr-end:
    double-quote-char

expandable-here-string-with-subexpr-start:
    @  double-quote-character whitespace~opt~ new-line-character expandable-
here-string-chars~opt~  $(

expandable-here-string-with-subexpr-end:
    new-line-character  double-quote-character  @



Syntax

verbatim-string-literal:
    single-quote-character verbatim-string-characters~opt~ single-quote-char

single-quote-character:
    ' (U+0027)
    Left single quotation mark (U+2018)
    Right single quotation mark (U+2019)
    Single low-9 quotation mark (U+201A)
    Single high-reversed-9 quotation mark (U+201B)

verbatim-string-characters:
    verbatim-string-part
    verbatim-string-characters verbatim-string-part

verbatim-string-part:
    *Any Unicode character except* single-quote-character
    single-quote-character  single-quote-character

verbatim-here-string-literal:
    @ single-quote-character whitespace~opt~  new-line-character
        verbatim-here-string-characters~opt~  new-line-character
            single-quote-character *@*

verbatim-*here-string-characters:
    verbatim-here-string-part
    verbatim-here-string-characters  verbatim-here-string-part

verbatim-here-string-part:
    Any Unicode character except* new-line-character
    new-line-character  Any Unicode character except single-quote-character
    new-line-character  single-quote-character  Any Unicode character except 
@

B.1.10 Simple Names

simple-name:
    simple-name-first-char simple-name-chars

simple-name-first-char:
    A Unicode character of classes Lu, Ll, Lt, Lm, or Lo
    _ (The underscore character U+005F)

simple-name-chars:
    simple-name-char
    simple-name-chars simple-name-char

simple-name-char:



Syntax

Syntax

    A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nd
    _ (The underscore character U+005F)

B.1.11 Type Names

type-name:
    type-identifier
    type-name . type-identifier

type-identifier:
    type-characters

type-characters:
    type-character
    type-characters type-character

type-character:
    A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nd
    _ (The underscore character U+005F)

array-type-name:
    type-name [

generic-type-name:
    type-name [

B.1.12 Operators and punctuators

operator-or-punctuator: one of
    {   }   [   ]   (   )   @(   @{   $(   ;
    &&  ||  &   |   ,   ++  ..   ::   .
    !   *   /   %   +
    dash       dashdash
    dash and   dash band   dash bnot   dash bor
    dash bxor  dash not    dash or     dash xor
    assignment-operator
    merging-redirection-operator
    file-redirection-operator
    comparison-operator
    format-operator

assignment-operator: one of
    =    dash =    +=    *=    /=    %=

file-redirection-operator: one of



Syntax

    >  >>  2>  2>>  3>  3>>  4>  4>>
    5>  5>>  6>  6>>  *>  *>>  <

merging-redirection-operator: one of
    *>&1  2>&1  3>&1  4>&1  5>&1  6>&1
    *>&2  1>&2  3>&2  4>&2  5>&2  6>&2

comparison-operator: one of
    dash as           dash ccontains      dash ceq
    dash cge          dash cgt            dash cle
    dash clike        dash clt            dash cmatch
    dash cne          dash cnotcontains   dash cnotlike
    dash cnotmatch    dash contains       dash creplace
    dash csplit       dash eq             dash ge
    dash gt           dash icontains      dash ieq
    dash ige          dash igt            dash ile
    dash ilike        dash ilt            dash imatch
    dash in           dash ine            dash inotcontains
    dash inotlike     dash inotmatch      dash ireplace
    dash is           dash isnot          dash isplit
    dash join         dash le             dash like
    dash lt           dash match          dash ne
    dash notcontains  dash notin         dash notlike
    dash notmatch     dash replace       dash shl*
    dash shr          dash split

format-operator:
    dash f

B.2 Syntactic grammar

B.2.1 Basic concepts

script-file:
    script-block

module-file:
    script-block

interactive-input:
    script-block

data-file:
    statement-list

B.2.2 Statements



Syntax

script-block:
    param-block~opt~ statement-terminators~opt~ script-block-body~opt~

param-block:
    new-lines~opt~ attribute-list~opt~ new-lines~opt~ param new-lines~opt~
        ( parameter-list~opt~ new-lines~opt~ )

parameter-list:
    script-parameter
    parameter-list new-lines~opt~ , script-parameter

script-parameter:
    new-lines~opt~ attribute-list~opt~ new-lines~opt~ variable script-
parameter-default~opt~

script-parameter-default:
    new-lines~opt~ = new-lines~opt~ expression

script-block-body:
    named-block-list
    statement-list

named-block-list:
    named-block
    named-block-list named-block

named-block:
    block-name statement-block statement-terminators~opt~

block-name: one of
    dynamicparam begin process end

statement-block:
    new-lines~opt~ { statement-list~opt~ new-lines~opt~ }

statement-list:
    statement
    statement-list statement

statement:
    if-statement
    label~opt~ labeled-statement
    function-statement
    flow-control-statement statement-terminator
    trap-statement
    try-statement
    data-statement
    inlinescript-statement
    parallel-statement
    sequence-statement
    pipeline statement-terminator



statement-terminator:
    ;
    new-line-character

statement-terminators:
    statement-terminator
    statement-terminators statement-terminator

if-statement:
    if new-lines~opt~ ( new-lines~opt~ pipeline new-lines~opt~ ) statement-
block
        elseif-clauses~opt~ else-clause~opt~

elseif-clauses:
    elseif-clause
    elseif-clauses elseif-clause

elseif-clause:
    new-lines~opt~ elseif new-lines~opt~ ( new-lines~opt~ pipeline new-
lines~opt~ ) statement-block

else-clause:
    new-lines~opt~ else statement-block

labeled-statement:
    switch-statement
    foreach-statement
    for-statement
    while-statement
    do-statement

switch-statement:
    switch new-lines~opt~ switch-parameters~opt~ switch-condition switch-
body

switch-parameters:
    switch-parameter
    switch-parameters switch-parameter

switch-parameter:
    -Regex
    -Wildcard
    -Exact
    -CaseSensitive
    -Parallel

switch-condition:
    ( new-lines~opt~ pipeline new-lines~opt~ )
    -file new-lines~opt~ switch-filename

switch-filename:
    command-argument
    primary-expression

switch-body:



    new-lines~opt~ { new-lines~opt~ switch-clauses }

switch-clauses:
    switch-clause
    switch-clauses switch-clause

switch-clause:
    switch-clause-condition statement-block statement-terimators~opt~

switch-clause-condition:
    command-argument
    primary-expression

foreach-statement:
    foreach new-lines~opt~ foreach-parameter~opt~ new-lines~opt~
        ( new-lines~opt~ variable new-lines~opt~ in new-lines~opt~ pipeline
        new-lines~opt~ ) statement-block

foreach-parameter:
    -parallel

for-statement:
    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~ statement-terminator
        new-lines~opt~ for-condition~opt~ statement-terminator
        new-lines~opt~ for-iterator~opt~
        new-lines~opt~ ) statement-block
    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~ statement-terminator
        new-lines~opt~ for-condition~opt~
        new-lines~opt~ ) statement-block
    for new-lines~opt~ (
        new-lines~opt~ for-initializer~opt~
        new-lines~opt~ ) statement-block

for-initializer:
    pipeline

for-condition:
    pipeline

for-iterator:
    pipeline

while-statement:
    while new-lines~opt~ ( new-lines~opt~ while-condition new-lines~opt~ ) 
statement-block

do-statement:
    do statement-block new-lines~opt~ while new-lines~opt~ ( while-condition 
new-lines~opt~ )
    do statement-block new-lines~opt~ until new-lines~opt~ ( while-condition 
new-lines~opt~ )

while-condition:



    new-lines~opt~ pipeline

function-statement:
    function new-lines~opt~ function-name function-parameter-
declaration~opt~ { script-block }
    filter new-lines~opt~ function-name function-parameter-declaration~opt~ 
{ script-block }
    workflow new-lines~opt~ function-name function-parameter-
declaration~opt~ { script-block }

function-name:
    command-argument

function-parameter-declaration:
    new-lines~opt~ ( parameter-list new-lines~opt~ )

flow-control-statement:
    break label-expression~opt~
    continue label-expression~opt~
    throw pipeline~opt~
    return pipeline~opt~
    exit pipeline~opt~

label-expression:
    simple-name
    unary-expression

trap-statement:
    trap new-lines~opt~ type-literal~opt~ new-lines~opt~ statement-block

try-statement:
    try statement-block catch-clauses
    try statement-block finally-clause
    try statement-block catch-clauses finally-clause

catch-clauses:
    catch-clause
    catch-clauses catch-clause

catch-clause:
    new-lines~opt~ catch catch-type-list~opt~ statement-block

catch-type-list:
    new-lines~opt~ type-literal
    catch-type-list new-lines~opt~ , new-lines~opt~ type-literal

finally-clause:
    new-lines~opt~ finally statement-block

data-statement:
    data new-lines~opt~ data-name data-commands-allowed~opt~
    statement-block

data-name:
    simple-name



data-commands-allowed:
    new-lines~opt~ -SupportedCommand data-commands-list

data-commands-list:
    new-lines~opt~ data-command
    data-commands-list , new-lines~opt~ data-command

data-command:
    command-name-expr

inlinescript-statement:
    inlinescript statement-block

parallel-statement:
    parallel statement-block

sequence-statement:
    sequence statement-block

pipeline:
    assignment-expression
    expression redirections~opt~ pipeline-tail~opt~
    command verbatim-command-argument~opt~ pipeline-tail~opt~

assignment-expression:
    expression assignment-operator statement

pipeline-tail:
    | new-lines~opt~ command
    | new-lines~opt~ command pipeline-tail

command:
    command-name command-elements~opt~
    command-invocation-operator command-module~opt~ command-name-expr 
command-elements~opt~

command-invocation-operator: one of
    &   .

command-module:
    primary-expression

command-name:
    generic-token
    generic-token-with-subexpr

generic-token-with-subexpr:
    No whitespace is allowed between ) and command-name.
    generic-token-with-subexpr-start statement-list~opt~ ) command-name

command-name-expr:
    command-name
    primary-expression



Syntax

command-elements:
    command-element
    command-elements command-element

command-element:
    command-parameter
    command-argument
    redirection

command-argument:
    command-name-expr

verbatim-command-argument:
    --% verbatim-command-argument-chars

redirections:
    redirection
    redirections redirection

redirection:
    merging-redirection-operator
    file-redirection-operator redirected-file-name

redirected-file-name:
    command-argument
    primary-expression

B.2.3 Expressions

expression:
    logical-expression

logical-expression:
    bitwise-expression
    logical-expression -and new-lines~opt~ bitwise-expression
    logical-expression -or new-lines~opt~ bitwise-expression
    logical-expression -xor new-lines~opt~ bitwise-expression

bitwise-expression:
    comparison-expression
    bitwise-expression -band new-lines~opt~ comparison-expression
    bitwise-expression -bor new-lines~opt~ comparison-expression
    bitwise-expression -bxor new-lines~opt~ comparison-expression

comparison-expression:
    additive-expression
    comparison-expression comparison-operator new-lines~opt~
    additive-expression

additive-expression:



    multiplicative-expression
    additive-expression + new-lines~opt~ multiplicative-expression
    additive-expression dash new-lines~opt~ multiplicative-expression

multiplicative-expression:
    format-expression
    multiplicative-expression \ new-lines~opt~ format-expression
    multiplicative-expression / new-lines~opt~ format-expression
    multiplicative-expression % new-lines~opt~ format-expression

format-expression:
    range-expression
    format-expression format-operator new-lines~opt~ range-expression

range-expression:
    array-literal-expression
    range-expression .. new-lines~opt~ array-literal-expression

array-literal-expression:
    unary-expression
    unary-expression , new-lines~opt~ array-literal-expression

unary-expression:
    primary-expression
    expression-with-unary-operator

expression-with-unary-operator:
    , new-lines~opt~ unary-expression
    -not new-lines~opt~ unary-expression
    ! new-lines~opt~ unary-expression
    -bnot new-lines~opt~ unary-expression
    + new-lines~opt~ unary-expression
    dash new-lines~opt~ unary-expression
    pre-increment-expression
    pre-decrement-expression
    cast-expression
    -split new-lines~opt~ unary-expression
    -join new-lines~opt~ unary-expression

pre-increment-expression:
    ++ new-lines~opt~ unary-expression

pre-decrement-expression:
    dashdash new-lines~opt~ unary-expression

cast-expression:
    type-literal unary-expression

attributed-expression:
    type-literal variable

primary-expression:
    value
    member-access
    element-access



    invocation-expression
    post-increment-expression
    post-decrement-expression

value:
    parenthesized-expression
    sub-expression
    array-expression
    script-block-expression
    hash-literal-expression
    literal
    type-literal
    variable

parenthesized-expression:
    ( new-lines~opt~ pipeline new-lines~opt~ )

sub-expression:
    $( new-lines~opt~ statement-list~opt~ new-lines~opt~ )

array-expression:
    @( new-lines~opt~ statement-list~opt~ new-lines~opt~ )

script-block-expression:
    { new-lines~opt~ script-block new-lines~opt~ }

hash-literal-expression:
    @{ new-lines~opt~ hash-literal-body~opt~ new-lines~opt~ }

hash-literal-body:
    hash-entry
    hash-literal-body statement-terminators hash-entry

hash-entry:
    key-expression = new-lines~opt~ statement

key-expression:
    simple-name
    unary-expression

post-increment-expression:
    primary-expression ++

post-decrement-expression:
    primary-expression dashdash

member-access: Note no whitespace is allowed after
    primary-expression.
    primary-expression . member-name
    primary-expression :: member-name

element-access: Note no whitespace is allowed between primary-expression and 
[.
    primary-expression [ new-lines~opt~ expression new-lines~opt~ ]



invocation-expression: Note no whitespace is allowed after
    primary-expression.
    primary-expression . member-name argument-list
    primary-expression :: member-name argument-list

argument-list:
    ( argument-expression-list~opt~ new-lines~opt~ )

argument-expression-list:
    argument-expression
    argument-expression new-lines~opt~ , argument-expression-list

argument-expression:
    new-lines~opt~ logical-argument-expression

logical-argument-expression:
    bitwise-argument-expression
    logical-argument-expression -and new-lines~opt~ bitwise-argument-
expression
    logical-argument-expression -or  new-lines~opt~ bitwise-argument-
expression
    logical-argument-expression -xor new-lines~opt~ bitwise-argument-
expression

bitwise-argument-expression:
    comparison-argument-expression
    bitwise-argument-expression -band new-lines~opt~ comparison-argument-
expression
    bitwise-argument-expression -bor  new-lines~opt~ comparison-argument-
expression
    bitwise-argument-expression -bxor new-lines~opt~ comparison-argument-
expression

comparison-argument-expression:
    additive-argument-expression
    comparison-argument-expression comparison-operator
        new-lines~opt~ additive-argument-expression

additive-argument-expression:
    multiplicative-argument-expression
    additive-argument-expression +    new-lines~opt~ multiplicative-
argument-expression
    additive-argument-expression dash new-lines~opt~ multiplicative-
argument-expression

multiplicative-argument-expression:
    format-argument-expression
    multiplicative-argument-expression \ new-lines~opt~ format-argument-
expression
    multiplicative-argument-expression / new-lines~opt~ format-argument-
expression
    multiplicative-argument-expression % new-lines~opt~ format-argument-
expression

format-argument-expression:



    range-argument-expression
    format-argument-expression format-operator new-lines~opt~ range-
argument-expression

range-argument-expression:
    unary-expression
    range-expression .. new-lines~opt~ unary-expression

member-name:
    simple-name
    string-literal
    string-literal-with-subexpression
    expression-with-unary-operator
    value

string-literal-with-subexpression:
    expandable-string-literal-with-subexpr
    expandable-here-string-literal-with-subexpr

expandable-string-literal-with-subexpr:
    expandable-string-with-subexpr-start statement-list~opt~ )
        expandable-string-with-subexpr-characters expandable-string-with-
subexpr-end
    expandable-here-string-with-subexpr-start statement-list~opt~ )
        expandable-here-string-with-subexpr-characters
        expandable-here-string-with-subexpr-end

expandable-string-with-subexpr-characters:
    expandable-string-with-subexpr-part
    expandable-string-with-subexpr-characters expandable-string-with-
subexpr-part

expandable-string-with-subexpr-part:
    sub-expression
    expandable-string-part

expandable-here-string-with-subexpr-characters:
    expandable-here-string-with-subexpr-part
    expandable-here-string-with-subexpr-characters expandable-here-string-
with-subexpr-part

expandable-here-string-with-subexpr-part:
    sub-expression
    expandable-here-string-part

type-literal:
    [ type-spec ]

type-spec:
    array-type-name new-lines~opt~ dimension~opt~ ]
    generic-type-name new-lines~opt~ generic-type-arguments ]
    type-name

dimension:
    ,



Syntax

    dimension ,

generic-type-arguments:
    type-spec new-lines~opt~
    generic-type-arguments , new-lines~opt~ type-spec

B.2.4 Attributes

attribute-list:
    attribute
    attribute-list new-lines~opt~ attribute

attribute:
    [ new-lines~opt~ attribute-name ( attribute-arguments new-lines~opt~ ) 
new-lines~opt~ ]
    type-literal

attribute-name:
    type-spec

attribute-arguments:
    attribute-argument
    attribute-argument new-lines~opt~ , attribute-arguments

attribute-argument:
    new-lines~opt~ expression
    new-lines~opt~ simple-name
    new-lines~opt~ simple-name = new-lines~opt~ expression



C. References
Article • 01/08/2025

ANSI/IEEE 754−2008, Binary floating-point arithmetic for microprocessor systems.

ECMA-334, C# Language Specification, 4th edition (June 2006), https://www.ecma-
international.org/publications-and-standards/standards/ecma-334/ . [This Ecma
publication is also approved as ISO/IEC 23270:2006.]

The Open Group Base Specifications: Pattern Matching, IEEE Std 1003.1, 2004 Edition.
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13
_01

The Open Group Base Specifications: Regular Expressions, IEEE Std 1003.1, 2004 Edition.
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html .

Ecma Technical Report TR/84, Common Language Infrastructure (CLI) - Information
Derived from Partition IV XML File, 4th edition (June 2006), https://www.ecma-
international.org/publications-and-standards/technical-reports/ecma-tr-84/ . This TR
was also published as ISO/IEC TR 23272:2006.

ISO 639-1, Codes for the representation of names of languages - Part 1: Alpha-2 code.

Editorial note

） Important

The Windows PowerShell Language Specification 3.0 was published in December
2012 and is based on Windows PowerShell 3.0. This specification does not reflect
the current state of PowerShell. There is no plan to update this documentation to
reflect the current state. This documentation is presented here for historical
reference.

The specification document is available as a Microsoft Word document from the
Microsoft Download Center at:
https://www.microsoft.com/download/details.aspx?id=36389  That Word
document has been converted for presentation here on Microsoft Learn. During
conversion, some editorial changes have been made to accommodate formatting
for the Docs platform. Some typos and minor errors have been corrected.

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13_01
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/000095399/basedefs/xbd_chap09.html
https://www.ecma-international.org/publications-and-standards/technical-reports/ecma-tr-84/
https://www.ecma-international.org/publications-and-standards/technical-reports/ecma-tr-84/
https://www.ecma-international.org/publications-and-standards/technical-reports/ecma-tr-84/
https://www.microsoft.com/download/details.aspx?id=36389
https://www.microsoft.com/download/details.aspx?id=36389


ISO 3166-1, Codes for the representation of names of countries and their subdivisions -
Part 1: Country codes.

ISO/IEC 10646-1/AMD1:1996, Amendment 1 to ISO/IEC 10646-1:1993, Transformation
Format for 16 planes of group 00 (UTF-16).

The Unicode Standard, Edition 5.2. The Unicode Consortium,
http://www.unicode.org/standard/standard.html .

http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html


Windows PowerShell
Article • 09/17/2021

Updated: July 8, 2013

Windows PowerShell® is a task-based command-line shell and scripting language
designed especially for system administration. Built on the .NET Framework, Windows
PowerShell® helps IT professionals and power users control and automate the
administration of the Windows operating system and applications that run on Windows.

The documents published here are written primarily for cmdlet, provider, and host
application developers who require reference information about the APIs provided by
Windows PowerShell. However, system administrators might also find the information
provided by these documents useful.

For the basic information needed to start using Windows PowerShell, see Getting
Started with Windows PowerShell .

Installing the Windows PowerShell SDK Provides information about how to install
the Windows PowerShell SDK.

Writing a Windows PowerShell Module Provides information for administrators,
script developers, and cmdlet developers who need to package and distribute their
Windows PowerShell solutions.

Writing a Windows PowerShell Cmdlet Provides information for designing and
implementing cmdlets.

Writing a Windows PowerShell Provider Provides information for designing and
implementing Windows PowerShell providers. It will help you understand how
Windows PowerShell providers work, and it provides sample code that you can use
to start designing or writing your own providers.

Writing a Windows PowerShell Host Application Provides information that can be
used by program managers who are designing host applications and by
developers who are implementing them. The host application can, define the
runspace where commands are run, open sessions on a local or remote computer,
and invoke the commands either synchronously or asynchronously based on the
needs of the application.

Windows PowerShell Documents

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Writing a PowerShell Formatting File Provides information for the authoring of
formatting files, which control the display format for the objects that are returned
by commands (cmdlets, functions, and scripts).

Windows PowerShell Reference Provides reference content for the APIs used in
writing cmdlets, providers, and host applications, as well as other supporting APIs.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fwindows-powershell%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fwindows-powershell.md&documentVersionIndependentId=12605f0f-a614-349d-be81-840f1aef0614&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2947bcac-713d-4498-c72e-ab16e39e8d48+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Installing the Windows PowerShell SDK
Article • 10/23/2023

Applies To: Windows PowerShell 2.0, Windows PowerShell 3.0

The following topic describes how to install the PowerShell SDK on different versions of
Windows.

Windows PowerShell 3.0 is automatically installed with Windows 8 and Windows Server
2012. In addition, you can download and install the reference assemblies for Windows
PowerShell 3.0 as part of the Windows 8 SDK. These assemblies allow you to write
cmdlets, providers, and host programs for Windows PowerShell 3.0. When you install the
Windows SDK for Windows 8, the Windows PowerShell assemblies are automatically
installed in the reference assembly folder, in \Program Files (x86)\Reference
Assemblies\Microsoft\WindowsPowerShell\3.0 . For more information, see the Windows 8
SDK download site. Windows PowerShell code samples are also available in the
powershell-sdk-samples  repository.

Reference assemblies are installed in the following location by default: C:\Program
Files\Reference Assemblies\Microsoft\WindowsPowerShell\V1.0 .

Code samples are installed in the following location by default: C:\Program
Files\Microsoft SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\ . The following
sections provide a brief description of what each sample does.

Installing Windows PowerShell 3.0 SDK for
Windows 8 and Windows Server 2012

Reference assemblies

７ Note

Code that is compiled against the Windows PowerShell 2.0 assemblies cannot be
loaded into Windows PowerShell 1.0 installations. However, code that is compiled
against the Windows PowerShell 1.0 assemblies can be loaded into Windows
PowerShell 2.0 installations.

Samples

https://github.com/MicrosoftDocs/powershell-sdk-samples/tree/master/SDK-3.0
https://github.com/MicrosoftDocs/powershell-sdk-samples/tree/master/SDK-3.0


GetProcessSample01 - Shows how to write a simple cmdlet that gets all the
processes on the local computer.
GetProcessSample02 - Shows how to add parameters to the cmdlet. The cmdlet
takes one or more process names and returns the matching processes.
GetProcessSample03 - Shows how to add parameters that accept input from the
pipeline.
GetProcessSample04 - Shows how to handle non-terminating errors.
GetProcessSample05 - Shows how to display a list of specified processes.
SelectObject - Shows how to write a filter to select only certain objects.
SelectString - Shows how to search files for specified patterns.
StopProcessSample01 - Shows how to implement a PassThru parameter, and how
to request user feedback by calls to the ShouldProcess and ShouldContinue
methods. Users specify the PassThru parameter when they want to force the
cmdlet to return an object,
StopProcessSample02 - Shows how to stop a specific process.
StopProcessSample03 - Shows how to declare aliases for parameters and how to
support wildcards.
StopProcessSample04 - Shows how to declare parameter sets, the object that the
cmdlet takes as input, and how to specify the default parameter set to use.

RemoteRunspace01 - Shows how to create a remote runspace that is used to
establish a remote connection.
RemoteRunspacePool01 - Shows how to construct a remote runspace pool and
how to run multiple commands concurrently by using this pool.
Serialization01 - Shows how to look at an existing .NET class and make sure that
information from selected public properties of this class is preserved across
serialization/deserialization.
Serialization02 - Shows how to look at an existing .NET class and make sure that
information from instance of this class is preserved across
serialization/deserialization when the information is not available in public
properties of the class.
Serialization03 - Shows how to look at an existing .NET class and make sure that
instances of this class and of derived classes are deserialized (rehydrated) into live
.NET objects.

Cmdlet samples

Remoting samples

Event samples



Event01 - Shows how to create a cmdlet for event registration by deriving from
ObjectEventRegistrationBase.
Event02 - Shows how to shows how to receive notifications of Windows PowerShell
events that are generated on remote computers. It uses the PSEventReceived event
exposed through the Runspace class.

Runspace01 - Shows how to use the PowerShell class to run the Get-Process
cmdlet synchronously. The Get-Process  cmdlet returns Process objects for each
process running on the local computer.
Runspace02 - Shows how to use the PowerShell class to run the Get-Process  and
Sort-Object  cmdlets synchronously. The Get-Process  cmdlet returns Process
objects for each process running on the local computer, and the Sort-Object  sorts
the objects based on their Id property. The results of these commands is displayed
by using a DataGridView control.
Runspace03 - Shows how to use the PowerShell class to run a script synchronously,
and how to handle non-terminating errors. The script receives a list of process
names and then retrieves those processes. The results of the script, including any
non-terminating errors that were generated when running the script, are displayed
in a console window.
Runspace04 - Shows how to use the PowerShell class to run commands, and how
to catch terminating errors that are thrown when running the commands. Two
commands are run, and the last command is passed a parameter argument that is
not valid. As a result, no objects are returned and a terminating error is thrown.
Runspace05 - Shows how to add a snap-in to an InitialSessionState object so that
the cmdlet of the snap-in is available when the runspace is opened. The snap-in
provides a Get-Proc cmdlet (defined by the GetProcessSample01 Sample) that is
run synchronously using a PowerShell object.
Runspace06 - Shows how to add a module to an InitialSessionState object so that
the module is loaded when the runspace is opened. The module provides a Get-
Proc cmdlet (defined by the GetProcessSample02 Sample) that is run
synchronously using a PowerShell object.
Runspace07 - Shows how to create a runspace, and then use that runspace to run
two cmdlets synchronously using a PowerShell object.
Runspace08 - Shows how to add commands and arguments to the pipeline of a
PowerShell object and how to run the commands synchronously.
Runspace09 - Shows how to add a script to the pipeline of a PowerShell object and
how to run the script asynchronously. Events are used to handle the output of the
script.

Hosting application samples



Runspace10 - Shows how to create a default initial session state, how to add a
cmdlet to the InitialSessionState, how to create a runspace that uses the initial
session state, and how to run the command using a PowerShell object.
Runspace11 - Shows how to use the ProxyCommand class to create a proxy
command that calls an existing cmdlet, but restricts the set of available
parameters. The proxy command is then added to an initial session state that is
used to create a constrained runspace. This means that the user can access the
functionality of the cmdlet only through the proxy command.
PowerShell01 - Shows how to create a constrained runspace using an
InitialSessionState object.
PowerShell02 - Shows how to use a runspace pool to run multiple commands
concurrently.

Host01 - Shows how to implement a host application that uses a custom host. In
this sample a runspace is created that uses the custom host, and then the
PowerShell API is used to run a script that calls exit . The host application then
looks at the output of the script and prints out the results.
Host02 - Shows how to write a host application that uses the Windows PowerShell
runtime along with a custom host implementation. The host application sets the
host culture to German, runs the Get-Process  cmdlet and displays the results as
you would see them by using pwrsh.exe, and then prints out the current data and
time in German.
Host03 - Shows how to build an interactive console-based host application that
reads commands from the command line, executes the commands, and then
displays the results to the console.
Host04 - Shows how to build an interactive console-based host application that
reads commands from the command line, executes the commands, and then
displays the results to the console. This host application also supports displaying
prompts that allow the user to specify multiple choices.
Host05 - Shows how to build an interactive console-based host application that
reads commands from the command line, executes the commands, and then
displays the results to the console. This host application also supports calls to
remote computers by using the Enter-PSSession  and Exit-PSSession  cmdlets.
Host06 - Shows how to build an interactive console-based host application that
reads commands from the command line, executes the commands, and then
displays the results to the console. In addition, this sample uses the Tokenizer APIs
to specify the color of the text that is entered by the user.

Host samples



AccessDBProviderSample01 - Shows how to declare a provider class that derives
directly from the CmdletProvider class. It is included here only for completeness.

AccessDBProviderSample02 - Shows how to overwrite the NewDrive and
RemoveDrive methods to support calls to the New-PSDrive  and Remove-PSDrive
cmdlets. The provider class in this sample derives from the DriveCmdletProvider
class.

AccessDBProviderSample03 - Shows how to overwrite the GetItem and SetItem
methods to support calls to the Get-Item  and Set-Item  cmdlets. The provider
class in this sample derives from the ItemCmdletProvider class.

AccessDBProviderSample04 - Shows how to overwrite container methods to
support calls to the Copy-Item , Get-ChildItem , New-Item , and Remove-Item
cmdlets. These methods should be implemented when the data store contains
items that are containers. A container is a group of child items under a common
parent item. The provider class in this sample derives from the ItemCmdletProvider
class.

AccessDBProviderSample05 - Shows how to overwrite container methods to
support calls to the Move-Item  and Join-Path  cmdlets. These methods should be
implemented when the user needs to move items within a container and if the
data store contains nested containers. The provider class in this sample derives
from the NavigationCmdletProvider class.

AccessDBProviderSample06 - Shows how to overwrite content methods to support
calls to the Clear-Content , Get-Content , and Set-Content  cmdlets. These methods
should be implemented when the user needs to manage the content of the items
in the data store. The provider class in this sample derives from the
NavigationCmdletProvider class, and it implements the IContentCmdletProvider
interface.

Provider samples



Windows PowerShell Reference
Article • 09/17/2021

Windows PowerShell is a Microsoft .NET Framework-connected environment designed
for administrative automation. Windows PowerShell provides a new approach to
building commands, composing solutions, and creating graphical user interface-based
management tools.

Windows PowerShell enables a system administrator to automate the administration of
system resources by the execution of commands either directly or through scripts.

The Windows PowerShell Software Development Kit (SDK) is written for command
developers who require reference information about the APIs provided by Windows
PowerShell. Command developers use Windows PowerShell to create both commands
and providers that extend the tasks that can be performed by Windows PowerShell.

In addition to the Windows PowerShell SDK, the following resources provide more
information.

Getting Started with Windows PowerShell Provides an introduction to Windows
PowerShell: the language, the cmdlets, the providers, and the use of objects.

Writing a Windows PowerShell Module Provides information and examples for
administrators, script developers, and cmdlet developers who need to package and
distribute their Windows PowerShell solutions using Windows PowerShell modules.

Writing a Windows PowerShell Cmdlet Provides information and code examples for
program managers who are designing cmdlets and for developers who are
implementing cmdlet code.

Windows PowerShell Team Blog  The best resource for learning from and collaborating
with other Windows PowerShell users. Read the Windows PowerShell Team blog, and
then join the Windows PowerShell User Forum (microsoft.public.windows.powershell).
Use Windows Live Search to find other Windows PowerShell blogs and resources. Then,
as you develop your expertise, freely contribute your ideas.

Developer Audience

Windows PowerShell Resources

https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://devblogs.microsoft.com/powershell/
https://devblogs.microsoft.com/powershell/


PowerShell module browser Provides the latest versions of the command-line Help
topics.

System.Management.Automation This namespace is the root namespace for Windows
PowerShell. It contains the classes, enumerations, and interfaces required to implement
custom cmdlets. In particular, the System.Management.Automation.Cmdlet class is the
base class from which all cmdlet classes must be derived. For more information about
cmdlets, see.

System.Management.Automation.Provider This namespace contains the classes,
enumerations, and interfaces required to implement a Windows PowerShell provider. In
particular, the System.Management.Automation.Provider.CmdletProvider class is the
base class from which all Windows PowerShell provider classes must be derived.

Microsoft.PowerShell.Commands This namespace contains the classes for the cmdlets
and providers implemented by Windows PowerShell. Similarly, it is recommended that
you create a YourName.Commands namespace for those cmdlets that you implement.

System.Management.Automation.Host This namespace contains the classes,
enumerations, and interfaces that the cmdlet uses to define the interaction between the
user and Windows PowerShell.

System.Management.Automation.Internal This namespace contains the base classes
used by other namespace classes. For example, the
System.Management.Automation.Internal.CmdletMetadataAttribute class is the base
class for the System.Management.Automation.CmdletAttribute class.

System.Management.Automation.Runspaces This namespace contains the classes,
enumerations, and interfaces used to create a Windows PowerShell runspace. In this
context, the Windows PowerShell runspace is the context in which one or more
Windows PowerShell pipelines invoke cmdlets. That is, cmdlets work within the context
of a Windows PowerShell runspace. For more information aboutWindows PowerShell
runspaces, see Windows PowerShell Runspaces.

Class Libraries

https://learn.microsoft.com/en-us/powershell/module/
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Internal
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Internal.CmdletMetadataAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces


What's New
Article • 09/17/2021

Windows PowerShell 2.0 provides the following new features for use when writing
cmdlets, providers, and host applications.

You can now package and distribute Windows PowerShell solutions by using modules.
Modules allow you to partition, organize, and abstract your Windows PowerShell code
into self-contained, reusable units. For more information about modules, see Writing a
Windows PowerShell Module.

The PowerShell class provides a simpler solution for creating applications, referred to as
host applications, that programmatically run commands. This class allows you to create
a pipeline of commands, specify the runspace that is used to run the commands, and
specify invoking the commands synchronously or asynchronously.

Runspace pools allow you to create multiple runspaces by using a single call. The
CreateRunspacePool method provides several overloads that can be used to create
runspaces that have the same features, such as the same host, initial session state, and
connection information.

The InitialSessionState class allows you to create a session state configuration that is
used when a runspace is opened. You can create a custom configuration, a default
configuration that includes the commands provided by mshshort, and a configuration
whose commands are restricted based on the capabilities of the session.

You can now create runspaces that can be opened on remote computers, allowing you
to run commands on the remote machine and collect the results locally. To create a

Modules

The PowerShell class

The RunspacePool class

The InitialSessionState class

Remote runspaces



remote runspace, you must specify information about the remote connection when
creating the runspace. See the CreateRunspace and CreateRunspacePool methods for
examples. The connection information is defined by the RunspaceConnectionInfo class.

You can now create runspaces whose elements are public or private. This allows you to
create runspaces whose elements are available to the runspace, but are not available to
the user. See the ConstrainedSessionStateEntry class to find out which elements of the
runspace can be made private.

You can now specify how threads are created and used when running commands in a
runspace. See the System.Management.Automation.Runspaces.Runspace.ThreadOptions
and System.Management.Automation.Runspaces.RunspacePool.ThreadOptions
properties.

You can now get the apartment state of the threads that are used to run commands in a
runspace. See the
System.Management.Automation.Runspaces.Runspace.ApartmentState and
System.Management.Automation.Runspaces.RunspacePool.ApartmentState properties.

You can now create cmdlets that can be used within a transaction. When a cmdlet is
used in a transaction, its actions are temporary, and they can be accepted or rejected by
the transaction cmdlets provided by Windows PowerShell.

For more information about transactions, see How to Support Transactions.

You can now create providers that can be used within a transaction. Similar to cmdlets,
when a provider is used in a transaction, its actions are temporary, and they can be
accepted or rejected by the transaction cmdlets provided by Windows PowerShell.

For more information about specifying support for transaction within a provider class,
see the

Private runspace elements

Runspace threading modes and apartment
state

Transaction cmdlets

Transaction provider



System.Management.Automation.Provider.CmdletProviderAttribute.ProviderCapabilities
property.

You can now write cmdlets that can perform their action as a job. These jobs are run in
the background without interacting with the current session. For more information
about how Windows PowerShell supports jobs, see Background Jobs.

You can now specify the .NET Framework types that are returned by your cmdlets by
declaring the OutputType attribute when writing your cmdlets. This will allow others to
determine what type of objects are returned by a cmdlet by looking at the OutputType
property of the cmdlet.

You can now write cmdlets that add and consume events. See the PSEvent class.

You can now write proxy commands that can be used to run another command. A proxy
command allows you to control what functionality of the source cmdlet is available to
the user. For example, you can create a proxy command that removes a parameter that
is supplied by the source command. See the ProxyCommand class.

You can now write applications that can provide prompts that allow the user to select
multiple choices. See the IHostUISupportsMultipleChoiceSelection interface

You can now write applications that can start and stop an interactive session on a
remote computer. See the IHostSupportsInteractiveSession interface.

Job cmdlets

Cmdlet output types

Event support

Proxy commands

Multiple choice prompts

Interactive sessions

Custom Cmdlet Help for Providers



You can now create customized Help topics for the provider cmdlets. Custom cmdlet
help topics can explain how the cmdlet works in the provider path and document
special features, including the dynamic parameters that the provider adds to the cmdlet.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fwindows-powershell-reference-whats-new%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fwindows-powershell-reference-whats-new.md&documentVersionIndependentId=25ecfae3-11d8-9e0a-c7ce-1bb0b1e07f94&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a08b044a-81a0-d9d1-ef48-f8ac28a7bf82+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Overview
Article • 09/17/2021

A cmdlet is a lightweight command that is used in the PowerShell environment. The
PowerShell runtime invokes these cmdlets within the context of automation scripts that
are provided at the command line. The PowerShell runtime also invokes them
programmatically through PowerShell APIs.

Cmdlets perform an action and typically return a Microsoft .NET object to the next
command in the pipeline. A cmdlet is a single command that participates in the pipeline
semantics of PowerShell. This includes binary (C#) cmdlets, advanced script functions,
CDXML, and Workflows.

This SDK documentation describes how to create binary cmdlets written in C#. For
information about script-based cmdlets, see:

about_Functions_Advanced
about_Functions_CmdletBindingAttribute
about_Functions_Advanced_Methods

To create a binary cmdlet, you must implement a cmdlet class that derives from one of
two specialized cmdlet base classes. The derived class must:

Declare an attribute that identifies the derived class as a cmdlet.
Define public properties that are decorated with attributes that identify the public
properties as cmdlet parameters.
Override one or more of the input processing methods to process records.

You can load the assembly that contains the class directly by using the Import-Module
cmdlet, or you can create a host application that loads the assembly by using the
System.Management.Automation.Runspaces.InitialSessionState API. Both methods
provide programmatic and command-line access to the functionality of the cmdlet.

The following terms are used frequently in the PowerShell cmdlet documentation:

Cmdlets

Cmdlet Terms

Cmdlet attribute

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_cmdletbindingattribute
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_functions_advanced_methods
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


A .NET attribute that is used to declare a cmdlet class as a cmdlet. Although PowerShell
uses several other attributes that are optional, the Cmdlet attribute is required. For more
information about this attribute, see Cmdlet Attribute Declaration.

The public properties that define the parameters that are available to the user or to the
application that is running the cmdlet. Cmdlets can have required, named, positional,
and switch parameters. Switch parameters allow you to define parameters that are
evaluated only if the parameters are specified in the call. For more information about
the different types of parameters, see Cmdlet Parameters.

A group of parameters that can be used in the same command to perform a specific
action. A cmdlet can have multiple parameter sets, but each parameter set must have at
least one parameter that is unique. Good cmdlet design strongly suggests that the
unique parameter also be a required parameter. For more information about parameter
sets, see Cmdlet Parameter Sets.

A parameter that is added to the cmdlet at runtime. Typically, the dynamic parameters
are added to the cmdlet when another parameter is set to a specific value. For more
information about dynamic parameters, see Cmdlet Dynamic Parameters.

The System.Management.Automation.Cmdlet class provides the following virtual
methods that are used to process records. All the derived cmdlet classes must override
one or more of the first three methods:

System.Management.Automation.Cmdlet.BeginProcessing: Used to provide
optional one-time, pre-processing functionality for the cmdlet.
System.Management.Automation.Cmdlet.ProcessRecord: Used to provide record-
by-record processing functionality for the cmdlet. The
System.Management.Automation.Cmdlet.ProcessRecord method might be called
any number of times, or not at all, depending on the input of the cmdlet.
System.Management.Automation.Cmdlet.EndProcessing: Used to provide optional
one-time, post-processing functionality for the cmdlet.

Cmdlet parameter

Parameter set

Dynamic parameter

Input processing methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing


System.Management.Automation.Cmdlet.StopProcessing: Used to stop processing
when the user stops the cmdlet asynchronously (for example, by pressing CTRL + C

).

For more information about these methods, see Cmdlet Input Processing Methods.

When you implement a cmdlet, you must override at least one of these input processing
methods. Typically, the ProcessRecord() is the method that you override because it is
called for every record that the cmdlet processes. In contrast, the BeginProcessing()
method and the EndProcessing() method are called one time to perform pre-processing
or post-processing of the records. For more information about these methods, see Input
Processing Methods.

PowerShell allows you to create cmdlets that prompt the user for feedback before the
cmdlet makes a change to the system. To use this feature, the cmdlet must declare that
it supports the ShouldProcess  feature when you declare the Cmdlet attribute, and the
cmdlet must call the System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue methods from within an input
processing method. For more information about how to support the ShouldProcess
functionality, see Requesting Confirmation.

A logical group of commands that are treated as a single task. The task automatically
fails if any command in the group fails, and the user has the choice to accept or reject
the actions performed within the transaction. To participate in a transaction, the cmdlet
must declare that it supports transactions when the Cmdlet attribute is declared.
Support for transactions was introduced in Windows PowerShell 2.0. For more
information about transactions, see How to Support Transactions.

Cmdlets differ from commands in other command-shell environments in the following
ways:

Cmdlets are instances of .NET classes; they are not stand-alone executables.
Cmdlets can be created from as few as a dozen lines of code.
Cmdlets do not generally do their own parsing, error presentation, or output
formatting. Parsing, error presentation, and output formatting are handled by the

ShouldProcess feature

Transaction

How Cmdlets Differ from Commands

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.StopProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue


PowerShell runtime.
Cmdlets process input objects from the pipeline rather than from streams of text,
and cmdlets typically deliver objects as output to the pipeline.
Cmdlets are record-oriented because they process a single object at a time.

Windows PowerShell supports cmdlets that are derived from the following two base
classes.

Most cmdlets are based on .NET classes that derive from the
System.Management.Automation.Cmdlet base class. Deriving from this class allows
a cmdlet to use the minimum set of dependencies on the Windows PowerShell
runtime. This has two benefits. The first benefit is that the cmdlet objects are
smaller, and you are less likely to be affected by changes to the PowerShell
runtime. The second benefit is that, if you have to, you can directly create an
instance of the cmdlet object and then invoke it directly instead of invoking it
through the PowerShell runtime.

The more-complex cmdlets are based on .NET classes that derive from the
System.Management.Automation.PSCmdlet base class. Deriving from this class
gives you much more access to the PowerShell runtime. This access allows your
cmdlet to call scripts, to access providers, and to access the current session state.
(To access the current session state, you get and set session variables and
preferences.) However, deriving from this class increases the size of the cmdlet
object, and it means that your cmdlet is more tightly coupled to the current
version of the PowerShell runtime.

In general, unless you need the extended access to the PowerShell runtime, you should
derive from the System.Management.Automation.Cmdlet class. However, the PowerShell
runtime has extensive logging capabilities for the execution of cmdlets. If your auditing
model depends on this logging, you can prevent the execution of your cmdlet from
within another cmdlet by deriving from the System.Management.Automation.PSCmdlet
class.

PowerShell defines several .NET attributes that are used to manage cmdlets and to
specify common functionality that is provided by PowerShell and that might be required
by the cmdlet. For example, attributes are used to designate a class as a cmdlet, to
specify the parameters of the cmdlet, and to request the validation of input so that

Cmdlet Base Classes

Cmdlet Attributes

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet


cmdlet developers do not have to implement that functionality in their cmdlet code. For
more information about attributes, see PowerShell Attributes.

PowerShell uses a verb-and-noun name pair to name cmdlets. For example, the Get-
Command  cmdlet included in PowerShell is used to get all the cmdlets that are registered
in the command shell. The verb identifies the action that the cmdlet performs, and the
noun identifies the resource on which the cmdlet performs its action.

These names are specified when the .NET class is declared as a cmdlet. For more
information about how to declare a .NET class as a cmdlet, see Cmdlet Attribute
Declaration.

This document provides two ways to discover how cmdlet code is written. If you prefer
to see the code without much explanation, see Examples of Cmdlet Code. If you prefer
more explanation about the code, see the GetProc Tutorial, StopProc Tutorial, or
SelectStr Tutorial topics.

For more information about the guidelines for writing cmdlets, see Cmdlet Development
Guidelines.

PowerShell Cmdlet Concepts

Writing a PowerShell Cmdlet

PowerShell SDK

Cmdlet Names

Writing Cmdlet Code

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Windows PowerShell Cmdlet Concepts
Article • 09/17/2021

This section describes how cmdlets work.

This section includes the following topics.

Cmdlet Development Guidelines This topic provides development guidelines that can be
used to produce well-formed cmdlets.

Cmdlet Class Declaration This topic describes cmdlet class declaration.

Approved Verbs for Windows PowerShell Commands This topic lists the predefined
cmdlet verbs that you can use when you declare a cmdlet class.

Cmdlet Input Processing Methods This topic describes the methods that allow a cmdlet
to perform preprocessing operations, input processing operations, and post processing
operations.

Cmdlet Parameters This section describes the different types of parameters that you can
add to cmdlets.

Cmdlet Attributes This section describes the attributes that are used to declare .NET
Framework classes as cmdlets, to declare fields as cmdlet parameters, and to declare
input validation rules for parameters.

Cmdlet Aliases This topic describes cmdlet aliases.

Cmdlet Output This section describes the type of output that cmdlets can return and
how to define and display the objects that are returned by cmdlets.

Registering Cmdlets This section describes how to register cmdlets by using modules
and snap-ins.

Requesting Confirmation This section describes how cmdlets request confirmation from
a user before they make a change to the system.

Windows PowerShell Error Reporting This section describes how cmdlets report
terminating errors and non-terminating errors, and it describes how to interpret error
records.

In This Section

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/modules-and-snap-ins?view=powershell-7.5


Background Jobs This topic describes how cmdlets can perform their work within
background jobs that do not interfere with the commands that are executing in the
current session.

Invoking Cmdlets and Scripts Within a Cmdlet This topic describes how cmdlets can
invoke other cmdlets and scripts from within their input processing methods.

Cmdlet Sets This topic describes using base classes to create sets of cmdlets.

Windows PowerShell Session State This topic describes Windows PowerShell session
state.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fwindows-powershell-cmdlet-concepts%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fwindows-powershell-cmdlet-concepts.md&documentVersionIndependentId=47f2ea59-dedd-1e4b-b9e9-8d937818dd1c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c3c3e915-e7a8-69bf-e0cd-786ee5e66258+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Development Guidelines
Article • 09/17/2021

The topics in this section provide development guidelines that you can use to produce
well-formed cmdlets. By leveraging the common functionality provided by the Windows
PowerShell runtime and by following these guidelines, you can develop robust cmdlets
with minimal effort and provide the user with a consistent experience. Additionally, you
will reduce the test burden because common functionality does not require retesting.

Required Development Guidelines

Strongly Encouraged Development Guidelines

Advisory Development Guidelines

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

In This Section

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-development-guidelines%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-development-guidelines.md&documentVersionIndependentId=d7c10d51-b3d8-0db4-635e-0a076c5a602f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+766587b9-ba69-1816-cbc0-af0db76289b4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Required Development Guidelines
Article • 09/17/2021

The following guidelines must be followed when you write your cmdlets. They are
separated into guidelines for designing cmdlets and guidelines for writing your cmdlet
code. If you do not follow these guidelines, your cmdlets could fail, and your users
might have a poor experience when they use your cmdlets.

Use Only Approved Verbs (RD01)

Cmdlet Names: Characters that cannot be Used (RD02)

Parameters Names that cannot be Used (RD03)

Support Confirmation Requests (RD04)

Support Force Parameter for Interactive Sessions (RD05)

Document Output Objects (RD06)

Derive from the Cmdlet or PSCmdlet Classes (RC01)

Specify the Cmdlet Attribute (RC02)

Override an Input Processing Method (RC03)

Specify the OutputType Attribute (RC04)

Do Not Retain Handles to Output Objects (RC05)

Handle Errors Robustly (RC06)

Use a Windows PowerShell Module to Deploy your Cmdlets (RC07)

In this Topic

Design Guidelines

Code Guidelines

Design Guidelines



The following guidelines must be followed when designing cmdlets to ensure a
consistent user experience between using your cmdlets and other cmdlets. When you
find a Design guideline that applies to your situation, be sure to look at the Code
guidelines for similar guidelines.

The verb specified in the Cmdlet attribute must come from the recognized set of verbs
provided by Windows PowerShell. It must not be one of the prohibited synonyms. Use
the constant strings that are defined by the following enumerations to specify cmdlet
verbs:

System.Management.Automation.VerbsCommon

System.Management.Automation.VerbsCommunications

System.Management.Automation.VerbsData

System.Management.Automation.VerbsDiagnostic

System.Management.Automation.VerbsLifecycle

System.Management.Automation.VerbsSecurity

System.Management.Automation.VerbsOther

For more information about the approved verb names, see Cmdlet Verbs.

Users need a set of discoverable and expected cmdlet names. Use the appropriate verb
so that the user can make a quick assessment of what a cmdlet does and to easily
discover the capabilities of the system. For example, the following command-line
command gets a list of all the commands on the system whose names begin with
"Start": Get-Command Start-* . Use the nouns in your cmdlets to differentiate your
cmdlets from other cmdlets. The noun indicates the resource on which the operation will
be performed. The operation itself is represented by the verb.

When you name cmdlets, do not use any of the following special characters.

Use Only Approved Verbs (RD01)

Cmdlet Names: Characters that cannot be Used (RD02)

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsOther


Character Name

# number sign

, comma

() parentheses

{} braces

[] brackets

& ampersand

- hyphen Note: The hyphen can be used to separate the verb from the noun, but it
cannot be used within the noun or within the verb.

/ slash mark

\ backslash

$ dollar sign

^ caret

; semicolon

: colon

" double quotation mark

' single quotation mark

<> angle brackets

| vertical bar

? question mark

@ at sign

` back tick (grave accent)

* asterisk

% percent sign

+ plus sign

= equals sign

~ tilde



Windows PowerShell provides a common set a parameters to all cmdlets plus additional
parameters that are added in specific situations. When designing your own cmdlets you
cannot use the following names: Confirm, Debug, ErrorAction, ErrorVariable, OutBuffer,
OutVariable, WarningAction, WarningVariable, WhatIf, UseTransaction, and Verbose. For
more information about these parameters, see Common Parameter Names.

For cmdlets that perform an operation that modifies the system, they should call the
System.Management.Automation.Cmdlet.ShouldProcess* method to request
confirmation, and in special cases call the
System.Management.Automation.Cmdlet.ShouldContinue* method. (The
System.Management.Automation.Cmdlet.ShouldContinue* method should be called
only after the System.Management.Automation.Cmdlet.ShouldProcess* method is
called.)

To make these calls the cmdlet must specify that it supports confirmation requests by
setting the SupportsShouldProcess  keyword of the Cmdlet attribute. For more
information about setting this attribute, see Cmdlet Attribute Declaration.

Use the System.Management.Automation.Cmdlet.ShouldProcess* method for any
system modification. A user preference and the WhatIf  parameter control the
System.Management.Automation.Cmdlet.ShouldProcess* method. In contrast, the
System.Management.Automation.Cmdlet.ShouldContinue* call performs an additional
check for potentially dangerous modifications. This method is not controlled by any user
preference or the WhatIf  parameter. If your cmdlet calls the
System.Management.Automation.Cmdlet.ShouldContinue* method, it should have a
Force  parameter that bypasses the calls to these two methods and that proceeds with
the operation. This is important because it allows your cmdlet to be used in non-
interactive scripts and hosts.

Parameters Names that cannot be Used (RD03)

Support Confirmation Requests (RD04)

７ Note

If the Cmdlet attribute of the cmdlet class indicates that the cmdlet supports calls
to the System.Management.Automation.Cmdlet.ShouldProcess* method, and the
cmdlet fails to make the call to the
System.Management.Automation.Cmdlet.ShouldProcess* method, the user could
modify the system unexpectedly.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


If your cmdlets support these calls, the user can determine whether the action should
actually be performed. For example, the Stop-Process cmdlet calls the
System.Management.Automation.Cmdlet.ShouldContinue* method before it stops a set
of critical processes, including the System, Winlogon, and Spoolsv processes.

For more information about supporting these methods, see Requesting Confirmation.

If your cmdlet is used interactively, always provide a Force parameter to override the
interactive actions, such as prompts or reading lines of input). This is important because
it allows your cmdlet to be used in non-interactive scripts and hosts. The following
methods can be implemented by an interactive host.

System.Management.Automation.Host.PSHostUserInterface.Prompt*

System.Management.Automation.Host.PSHostUserInterface.PromptForChoice

System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection.Pr
omptForChoice

System.Management.Automation.Host.PSHostUserInterface.PromptForCredential*

System.Management.Automation.Host.PSHostUserInterface.ReadLine*

System.Management.Automation.Host.PSHostUserInterface.ReadLineAsSecureStrin
g*

Windows PowerShell uses the objects that are written to the pipeline. In order for users
to take advantage of the objects that are returned by each cmdlet, you must document
the objects that are returned, and you must document what the members of those
returned objects are used for.

The following guidelines must be followed when writing cmdlet code. When you find a
Code guideline that applies to your situation, be sure to look at the Design guidelines
for similar guidelines.

Support Force Parameter for Interactive Sessions (RD05)

Document Output Objects (RD06)

Code Guidelines

Derive from the Cmdlet or PSCmdlet Classes (RC01)

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/stop-process
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.Prompt
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.PromptForChoice
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection.PromptForChoice
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection.PromptForChoice
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.PromptForCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.ReadLine
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.ReadLineAsSecureString
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.ReadLineAsSecureString


A cmdlet must derive from either the System.Management.Automation.Cmdlet or
System.Management.Automation.PSCmdlet base class. Cmdlets that derive from the
System.Management.Automation.Cmdlet class do not depend on the Windows
PowerShell runtime. They can be called directly from any Microsoft .NET Framework
language. Cmdlets that derive from the System.Management.Automation.PSCmdlet
class depend on the Windows PowerShell runtime. Therefore, they execute within a
runspace.

All cmdlet classes that you implement must be public classes. For more information
about these cmdlet classes, see Cmdlet Overview.

For a cmdlet to be recognized by Windows PowerShell, its .NET Framework class must
be decorated with the Cmdlet attribute. This attribute specifies the following features of
the cmdlet.

The verb-and-noun pair that identifies the cmdlet.

The default parameter set that is used when multiple parameter sets are specified.
The default parameter set is used when Windows PowerShell does not have
enough information to determine which parameter set to use.

Indicates if the cmdlet supports calls to the
System.Management.Automation.Cmdlet.ShouldProcess* method. This method
displays a confirmation message to the user before the cmdlet makes a change to
the system. For more information about how confirmation requests are made, see
Requesting Confirmation.

Indicate the impact level (or severity) of the action associated with the
confirmation message. In most cases, the default value of Medium should be used.
For more information about how the impact level affects the confirmation requests
that are displayed to the user, see Requesting Confirmation.

For more information about how to declare the cmdlet attribute, see CmdletAttribute
Declaration.

For the cmdlet to participate in the Windows PowerShell environment, it must override
at least one of the following input processing methods.

Specify the Cmdlet Attribute (RC02)

Override an Input Processing Method (RC03)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


System.Management.Automation.Cmdlet.BeginProcessing This method is called one
time, and it is used to provide pre-processing functionality.

System.Management.Automation.Cmdlet.ProcessRecord This method is called multiple
times, and it is used to provide record-by-record functionality.

System.Management.Automation.Cmdlet.EndProcessing This method is called one time,
and it is used to provide post-processing functionality.

The OutputType attribute (introduced in Windows PowerShell 2.0) specifies the .NET
Framework type that your cmdlet returns to the pipeline. By specifying the output type
of your cmdlets you make the objects returned by your cmdlet more discoverable by
other cmdlets. For more information about decorating the cmdlet class with this
attribute, see OutputType Attribute Declaration.

Your cmdlet should not retain any handles to the objects that are passed to the
System.Management.Automation.Cmdlet.WriteObject* method. These objects are
passed to the next cmdlet in the pipeline, or they are used by a script. If you retain the
handles to the objects, two entities will own each object, which causes errors.

An administration environment inherently detects and makes important changes to the
system that you are administering. Therefore, it is vital that cmdlets handle errors
correctly. For more information about error records, see Windows PowerShell Error
Reporting.

When an error prevents a cmdlet from continuing to process any more records, it
is a terminating error. The cmdlet must call the
System.Management.Automation.Cmdlet.ThrowTerminatingError* method that
references an System.Management.Automation.ErrorRecord object. If an exception
is not caught by the cmdlet, the Windows PowerShell runtime itself throws a
terminating error that contains less information.

For a non-terminating error that does not stop operation on the next record that is
coming from the pipeline (for example, a record produced by a different process),
the cmdlet must call the System.Management.Automation.Cmdlet.WriteError*
method that references an System.Management.Automation.ErrorRecord object.

Specify the OutputType Attribute (RC04)

Do Not Retain Handles to Output Objects (RC05)

Handle Errors Robustly (RC06)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord


An example of a non-terminating error is the error that occurs if a particular
process fails to stop. Calling the
System.Management.Automation.Cmdlet.WriteError* method allows the user to
consistently perform the actions requested and to retain the information for
particular actions that fail. Your cmdlet should handle each record as
independently as possible.

The System.Management.Automation.ErrorRecord object that is referenced by the
System.Management.Automation.Cmdlet.ThrowTerminatingError* and
System.Management.Automation.Cmdlet.WriteError* methods requires an
exception at its core. Follow the .NET Framework design guidelines when you
determine the exception to use. If the error is semantically the same as an existing
exception, use that exception or derive from that exception. Otherwise, derive a
new exception or exception hierarchy directly from the System.Exception type.

An System.Management.Automation.ErrorRecord object also requires an error category
that groups errors for the user. The user can view errors based on the category by
setting the value of the $ErrorView  shell variable to CategoryView. The possible
categories are defined by the System.Management.Automation.ErrorCategory
enumeration.

If a cmdlet creates a new thread, and if the code that is running in that thread
throws an unhandled exception, Windows PowerShell will not catch the error and
will terminate the process.

If an object has code in its destructor that causes an unhandled exception,
Windows PowerShell will not catch the error and will terminate the process. This
also occurs if an object calls Dispose methods that cause an unhandled exception.

Create a Windows PowerShell module to package and deploy your cmdlets. Support for
modules is introduced in Windows PowerShell 2.0. You can use the assemblies that
contain your cmdlet classes directly as binary module files (this is very useful when
testing your cmdlets), or you can create a module manifest that references the cmdlet
assemblies. (You can also add existing snap-in assemblies when using modules.) For
more information about modules, see Writing a Windows PowerShell Module.

Use a Windows PowerShell Module to Deploy your
Cmdlets (RC07)

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Exception
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory


Strongly Encouraged Development Guidelines

Advisory Development Guidelines

Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Strongly Encouraged Development
Guidelines
Article • 04/11/2024

This section describes guidelines that you should follow when you write your cmdlets.
They are separated into guidelines for designing cmdlets and guidelines for writing your
cmdlet code. You might find that these guidelines are not applicable for every scenario.
However, if they do apply and you do not follow these guidelines, your users might have
a poor experience when they use your cmdlets.

The following guidelines should be followed when designing cmdlets to ensure a
consistent user experience between using your cmdlets and other cmdlets. When you
find a Design guideline that applies to your situation, be sure to look at the Code
guidelines for similar guidelines.

Nouns used in cmdlet naming need to be very specific so that the user can discover
your cmdlets. Prefix generic nouns such as "server" with a shortened version of the
product name. For example, if a noun refers to a server that is running an instance of
Microsoft SQL Server, use a noun such as "SQLServer". The combination of specific
nouns and the short list of approved verbs enable the user to quickly discover and
anticipate functionality while avoiding duplication among cmdlet names.

To enhance the user experience, the noun that you choose for a cmdlet name should be
singular. For example, use the name Get-Process  instead of Get-Processes . It is best to
follow this rule for all cmdlet names, even when a cmdlet is likely to act upon more than
one item.

Use Pascal case for parameter names. In other words, capitalize the first letter of verb
and all terms used in the noun. For example, " Clear-ItemProperty ".

Design Guidelines

Use a Specific Noun for a Cmdlet Name (SD01)

Use Pascal Case for Cmdlet Names (SD02)

Parameter Design Guidelines (SD03)



A cmdlet needs parameters that receive the data on which it must operate, and
parameters that indicate information that is used to determine the characteristics of the
operation. For example, a cmdlet might have a Name  parameter that receives data from
the pipeline, and the cmdlet might have a Force  parameter to indicate that the cmdlet
can be forced to perform its operation. There is no limit to the number of parameters
that a cmdlet can define.

Your cmdlet should use standard parameter names so that the user can quickly
determine what a particular parameter means. If a more specific name is required, use a
standard parameter name, and then specify a more specific name as an alias. For
example, the Get-Service  cmdlet has a parameter that has a generic name ( Name ) and a
more specific alias ( ServiceName ). Both terms can be used to specify the parameter.

For more information about parameter names and their data types, see Cmdlet
Parameter Name and Functionality Guidelines.

Avoid using plural names for parameters whose value is a single element. This includes
parameters that take arrays or lists because the user might supply an array or list with
only one element.

Plural parameter names should be used only in those cases where the value of the
parameter is always a multiple-element value. In these cases, the cmdlet should verify
that multiple elements are supplied, and the cmdlet should display a warning to the user
if multiple elements are not supplied.

Use Pascal case for parameter names. In other words, capitalize the first letter of each
word in the parameter name, including the first letter of the name. For example, the
parameter name ErrorAction  uses the correct capitalization. The following parameter
names use incorrect capitalization:

errorAction

erroraction

Use Standard Parameter Names

Use Singular Parameter Names

Use Pascal Case for Parameter Names

Parameters That Take a List of Options



There are two ways to create a parameter whose value can be selected from a set of
options.

Define an enumeration type (or use an existing enumeration type) that specifies
the valid values. Then, use the enumeration type to create a parameter of that
type.

Add the ValidateSet attribute to the parameter declaration. For more information
about this attribute, see ValidateSet Attribute Declaration.

To ensure consistency with other cmdlets, use standard types for parameters where ever
possible. For more information about the types that should be used for different
parameter, see Standard Cmdlet Parameter Names and Types. This topic provides links
to several topics that describe the names and .NET Framework types for groups of
standard parameters, such as the "activity parameters".

Parameters should be defined as .NET Framework types to provide better parameter
validation. For example, parameters that are restricted to one value from a set of values
should be defined as an enumeration type. To support a Uniform Resource Identifier
(URI) value, define the parameter as a System.Uri type. Avoid basic string parameters for
all but free-form text properties.

When the same parameter is used by multiple cmdlets, always use the same parameter
type. For example, if the Process  parameter is a System.Int16 type for one cmdlet, do
not make the Process  parameter for another cmdlet a System.Uint16 type.

If your parameter takes only true  and false , define the parameter as type
System.Management.Automation.SwitchParameter. A switch parameter is treated as
true  when it is specified in a command. If the parameter is not included in a command,
Windows PowerShell considers the value of the parameter to be false . Do not define
Boolean parameters.

Use Standard Types for Parameters

Use Strongly-Typed .NET Framework Types

Use Consistent Parameter Types

Parameters That Take True and False

https://learn.microsoft.com/en-us/dotnet/api/System.Uri
https://learn.microsoft.com/en-us/dotnet/api/System.Int16
https://learn.microsoft.com/en-us/dotnet/api/System.UInt16
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SwitchParameter


If your parameter needs to differentiate between 3 values: $true, $false and
"unspecified", then define a parameter of type Nullable<bool>. The need for a 3rd,
"unspecified" value typically occurs when the cmdlet can modify a Boolean property of
an object. In this case "unspecified" means to not change the current value of the
property.

Frequently, users must perform the same operation against multiple arguments. For
these users, a cmdlet should accept an array as parameter input so that a user can pass
the arguments into the parameter as a Windows PowerShell variable. For example, the
Get-Process cmdlet uses an array for the strings that identify the names of the processes
to retrieve.

By default, many cmdlets that modify the system, such as the Stop-Process cmdlet, act
as "sinks" for objects and do not return a result. These cmdlet should implement the
PassThru  parameter to force the cmdlet to return an object. When the PassThru
parameter is specified, the cmdlet returns an object by using a call to the
System.Management.Automation.Cmdlet.WriteObject method. For example, the
following command stops the Calc (CalculatorApp.exe) and passes the resultant process
to the pipeline.

PowerShell

In most cases, Add, Set, and New cmdlets should support a PassThru  parameter.

A cmdlet is intended to accomplish a single purpose. However, there is frequently more
than one way to describe the operation or the operation target. For example, a process
might be identified by its name, by its identifier, or by a process object. The cmdlet
should support all the reasonable representations of its targets. Normally, the cmdlet
satisfies this requirement by specifying sets of parameters (referred to as parameter
sets) that operate together. A single parameter can belong to any number of parameter
sets. For more information about parameter sets, see Cmdlet Parameter Sets.

Support Arrays for Parameters

Support the PassThru Parameter

Stop-Process -Name CalculatorApp -PassThru

Support Parameter Sets

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Stop-Process
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


When you specify parameter sets, set only one parameter in the set to
ValueFromPipeline. For more information about how to declare the Parameter attribute,
see ParameterAttribute Declaration.

When parameter sets are used, the default parameter set is defined by the Cmdlet
attribute. The default parameter set should include the parameters most likely to be
used in an interactive Windows PowerShell session. For more information about how to
declare the Cmdlet attribute, see CmdletAttribute Declaration.

Use the guidelines in this section to provide feedback to the user. This feedback allows
the user to be aware of what is occurring in the system and to make better
administrative decisions.

The Windows PowerShell runtime allows a user to specify how to handle output from
each call to the Write  method by setting a preference variable. The user can set several
preference variables, including a variable that determines whether the system should
display information and a variable that determines whether the system should query the
user before taking further action.

A cmdlet should call the System.Management.Automation.Cmdlet.WriteWarning
method when the cmdlet is about to perform an operation that might have an
unintended result. For example, a cmdlet should call this method if the cmdlet is about
to overwrite a read-only file.

A cmdlet should call the System.Management.Automation.Cmdlet.WriteVerbose method
when the user requires some detail about what the cmdlet is doing. For example, a
cmdlet should call this information if the cmdlet author feels that there are scenarios
that might require more information about what the cmdlet is doing.

The cmdlet should call the System.Management.Automation.Cmdlet.WriteDebug
method when a developer or product support engineer must understand what has
corrupted the cmdlet operation. It is not necessary for the cmdlet to call the
System.Management.Automation.Cmdlet.WriteDebug method in the same code that
calls the System.Management.Automation.Cmdlet.WriteVerbose method because the
Debug  parameter presents both sets of information.

Provide Feedback to the User (SD04)

Support the WriteWarning, WriteVerbose, and WriteDebug
Methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose


Cmdlet operations that take a long time to complete and that cannot run in the
background should support progress reporting through periodic calls to the
System.Management.Automation.Cmdlet.WriteProgress method.

Occasionally, a cmdlet must communicate directly with the user instead of by using the
various Write or Should methods supported by the
System.Management.Automation.Cmdlet class. In this case, the cmdlet should derive
from the System.Management.Automation.PSCmdlet class and use the
System.Management.Automation.PSCmdlet.Host* property. This property supports
different levels of communication type, including the PromptForChoice, Prompt, and
WriteLine/ReadLine types. At the most specific level, it also provides ways to read and
write individual keys and to deal with buffers.

Unless a cmdlet is specifically designed to generate a graphical user interface (GUI), it
should not bypass the host by using the
System.Management.Automation.PSCmdlet.Host* property. An example of a cmdlet that
is designed to generate a GUI is the Out-GridView cmdlet.

For each cmdlet assembly, create a Help.xml file that contains information about the
cmdlet. This information includes a description of the cmdlet, descriptions of the
cmdlet's parameters, examples of the cmdlet's use, and more.

The following guidelines should be followed when coding cmdlets to ensure a
consistent user experience between using your cmdlets and other cmdlets. When you
find a Code guideline that applies to your situation, be sure to look at the Design
guidelines for similar guidelines.

Support WriteProgress for Operations that take a Long Time

Use the Host Interfaces

７ Note

Cmdlets should not use the System.Console API.

Create a Cmdlet Help File (SD05)

Code Guidelines

Coding Parameters (SC01)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteProgress
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.Host
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.Host
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Out-GridView
https://learn.microsoft.com/en-us/dotnet/api/System.Console


Define a parameter by declaring a public property of the cmdlet class that is decorated
with the Parameter attribute. Parameters do not have to be static members of the
derived .NET Framework class for the cmdlet. For more information about how to
declare the Parameter attribute, see Parameter Attribute Declaration.

The Windows PowerShell path is the mechanism for normalizing access to namespaces.
When you assign a Windows PowerShell path to a parameter in the cmdlet, the user can
define a custom "drive" that acts as a shortcut to a specific path. When a user
designates such a drive, stored data, such as data in the Registry, can be used in a
consistent way.

If your cmdlet allows the user to specify a file or a data source, it should define a
parameter of type System.String. If more than one drive is supported, the type should be
an array. The name of the parameter should be Path , with an alias of PSPath .
Additionally, the Path  parameter should support wildcard characters. If support for
wildcard characters is not required, define a LiteralPath  parameter.

If the data that the cmdlet reads or writes has to be a file, the cmdlet should accept
Windows PowerShell path input, and the cmdlet should use the
System.Management.Automation.SessionState.Path property to translate the Windows
PowerShell paths into paths that the file system recognizes. The specific mechanisms
include the following methods:

System.Management.Automation.PSCmdlet.GetResolvedProviderPathFromPSPath
System.Management.Automation.PSCmdlet.GetUnresolvedProviderPathFromPSPat
h
System.Management.Automation.PathIntrinsics.GetResolvedProviderPathFromPSPa
th
System.Management.Automation.PathIntrinsics.GetUnresolvedProviderPathFromPS
Path

If the data that the cmdlet reads or writes is only a set of strings instead of a file, the
cmdlet should use the provider content information ( Content  member) to read and
write. This information is obtained from the
System.Management.Automation.Provider.CmdletProvider.InvokeProvider property.
These mechanisms allow other data stores to participate in the reading and writing of
data.

Support Windows PowerShell Paths

Support Wildcard Characters

https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionState.Path
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.GetResolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.GetUnresolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.GetUnresolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PathIntrinsics.GetResolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PathIntrinsics.GetResolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PathIntrinsics.GetUnresolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PathIntrinsics.GetUnresolvedProviderPathFromPSPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.InvokeProvider


A cmdlet should support wildcard characters if possible. Support for wildcard characters
occurs in many places in a cmdlet (especially when a parameter takes a string to identify
one object from a set of objects). For example, the sample Stop-Proc  cmdlet from the
StopProc Tutorial defines a Name  parameter to handle strings that represent process
names. This parameter supports wildcard characters so that the user can easily specify
the processes to stop.

When support for wildcard characters is available, a cmdlet operation usually produces
an array. Occasionally, it does not make sense to support an array because the user
might use only a single item at a time. For example, the Set-Location cmdlet does not
need to support an array because the user is setting only a single location. In this
instance, the cmdlet still supports wildcard characters, but it forces resolution to a single
location.

For more information about wildcard-character patterns, see Supporting Wildcard
Characters in Cmdlet Parameters.

This section contains guidelines for defining objects for cmdlets and for extending
existing objects.

Define standard members to extend an object type in a custom Types.ps1xml file (use
the Windows PowerShell Types.ps1xml file as a template). Standard members are
defined by a node with the name PSStandardMembers. These definitions allow other
cmdlets and the Windows PowerShell runtime to work with your object in a consistent
way.

If you are designing an object for a cmdlet, ensure that its members map directly to the
parameters of the cmdlets that will use it. This mapping allows the object to be easily
sent to the pipeline and to be passed from one cmdlet to another.

Preexisting .NET Framework objects that are returned by cmdlets are frequently missing
some important or convenient members that are needed by the script developer or
user. These missing members can be particularly important for display and for creating
the correct member names so that the object can be correctly passed to the pipeline.
Create a custom Types.ps1xml file to document these required members. When you

Defining Objects

Define Standard Members

Define ObjectMembers to Be Used as Parameters

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Set-Location


create this file, we recommend the following naming convention:
<Your_Product_Name>.Types.ps1xml.

For example, you could add a Mode  script property to the System.IO.FileInfo type to
display the attributes of a file more clearly. Additionally, you could add a Count  alias
property to the System.Array type to allow the consistent use of that property name
(instead of Length ).

Implement a System.IComparable interface on all output objects. This allows the output
objects to be easily piped to various sorting and analysis cmdlets.

If the display for an object does not provide the expected results, create a custom
<YourProductName>.Format.ps1xml file for that object.

Implement a cmdlet assuming that it will be called from the middle of a pipeline (that is,
other cmdlets will produce its input or consume its output). For example, you might
assume that the Get-Process  cmdlet, because it generates data, is used only as the first
cmdlet in a pipeline. However, because this cmdlet is designed for the middle of a
pipeline, this cmdlet allows previous cmdlets or data in the pipeline to specify the
processes to retrieve.

In each parameter set for a cmdlet, include at least one parameter that supports input
from the pipeline. Support for pipeline input allows the user to retrieve data or objects,
to send them to the correct parameter set, and to pass the results directly to a cmdlet.

A parameter accepts input from the pipeline if the Parameter attribute includes the
ValueFromPipeline  keyword, the ValueFromPipelineByPropertyName  keyword attribute, or
both keywords in its declaration. If none of the parameters in a parameter set support
the ValueFromPipeline  or ValueFromPipelineByPropertyName  keywords, the cmdlet

Implement the IComparable Interface

Update Display Information

Support Well Defined Pipeline Input (SC02)

Implement for the Middle of a Pipeline

Support Input from the Pipeline

https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Array
https://learn.microsoft.com/en-us/dotnet/api/System.IComparable


cannot meaningfully be placed after another cmdlet because it will ignore any pipeline
input.

To accept all the records from the preceding cmdlet in the pipeline, your cmdlet must
implement the System.Management.Automation.Cmdlet.ProcessRecord method.
Windows PowerShell calls this method multiple times, once for every record that is sent
to your cmdlet.

When a cmdlet returns objects, the cmdlet should write the objects immediately as they
are generated. The cmdlet should not hold them in order to buffer them into a
combined array. The cmdlets that receive the objects as input will then be able to
process, display, or process and display the output objects without delay. A cmdlet that
generates output objects one at a time should call the
System.Management.Automation.Cmdlet.WriteObject method. A cmdlet that generates
output objects in batches (for example, because an underlying API returns an array of
output objects) should call the System.Management.Automation.Cmdlet.WriteObject
Method with its second parameter set to true .

By default, Windows PowerShell itself is case-insensitive. However, because it deals with
many preexisting systems, Windows PowerShell does preserve case for ease of
operation and compatibility. In other words, if a character is supplied in uppercase
letters, Windows PowerShell keeps it in uppercase letters. For systems to work well, a
cmdlet needs to follow this convention. If possible, it should operate in a case-
insensitive way. It should, however, preserve the original case for cmdlets that occur
later in a command or in the pipeline.

Required Development Guidelines

Advisory Development Guidelines

Writing a Windows PowerShell Cmdlet

Support the ProcessRecord Method

Write Single Records to the Pipeline (SC03)

Make Cmdlets Case-Insensitive and Case-Preserving
(SC04)

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Advisory Development Guidelines
Article • 10/06/2021

This section describes guidelines that you should consider to ensure good development
and user experiences. Sometimes they might apply, and sometimes they might not.

The following guidelines should be considered when designing cmdlets. When you find
a Design guideline that applies to your situation, be sure to look at the Code guidelines
for similar guidelines.

Because Windows PowerShell works directly with Microsoft .NET Framework objects, a
.NET Framework object is often available that exactly matches the type the user needs to
perform a particular operation. InputObject  is the standard name for a parameter that
takes such an object as input. For example, the sample Stop-Proc  cmdlet in the
StopProc Tutorial defines an InputObject  parameter of type Process that supports the
input from the pipeline. The user can get a set of process objects, manipulate them to
select the exact objects to stop, and then pass them to the Stop-Proc  cmdlet directly.

Occasionally, a cmdlet needs to protect the user from performing a requested
operation. Such a cmdlet should support a Force parameter to allow the user to override
that protection if the user has permissions to perform the operation.

For example, the Remove-Item cmdlet does not normally remove a read-only file.
However, this cmdlet supports a Force parameter so a user can force removal of a read-
only file. If the user already has permission to modify the read-only attribute, and the
user removes the file, use of the Force parameter simplifies the operation. However, if
the user does not have permission to remove the file, the Force parameter has no effect.

A cmdlet should define a Credential  parameter to represent credentials. This parameter
must be of type System.Management.Automation.PSCredential and must be defined
using a Credential attribute declaration. This support automatically prompts the user for

Design Guidelines

Support an InputObject Parameter (AD01)

Support the Force Parameter (AD02)

Handle Credentials Through Windows PowerShell (AD03)

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/remove-item
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential


the user name, for the password, or for both when a full credential is not supplied
directly. For more information about the Credential attribute, see Credential Attribute
Declaration.

If your cmdlet reads or writes text to or from a binary form, such as writing to or reading
from a file in a filesystem, then your cmdlet has to have Encoding parameter that
specifies how the text is encoded in the binary form.

Cmdlets that perform tests against their resources should return a System.Boolean type
to the pipeline so that they can be used in conditional expressions.

The following guidelines should be considered when writing cmdlet code. When you
find a guideline that applies to your situation, be sure to look at the Design guidelines
for similar guidelines.

By following standard naming conventions, you make your cmdlets more discoverable,
and you help the user understand exactly what the cmdlets do. This practice is
particularly important for other developers using Windows PowerShell because cmdlets
are public types.

You normally define the class for a cmdlet in a .NET Framework namespace that
appends ".Commands" to the namespace that represents the product in which the
cmdlet runs. For example, cmdlets that are included with Windows PowerShell are
defined in the Microsoft.PowerShell.Commands  namespace.

When you name the .NET Framework class that implements a cmdlet, name the class "
<Verb><Noun><Command>", where you replace the <Verb> and <Noun>

Support Encoding Parameters (AD04)

Test Cmdlets Should Return a Boolean (AD05)

Code Guidelines

Follow Cmdlet Class Naming Conventions (AC01)

Define a Cmdlet in the Correct Namespace

Name the Cmdlet Class to Match the Cmdlet Name

https://learn.microsoft.com/en-us/dotnet/api/System.Boolean


placeholders with the verb and noun used for the cmdlet name. For example, the Get-
Process cmdlet is implemented by a class called GetProcessCommand .

If your cmdlet does not accept input from the pipeline, processing should be
implemented in the System.Management.Automation.Cmdlet.BeginProcessing method.
Use of this method allows Windows PowerShell to maintain ordering between cmdlets.
The first cmdlet in the pipeline always returns its objects before the remaining cmdlets
in the pipeline get a chance to start their processing.

Override the System.Management.Automation.Cmdlet.StopProcessing method so that
your cmdlet can handle stop signal. Some cmdlets take a long time to complete their
operation, and they let a long time pass between calls to the Windows PowerShell
runtime, such as when the cmdlet blocks the thread in long-running RPC calls. This
includes cmdlets that make calls to the
System.Management.Automation.Cmdlet.WriteObject method, to the
System.Management.Automation.Cmdlet.WriteError method, and to other feedback
mechanisms that may take a long time to complete. For these cases the user might need
to send a stop signal to these cmdlets.

If your cmdlet has objects that are not disposed of (written to the pipeline) by the
System.Management.Automation.Cmdlet.ProcessRecord method, your cmdlet might
require additional object disposal. For example, if your cmdlet opens a file handle in its
System.Management.Automation.Cmdlet.BeginProcessing method and keeps the handle
open for use by the System.Management.Automation.Cmdlet.ProcessRecord method,
this handle has to be closed at the end of processing.

The Windows PowerShell runtime does not always call the
System.Management.Automation.Cmdlet.EndProcessing method. For example, the
System.Management.Automation.Cmdlet.EndProcessing method might not be called if
the cmdlet is canceled midway through its operation or if a terminating error occurs in
any part of the cmdlet. Therefore, the .NET Framework class for a cmdlet that requires
object cleanup should implement the complete System.IDisposable interface pattern,

If No Pipeline Input Override the BeginProcessing
Method (AC02)

To Handle Stop Requests Override the StopProcessing
Method (AC03)

Implement the IDisposable Interface (AC04)

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.StopProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable


including the finalizer, so that the Windows PowerShell runtime can call both the
System.Management.Automation.Cmdlet.EndProcessing and
System.IDisposable.Dispose* methods at the end of processing.

To support running your cmdlet on remote computers, use types that can be easily
serialized on the client computer and then rehydrated on the server computer. The
follow types are serialization-friendly.

Primitive types:

Byte, SByte, Decimal, Single, Double, Int16, Int32, Int64, Uint16, UInt32, and UInt64.

Boolean, Guid, Byte[], TimeSpan, DateTime, Uri, and Version.

Char, String, XmlDocument.

Built-in rehydratable types:

PSPrimitiveDictionary

SwitchParameter

PSListModifier

PSCredential

IPAddress, MailAddress

CultureInfo

X509Certificate2, X500DistinguishedName

DirectorySecurity, FileSecurity, RegistrySecurity

Other types:

SecureString

Containers (lists and dictionaries of the above type)

When handling sensitive data always use the System.Security.Securestring data type.
This could include pipeline input to parameters, as well as returning sensitive data to the

Use Serialization-friendly Parameter Types (AC05)

Use SecureString for Sensitive Data (AC06)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable.Dispose
https://learn.microsoft.com/en-us/dotnet/api/System.Security.SecureString


pipeline.

Required Development Guidelines

Strongly Encouraged Development Guidelines

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fadvisory-development-guidelines%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fadvisory-development-guidelines.md&documentVersionIndependentId=f56725a0-68af-83aa-7ff9-68795147bd36&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+940ab961-0fa5-be52-d3c8-2e8d5808d030+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Class Declaration
Article • 09/17/2021

A Microsoft .NET Framework class is declared as a cmdlet by specifying the Cmdlet
attribute as metadata for the class. (The Cmdlet attribute is the only required attribute
for all cmdlets). When you specify the Cmdlet attribute, you must specify the verb-and-
noun pair that identifies the cmdlet to the user. And, you must describe the Windows
PowerShell functionality that the cmdlet supports. For more information about the
declaration syntax that is used to specify the Cmdlet attribute, see Cmdlet Attribute
Declaration.

The noun of the cmdlet specifies the resources upon which the cmdlet acts. The noun
differentiates your cmdlets from other cmdlets.

Nouns in cmdlet names must be specific, and in the case of generic nouns, such as
server, it is best to add a short prefix that differentiates your resource from other similar
resources. For example, a cmdlet name that includes a noun with a prefix is Get-
SQLServer . The combination of a specific noun with a more general verb enables the
user to quickly locate the cmdlet by its action and then identify the cmdlet by its
resource while avoiding unnecessary cmdlet name duplication.

For a list of special characters that cannot be used in cmdlet names, see Required
Development Guidelines.

When you specify a verb, the development guidelines require you to use one of the
predefined verbs provided by Windows PowerShell. By using one of these predefined
verbs, you will ensure consistency between the cmdlets that you write and the cmdlets

７ Note

The Cmdlet attribute is defined by the
System.Management.Automation.CmdletAttribute class. The properties of this
class correspond to the declaration parameters that are used when you declare the
attribute.

Nouns

Verbs

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute


that are written by Microsoft and by others. For example, the "Get" verb is used for
cmdlets that retrieve data.

For more information about guidelines for verbs, see Cmdlet Verb Names. For a list of
special characters that cannot be used in cmdlet names, see Required Development
Guidelines.

The Cmdlet attribute also allows you to specify that your cmdlet supports some of the
common functionality that is provided by Windows PowerShell. This includes support for
common functionality such as user feedback confirmation (referred to as support for the
ShouldProcess feature) and support for transactions. (Support for transactions was
introduced in Windows PowerShell 2.0).

For more information about the declaration syntax that is used to specify the Cmdlet
attribute, see Cmdlet Attribute Declaration.

The following code is the definition for a GetProc cmdlet class. Notice that Pascal casing
is used and that the name of the class includes the verb and noun of the cmdlet.

C#

When you name cmdlets, use Pascal casing. For example, the Get-Item  and Get-
ItemProperty  cmdlets show the correct way to use capitalization when you are naming
cmdlets.

System.Management.Automation.CmdletAttribute

CmdletAttribute Declaration

Cmdlet Verb Names

Supporting Windows PowerShell Functionality

Cmdlet Class Definition

[Cmdlet(VerbsCommon.Get, "Proc")]
public class GetProcCommand : Cmdlet

Pascal Casing

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute


Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-class-declaration%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-class-declaration.md&documentVersionIndependentId=2dd6a1a9-f528-6a9c-ae14-a7037b6deaf0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cb06d67e-20dc-c964-2817-61e77db78ca5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Approved Verbs for PowerShell
Commands
Article • 10/16/2024

PowerShell uses a verb-noun pair for the names of cmdlets and for their derived .NET
classes. The verb part of the name identifies the action that the cmdlet performs. The
noun part of the name identifies the entity on which the action is performed. For
example, the Get-Command  cmdlet retrieves all the commands that are registered in
PowerShell.

Each approved verb has a corresponding alias prefix defined. We use this alias prefix in
aliases for commands using that verb. For example, the alias prefix for Import  is ip  and,
accordingly, the alias for Import-Module  is ipmo . This is a recommendation but not a
rule; in particular, it need not be respected for command aliases mimicking well known
commands from other environments.

The following recommendations help you choose an appropriate verb for your cmdlet,
to ensure consistency between the cmdlets that you create, the cmdlets that are
provided by PowerShell, and the cmdlets that are designed by others.

Use one of the predefined verb names provided by PowerShell
Use the verb to describe the general scope of the action, and use parameters to
further refine the action of the cmdlet.
Do not use a synonym of an approved verb. For example, always use Remove , never
use Delete  or Eliminate .
Use only the form of each verb that is listed in this topic. For example, use Get , but
do not use Getting  or Gets .
Do not use the following reserved verbs or aliases. The PowerShell language and a
rare few cmdlets use these verbs under exceptional circumstances.

７ Note

PowerShell uses the term verb to describe a word that implies an action even if that
word is not a standard verb in the English language. For example, the term New is a
valid PowerShell verb name because it implies an action even though it is not a
verb in the English language.

Verb Naming Recommendations



ForEach (foreach)
Ping (pi)
Sort (sr)
Tee (te)
Where (wh)

You may get a complete list of verbs using the Get-Verb  cmdlet.

The following similar verbs represent different actions.

Use the New  verb to create a new resource. Use the Add  to add something to an existing
container or resource. For example, Add-Content  adds output to an existing file.

Use the New  verb to create a new resource. Use the Set  verb to modify an existing
resource, optionally creating it if it does not exist, such as the Set-Variable  cmdlet.

Use the Find  verb to look for an object. Use the Search  verb to create a reference to a
resource in a container.

Use the Get  verb to obtain information about a resource (such as a file) or to obtain an
object with which you can access the resource in future. Use the Read  verb to open a
resource and extract information contained within.

Use the Invoke  verb to perform synchronous operations, such as running a command
and waiting for it to end. Use the Start  verb to begin asynchronous operations, such as
starting an autonomous process.

Similar Verbs for Different Actions

New vs. Add

New vs. Set

Find vs. Search

Get vs. Read

Invoke vs. Start



Use the Test  verb.

PowerShell uses the System.Management.Automation.VerbsCommon enumeration class
to define generic actions that can apply to almost any cmdlet. The following table lists
most of the defined verbs.

Verb
(alias)

Action Synonyms to avoid

Add (a) Adds a resource to a container, or attaches an item to
another item. For example, the Add-Content  cmdlet adds
content to a file. This verb is paired with Remove .

Append, Attach,
Concatenate, Insert

Clear (cl) Removes all the resources from a container but does not
delete the container. For example, the Clear-Content
cmdlet removes the contents of a file but does not delete
the file.

Flush, Erase, Release,
Unmark, Unset, Nullify

Close (cs) Changes the state of a resource to make it inaccessible,
unavailable, or unusable. This verb is paired with Open.

Copy (cp) Copies a resource to another name or to another
container. For example, the Copy-Item  cmdlet copies an
item (such as a file) from one location in the data store to
another location.

Duplicate, Clone,
Replicate, Sync

Enter (et) Specifies an action that allows the user to move into a
resource. For example, the Enter-PSSession  cmdlet places
the user in an interactive session. This verb is paired with
Exit .

Push, Into

Exit (ex) Sets the current environment or context to the most
recently used context. For example, the Exit-PSSession
cmdlet places the user in the session that was used to
start the interactive session. This verb is paired with Enter .

Pop, Out

Find (fd) Looks for an object in a container that is unknown,
implied, optional, or specified.

Search

Format (f) Arranges objects in a specified form or layout

Ping vs. Test

Common Verbs

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Add
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Clear
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Close
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Copy
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Enter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Exit
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Find
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Format


Verb
(alias)

Action Synonyms to avoid

Get (g) Specifies an action that retrieves a resource. This verb is
paired with Set .

Read, Open, Cat, Type,
Dir, Obtain, Dump,
Acquire, Examine, Find,
Search

Hide (h) Makes a resource undetectable. For example, a cmdlet
whose name includes the Hide verb might conceal a
service from a user. This verb is paired with Show .

Block

Join (j) Combines resources into one resource. For example, the
Join-Path  cmdlet combines a path with one of its child
paths to create a single path. This verb is paired with
Split .

Combine, Unite,
Connect, Associate

Lock (lk) Secures a resource. This verb is paired with Unlock . Restrict, Secure

Move (m) Moves a resource from one location to another. For
example, the Move-Item  cmdlet moves an item from one
location in the data store to another location.

Transfer, Name, Migrate

New (n) Creates a resource. (The Set  verb can also be used when
creating a resource that includes data, such as the Set-
Variable  cmdlet.)

Create, Generate, Build,
Make, Allocate

Open (op) Changes the state of a resource to make it accessible,
available, or usable. This verb is paired with Close .

Optimize
(om)

Increases the effectiveness of a resource.

Pop (pop) Removes an item from the top of a stack. For example, the
Pop-Location  cmdlet changes the current location to the
location that was most recently pushed onto the stack.

Push (pu) Adds an item to the top of a stack. For example, the Push-
Location  cmdlet pushes the current location onto the
stack.

Redo (re) Resets a resource to the state that was undone.

Remove
(r)

Deletes a resource from a container. For example, the
Remove-Variable  cmdlet deletes a variable and its value.
This verb is paired with Add .

Clear, Cut, Dispose,
Discard, Erase

Rename
(rn)

Changes the name of a resource. For example, the Rename-
Item  cmdlet, which is used to access stored data, changes
the name of an item in the data store.

Change

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Get
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Hide
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Join
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Lock
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Move
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.New
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Open
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Optimize
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Pop
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Push
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Redo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Remove
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Rename


Verb
(alias)

Action Synonyms to avoid

Reset (rs) Sets a resource back to its original state.

Resize(rz) Changes the size of a resource.

Search
(sr)

Creates a reference to a resource in a container. Find, Locate

Select (sc) Locates a resource in a container. For example, the
Select-String  cmdlet finds text in strings and files.

Find, Locate

Set (s) Replaces data on an existing resource or creates a
resource that contains some data. For example, the Set-
Date  cmdlet changes the system time on the local
computer. (The New  verb can also be used to create a
resource.) This verb is paired with Get .

Write, Reset, Assign,
Configure, Update

Show (sh) Makes a resource visible to the user. This verb is paired
with Hide .

Display, Produce

Skip (sk) Bypasses one or more resources or points in a sequence. Bypass, Jump

Split (sl) Separates parts of a resource. For example, the Split-
Path  cmdlet returns different parts of a path. This verb is
paired with Join .

Separate

Step (st) Moves to the next point or resource in a sequence.

Switch
(sw)

Specifies an action that alternates between two resources,
such as to change between two locations, responsibilities,
or states.

Undo (un) Sets a resource to its previous state.

Unlock
(uk)

Releases a resource that was locked. This verb is paired
with Lock .

Release, Unrestrict,
Unsecure

Watch
(wc)

Continually inspects or monitors a resource for changes.

PowerShell uses the System.Management.Automation.VerbsCommunications class to
define actions that apply to communications. The following table lists most of the
defined verbs.

Communications Verbs

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Reset
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Resize
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Search
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Select
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Set
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Show
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Skip
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Split
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Step
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Switch
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Undo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Unlock
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon.Watch
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications


Verb (alias) Action Synonyms to
avoid

Connect (cc) Creates a link between a source and a destination. This verb
is paired with Disconnect .

Join, Telnet, Login

Disconnect
(dc)

Breaks the link between a source and a destination. This
verb is paired with Connect .

Break, Logoff

Read (rd) Acquires information from a source. This verb is paired with
Write .

Acquire, Prompt,
Get

Receive (rc) Accepts information sent from a source. This verb is paired
with Send .

Read, Accept, Peek

Send (sd) Delivers information to a destination. This verb is paired
with Receive .

Put, Broadcast,
Mail, Fax

Write (wr) Adds information to a target. This verb is paired with Read . Put, Print

PowerShell uses the System.Management.Automation.VerbsData class to define actions
that apply to data handling. The following table lists most of the defined verbs.

Verb Name
(alias)

Action Synonyms to
avoid

Backup (ba) Stores data by replicating it. Save, Burn,
Replicate, Sync

Checkpoint
(ch)

Creates a snapshot of the current state of the data or of its
configuration.

Diff

Compare (cr) Evaluates the data from one resource against the data from
another resource.

Diff

Compress
(cm)

Compacts the data of a resource. Pairs with Expand . Compact

Convert (cv) Changes the data from one representation to another when
the cmdlet supports bidirectional conversion or when the
cmdlet supports conversion between multiple data types.

Change, Resize,
Resample

ﾉ Expand table

Data Verbs

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Connect
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Disconnect
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Read
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Receive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Send
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications.Write
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Backup
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Checkpoint
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Compare
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Compress
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Convert


Verb Name
(alias)

Action Synonyms to
avoid

ConvertFrom
(cf)

Converts one primary type of input (the cmdlet noun
indicates the input) to one or more supported output types.

Export, Output,
Out

ConvertTo (ct) Converts from one or more types of input to a primary
output type (the cmdlet noun indicates the output type).

Import, Input, In

Dismount
(dm)

Detaches a named entity from a location. This verb is paired
with Mount .

Unmount, Unlink

Edit (ed) Modifies existing data by adding or removing content. Change, Update,
Modify

Expand (en) Restores the data of a resource that has been compressed to
its original state. This verb is paired with Compress .

Explode,
Uncompress

Export (ep) Encapsulates the primary input into a persistent data store,
such as a file, or into an interchange format. This verb is
paired with Import .

Extract, Backup

Group (gp) Arranges or associates one or more resources

Import (ip) Creates a resource from data that is stored in a persistent
data store (such as a file) or in an interchange format. For
example, the Import-Csv  cmdlet imports data from a
comma-separated value (CSV) file to objects that can be
used by other cmdlets. This verb is paired with Export .

BulkLoad, Load

Initialize (in) Prepares a resource for use, and sets it to a default state. Erase, Init, Renew,
Rebuild,
Reinitialize, Setup

Limit (l) Applies constraints to a resource. Quota

Merge (mg) Creates a single resource from multiple resources. Combine, Join

Mount (mt) Attaches a named entity to a location. This verb is paired
with Dismount .

Connect

Out (o) Sends data out of the environment. For example, the Out-
Printer  cmdlet sends data to a printer.

Publish (pb) Makes a resource available to others. This verb is paired with
Unpublish .

Deploy, Release,
Install

Restore (rr) Sets a resource to a predefined state, such as a state set by
Checkpoint . For example, the Restore-Computer  cmdlet starts
a system restore on the local computer.

Repair, Return,
Undo, Fix

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.ConvertFrom
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.ConvertTo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Dismount
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Edit
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Expand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Export
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Group
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Import
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Initialize
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Limit
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Merge
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Mount
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Out
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Publish
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Restore


Verb Name
(alias)

Action Synonyms to
avoid

Save (sv) Preserves data to avoid loss.

Sync (sy) Assures that two or more resources are in the same state. Replicate, Coerce,
Match

Unpublish
(ub)

Makes a resource unavailable to others. This verb is paired
with Publish .

Uninstall, Revert,
Hide

Update (ud) Brings a resource up-to-date to maintain its state, accuracy,
conformance, or compliance. For example, the Update-
FormatData  cmdlet updates and adds formatting files to the
current PowerShell console.

Refresh, Renew,
Recalculate, Re-
index

PowerShell uses the System.Management.Automation.VerbsDiagnostic class to define
actions that apply to diagnostics. The following table lists most of the defined verbs.

Verb
(alias)

Action Synonyms to avoid

Debug
(db)

Examines a resource to diagnose operational problems. Diagnose

Measure
(ms)

Identifies resources that are consumed by a specified
operation, or retrieves statistics about a resource.

Calculate, Determine,
Analyze

Ping (pi) Deprecated - Use the Test verb instead.

Repair (rp) Restores a resource to a usable condition Fix, Restore

Resolve
(rv)

Maps a shorthand representation of a resource to a more
complete representation.

Expand, Determine

Test (t) Verifies the operation or consistency of a resource. Diagnose, Analyze,
Salvage, Verify

Trace (tr) Tracks the activities of a resource. Track, Follow, Inspect,
Dig

Diagnostic Verbs

ﾉ Expand table

Lifecycle Verbs

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Save
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Sync
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Unpublish
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData.Update
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Debug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Measure
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Ping
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Repair
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Resolve
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Test
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic.Trace


PowerShell uses the System.Management.Automation.VerbsLifecycle class to define
actions that apply to the lifecycle of a resource. The following table lists most of the
defined verbs.

Verb
(alias)

Action Synonyms to avoid

Approve
(ap)

Confirms or agrees to the status of a resource or process.

Assert (as) Affirms the state of a resource. Certify

Build (bd) Creates an artifact (usually a binary or document) out of
some set of input files (usually source code or declarative
documents.) This verb was added in PowerShell 6.

Complete
(cp)

Concludes an operation.

Confirm
(cn)

Acknowledges, verifies, or validates the state of a resource
or process.

Acknowledge, Agree,
Certify, Validate,
Verify

Deny (dn) Refuses, objects, blocks, or opposes the state of a resource
or process.

Block, Object, Refuse,
Reject

Deploy
(dp)

Sends an application, website, or solution to a remote
target[s] in such a way that a consumer of that solution can
access it after deployment is complete. This verb was added
in PowerShell 6.

Disable (d) Configures a resource to an unavailable or inactive state.
For example, the Disable-PSBreakpoint  cmdlet makes a
breakpoint inactive. This verb is paired with Enable .

Halt, Hide

Enable (e) Configures a resource to an available or active state. For
example, the Enable-PSBreakpoint  cmdlet makes a
breakpoint active. This verb is paired with Disable .

Start, Begin

Install (is) Places a resource in a location, and optionally initializes it.
This verb is paired with Uninstall .

Setup

Invoke (i) Performs an action, such as running a command or a
method.

Run, Start

Register
(rg)

Creates an entry for a resource in a repository such as a
database. This verb is paired with Unregister .

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Approve
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Assert
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Build
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.host.buffercelltype
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Confirm
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Deny
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Deploy
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Disable
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Enable
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Install
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Register


Verb
(alias)

Action Synonyms to avoid

Request
(rq)

Asks for a resource or asks for permissions.

Restart (rt) Stops an operation and then starts it again. For example,
the Restart-Service  cmdlet stops and then starts a service.

Recycle

Resume
(ru)

Starts an operation that has been suspended. For example,
the Resume-Service  cmdlet starts a service that has been
suspended. This verb is paired with Suspend .

Start (sa) Initiates an operation. For example, the Start-Service
cmdlet starts a service. This verb is paired with Stop .

Launch, Initiate, Boot

Stop (sp) Discontinues an activity. This verb is paired with Start . End, Kill, Terminate,
Cancel

Submit (sb) Presents a resource for approval. Post

Suspend
(ss)

Pauses an activity. For example, the Suspend-Service
cmdlet pauses a service. This verb is paired with Resume .

Pause

Uninstall
(us)

Removes a resource from an indicated location. This verb is
paired with Install .

Unregister
(ur)

Removes the entry for a resource from a repository. This
verb is paired with Register .

Remove

Wait (w) Pauses an operation until a specified event occurs. For
example, the Wait-Job  cmdlet pauses operations until one
or more of the background jobs are complete.

Sleep, Pause

PowerShell uses the System.Management.Automation.VerbsSecurity class to define
actions that apply to security. The following table lists most of the defined verbs.

Verb (alias) Action Synonyms to
avoid

Block (bl) Restricts access to a resource. This verb is paired with Unblock . Prevent, Limit,
Deny

Grant (gr) Allows access to a resource. This verb is paired with Revoke . Allow, Enable

Security Verbs

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Request
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Restart
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Resume
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Stop
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Submit
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Suspend
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Uninstall
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Unregister
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle.Wait
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Block
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Grant


Verb (alias) Action Synonyms to
avoid

Protect (pt) Safeguards a resource from attack or loss. This verb is paired
with Unprotect .

Encrypt,
Safeguard, Seal

Revoke (rk) Specifies an action that does not allow access to a resource.
This verb is paired with Grant .

Remove, Disable

Unblock (ul) Removes restrictions to a resource. This verb is paired with
Block .

Clear, Allow

Unprotect
(up)

Removes safeguards from a resource that were added to
prevent it from attack or loss. This verb is paired with Protect .

Decrypt, Unseal

PowerShell uses the System.Management.Automation.VerbsOther class to define
canonical verb names that do not fit into a specific verb name category such as the
common, communications, data, lifecycle, or security verb names verbs.

Verb (alias) Action Synonyms to avoid

Use (u) Uses or includes a resource to do something.

System.Management.Automation.VerbsCommon
System.Management.Automation.VerbsCommunications
System.Management.Automation.VerbsData
System.Management.Automation.VerbsDiagnostic
System.Management.Automation.VerbsLifecycle
System.Management.Automation.VerbsSecurity
System.Management.Automation.VerbsOther
Cmdlet Declaration
Windows PowerShell Programmer's Guide
Windows PowerShell Shell SDK

Other Verbs

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Protect
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Revoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Unblock
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity.Unprotect
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsOther
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsOther.Use
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommunications
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsData
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsDiagnostic
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsSecurity
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsOther


Cmdlet Input Processing Methods
Article • 09/17/2021

Cmdlets must override one or more of the input processing methods described in this
topic to perform their work. These methods allow the cmdlet to perform operations of
pre-processing, input processing, and post-processing. These methods also allow you to
stop cmdlet processing. For a more detailed example of how to use these methods, see
SelectStr Tutorial.

Cmdlets should override the System.Management.Automation.Cmdlet.BeginProcessing
method to add any preprocessing operations that are valid for all the records that will
be processed later by the cmdlet. When PowerShell processes a command pipeline,
PowerShell calls this method once for each instance of the cmdlet in the pipeline. For
more information about how PowerShell invokes the command pipeline, see Cmdlet
Processing Lifecycle.

The following code shows an implementation of the BeginProcessing method.

C#

Cmdlets can override the System.Management.Automation.Cmdlet.ProcessRecord
method to process the input that is sent to the cmdlet. When PowerShell processes a
command pipeline, PowerShell calls this method for each input record that is processed
by the cmdlet. For more information about how PowerShell invokes the command
pipeline, see Cmdlet Processing Lifecycle.

The following code shows an implementation of the ProcessRecord method.

C#

Pre-Processing Operations

protected override void BeginProcessing()
{
  // Replace the WriteObject method with the logic required by your cmdlet.
  WriteObject("This is a test of the BeginProcessing template.");
}

Input Processing Operations

protected override void ProcessRecord()
{

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/previous-versions/ms714429(v=vs.85)
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/previous-versions/ms714429(v=vs.85)


Cmdlets should override the System.Management.Automation.Cmdlet.EndProcessing
method to add any post-processing operations that are valid for all the records that
were processed by the cmdlet. For example, your cmdlet might have to clean up object
variables after it is finished processing.

When PowerShell processes a command pipeline, PowerShell calls this method once for
each instance of the cmdlet in the pipeline. However, it is important to remember that
the PowerShell runtime will not call the EndProcessing method if the cmdlet is canceled
midway through its input processing or if a terminating error occurs in any part of the
cmdlet. For this reason, a cmdlet that requires object cleanup should implement the
complete System.IDisposable pattern, including a finalizer, so that the runtime can call
both the EndProcessing and System.IDisposable.Dispose methods at the end of
processing. For more information about how PowerShell invokes the command pipeline,
see Cmdlet Processing Lifecycle.

The following code shows an implementation of the EndProcessing method.

C#

System.Management.Automation.Cmdlet.BeginProcessing

System.Management.Automation.Cmdlet.ProcessRecord

System.Management.Automation.Cmdlet.EndProcessing

SelectStr Tutorial

System.IDisposable

Windows PowerShell Shell SDK

  // Replace the WriteObject method with the logic required by your cmdlet.
  WriteObject("This is a test of the ProcessRecord template.");
}

Post-Processing Operations

protected override void EndProcessing()
{
  // Replace the WriteObject method with the logic required by your cmdlet.
  WriteObject("This is a test of the EndProcessing template.");
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable.Dispose
https://learn.microsoft.com/en-us/previous-versions/ms714429(v=vs.85)
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-input-processing-methods%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-input-processing-methods.md&documentVersionIndependentId=ce76d975-1e4e-a6ea-ff9e-dd74c3bba960&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+32c36941-a62d-338e-b7e2-07611f8d6766+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Parameters
Article • 09/17/2021

Cmdlet parameters provide the mechanism that allows a cmdlet to accept input.
Parameters can accept input directly from the command line, or from objects passed to
the cmdlet through the pipeline, The arguments (also known as values) of these
parameters can specify the input that the cmdlet accepts, how the cmdlet should
perform its actions, and the data that the cmdlet returns to the pipeline.

Declaring Properties as Parameters Provides basic information you must understand
before you declare the parameters of a cmdlet.

Types of Cmdlet Parameters Describes the different types of parameters that you can
declare in cmdlets.

Cmdlet Parameter Name and Functionality Guidelines Discusses the names,
recommended data type, and functionality of standard parameters.

Parameter Aliases Discusses the aliases that you can define for parameters.

Common Parameter Names This topic describes the parameters that Windows
PowerShell adds to cmdlets.

Cmdlet Parameter Sets Discusses how parameter sets enable you to write a single
cmdlet that can perform different actions for different scenarios.

Cmdlet Dynamic Parameters Discusses parameters that are available to the user under
special conditions.

Supporting Wildcard Characters in Cmdlet Parameters Describes how to provide support
for wildcard characters when you design a cmdlet that will be run against a group of
resources.

Validating Parameter Input Describes how Windows PowerShell validates the arguments
passed to cmdlet parameters.

Input Filter Parameters Discusses the Filter , Include , and Exclude  parameters that
filter the set of input objects that the cmdlet affects.

In This Section

Related Sections



How to Validate Parameter Input

Parameter Attribute Declaration

Windows PowerShell Cmdlets

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-parameters.md&documentVersionIndependentId=aef7a4b9-bbc1-4bb1-0d59-238f3c21f100&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ca975bb0-47fd-8097-0bef-7fecc77a91c0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Declaring Properties as Parameters
Article • 09/17/2021

This topic provides basic information you must understand before you declare the
parameters of a cmdlet.

To declare the parameters of a cmdlet within your cmdlet class, define the public
properties that represent each parameter, and then add one or more Parameter
attributes to each property. The Windows PowerShell runtime uses the Parameter
attributes to identify the property as a cmdlet parameter. The basic syntax for declaring
the Parameter attribute is [Parameter()] .

Here is an example of a property defined as a required parameter.

C#

Here are some things to remember about parameters.

A parameter must be explicitly marked as public. Parameters that are not marked
as public default to internal and will not be found by the Windows PowerShell
runtime.

Parameters should be defined as Microsoft .NET Framework types to provide
better parameter validation. For example, parameters that are restricted to one
value out of a set of values should be defined as an enumeration type. Parameters
that take a Uniform Resource Identifier (URI) value should be of type System.Uri.

Avoid basic string parameters for all but free-form text properties.

You can add a parameter to any number of parameter sets. For more information
about parameter sets, see Cmdlet Parameter Sets.

Windows PowerShell also provides a set of common parameters that are automatically
available to every cmdlet. For more information about these parameters and their
aliases, see Cmdlet Common Parameters.

[Parameter(Position = 0, Mandatory = true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

https://learn.microsoft.com/en-us/dotnet/api/System.Uri


Cmdlet Common Parameters

Types of Cmdlet Parameter

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fdeclaring-properties-as-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fdeclaring-properties-as-parameters.md&documentVersionIndependentId=f9482d47-b72c-5165-53e8-dbcde4f8f4cc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ee6d93f7-e44e-c2fc-c20d-5be3b60ab4e9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Types of Cmdlet Parameters
Article • 02/25/2025

This topic describes the different types of parameters that you can declare in cmdlets.
Cmdlet parameters can be positional, named, required, optional, or switch parameters.

All cmdlet parameters are either named or positional parameters. A named parameter
requires that you type the parameter name and argument when calling the cmdlet. A
positional parameter requires only that you type the arguments in relative order. The
system then maps the first unnamed argument to the first positional parameter. The
system maps the second unnamed argument to the second unnamed parameter, and so
on. By default, all cmdlet parameters are named parameters.

To define a named parameter, omit the Position  keyword in the Parameter attribute
declaration, as shown in the following parameter declaration.

C#

To define a positional parameter, add the Position  keyword in the Parameter attribute
declaration, and then specify a position. In the following sample, the UserName
parameter is declared as a positional parameter with position 0. This means that the first
argument of the call is automatically bound to this parameter.

C#

Positional and Named Parameters

[Parameter(ValueFromPipeline=true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

[Parameter(Position = 0)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;



Positional and named parameters accept single arguments or multiple arguments
separated by commas. Multiple arguments are allowed only if the parameter accepts a
collection such as an array of strings. You may mix positional and named parameters in
the same cmdlet. In this case, the system retrieves the named arguments first, and then
attempts to map the remaining unnamed arguments to the positional parameters.

The following commands show the different ways in which you can specify single and
multiple arguments for the parameters of the Get-Command  cmdlet. Notice that in the last
two samples, -Name  doesn't need to be specified because the Name parameter is
defined as a positional parameter.

PowerShell

You can also define cmdlet parameters as mandatory or optional parameters. (A
mandatory parameter must be specified before the PowerShell runtime invokes the
cmdlet.) By default, parameters are defined as optional.

To define a mandatory parameter, add the Mandatory  keyword in the Parameter
attribute declaration, and set it to true , as shown in the following parameter
declaration.

C#

７ Note

Good cmdlet design recommends that the most-used parameters be declared as
positional parameters so that the user doesn't have to enter the parameter name
when the cmdlet is run.

Get-Command -Name Get-Service
Get-Command -Name Get-Service,Set-Service
Get-Command Get-Service
Get-Command Get-Service,Set-Service

Mandatory and Optional Parameters

[Parameter(Position = 0, Mandatory = true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }



To define an optional parameter, omit the Mandatory  keyword in the Parameter attribute
declaration, as shown in the following parameter declaration.

C#

PowerShell provides a System.Management.Automation.SwitchParameter type that
allows you to define a parameter whose default value false  unless the parameter is
specified when the cmdlet is called. Whenever possible, use switch parameters instead
of Boolean parameters.

Consider the following example. Many PowerShell cmdlets return output. However,
these cmdlets have a PassThru  switch parameter that overrides the default behavior.
When you use the PassThru  parameter, the cmdlet returns output objects to the
pipeline.

To define a switch parameter, declare the property as the [SwitchParameter]  type, as
shown in the following sample.

C#

To make the cmdlet act on the parameter when it's specified, use the following structure
within one of the input processing methods.

}
private string userName;

[Parameter(Position = 0)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

Switch Parameters

[Parameter()]
public SwitchParameter GoodBye
{
  get { return goodbye; }
  set { goodbye = value; }
}
private bool goodbye;

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.switchparameter


C#

By default, switch parameters are excluded from positional parameters. You can override
that in the Parameter attribute, but it can confuse users.

Design switch parameters so that using parameter changes the default behavior of the
command to a less common or more complicated mode. The simplest behavior of a
command should be the default behavior that doesn't require the use of switch
parameters. Base the behavior controlled by the switch on the value of the switch, not
the presence of the parameter.

There are several ways to test for the presence of a switch parameters:

Invocation.BoundParameters  contains the switch parameter name as a key
PSCmdlet.ParameterSetName  when the switch defines a unique parameter set

For example, it's possible to provide an explicit value for the switch using -
MySwitch:$false  or splatting. If you only test for the presence of the parameter, the
command behaves as if the switch value is $true  instead of $false .

Writing a Windows PowerShell Cmdlet

protected override void ProcessRecord()
{
  WriteObject("Switch parameter test: " + userName + ".");
  if (goodbye)
  {
    WriteObject(" Goodbye!");
  }
} // End ProcessRecord

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Standard Cmdlet Parameter Names and
Types
Article • 09/17/2021

Cmdlet parameter names should be consistent across the cmdlets that you design. The
following topics list the parameter names that we recommend you use when you
declare cmdlet parameters. The topics also describe the recommended data type and
functionality of each parameter.

Activity Parameters

Date and Time Parameters

Format Parameters

Property Parameters

Quantity Parameters

Resource Parameters

Security Parameters

In This Section

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fstandard-cmdlet-parameter-names-and-types%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fstandard-cmdlet-parameter-names-and-types.md&documentVersionIndependentId=f62a5c7f-aa9f-7258-eabc-3d3efe03a3a7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b7100f7a-1376-529b-4f00-f3c3482c2101+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Activity Parameters
Article • 06/23/2022

The following table lists the recommended names and functionality for activity
parameters.

Parameter Functionality

Append
Data type:
SwitchParameter

Implement this parameter so that the user can add content to the end of
a resource when the parameter is specified.

CaseSensitive
Data type:
SwitchParameter

Implement this parameter so the user can require case sensitivity when
the parameter is specified.

Command
Data type: String

Implement this parameter so the user can specify a command string to
run.

CompatibleVersion
Data type:
System.Version object

Implement this parameter so the user can specify the semantics that the
cmdlet must be compatible with for compatibility with previous versions.

Compress
Data type:
SwitchParameter

Implement this parameter so that data compression is used when the
parameter is specified.

Compress
Data type: Keyword

Implement this parameter so that the user can specify the algorithm to
use for data compression.

Continuous
Data type:
SwitchParameter

Implement this parameter so that data is processed until the user
terminates the cmdlet when the parameter is specified. If the parameter
is not specified, the cmdlet processes a predefined amount of data and
then terminates the operation.

Create
Data type:
SwitchParameter

Implement this parameter to indicate that a resource is created if one
does not already exist when the parameter is specified.

Delete
Data type:
SwitchParameter

Implement this parameter so that resources are deleted when the cmdlet
has completed its operation when the parameter is specified.

Drain
Data type:
SwitchParameter

Implement this parameter to indicate that outstanding work items are
processed before the cmdlet processes new data when the parameter is

ﾉ Expand table



Parameter Functionality

specified. If the parameter is not specified, the work items are processed
immediately.

Erase
Data type: Int32

Implement this parameter so that the user can specify the number of
times a resource is erased before it is deleted.

ErrorLevel
Data type: Int32

Implement this parameter so that the user can specify the level of errors
to report.

Exclude
Data type: String[]

Implement this parameter so that the user can exclude something from
an activity. For more information about how to use input filters, see Input
Filter Parameters.

Filter
Data type: Keyword

Implement this parameter so that the user can specify a filter that selects
the resources upon which to perform the cmdlet action. For more
information about how to use input filters, see Input Filter Parameters.

Follow
Data type:
SwitchParameter

Implement this parameter so that progress is tracked when the
parameter is specified.

Force
Data type:
SwitchParameter

Implement this parameter to indicate that the user can perform an action
even if restrictions are encountered when the parameter is specified. The
parameter does not allow security to be compromised. For example, this
parameter lets a user overwrite a read-only file.

Include
Data type: String[]

Implement this parameter so that the user can include something in an
activity. For more information about how to use input filters, see Input
Filter Parameters.

Incremental
Data type:
SwitchParameter

Implement this parameter to indicate that processing is performed
incrementally when the parameter is specified. For example, this
parameter lets a user perform incremental backups that back up files
only since the last backup.

InputObject
Data type: Object

Implement this parameter when the cmdlet takes input from other
cmdlets. When you define an InputObject parameter, always specify the
ValueFromPipeline keyword when you declare the Parameter attribute.
For more information about using input filters, see Input Filter
Parameters.

Insert
Data type:
SwitchParameter

Implement this parameter so that the cmdlet inserts an item when the
parameter is specified.

Interactive
Data type:
SwitchParameter

Implement this parameter so that the cmdlet works interactively with the
user when the parameter is specified.



Parameter Functionality

Interval
Data type: HashTable

Implement this parameter so that the user can specify a hash table of
keywords that contains the values. The following example shows sample
values for the Interval parameter: -interval @{ResumeScan=15; Retry=3} .

Log
Data type:
SwitchParameter

Implement this parameter audit the actions of the cmdlet when the
parameter is specified.

NoClobber
Data type:
SwitchParameter

Implement this parameter so that the resource will not be overwritten
when the parameter is specified. This parameter generally applies to
cmdlets that create new objects so that they can be prevented from
overwriting existing objects with the same name.

Notify
Data type:
SwitchParameter

Implement this parameter so that the user will be notified that the
activity is complete when the parameter is specified.

NotifyAddress
Data type: Email
address

Implement this parameter so that the user can specify the e-mail address
to use to send a notification when the Notify parameter is specified.

Overwrite
Data type:
SwitchParameter

Implement this parameter so that the cmdlet overwrites any existing data
when the parameter is specified.

Prompt
Data type: String

Implement this parameter so that the user can specify a prompt for the
cmdlet.

Quiet
Data type:
SwitchParameter

Implement this parameter so that the cmdlet suppresses user feedback
during its actions when the parameter is specified.

Recurse
Data type:
SwitchParameter

Implement this parameter so that the cmdlet recursively performs its
actions on resources when the parameter is specified.

Repair
Data type:
SwitchParameter

Implement this parameter so that the cmdlet will attempt to correct
something from a broken state when the parameter is specified.

RepairString
Data type: String

Implement this parameter so that the user can specify a string to use
when the Repair parameter is specified.

Retry
Data type: Int32

Implement this parameter so the user can specify the number of times
the cmdlet will attempt an action.

Select
Data type: Keyword
array

Implement this parameter so that the user can specify an array of the
types of items.



Parameter Functionality

Stream
Data type:
SwitchParameter

Implement this parameter so the user can stream multiple output objects
through the pipeline when the parameter is specified.

Strict
Data type:
SwitchParameter

Implement this parameter so that all errors are handled as terminating
errors when the parameter is specified.

TempLocation
Data type: String

Implement this parameter so the user can specify the location of
temporary data that is used during the operation of the cmdlet.

Timeout
Data type: Int32

Implement this parameter so that the user can specify the timeout
interval (in milliseconds).

Truncate
Data type:
SwitchParameter

Implement this parameter so that the cmdlet will truncate its actions
when the parameter is specified. If the parameter is not specified, the
cmdlet performs another action.

Verify
Data type:
SwitchParameter

Implement this parameter so that the cmdlet will test to determine
whether an action has occurred when the parameter is specified.

Wait
Data type:
SwitchParameter

Implement this parameter so that the cmdlet will wait for user input
before continuing when the parameter is specified.

WaitTime
Data type: Int32

Implement this parameter so that the user can specify the duration (in
seconds) that the cmdlet will wait for user input when the Wait
parameter is specified.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Factivity-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Factivity-parameters.md&documentVersionIndependentId=8ba1cfb5-ccae-989d-e419-a100ddde00be&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7513adb5-4dc6-15d3-18ec-3624997b4bcd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.   Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


Date and Time Parameters
Article • 09/17/2021

The following table lists recommended names and functionality for parameters that
handle date and time information. Date and time parameters are typically used to
record when something is created or accessed.

Parameter Functionality

Accessed
Data type:
SwitchParameter

Implement this parameter so that when it is specified the cmdlet will
operate on the resources that have been accessed based on the date and
time specified by the Before and After parameters. If this parameter is
specified, the Created and Modified parameters must be not be specified.

After
Data type:
DateTime

Implement this parameter to specify the date and time after which the
cmdlet was used. For the After parameter to work, the cmdlet must also
have an Accessed, Created, or Modified parameter. And, that parameter
must be set to true when the cmdlet is called.

Before
Data type:
DateTime

Implement this parameter to specify the date and time before which the
cmdlet was used. For the Before parameter to work, the cmdlet must also
have an Accessed, Created, or Modified parameter. And, that parameter
must be set to true when the cmdlet is called.

Created
Data type:
SwitchParameter

Implement this parameter so that when it is specified the cmdlet will
operate on the resources that have been created based on the date and
time specified by the Before and After parameters. If this parameter is
specified, the Accessed and Modified parameters must not be specified.

Exact
Data type:
SwitchParameter

Implement this parameter so that when it is specified the resource term
must match the resource name exactly. When the parameter is not specified
the resource term and name do not need to match exactly.

Modified
Data type:
DateTime

Implement this parameter so that when it is specified the cmdlet will
operate on resources that have been changed based on the date and time
specified by the Before and After parameters. If this parameter is specified,
the Accessed and Created parameters must not be specified.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Windows PowerShell SDK

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fdate-and-time-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fdate-and-time-parameters.md&documentVersionIndependentId=8617d844-ef85-75e1-b297-8d5bcb5bc4d4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8594d57d-1f90-5baa-1654-25a958cebb29+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Format Parameters
Article • 09/17/2021

The following table lists recommended names and functionality for parameters that are
used to format or to generate data.

Parameter Functionality

As
Data type: Keyword

Implement this parameter to specify the cmdlet output format. For
example, possible values could be Text or Script.

Binary
Data type:
SwitchParameter

Implement this parameter to indicate that the cmdlet handles binary
values.

Encoding
Data type: Keyword

Implement this parameter to specify the type of encoding that is
supported. For example, possible values could be ASCII, UTF8, Unicode,
UTF7, BigEndianUnicode, Byte, and String.

NewLine
Data type:
SwitchParameter

Implement this parameter so that the newline characters are supported
when the parameter is specified.

ShortName
Data type:
SwitchParameter

Implement this parameter so that short names are supported when the
parameter is specified.

Width
Data type: Int32

Implement this parameter so that the user can specify the width of the
output device.

Wrap
Data type:
SwitchParameter

Implement this parameter so that text wrapping is supported when the
parameter is specified.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fformat-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fformat-parameters.md&documentVersionIndependentId=2936bd2b-6c6e-20c5-21b3-c1c12294ad3f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+26814af5-1efa-bce6-c080-c86240c65538+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Property Parameters
Article • 09/17/2021

The following table lists the recommended names and functionality for property
parameters.

Parameter Functionality

Count
Data type: Int32

Implement this parameter so that the user can specify the number of
objects to be processed.

Description
Data type: String

Implement this parameter so that the user can specify a description for a
resource.

From
Data type: String

Implement this parameter so that the user can specify the reference
object to get information from.

Id
Data type: Resource
dependent

Implement this parameter so that the user can specify the identifier of a
resource.

Input
Data type: String

Implement this parameter so that the user can specify the input file
specification.

Location
Data type: String

Implement this parameter so that the user can specify the location of the
resource.

LogName
Data type: String

Implement this parameter so that the user can specify the name of the
log file to process or use.

Name
Data type: String

Implement this parameter so that the user can specify the name of the
resource.

Output
Data type: String

Implement this parameter so that the user can specify the output file.

Owner
Data type: String

Implement this parameter so that the user can specify the name of the
owner of the resource.

Property
Data type: String

Implement this parameter so that the user can specify the name or the
names of the properties to use.

Reason
Data type: String

Implement this parameter so that the user can specify why this cmdlet is
being invoked.

Regex
Data type:

Implement this parameter so that regular expressions are used when the
parameter is specified. When this parameter is specified, wildcard

ﾉ Expand table



Parameter Functionality

SwitchParameter characters are not resolved.

Speed
Data type: Int32

Implement this parameter so that the user can specify the baud rate. The
user sets this parameter to the speed of the resource.

State
Data type: Keyword
array

Implement this parameter so that the user can specify the names of
states, such as KEYDOWN.

Value
Data type: Object

Implement this parameter so that the user can specify a value to provide
to the cmdlet.

Version
Data type: String

Implement this parameter so that the user can specify the version of the
property.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fproperty-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fproperty-parameters.md&documentVersionIndependentId=e7223d78-11e9-6c5a-2cfd-3403416cc589&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f1884531-f99f-c0cc-5310-a2d1869127d9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Quantity Parameters
Article • 09/17/2021

The following table lists the recommended names and functionality for quantity
parameters.

Parameter Functionality

All
Data type:
Boolean

Implement this parameter so that true  indicates that all resources should be
acted upon instead of a default subset of resources. Implement this parameter
so that false  indicates a subset of the resources.

Allocation
Data type:
Int32

Implement this parameter so that the user can specify the number of items to
allocate.

BlockCount
Data type:
Int64

Implement this parameter so that the user can specify the block count.

Count
Data type:
Int64

Implement this parameter so that the user can specify the count.

Scope
Data type:
Keyword

Implement this parameter so that the user can specify the scope to operate on.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fquantity-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fquantity-parameters.md&documentVersionIndependentId=902f46d0-0ebb-5822-0fe4-5325c5074358&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e149479d-023b-8ab3-e25e-f8de1e934635+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Resource Parameters
Article • 09/17/2021

The following table lists the recommended names and functionality for resource
parameters. For these parameters, the resources could be the assembly that contains
the cmdlet class or the host application that is running the cmdlet.

Parameter Functionality

Application
Data type:
String

Implement this parameter so that the user can specify an application.

Assembly
Data type:
String

Implement this parameter so that the user can specify an assembly.

Attribute
Data type:
String

Implement this parameter so that the user can specify an attribute.

Class
Data type:
String

Implement this parameter so that the user can specify a Microsoft .NET
Framework class.

Cluster
Data type:
String

Implement this parameter so that the user can specify a cluster.

Culture
Data type:
String

Implement this parameter so that the user can specify the culture in which to run
the cmdlet.

Domain
Data type:
String

Implement this parameter so that the user can specify the domain name.

Drive
Data type:
String

Implement this parameter so that the user can specify a drive name.

Event
Data type:
String

Implement this parameter so that the user can specify an event name.

ﾉ Expand table



Parameter Functionality

Interface
Data type:
String

Implement this parameter so that the user can specify a network interface name.

IpAddress
Data type:
String

Implement this parameter so that the user can specify an IP address.

Job
Data type:
String

Implement this parameter so that the user can specify a job.

LiteralPath
Data type:
String

Implement this parameter so that the user can specify the path to a resource
when wildcard characters are not supported. (Use the Path parameter when
wildcard characters are supported.)

Mac
Data type:
String

Implement this parameter so that the user can specify a media access controller
(MAC) address.

ParentId
Data type:
String

Implement this parameter so that the user can specify the parent identifier.

Path
Data type:
String,
String[]

Implement this parameter so that the user can indicate the paths to a resource
when wildcard characters are supported. (Use the LiteralPath parameter when
wildcard characters are not supported.) We recommend that you develop this
parameter so that it supports the full provider:path  syntax used by providers.
We also recommend that you develop it so that it works with as many providers
as possible.

Port
Data type:
Integer,
String

Implement this parameter so that the user can specify an integer value for
networking or a string value such as "biztalk" for other types of port.

Printer
Data type:
Integer,
String

Implement this parameter so that the user can specify the printer for the cmdlet
to use.

Size
Data type:
Int32

Implement this parameter so that the user can specify a size.

TID
Data type:
String

Implement this parameter so that the user can specify a transaction identifier
(TID) for the cmdlet.



Parameter Functionality

Type
Data type:
String

Implement this parameter so that the user can specify the type of resource on
which to operate.

URL
Data type:
String

Implement this parameter so that the user can specify a Uniform Resource
Locator (URL).

User
Data type:
String

Implement this parameter so that the user can specify their name or the name of
another user.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fresource-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fresource-parameters.md&documentVersionIndependentId=299eff39-f42a-cf16-7a1f-8e6cd68adf57&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fcef1f95-0d09-039b-e743-7fde2e15ea22+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Security Parameters
Article • 10/13/2023

The following table lists the recommended names and functionality for parameters used
to provide security information for an operation, such as parameters that specify
certificate key and privilege information.

Parameter Functionality

ACL
Data type: String

Implement this parameter to specify the
access control level of protection for a catalog
or for a Uniform Resource Identifier (URI).

CertFile
Data type: String

Implement this parameter so that the user can
specify the name of a file that contains one of
the following:
- A Base64 or Distinguished Encoding Rules
(DER) encoded x.509 certificate
- A Public Key Cryptography Standards (PKCS)
#12 file that contains at least one certificate
and key

CertIssuerName
Data type: String

Implement this parameter so that the user can
specify the name of the issuer of a certificate
or so that the user can specify a substring.

CertRequestFile
Data type: String

Implement this parameter to specify the name
of a file that contains a Base64 or DER-
encoded PKCS #10 certificate request.

CertSerialNumber
Data type: String

Implement this parameter to specify the serial
number that was issued by the certification
authority.

CertStoreLocation
Data type: String

Implement this parameter so that the user can
specify the location of the certificate store. The
location is typically a file path.

CertSubjectName
Data type: String

Implement this parameter so that the user can
specify the issuer of a certificate or so that the
user can specify a substring.

CertUsage
Data type: String

Implement this parameter to specify the key
usage or the enhanced key usage. The key can
be represented as a bit mask, a bit, an object
identifier (OID), or a string.

ﾉ Expand table



Parameter Functionality

Credential
Data type:
System.Management.Automation.PSCredential

Implement this parameter so that the cmdlet
will automatically prompt the user for a user
name or password. A prompt for both is
displayed if a full credential is not supplied
directly.

CSPName
Data type: String

Implement this parameter so that the user can
specify the name of the certificate service
provider (CSP).

CSPType
Data type: Integer

Implement this parameter so that the user can
specify the type of CSP.

Group
Data type: String

Implement this parameter so that the user can
specify a collection of principals for access. For
more information, see the description of the
Principal parameter.

KeyAlgorithm
Data type: String

Implement this parameter so that the user can
specify the key generation algorithm to use for
security.

KeyContainerName
Data type: String

Implement this parameter so that the user can
specify the name of the key container.

KeyLength
Data type: Integer

Implement this parameter so that the user can
specify the length of the key in bits.

Operation
Data type: String

Implement this parameter so that the user can
specify an action that can be performed on a
protected object.

Principal
Data type: String

Implement this parameter so that the user can
specify a unique identifiable entity for access.

Privilege
Data type: String, String[]

Implement this parameter so that the user can
specify the rights a cmdlet needs to perform
an operation for a particular entity.

Role
Data type: String

Implement this parameter so that the user can
specify a set of operations that can be
performed by an entity.

SaveCred
Data type: SwitchParameter

Implement this parameter so that credentials
that were previously saved by the user will be
used when the parameter is specified.

Scope
Data type: String

Implement this parameter so that the user can
specify the group of protected objects for the

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential


Parameter Functionality

cmdlet.

SID
Data type: String

Implement this parameter so that the user can
specify a unique identifier that represents a
principal.

Trusted
Data type: SwitchParameter

Implement this parameter so that trust levels
are supported when the parameter is
specified.

TrustLevel
Data type: Keyword

Implement this parameter so that the user can
specify the trust level that is supported. For
example, possible values include internet,
intranet, and fulltrust.

Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fsecurity-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fsecurity-parameters.md&documentVersionIndependentId=171eba67-ff99-9865-3f37-2d9f626b8dbb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c90425a5-23ab-55f3-5916-1c5b602dafd4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Parameter Aliases
Article • 09/17/2021

Cmdlet parameters can also have aliases. You can use the aliases instead of the
parameter names when you type or specify the parameter in a command.

Adding aliases to parameters provides the following benefits.

You can provide a shortcut so that the user does not have to use the complete
parameter name when the cmdlet is called. For example, you could use the "CN"
alias instead of the parameter name "ComputerName".

You can define multiple aliases if you want to provide different names for the same
parameter. You might want to define multiple aliases if you have to work with
multiple user groups that refer to the same data in different ways.

You can provide backwards compatibility for existing scripts if the name of a
parameter changes.

By using the Alias attribute along with the ValueFromPipelineByName attribute,
you can define a parameter that allows your cmdlet to bind to different object
types. For example, say you had two objects of different types and the first object
had a writer property and the second object had an editor property. If your cmdlet
had a parameter that had writer and editor aliases and the cmdlet accepted
pipeline input based in property names, your cmdlet could bind to both objects
using the two parameter aliases.

For more information about aliases that can be used with specific parameters, see
Common Parameter Names.

To define an alias for a parameter, declare the Alias attribute, as shown in the following
parameter declaration. In this example, multiple aliases are defined for the same
parameter. (For more information, seeHow to Declare Cmdlet Parameters.)

C#

Benefits of Using Aliases

Defining Parameter Aliases

[Alias("UN","Writer","Editor")]
[Parameter()]



Common Parameter Names

How to Declare Cmdlet Parameters

Writing a Windows PowerShell Cmdlet

public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fparameter-aliases%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fparameter-aliases.md&documentVersionIndependentId=bd920c9e-0c3d-2aab-cc5a-bfd5531d3e11&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+55af845f-e3aa-8e4b-1669-5410c936c9a6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Common Parameter Names
Article • 10/04/2023

The parameters described in this topic are referred to as common parameters. They're
added to cmdlets by the PowerShell runtime and can't be declared by the cmdlet.

The following parameters are added to all cmdlets and can be accessed whenever the
cmdlet is run. These parameters are defined by the CommonParameters class.

Data type: SwitchParameter

This parameter specifies whether programmer-level debugging messages that can be
displayed at the command line. These messages are intended for troubleshooting the
operation of the cmdlet, and are generated by calls to the WriteDebug method. Debug
messages don't need to be localized.

Data type: Enumeration

This parameter specifies what action should take place when an error occurs. The
possible values for this parameter are defined by the ActionPreference enumeration.

Data type: String

This parameter specifies the variable in which to place objects when an error occurs. To
append to this variable, use +varname rather than clearing and setting the variable.

７ Note

These parameters are also added to provider cmdlets and to functions that are
decorated with the CmdletBinding  attribute.

General Common Parameters

Debug (alias: db)

ErrorAction (alias: ea)

ErrorVariable (alias: ev)

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.commonparameters
https://learn.microsoft.com/en-us/dotnet/api/microsoft.powershell.utility.activities.writedebug
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.actionpreference


Data type: Enumeration

This parameter specifies what action should take place when output is sent to the
Information stream. The possible values for this parameter are defined by the
ActionPreference enumeration.

Data type: String

This parameter specifies the variable in which to save output objects written to the
Information stream. To append to this variable, use +varname rather than clearing and
setting the variable.

Data type: Int32

This parameter defines the number of objects to store in the output buffer before any
objects are passed down the pipeline. By default, objects are passed immediately down
the pipeline.

Data type: String

This parameter specifies the variable in which to place all output objects generated by
the cmdlet. To append to this variable, use +varname rather than clearing and setting
the variable.

Data type: String

This parameter stores the value of the current pipeline element as a variable for any
named command as it flows through the pipeline.

Data type: Enumeration

InformationAction (alias: infa)

InformationVariable (alias: iv)

OutBuffer (alias: ob)

OutVariable (alias: ov)

PipelineVariable (alias: pv)

ProgressAction (alias: proga)

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.actionpreference


Determines how PowerShell responds to progress updates generated by a script,
cmdlet, or provider, such as the progress bars generated by the Write-Progress  cmdlet.

This parameter was added in PowerShell 7.4.

Data type: SwitchParameter

This parameter specifies whether the cmdlet writes explanatory messages that can be
displayed at the command line. These messages are intended to provide additional help
to the user, and are generated by calls to the WriteVerbose method.

Data type: Enumeration

This parameter specifies what action should take place when the cmdlet writes a
warning message. The possible values for this parameter are defined by the
ActionPreference enumeration.

Data type: String

This parameter specifies the variable in which warning messages can be saved. To
append to this variable, use +varname rather than clearing and setting the variable.

The following parameters are added to cmdlets that requests confirmation before they
perform their action. For more information about confirmation requests, see Requesting
Confirmation. These parameters are defined by the ShouldProcessParameters class.

Data type: SwitchParameter

This parameter specifies whether the cmdlet displays a prompt that asks if the user is
sure that they want to continue.

Verbose (alias: vb)

WarningAction (alias: wa)

WarningVariable (alias: wv)

Risk-Mitigation Parameters

Confirm (alias: cf)

https://learn.microsoft.com/en-us/dotnet/api/microsoft.powershell.utility.activities.writeverbose
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.actionpreference
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.shouldprocessparameters


Data type: SwitchParameter

This parameter specifies whether the cmdlet writes a message that describes the effects
of running the cmdlet without actually performing any action.

The following parameter is added to cmdlets that support transactions. These
parameters are defined by the TransactionParameters class.

Transaction support was introduced in PowerShell 3.0 and discontinued in PowerShell
6.0.

Data type: SwitchParameter

This parameter specifies whether the cmdlet uses the current transaction to perform its
action.

about_CommonParameters
System.Management.Automation.Internal.CommonParameters
System.Management.Automation.Internal.ShouldProcessParameters
System.Management.Automation.Internal.TransactionParameters
Writing a Windows PowerShell Cmdlet
Windows PowerShell SDK

WhatIf (alias: wi)

Transaction Parameters

UseTransaction (alias: usetx)

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.transactionparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.commonparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.shouldprocessparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.internal.transactionparameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcommon-parameter-names%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcommon-parameter-names.md&documentVersionIndependentId=ae168358-0653-33a0-dae2-8d69983f0eb3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+025435c3-896d-52f1-a435-d0ccc4e91100+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet parameter sets
Article • 09/17/2021

PowerShell uses parameter sets to enable you to write a single cmdlet that can do
different actions for different scenarios. Parameter sets enable you to expose different
parameters to the user. And, to return different information based on the parameters
specified by the user.

For example, the PowerShell Get-EventLog  cmdlet returns different information
depending on whether the user specifies the List or LogName parameter. If the List
parameter is specified, the cmdlet returns information about the log files themselves but
not the event information they contain. If the LogName parameter is specified, the
cmdlet returns information about the events in a specific event log. The List and
LogName parameters identify two separate parameter sets.

Each parameter set must have a unique parameter that the PowerShell runtime uses to
expose the appropriate parameter set. If possible, the unique parameter should be a
mandatory parameter. When a parameter is mandatory, the user must specify the
parameter, and the PowerShell runtime uses that parameter to identify the parameter
set. The unique parameter can't be mandatory if your cmdlet is designed to run without
specifying any parameters.

In the following illustration, the left column shows three valid parameter sets. Parameter
A is unique to the first parameter set, parameter B is unique to the second parameter
set, and parameter C is unique to the third parameter set. In the right column, the
parameter sets don't have a unique parameter.

Examples of parameter sets

Unique parameter

Multiple parameter sets



The following requirements apply to all parameter sets.

Each parameter set must have at least one unique parameter. If possible, make this
parameter a mandatory parameter.

A parameter set that contains multiple positional parameters must define unique
positions for each parameter. No two positional parameters can specify the same
position.

Only one parameter in a set can declare the ValueFromPipeline  keyword with a
value of true . Multiple parameters can define the
ValueFromPipelineByPropertyName  keyword with a value of true .

If no parameter set is specified for a parameter, the parameter belongs to all
parameter sets.

When multiple parameter sets are defined, you can use the DefaultParameterSetName
keyword of the Cmdlet attribute to specify the default parameter set. PowerShell uses
the default parameter set if it can't determine the parameter set to use based on the
information provided by the command. For more information about the Cmdlet
attribute, see Cmdlet Attribute Declaration.

To create a parameter set, you must specify the ParameterSetName  keyword when you
declare the Parameter attribute for every parameter in the parameter set. For
parameters that belong to multiple parameter sets, add a Parameter attribute for each
parameter set. This attribute enables you to define the parameter differently for each
parameter set. For example, you can define a parameter as mandatory in one set and
optional in another. However, each parameter set must contain one unique parameter.
For more information, see Parameter Attribute Declaration.

Parameter set requirements

７ Note

For a cmdlet or function, there is a limit of 32 parameter sets.

Default parameter sets

Declaring parameter sets



In the following example, the UserName parameter is the unique parameter of the
Test01  parameter set, and the ComputerName parameter is the unique parameter of
the Test02  parameter set. The SharedParam parameter belongs to both sets and is
mandatory for the Test01  parameter set but optional for the Test02  parameter set.

C#

[Parameter(Position = 0, Mandatory = true, ParameterSetName = "Test01")]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

[Parameter(Position = 0, Mandatory = true, ParameterSetName = "Test02")]
public string ComputerName
{
  get { return computerName; }
  set { computerName = value; }
}
private string computerName;

[Parameter(Mandatory= true, ParameterSetName = "Test01")]
[Parameter(ParameterSetName = "Test02")]
public string SharedParam
{
    get { return sharedParam; }
    set { sharedParam = value; }
}
private string sharedParam;

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-parameter-sets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-parameter-sets.md&documentVersionIndependentId=7527e0eb-deb1-80fd-4492-2ee14eb54df5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7ce9c320-4bff-ffcc-fea2-13f890d43537+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet dynamic parameters
Article • 01/31/2024

Cmdlets can define parameters that are available to the user under special conditions,
such as when the argument of another parameter is a specific value. These parameters
are added at runtime and are referred to as dynamic parameters because they're only
added when needed. For example, you can design a cmdlet that adds several
parameters only when a specific switch parameter is specified.

PowerShell uses dynamic parameters in several of its provider cmdlets. For example, the
Get-Item  and Get-ChildItem  cmdlets add a CodeSigningCert parameter at runtime
when the Path parameter specifies the Certificate provider path. If the Path parameter
specifies a path for a different provider, the CodeSigningCert parameter isn't available.

The following examples show how the CodeSigningCert parameter is added at runtime
when Get-Item  is run.

In this example, the PowerShell runtime has added the parameter and the cmdlet is
successful.

PowerShell

Output

In this example, a FileSystem drive is specified and an error is returned. The error
message indicates that the CodeSigningCert parameter can't be found.

PowerShell

７ Note

Providers and PowerShell functions can also define dynamic parameters.

Dynamic parameters in PowerShell cmdlets

Get-Item -Path Cert:\CurrentUser -CodeSigningCert

Location   : CurrentUser
StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}



Output

To support dynamic parameters, the following elements must be included in the cmdlet
code.

System.Management.Automation.IDynamicParameters. This interface provides the
method that retrieves the dynamic parameters.

For example:

public class SendGreetingCommand : Cmdlet, IDynamicParameters

System.Management.Automation.IDynamicParameters.GetDynamicParameters. This
method retrieves the object that contains the dynamic parameter definitions.

For example:

C#

Get-Item -Path C:\ -CodeSigningCert

Get-Item : A parameter cannot be found that matches parameter name 
'CodeSigningCert'.
At line:1 char:37
+  Get-Item -Path C:\ -CodeSigningCert <<<<
--------
    CategoryInfo          : InvalidArgument: (:) [Get-Item], 
ParameterBindingException
    FullyQualifiedErrorId : 
NamedParameterNotFound,Microsoft.PowerShell.Commands.GetItemCommand

Support for dynamic parameters

Interface

Method

 public object GetDynamicParameters()
 {
   if (employee)
   {
     context= new SendGreetingCommandDynamicParameters();
     return context;
   }
   return null;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.IDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.IDynamicParameters.GetDynamicParameters


A class that defines the dynamic parameters to be added. This class must include a
Parameter attribute for each parameter and any optional Alias and Validation attributes
that are needed by the cmdlet.

For example:

C#

For a complete example of a cmdlet that supports dynamic parameters, see How to
Declare Dynamic Parameters.

System.Management.Automation.IDynamicParameters
System.Management.Automation.IDynamicParameters.GetDynamicParameters
How to Declare Dynamic Parameters
Writing a Windows PowerShell Cmdlet

}
private SendGreetingCommandDynamicParameters context;

Class

public class SendGreetingCommandDynamicParameters
{
  [Parameter]
  [ValidateSet ("Marketing", "Sales", "Development")]
  public string Department
  {
    get { return department; }
    set { department = value; }
  }
  private string department;
}

See also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.IDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.IDynamicParameters.GetDynamicParameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Supporting Wildcard Characters in
Cmdlet Parameters
Article • 12/18/2023

Often, you will have to design a cmdlet to run against a group of resources rather than
against a single resource. For example, a cmdlet might need to locate all the files in a
data store that have the same name or extension. You must provide support for wildcard
characters when you design a cmdlet that will be run against a group of resources.

Many Windows PowerShell cmdlets support wildcard characters for their parameter
values. For example, almost every cmdlet that has a Name  or Path  parameter supports
wildcard characters for these parameters. (Although most cmdlets that have a Path
parameter also have a LiteralPath  parameter that does not support wildcard
characters.) The following command shows how a wildcard character is used to return all
the cmdlets in the current session whose name contains the Get verb.

Get-Command get-*

Windows PowerShell supports the following wildcard characters.

Wildcard Description Example Matches Does not
match

* Matches zero or more characters, starting
at the specified position

a* A, ag, Apple

? Matches any character at the specified
position

?n An, in, on ran

７ Note

Using wildcard characters is sometimes referred to as globbing.

Windows PowerShell Cmdlets That Use
Wildcards

Supported Wildcard Characters

ﾉ Expand table



Wildcard Description Example Matches Does not
match

[ ] Matches a range of characters [a-

l]ook

book, cook,
look

nook, took

[ ] Matches the specified characters [bn]ook book, nook cook, look

When you design cmdlets that support wildcard characters, allow for combinations of
wildcard characters. For example, the following command uses the Get-ChildItem
cmdlet to retrieve all the .txt files that are in the C:\Techdocs folder and that begin with
the letters "a" through "l."

Get-ChildItem C:\techdocs\[a-l]\*.txt

The previous command uses the range wildcard [a-l]  to specify that the file name
should begin with the characters "a" through "l" and uses the *  wildcard character as a
placeholder for any characters between the first letter of the filename and the .txt
extension.

The following example uses a range wildcard pattern that excludes the letter "d" but
includes all the other letters from "a" through "f."

Get-ChildItem C:\techdocs\[a-cef]\*.txt

If the wildcard pattern you specify contains literal characters that should not be
interpreted as wildcard characters, use the backtick character ( ` ) as an escape character.
When you specify literal characters int the PowerShell API, use a single backtick. When
you specify literal characters at the PowerShell command prompt, use two backticks.

For example, the following pattern contains two brackets that must be taken literally.

When used in the PowerShell API use:

"John Smith `[*`]"

When used from the PowerShell command prompt:

"John Smith ``[*``]"

Handling Literal Characters in Wildcard
Patterns



This pattern matches "John Smith [Marketing]" or "John Smith [Development]". For
example:

When cmdlet parameters support wildcard characters, the operation usually generates
an array output. Occasionally, it makes no sense to support an array output because the
user might use only a single item. For example, the Set-Location  cmdlet does not
support array output because the user sets only a single location. In this instance, the
cmdlet still supports wildcard characters, but it forces resolution to a single location.

Writing a Windows PowerShell Cmdlet

WildcardPattern Class

PS> "John Smith [Marketing]" -like "John Smith ``[*``]"
True

PS> "John Smith [Development]" -like "John Smith ``[*``]"
True

Cmdlet Output and Wildcard Characters

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.wildcardpattern


Validating Parameter Input
Article • 09/17/2021

PowerShell can validate the arguments passed to cmdlet parameters in several ways.
PowerShell can validate the length, the range, and the pattern of the characters of the
argument. It can validate the number of arguments available (the count). These
validation rules are defined by validation attributes that are declared with the Parameter
attribute on public properties of the cmdlet class.

To validate a parameter argument, the PowerShell runtime uses the information
provided by the validation attributes to confirm the value of the parameter before the
cmdlet is run. If the parameter input is not valid, the user receives an error message.
Each validation parameter defines a validation rule that is enforced by PowerShell.

PowerShell enforces the validation rules based on the following attributes.

Specifies the minimum and maximum number of arguments that a parameter can
accept. For more information, see ValidateCount Attribute Declaration.

Specifies the minimum and maximum number of characters in the parameter argument.
For more information, see ValidateLength Attribute Declaration.

Specifies a regular expression that validates the parameter argument. For more
information, see ValidatePattern Attribute Declaration.

Specifies the minimum and maximum values of the parameter argument. For more
information, see ValidateRange Attribute Declaration.

Specifies the valid values for the parameter argument. For more information, see
ValidateScript Attribute Declaration.

ValidateCount

ValidateLength

ValidatePattern

ValidateRange

ValidateScript



Specifies the valid values for the parameter argument. For more information, see
ValidateSet Attribute Declaration.

How to Validate Parameter Input

Writing a Windows PowerShell Cmdlet

ValidateSet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fvalidating-parameter-input%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fvalidating-parameter-input.md&documentVersionIndependentId=a0e2d01b-82d9-83d7-54fa-c463821f6344&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+eed8adcd-6694-2b0b-4c37-202dba3b357a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Input Filter Parameters
Article • 09/17/2021

A cmdlet can define Filter , Include , and Exclude  parameters that filter the set of input
objects that the cmdlet affects.

Typically, the set of input objects is specified by an InputObject , Path , or Name
parameter. For example, a cmdlet can have a Path  parameter that accepts multiple
paths by using wildcard characters, and each path points to an input object. Used
together, the Filter , Include , and Exclude  parameters further qualify the paths the
cmdlet works on each time it is invoked.

The Include  and Exclude  parameters identify the objects that are included or excluded
from the set of input objects passed to the cmdlet. Use these parameters when the filter
can be expressed in the standard wildcard language. (For more information about
wildcard characters, see Supporting Wildcards in Cmdlet Parameters.) The Include
parameter includes all the objects whose names match the inclusion filter. The Exclude
parameter excludes all the objects whose names match the filter.

The Filter  parameter specifies a filter that is not expressed in the standard wildcard
language. For example, Active Directory Service Interfaces (ADSI) or SQL filters might be
passed to the cmdlet through its Filter  parameter. In the cmdlets provided by
Windows PowerShell, these filters are specified by the Windows PowerShell providers
that use the cmdlet to access a data store. Each provider typically defines its own filter.

If no set of input objects is specified, this typically means to filter against all objects. For
more information, seeGet-Process.

Writing a Windows PowerShell Cmdlet

Include and Exclude Parameters

Filter Parameter

Filtering If No Set of Input Objects Is Specified

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Finput-filter-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Finput-filter-parameters.md&documentVersionIndependentId=094ee0fe-1653-9c41-6801-1a73bc48778e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ae8a0cd5-8af6-cf77-175a-5b835665db71+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Attributes
Article • 09/17/2021

Windows PowerShell defines several attributes that you can use to add common
functionality to your cmdlets without implementing that functionality within your own
code. This includes the Cmdlet attribute that identifies a Microsoft .NET Framework class
as a cmdlet class, the OutputType attribute that specifies the .NET Framework types
returned by the cmdlet, the Parameter attribute that identifies public properties as
cmdlet parameters, and more.

Attributes in Cmdlet Code Describes the benefit of using attributes in cmdlet code.

Attribute Types Describes the different attributes that can decorate a cmdlet class.

Alias Attribute Declaration Describes how to define aliases for a cmdlet parameter name.

Cmdlet Attribute Declaration Describes how to define a .NET Framework class as a
cmdlet.

Credential Attribute Declaration Describes how to add support for converting string
input into a System.Management.Automation.PSCredential object.

OutputType attribute Declaration Describes how to specify the .NET Framework types
returned by the cmdlet.

Parameter Attribute Declaration Describes how to define the parameters of a cmdlet.

ValidateCount Attribute Declaration Describes how to define how many arguments are
allowed for a parameter.

ValidateLength Attribute Declaration Describes how to define the length (in characters)
of a parameter argument.

ValidatePattern Attribute Declaration Describes how to define the valid patterns for a
parameter argument.

ValidateRange Attribute Declaration Describes how to define the valid range for a
parameter argument.

ValidateScript Attribute Declaration Describes how to define the possible values for a
parameter argument.

In This Section

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential


ValidateSet Attribute Declaration Describes how to define the possible values for a
parameter argument.

Writing a Windows PowerShell Cmdlet

Reference

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-attributes%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-attributes.md&documentVersionIndependentId=b79f215c-9dec-bbab-87c8-1896dfad4e4d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2717b26c-c135-ed72-c578-2136a1605b8b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Attributes in Cmdlet Code
Article • 09/17/2021

To use the common functionality provided by Windows PowerShell, the classes and
public properties defined in the cmdlet code are decorated with attributes. For example,
the following class definition uses the Cmdlet attribute to identify the Microsoft .NET
Framework class in which the Get-Proc cmdlet is implemented. (This cmdlet is used as
an example in this document, and is similar to the Get-Process  cmdlet provided by
Windows PowerShell.)

C#

These attributes are considered metadata because their implementation is separate
from the implementation of the cmdlet code. When the Windows PowerShell runtime
runs the cmdlet, it recognizes the attributes and then performs the appropriate action
for each attribute.

Although you might want to implement your own version of the functionality provided
by these attributes, a good cmdlet design uses these common functionalities.

For more information about the different attributes that can be declared in your
cmdlets, see Attribute Types.

Attribute Types

Writing a Windows PowerShell Cmdlet

[Cmdlet(VerbsCommon.Get, "Proc")]
public class GetProcCommand : Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fattributes-in-cmdlet-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fattributes-in-cmdlet-code.md&documentVersionIndependentId=c5c2fb8e-3eff-b84c-e07d-2ccb0aa11630&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c8fa119f-a532-0d80-8f72-f3c15ea10dbe+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


Attribute Types
Article • 09/17/2021

Cmdlet attributes can be grouped by functionality. The following sections describe the
available attributes and describe what the runtime does when the attribute is invoked.

Identifies a .NET Framework class as a cmdlet. This is the required base attribute. For
more information, see Cmdlet Attribute Declaration.

Identifies a public property in the cmdlet class as a cmdlet parameter. For more
information, see Parameter Attribute Declaration.

Specifies one or more aliases for a parameter. For more information, see Alias Attribute
Declaration.

Specifies the minimum and maximum number of arguments that are allowed for a
cmdlet parameter. For more information, see ValidateCount Attribute Declaration.

Specifies a minimum and maximum number of characters for a cmdlet parameter
argument. For more information, see ValidateLength Attribute Declaration.

Cmdlet Attributes

Cmdlet

Parameter Attributes

Parameter

Alias

Argument Validation Attributes

ValidateCount

ValidateLength



Specifies a regular expression pattern that the cmdlet parameter argument must match.
For more information, see ValidatePattern Attribute Declaration.

Specifies the minimum and maximum values for a cmdlet parameter argument. For
more information, see ValidateRange Attribute Declaration.

Specifies a set of valid values for the cmdlet parameter argument. For more information,
see ValidateSet Attribute Declaration.

Windows PowerShell SDK

ValidatePattern

ValidateRange

ValidateSet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fattribute-types%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fattribute-types.md&documentVersionIndependentId=a0afff9a-b840-bff5-388f-b60d87d0602b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e00fa6c5-6b6b-2225-f5dc-d9f1c60a268e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Alias Attribute Declaration
Article • 03/24/2025

The Alias attribute allows the user to specify different names for a cmdlet or a cmdlet
parameter. Aliases can be used to provide shortcuts for a parameter name, or they can
provide different names that are appropriate for different scenarios.

C#

aliasNames  (String[]) Required. Specifies a set of comma-separated alias names for the
cmdlet parameter.

The Alias attribute is defined by the System.Management.Automation.AliasAttribute
class.

The Alias attribute is used with the cmdlet declaration. For more information about
how to declare these attributes, see Cmdlet Aliases.
Each parameter alias name must be unique. Windows PowerShell does not check
for duplicate alias names.

The Alias attribute is used with the Parameter attribute when you specify a cmdlet
parameter. For more information about how to declare these attributes, see How
to Declare Cmdlet Parameters.
Each parameter alias name must be unique within a cmdlet. Windows PowerShell
does not check for duplicate alias names.
The Alias attribute is used once for each parameter in a cmdlet.

Syntax

[Alias(aliasNames)]

Parameters

Remarks

Cmdlet aliases

Parameter aliases

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.AliasAttribute


Cmdlet Aliases

Parameter Aliases

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Cmdlet Attribute Declaration
Article • 09/17/2021

The Cmdlet attribute identifies a Microsoft .NET Framework class as a cmdlet and
specifies the verb and noun used to invoke the cmdlet.

C#

VerbName  (System.String) Required. Specifies the cmdlet verb. This verb specifies the
action taken by the cmdlet. For more information about approved cmdlet verbs, see
Cmdlet Verb Names and Required Development Guidelines.

NounName  (System.String) Required. Specifies the cmdlet noun. This noun specifies the
resource that the cmdlet acts upon. For more information about cmdlet nouns, see
Cmdlet Declaration and Strongly Encouraged Development Guidelines.

SupportsShouldProcess  (System.Boolean) Optional named parameter. True  indicates
that the cmdlet supports calls to the
System.Management.Automation.Cmdlet.ShouldProcess method, which provides the
cmdlet with a way to prompt the user before an action that changes the system is
performed. False , the default value, indicates that the cmdlet does not support calls to
the System.Management.Automation.Cmdlet.ShouldProcess method. For more
information about confirmation requests, see Requesting Confirmation.

ConfirmImpact  (System.Management.Automation.ConfirmImpact) Optional named
parameter. Specifies when the action of the cmdlet should be confirmed by a call to the
System.Management.Automation.Cmdlet.ShouldProcess method.
System.Management.Automation.Cmdlet.ShouldProcess will only be called when the
ConfirmImpact value of the cmdlet (by default, Medium) is equal to or greater than the
value of the $ConfirmPreference  variable. This parameter should be specified only when
the SupportsShouldProcess  parameter is specified.

Syntax

[Cmdlet("verbName", "nounName")]
[Cmdlet("verbName", "nounName", Named Parameters...)]

Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ConfirmImpact
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


DefaultParameterSetName  (System.String) Optional named parameter. Specifies the
default parameter set that the Windows PowerShell runtime attempts to use when it
cannot determine which parameter set to use. Notice that this situation can be
eliminated by making the unique parameter of each parameter set a mandatory
parameter.

There is one case where Windows PowerShell cannot use the default parameter set even
if a default parameter set name is specified. The Windows PowerShell runtime cannot
distinguish between parameter sets based solely on object type. For example, if you
have one parameter set that takes a string as the file path, and another set that takes a
FileInfo object directly, Windows PowerShell cannot determine which parameter set to
use based on the values passed to the cmdlet, nor does it use the default parameter set.
In this case, even if you specify a default parameter set name, Windows PowerShell
throws an ambiguous parameter set error message.

SupportsTransactions  (System.Boolean) Optional named parameter. True  indicates that
the cmdlet can be used within a transaction. When True  is specified, the Windows
PowerShell runtime adds the UseTransaction  parameter to the parameter list of the
cmdlet. False , the default value, indicates that the cmdlet cannot be used within a
transaction.

Together, the verb and noun are used to identify your registered cmdlet and to
invoke your cmdlet within a script.

When the cmdlet is invoked from the Windows PowerShell console, the command
resembles the following command:

VerbName-NounName

All cmdlets that change resources outside of Windows PowerShell should include
the SupportsShouldProcess  keyword when the Cmdlet attribute is declared, which
allows the cmdlet to call the
System.Management.Automation.Cmdlet.ShouldProcess method before the cmdlet
performs its action. If the System.Management.Automation.Cmdlet.ShouldProcess
call returns false , the action should not be taken. For more information about the
confirmation requests generated by the
System.Management.Automation.Cmdlet.ShouldProcess call, see Requesting
Confirmation.

Remarks

https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


The Confirm  and WhatIf  cmdlet parameters are available only for cmdlets that support
System.Management.Automation.Cmdlet.ShouldProcess calls.

The following class definition uses the Cmdlet attribute to identify the .NET Framework
class for a Get-Proc cmdlet that retrieves information about the processes running on
the local computer.

C#

For more information about the Get-Proc cmdlet, see GetProc Tutorial.

Writing a Windows PowerShell Cmdlet

Example

[Cmdlet(VerbsCommon.Get, "Proc")]
public class GetProcCommand : Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Credential Attribute Declaration
Article • 09/17/2021

The Credential attribute is an optional attribute that can be used with credential
parameters of type System.Management.Automation.PSCredential so that a string can
also be passed as an argument to the parameter. When this attribute is added to a
parameter declaration, Windows PowerShell converts the string input into a
System.Management.Automation.PSCredential object. For example, the Get-Credential
cmdlet uses this attribute to have Windows PowerShell generate the
System.Management.Automation.PSCredential object that is returned by the cmdlet.

C#

Typically this attribute is used by parameters of type
System.Management.Automation.PSCredential so that a string can also be passed
as an argument to the parameter. When a
System.Management.Automation.PSCredential object is passed to the parameter,
Windows PowerShell does nothing.

When creating the System.Management.Automation.PSCredential object, Windows
PowerShell uses the current Host to display the appropriate prompts to the user.
For example, the default Host displays a prompt for a user name and password
when this attribute is used. However, if a custom host is being used that defines a
different prompt then that prompt would be displayed.

This attribute is used with the Parameter attribute. For more information about
that attribute, see Parameter Attribute Declaration.

The credential attribute is defined by the
System.Management.Automation.CredentialAttribute class.

Syntax

[Credential]

Remarks

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Security/Get-Credential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCredential
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CredentialAttribute


Parameter Aliases

Parameter Attribute Declaration

Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


OutputType Attribute Declaration
Article • 09/17/2021

The OutputType  attribute identifies the .NET Framework types returned by a cmdlet,
function, or script.

C#

Type ( string[]  or Type[] ) Required. Specifies the types returned by the cmdlet
function, or script.

ParameterSetName (string[]) Optional. Specifies the parameter sets that return the types
specified in the type  parameter.

providerCmdlet Optional. Specifies the provider cmdlet that returns the types specified
in the type  parameter.

Writing a Windows PowerShell Cmdlet

Syntax

[OutputType(params string[] type)]
[OutputType(params Type[] type)]
[OutputType(params string[] type, Named Parameters...)]
[OutputType(params Type[] type, Named Parameters...)]

Parameters

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Foutputtype-attribute-declaration%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Foutputtype-attribute-declaration.md&documentVersionIndependentId=39da3705-2475-416a-97a2-de792b8a1069&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1df91061-2bb8-2a42-c1d3-51c8dd19f8cc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Parameter Attribute Declaration
Article • 01/06/2025

The Parameter attribute identifies a public property of the cmdlet class as a cmdlet
parameter.

C#

Mandatory  (System.Boolean) Optional named parameter. True  indicates the cmdlet
parameter is required. If a required parameter is not provided when the cmdlet is
invoked, Windows PowerShell prompts the user for a parameter value. The default is
false .

ParameterSetName  (System.String) Optional named parameter. Specifies the parameter
set that this cmdlet parameter belongs to. If no parameter set is specified, the parameter
belongs to all parameter sets.

Position  (System.Int32) Optional named parameter. Specifies the position of the
parameter within a Windows PowerShell command.

ValueFromPipeline  (System.Boolean) Optional named parameter. True  indicates that the
cmdlet parameter takes its value from a pipeline object. Specify this keyword if the
cmdlet accesses the complete object, not just a property of the object. The default is
false .

ValueFromPipelineByPropertyName  (System.Boolean) Optional named parameter. True
indicates that the cmdlet parameter takes its value from a property of a pipeline object
that has either the same name or the same alias as this parameter. For example, if the
cmdlet has a Name  parameter and the pipeline object also has a Name  property, the value
of the Name  property is assigned to the Name  parameter of the cmdlet. The default is
false .

Syntax

[Parameter()]
[Parameter(Named Parameters...)]

Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean


ValueFromRemainingArguments  (System.Boolean) Optional named parameter. True
indicates that the cmdlet parameter accepts all remaining arguments that are passed to
the cmdlet. The default is false .

HelpMessage  (System.String) Optional named parameter. Specifies a short description of
the parameter. Windows PowerShell displays this message when a cmdlet is run and a
mandatory parameter is not specified.

HelpMessageBaseName  (System.String) Optional named parameter. Specifies the location
where resource identifiers reside. For example, this parameter could specify a resource
assembly that contains Help messages that you want to localize.

HelpMessageResourceId  (System.String) Optional named parameter.Specifies the
resource identifier for a Help message.

DontShow  (System.Boolean) Optional named parameter. True  indicates that the
parameter is hidden from the user for tab expansion and IntelliSense. The default is
false .

For more information about how to declare this attribute, see How to Declare
Cmdlet Parameters.

A cmdlet can have any number of parameters. However, for a better user
experience, limit the number of parameters.

Parameters must be declared on public non-static fields or properties. Parameters
should be declared on properties. The property must have a public set accessor,
and if the ValueFromPipeline  or ValueFromPipelineByPropertyName  keyword is
specified, the property must have a public get accessor.

When you specify positional parameters, limit the number of positional parameters
in a parameter set to less than five. And, positional parameters do not have to be
contiguous. Positions 5, 100, and 250 work the same as positions 0, 1, and 2.

When the Position  keyword is not specified, the cmdlet parameter must be
referenced by its name.

When you use parameter sets, note the following:

Each parameter set must have at least one unique parameter. Good cmdlet
design indicates this unique parameter should also be mandatory if possible. If

Remarks

https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean


your cmdlet is designed to be run without parameters, the unique parameter
cannot be mandatory.

No parameter set should contain more than one positional parameter with the
same position.

Only one parameter in a parameter set should declare ValueFromPipeline =
true .

Multiple parameters can define ValueFromPipelineByPropertyName = true .

For more information about the guidelines for parameter names, see Cmdlet
Parameter Names.

The parameter attribute is defined by the
System.Management.Automation.ParameterAttribute class.

The DontShow  parameter has the following side effects:
Affects all parameter sets for the associated parameter, even if there's a
parameter set in which DontShow  is unused.
Hides common parameters from tab completion and IntelliSense. DontShow
doesn't hide the optional common parameters: WhatIf, Confirm, or
UseTransaction.

System.Management.Automation.ParameterAttribute
Cmdlet Parameter Names
Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


ValidateCount Attribute Declaration
Article • 09/17/2021

The ValidateCount attribute specifies the minimum and maximum number of arguments
allowed for a cmdlet parameter.

C#

MinLength  (System.Int32) Required. Specifies the minimum number of arguments.

MaxLength (System.Int32) Required. Specifies the maximum number of arguments.

For more information about how to declare this attribute, see How to Validate an
Argument Count.
When this attribute is not invoked, the corresponding cmdlet parameter can have
any number of arguments.
The Windows PowerShell runtime throws an error under the following conditions:

The MinLength  and MaxLength  attribute parameters are not of type
System.Int32.
The value of the MaxLength  attribute parameter is less than the value of the
MinLength  attribute parameter.

The ValidateCount attribute is defined by the
System.Management.Automation.ValidateCountAttribute class.

System.Management.Automation.ValidateCountAttribute

How to Validate an Argument Count

Writing a Windows PowerShell Cmdlet

Syntax

[ValidateCount(int minLength, int maxlength)]

Parameters

Remarks

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateCountAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateCountAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fvalidatecount-attribute-declaration%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fvalidatecount-attribute-declaration.md&documentVersionIndependentId=bce670f6-7289-5bbf-3033-b1668d926f8e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+09db6e08-85e8-297d-1a0f-0c9f785a2958+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ValidateLength Attribute Declaration
Article • 09/17/2021

The ValidateLength attribute specifies the minimum and maximum number of characters
for a cmdlet parameter argument. This attribute can also be used by Windows
PowerShell functions.

C#

MinLength  (System.Int32) Required. Specifies the minimum number of characters
allowed.

MaxLength  (System.Int32) Required. Specifies the maximum number of characters
allowed.

For more information about how to declare this attribute, see How to Declare
Input Validation Rules.

When this attribute is not used, the corresponding parameter argument can be of
any length.

The Windows PowerShell runtime throws an error under the following conditions:

When the value of the MaxLength  attribute parameter is less than the value of
the MinLength  attribute parameter.

When the MaxLength  attribute parameter is set to 0.

When the argument is not a string.

The ValidateLength attribute is defined by the
System.Management.Automation.ValidateLengthAttribute class.

Syntax

[ValidateLength(int minLength, int maxlength)]

Parameters

Remarks

https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Int32
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateLengthAttribute


System.Management.Automation.ValidateLengthAttribute

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateLengthAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


ValidatePattern Attribute Declaration
Article • 03/24/2025

The ValidatePattern attribute specifies a regular expression pattern that validates the
argument of a cmdlet parameter. This attribute can also be used by Windows
PowerShell functions.

When ValidatePattern is invoked within a cmdlet, the Windows PowerShell runtime
converts the argument of the cmdlet parameter to a string and then compares that
string to the pattern supplied by the ValidatePattern attribute. The cmdlet is run only if
the converted string representation of the argument and the supplied pattern match. If
they do not match, an error is thrown by the Windows PowerShell runtime.

C#

RegexString  (System.String) Required. Specifies a regular expression that validates the
parameter argument.

Options (System.Text.RegularExpressions.RegexOptions) Optional named parameter.
Specifies a bitwise combination of System.Text.RegularExpressions.RegexOptions flags
that specify regular expression options.

This attribute can be used only once per parameter.

You can use the Option  parameter of the attribute to further define the pattern.
For example, you can make the pattern case sensitive.

If this attribute is applied to a collection, each element in the collection must
match the pattern.

Syntax

[ValidatePattern(string regexString)]
[ValidatePattern(string regexString, Named Parameters)]

Parameters

Remarks

https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Text.RegularExpressions.RegexOptions
https://learn.microsoft.com/en-us/dotnet/api/System.Text.RegularExpressions.RegexOptions


The ValidatePattern attribute is defined by the
System.Management.Automation.ValidatePatternAttribute class.

System.Management.Automation.ValidatePatternAttribute

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidatePatternAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidatePatternAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


ValidateRange Attribute Declaration
Article • 09/17/2021

The ValidateRange attribute specifies the minimum and maximum values (the range) for
the cmdlet parameter argument. This attribute can also be used by Windows PowerShell
functions.

C#

MinRange  (System.Object) Required. Specifies the minimum value allowed.

MaxRange  (System.Object) Required. Specifies the maximum value allowed.

The Windows PowerShell runtime throws a construction error when the value of
the MinRange  parameter is greater than the value of the MaxRange  parameter.

The Windows PowerShell runtime throws a validation error under the following
conditions:

When the value of the argument is less than the MinRange  limit or greater than
the MaxRange  limit.

When the argument is not of the same type as the MinRange  and the MaxRange
parameters.

The ValidateRange attribute is defined by the
System.Management.Automation.ValidateRangeAttribute class.

System.Management.Automation.ValidateRangeAttribute

Syntax

[ValidateRange(object minRange, object maxRange)]

Parameters

Remarks

See Also

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateRangeAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateRangeAttribute


Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


ValidateScript Attribute Declaration
Article • 10/03/2022

The ValidateScript  attribute specifies a script that's used to validate a parameter or
variable value. PowerShell pipes the value to the script, and generates an error if the
script returns $false  or if the script throws an exception.

When you use the ValidateScript  attribute, the value that's being validated is mapped
to the $_  variable. You can use the $_  variable to refer to the value in the script.

C#

scriptBlock  - (System.Management.Automation.ScriptBlock) Required. The script
block used to validate the input.
ErrorMessage  - Optional named parameter - The item being validated and the
validating scriptblock are passed as the first and second formatting arguments.

This attribute can be used only once per parameter.
If this attribute is applied to a collection, each element in the collection must
match the pattern.
The ValidateScript attribute is defined by the
System.Management.Automation.ValidateScriptAttribute class.

Syntax

[ValidateScriptAttribute(ScriptBlock scriptBlock)]
[ValidateScriptAttribute(ScriptBlock scriptBlock, Named Parameters)]

Parameters

７ Note

The ErrorMessage  argument was added in PowerShell 6.

Remarks

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ScriptBlock
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateScriptAttribute


System.Management.Automation.ValidateScriptAttribute

Writing a Windows PowerShell Cmdlet

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateScriptAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fvalidatescript-attribute-declaration%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fvalidatescript-attribute-declaration.md&documentVersionIndependentId=141c6c58-509b-35dc-c356-6e1e932351d0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d2563ada-c6b8-c4bd-6dff-d907d8a1b852+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ValidateSet Attribute Declaration
Article • 03/24/2025

The ValidateSetAttribute attribute specifies a set of possible values for a cmdlet
parameter argument. This attribute can also be used by Windows PowerShell functions.

When this attribute is specified, the Windows PowerShell runtime determines whether
the supplied argument for the cmdlet parameter matches an element in the supplied
element set. The cmdlet is run only if the parameter argument matches an element in
the set. If no match is found, an error is thrown by the Windows PowerShell runtime.

C#

ValidValues  (System.String) Required. Specifies the valid parameter element values. The
following sample shows how to specify one element or multiple elements.

C#

IgnoreCase  (System.Boolean) Optional named parameter. The default value of true
indicates that case is ignored. A value of false  makes the cmdlet case-sensitive.

This attribute can be used only once per parameter.

If the parameter value is an array, every element of the array must match an
element of the attribute set.

The ValidateSetAttribute attribute is defined by the
System.Management.Automation.ValidateSetAttribute class.

Syntax

[ValidateSetAttribute(params string[] validValues)]
[ValidateSetAttribute(params string[] validValues, Named Parameters)]

Parameters

[ValidateSetAttribute("Steve")]
[ValidateSetAttribute("Steve","Mary")]

Remarks

https://learn.microsoft.com/en-us/dotnet/api/System.String
https://learn.microsoft.com/en-us/dotnet/api/System.Boolean
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateSetAttribute


System.Management.Automation.ValidateSetAttribute

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateSetAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Cmdlet Aliases
Article • 09/17/2021

You can use cmdlet aliases to improve the cmdlet user experience. You can add aliases
to frequently used cmdlets to reduce typing and to make it easier to complete tasks
quickly. You can include built-in aliases in your cmdlets, or users can define their own
custom aliases.

For example, the Get-Command cmdlet has a built-in gcm  alias. You can also use aliases
to add command names from other languages so that users do not have to learn new
commands.

Follow these guidelines when you create built-in aliases for your cmdlets:

Before you assign aliases, start Windows PowerShell, and then run the Get-Alias
cmdlet to see the aliases that are already used.

Include an alias prefix that references the verb of the cmdlet name and an alias
suffix that references the noun of the cmdlet name. For example, the alias for the
Import-Module  cmdlet is ipmo . For a list of all the verbs and their aliases, see
Cmdlet Verbs.

For cmdlets that have the same verb, include the same alias prefix. For example,
the aliases for all the Windows PowerShell cmdlets that have the "Get" verb in their
name use the "g" prefix.

For cmdlets that have the same noun, include the same alias suffix. For example,
the aliases for all the Windows PowerShell cmdlets that have the "Session" noun in
their name use the "sn" suffix.

For cmdlets that are equivalent to commands in other languages, use the name of
the command.

In general, make aliases as short as possible. Make sure the alias has at least one
distinct character for the verb and one distinct character for the noun. Add more
characters as needed to make the alias unique.

For cmdlet written in C# (or any other compiled .NET language), the alias can be
defined using the Alias attribute. For example:

Alias Guidelines

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/get-command
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-Alias


C#

Writing a Windows PowerShell Cmdlet

[Cmdlet("Get", "SomeObject")]
[Alias("gso")]
public class GetSomeObjectCommand : Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-aliases%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-aliases.md&documentVersionIndependentId=de27e39b-3ae0-4b34-3faa-545a2f3b8bdc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+56d8f7ab-753e-8119-cd14-03483ff7e2f6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Output
Article • 09/17/2021

This section discusses the types of cmdlet output and the methods that cmdlets can call
to generate output such as error messages and objects. This section also describes how
to define the .NET Framework types that are returned by your cmdlets and how those
objects are displayed.

Types of Cmdlet Output Describes the types and output that cmdlets can generate and
the methods that cmdlets call to generate the output.

Cmdlet Error Reporting Discusses cmdlet error reporting, a subset of cmdlet output.

Extending Output Objects Discusses how to use the types files ( .ps1xml ) to extend the
.NET Framework objects that are returned by cmdlets, functions, and scripts.

PowerShell Formatting Files Describes the formatting files ( .format.ps1xml ) files that
define the default display for a specific set of .NET Framework objects in Windows
PowerShell.

Custom Formatting Files Describes how to create your own custom formatting files to
overwrite the default display formats or to define the display of objects returned by your
own commands.

Writing a Windows PowerShell Cmdlet

In This Section

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Types of cmdlet output
Article • 09/17/2021

PowerShell provides several methods that can be called by cmdlets to generate output.
These methods use a specific operation to write their output to a specific data stream,
such as the success data stream or the error data stream. This article describes the types
of output and the methods used to generate them.

Cmdlets can report success by returning an object that can be processed by the next
command in the pipeline. After the cmdlet has successfully performed its action, the
cmdlet calls the System.Management.Automation.Cmdlet.WriteObject method. We
recommend that you call this method instead of the System.Console.WriteLine or
System.Management.Automation.Host.PSHostUserInterface.WriteLine methods.

You can provide a PassThru switch parameter for cmdlets that do not typically return
objects. When the PassThru switch parameter is specified at the command line, the
cmdlet is asked to return an object. For an example of a cmdlet that has a PassThru
parameter, see Add-History.

Cmdlets can report errors. When a terminating error occurs, the cmdlet throws an
exception. When a non-terminating error occurs, the cmdlet calls the
System.Management.Automation.Provider.CmdletProvider.WriteError method to send
an error record to the error data stream. For more information about error reporting,
see Error Reporting Concepts.

Cmdlets can provide useful information to you while the cmdlet is correctly processing
records by calling the System.Management.Automation.Cmdlet.WriteVerbose method.
The method generates verbose messages that indicate how the action is proceeding.

By default, verbose messages are not displayed. You can specify the Verbose parameter
when the cmdlet is run to display these messages. Verbose is a common parameter that

Types of output

Success output

Error output

Verbose output

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Console.WriteLine
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface.WriteLine
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Add-History
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose


is available to all cmdlets.

Cmdlets can provide progress information to you when the cmdlet is performing tasks
that take a long time to complete, such as copying a directory recursively. To display
progress information the cmdlet calls the
System.Management.Automation.Cmdlet.WriteProgress method.

Cmdlets can provide debug messages that are helpful when troubleshooting the cmdlet
code. To display debug information the cmdlet calls the
System.Management.Automation.Cmdlet.WriteDebug method.

By default, debug messages are not displayed. You can specify the Debug parameter
when the cmdlet is run to display these messages. Debug is a common parameter that
is available to all cmdlets.

Cmdlets can display warning messages by calling the
System.Management.Automation.Cmdlet.WriteWarning method.

By default, warning messages are displayed. However, you can configure warning
messages by using the $WarningPreference  variable or by using the Verbose and Debug
parameters when the cmdlet is called.

For all write-method calls, the content display is determined by specific runtime
variables. The exception is the System.Management.Automation.Cmdlet.WriteObject
method. By using these variables, you can make the appropriate write call at the correct
place in your code and not worry about when or if the output should be displayed.

You can also design a cmdlet to directly access the output functionality of a host
application through the PowerShell runtime. Using the host APIs provided by PowerShell

Progress output

Debug output

Warning output

Displaying output

Accessing the output functionality of a host
application

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteProgress
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


instead of System.Console or System.Windows.Forms ensures that your cmdlet will work
with a variety of hosts. For example: the powershell.exe  console host, the
powershell_ise.exe  graphical host, the PowerShell remoting host, and third-party hosts.

Error Reporting Concepts

Cmdlet Overview

Writing a Windows PowerShell Cmdlet

See also

https://learn.microsoft.com/en-us/dotnet/api/System.Console
https://learn.microsoft.com/en-us/dotnet/api/System.Windows.Forms
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Cmdlet error reporting
Article • 09/15/2023

Cmdlets should report errors differently depending on whether the errors are
terminating errors or non-terminating errors. Terminating errors are errors that cause
the pipeline to be terminated immediately, or errors that occur when there's no reason
to continue processing. Non-terminating errors are those errors that report a current
error condition, but the cmdlet can continue to process input objects. With non-
terminating errors, the user is typically notified of the problem, but the cmdlet continues
to process the next input object.

Unless specified otherwise, all classes and methods mentioned in this document come
from the System.Management.Automation namespace.

The following guidelines can be used to determine if an error condition is a terminating
error or a non-terminating error.

Does the error condition prevent your cmdlet from successfully processing any
further input objects? If so, this is a terminating error.

Is the error condition related to a specific input object or a subset of input objects?
If so, this is a non-terminating error.

Does the cmdlet accept multiple input objects, such that processing may succeed
on another input object? If so, this is a non-terminating error.

Cmdlets that can accept multiple input objects should decide between what are
terminating and non-terminating errors, even when a particular situation applies to
only a single input object.

Cmdlets can receive any number of input objects and send any number of success
or error objects before throwing a terminating exception. There's no relationship
between the number of input objects received and the number of success and
error objects sent.

Cmdlets that can accept only 0-1 input objects and generate only 0-1 output
objects should treat errors as terminating errors and generate terminating
exceptions.

Terminating and non-terminating errors

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation


The reporting of a non-terminating error should always be done within the cmdlet's
implementation of the following methods:

Cmdlet.BeginProcessing
Cmdlet.ProcessRecord
Cmdlet.EndProcessing

These types of errors are reported by calling the Cmdlet.WriteError method that in turn
sends an error record to the error stream.

Terminating errors are reported by throwing exceptions or by calling the
Cmdlet.ThrowTerminatingError method. Be aware that cmdlets can also catch and
rethrow exceptions such as OutOfMemory, however, they aren't required to rethrow
exceptions as the PowerShell runtime will catch them as well.

You can also define your own exceptions for issues specific to your situation, or add
additional information to an existing exception using its error record.

PowerShell describes a non-terminating error condition with ErrorRecord objects. Each
object provides error category information, an optional target object, and details about
the error condition.

The error identifier is a simple string that identifies the error condition within the cmdlet.
PowerShell combines this identifier with a cmdlet identifier to create a fully qualified
error identifier that can be used later when filtering error streams or logging errors,
when responding to specific errors, or with other user-specific activities.

The following guidelines should be followed when specifying error identifiers:

Assign different, highly specific, error identifiers to different code paths. Each code
path that calls Cmdlet.WriteError or Cmdlet.ThrowTerminatingError should have its
own error identifier.

Reporting non-terminating errors

Reporting terminating errors

Error records

Error identifiers

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError


Error identifiers should be unique to Common Language Runtime (CLR) exception
types for both terminating and non-terminating errors.

Don't change the semantics of an error identifier between versions of your cmdlet
or PowerShell provider. After the semantics of an error identifier is established, it
should remain constant throughout the lifecycle of your cmdlet.

For terminating errors, use a unique error identifier for a particular CLR exception
type. If the exception type changes, use a new error identifier.

For non-terminating errors, use a specific error identifier for a specific input object.

Choose text for the identifier that tersely corresponds to the error being reported.
Don't use white space or punctuation.

Don't generate error identifiers that aren't reproducible. For example, don't
generate identifiers that include a process identifier. Error identifiers are useful only
when they correspond to identifiers that are seen by other users who are
experiencing the same problem.

Error categories are used to group errors for the user. PowerShell defines these
categories and cmdlets and PowerShell providers must choose between them when
generating the error record.

For a description of the error categories that are available, see the ErrorCategory
enumeration. In general, you should avoid using NoError, UndefinedError, and
GenericError whenever possible.

Users can view errors based on category when they set $ErrorView  to CategoryView.

Cmdlet Overview

Types of Cmdlet Output

Windows PowerShell Reference

Error categories

See also

６  Collaborate with us on PowerShell feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory


GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-error-reporting%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-error-reporting.md&documentVersionIndependentId=da7d28a4-8cc0-f8a5-2884-df91aa9a1ead&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+939379c2-8667-8630-2f72-4da65fe63e52+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Extending Output Objects
Article • 02/24/2025

You can extend the .NET Framework objects that are returned by cmdlets, functions, and
scripts by using types files ( .ps1xml ). Types files are XML-based files that let you add
properties and methods to existing objects. For example, Windows PowerShell provides
the Types.ps1xml file, which adds elements to several existing .NET Framework objects.
The Types.ps1xml  file is located in the Windows PowerShell installation directory
( $PSHOME ). You can create your own types file to further extend those objects or to
extend other objects. When you extend an object by using a types file, any instance of
the object is extended with the new elements.

The following example shows how Windows PowerShell extends the System.Array object
in the Types.ps1xml file. By default, System.Array objects have a Length  property that
lists the number of objects in the array. However, because the name "length" does not
clearly describe the property, Windows PowerShell adds the Count  alias property, which
displays the same value as the Length  property. The following XML adds the Count
property to the System.Array type.

XML

To see this new alias property, use a Get-Member command on any array, as shown in
the following example.

PowerShell

The command returns the following results.

Extending the System.Array Object

<Type>
  <Name>System.Array</Name>
  <Members>
    <AliasProperty>
      <Name>Count</Name>
      <ReferencedMemberName>Length</ReferencedMemberName>
    </AliasProperty>
  </Members>
</Type>

Get-Member -InputObject (1,2,3,4)

https://learn.microsoft.com/en-us/dotnet/api/System.Array
https://learn.microsoft.com/en-us/dotnet/api/System.Array
https://learn.microsoft.com/en-us/dotnet/api/System.Array
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-Member


Output

You can use either the Count  property or the Length  property to determine how many
objects are in an array. For example:

PowerShell

Output

PowerShell

Output

To create a custom types file, start by copying an existing types file. The new file can
have any name, but it must have a .ps1xml  file name extension. When you copy the file,
you can place the new file in any directory that is accessible to Windows PowerShell, but
it is useful to place the files in the Windows PowerShell installation directory ( $PSHOME )
or in a subdirectory of the installation directory.

To add your own extended types to the file, add a types element for each object that
you want to extend. The following topics provide examples.

Name           MemberType    Definition
----           ----------    ----------
Count          AliasProperty Count = Length
Address        Method        System.Object& Address(Int32 )
Clone          Method        System.Object Clone()
CopyTo         Method        System.Void CopyTo(Array array, Int32 index):
Equals         Method        System.Boolean Equals(Object obj)
Get            Method        System.Object Get(Int32 )
...
Length         Property      System.Int32 Length {get;}

PS> (1, 2, 3, 4).Count

4

PS> (1, 2, 3, 4).Length

4

Custom Types Files



For more information about adding properties and property sets, see Extended
Properties

For more information about adding methods, see Extended Methods.

For more information about adding member sets, see Extended Member Sets.

After you define your own extended types, use one of the following methods to make
your extended objects available:

To make your extended types file available to the current session, use the Update-
TypeData cmdlet to add the new file. If you want your types to take precedence
over the types that are defined in other types files (including the Types.ps1xml file),
use the PrependData  parameter of the Update-TypeData cmdlet.
To make your extended types file available to all future sessions, add the types file
to a module, export the current session, or add the Update-TypeData command to
your Windows PowerShell profile.

Types files should be digitally signed to prevent tampering because the XML can include
script blocks. For more information about adding digital signatures, see about_Signing

Defining Default Properties for Objects

Defining Default Methods for Objects

Defining Default Member Sets for Objects

Writing a Windows PowerShell Cmdlet

Signing Types Files

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Update-TypeData
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Update-TypeData
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Update-TypeData
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Update-TypeData
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_signing
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Extending Properties for Objects
Article • 09/17/2021

When you extend .NET Framework objects, you can add alias properties, code
properties, note properties, script properties, and property sets to the objects. The XML
that defines these properties is described in the following sections.

An alias property defines a new name for an existing property.

In the following example, the Count property is added to the System.Array type. The
AliasProperty element defines the extended property as an alias property. The Name
element specifies the new name. And, the ReferencedMemberName element specifies
the existing property that is referenced by the alias. You can also add the AliasProperty
element to the members of the MemberSets element.

XML

A code property references a static property of a .NET Framework object.

In the following example, the Mode property is added to the System.IO.DirectoryInfo
type. The CodeProperty element defines the extended property as a code property. The

７ Note

The examples in the following sections are from the default Types.ps1xml  types file
in the PowerShell installation directory ( $PSHOME ). For more information, see About
Types.ps1xml.

Alias properties

<Type>
  <Name>System.Array</Name>
  <Members>
    <AliasProperty>
      <Name>Count</Name>
      <ReferencedMemberName>Length</ReferencedMemberName>
    </AliasProperty>
  </Members>
</Type>

Code properties

https://learn.microsoft.com/en-us/dotnet/api/System.Array
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psaliasproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psaliasproperty.referencedmembername
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/en-us/dotnet/api/System.IO.DirectoryInfo
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodeproperty
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml


Name element specifies the name of the extended property. And, the GetCodeReference
element defines the static method that is referenced by the extended property. You can
also add the CodeProperty  element to the members of the MemberSets element.

XML

A note property defines a property that has a static value.

In the following example, the Status property, whose value is always Success, is added
to the System.IO.DirectoryInfo type. The NoteProperty element defines the extended
property as a note property. The Name element specifies the name of the extended
property. The Value element specifies the static value of the extended property. The
NoteProperty  element can also be added to the members of the MemberSets element.

XML

A script property defines a property whose value is the output of a script.

<Type>
  <Name>System.IO.DirectoryInfo</Name>
  <Members>
    <CodeProperty>
      <Name>Mode</Name>
      <GetCodeReference>
        
<TypeName>Microsoft.PowerShell.Commands.FileSystemProvider</TypeName>
        <MethodName>Mode</MethodName>
      </GetCodeReference>
    </CodeProperty>
  </Members>
</Type>

Note properties

<Type>
  <Name>System.IO.DirectoryInfo</Name>
  <Members>
    <NoteProperty>
      <Name>Status</Name>
      <Value>Success</Value>
    </NoteProperty>
  </Members>
</Type>

Script properties

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodeproperty.gettercodereference
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/en-us/dotnet/api/System.IO.DirectoryInfo
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psnoteproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psnoteproperty.value
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset


In the following example, the VersionInfo property is added to the System.IO.FileInfo
type. The ScriptProperty element defines the extended property as a script property. The
Name element specifies the name of the extended property. And, the GetScriptBlock
element specifies the script that generates the property value. You can also add the
ScriptProperty  element to the members of the MemberSets element.

XML

A property set defines a group of extended properties that can be referenced by the
name of the set. For example, the Format-Table Property parameter can specify a
specific property set to be displayed. When a property set is specified, only those
properties that belong to the set are displayed.

There's no restriction on the number of property sets that can be defined for an object.
However, the property sets used to define the default display properties of an object
must be specified within the PSStandardMembers member set. In the Types.ps1xml
types file, the default property set names include DefaultDisplayProperty,
DefaultDisplayPropertySet, and DefaultKeyPropertySet. Any additional property sets
that you add to the PSStandardMembers member set are ignored.

In the following example, the DefaultDisplayPropertySet property set is added to the
PSStandardMembers member set of the System.ServiceProcess.ServiceController type.
The PropertySet element defines the group of properties. The Name element specifies
the name of the property set. And, the ReferencedProperties element specifies the
properties of the set. You can also add the PropertySet  element to the members of the
Type element.

XML

<Type>
  <Name>System.IO.FileInfo</Name>
  <Members>
    <ScriptProperty>
      <Name>VersionInfo</Name>
      <GetScriptBlock>
        [System.Diagnostics.FileVersionInfo]::GetVersionInfo($this.FullName)
      </GetScriptBlock>
    </ScriptProperty>
  </Members>
</Type>

Property sets

https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileInfo
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptproperty.getterscript
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Format-Table
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pspropertyset
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pspropertyset.referencedpropertynames
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pstypename


About Types.ps1xml

System.Management.Automation

Writing a Windows PowerShell Cmdlet

<Type>
  <Name>System.ServiceProcess.ServiceController</Name>
  <Members>
    <MemberSet>
      <Name>PSStandardMembers</Name>
      <Members>
        <PropertySet>
           <Name>DefaultDisplayPropertySet</Name>
           <ReferencedProperties>
            <Name>Status</Name
            <Name>Name</Name>
            <Name>DisplayName</Name>
          </ReferencedProperties>
        </PropertySet>
      </Members>
    </MemberSet>
  </Members>
</Type>

See also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Defining Default Methods for Objects
Article • 09/17/2021

When you extend .NET Framework objects, you can add code methods and script
methods to the objects. The XML that is used to define these methods is described in
the following sections.

A code method references a static method of a .NET Framework object.

In the following example, the ToString method is added to the System.Xml.XmlNode
type. The PSCodeMethod element defines the extended method as a code method. The
Name element specifies the name of the extended method. And, the CodeReference
element specifies the static method. You can also add the PSCodeMethod element to
the members of the PSMemberSets element.

XML

７ Note

The examples in the following sections are from the Types.ps1xml  types file in the
Windows PowerShell installation directory ( $PSHOME ). For more information, see
About Types.ps1xml.

Code methods

<Type>
  <Name>System.Xml.XmlNode</Name>
  <Members>
    <CodeMethod>
      <Name>ToString</Name>
      <CodeReference>
        <TypeName>Microsoft.PowerShell.ToStringCodeMethods</TypeName>
        <MethodName>XmlNode</MethodName>
      </CodeReference>
    </CodeMethod>
  </Members>
</Type>

Script methods

https://learn.microsoft.com/en-us/dotnet/api/System.Xml.XmlNode
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodemethod
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name#System_Management_Automation_PSMemberInfo_Name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodemethod.codereference#System_Management_Automation_PSCodeMethod_CodeReference
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodemethod
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml


A script method defines a method whose value is the output of a script. In the following
example, the ConvertToDateTime method is added to the
System.Management.ManagementObject type. The PSScriptMethod element defines the
extended method as a script method. The Name element specifies the name of the
extended method. And, the Script element specifies the script that generates the
method value. You can also add the PSScriptMethod element to the members of the
PSMemberSets element.

XML

Writing a Windows PowerShell Cmdlet

<Type>
  <Name>System.Management.ManagementObject</Name>
  <Members>
    <ScriptMethod>
      <Name>ConvertToDateTime</Name>
      <Script>
        
[System.Management.ManagementDateTimeConverter]::ToDateTime($args[0])
      </Script>
    </ScriptMethod>
  </Members>
</Type>

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.ManagementObject
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptmethod
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo.name#System_Management_Automation_PSMemberInfo_Name
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptmethod.script#System_Management_Automation_PSScriptMethod_Script
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptmethod
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fdefining-default-methods-for-objects%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fdefining-default-methods-for-objects.md&documentVersionIndependentId=e3b4daf2-d3dd-e755-8e10-f529e801ada5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+29233180-4216-d818-18de-b8cb7b4ad5a3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Defining Default Member Sets for
Objects
Article • 09/17/2021

The PSStandardMembers member set is used by Windows PowerShell to define the
default property sets for an object. The default property sets can be used by commands
such as the formatting cmdlets to display only those properties that are defined by the
property set. The default property sets include DefaultDisplayProperty,
DefaultDisplayPropertySet, and DefaultKeyPropertySet. Windows PowerShell ignores all
other member sets and any other property sets added to the PSStandardMembers
member set.

In the following example, the PSStandardMembers member set defines the
DefaultDisplayPropertySet property set for System.Diagnostics.Process objects. This
property set is used by the Format-List cmdlet.

XML

The following output shows the default properties returned by the Format-List cmdlet.
Only the Id , Handles , CPU , and Name  properties are returned for each process object.

PowerShell

Member Set for System.Diagnostics.Process

<Type>
  <Name>System.Diagnostics.Process</Name>
  <Members>
    <MemberSet>
     <Name>PSStandardMembers</Name>
     <Members>
       <PropertySet>
         <Name>DefaultDisplayPropertySet</Name>
         <ReferencedProperties>
           <Name>Id</Name>
           <Name>Handles</Name>
           <Name>CPU</Name>
           <Name>Name</Name>
         </ReferencedProperties>
      </PropertySet>
    </Members>
  </MemberSet>

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Format-List
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Format-List


Output

Writing a Windows PowerShell Cmdlet

Get-Process | Format-List

Id      : 2036
Handles : 27
CPU     :
Name    : AEADISRV

Id      : 272
Handles : 38
CPU     :
Name    : agrsmsvc
...

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Custom Formatting Files
Article • 09/17/2021

The display format for the objects returned by cmdlets, functions, and scripts are
defined using formatting files ( format.ps1xml  files). Several of these files are provided
by Windows PowerShell to define the default display format for those objects returned
by Windows PowerShell cmdlets. However, you can also create your own custom
formatting files to overwrite the default display formats or to define the display of
objects returned by your own commands.

Windows PowerShell uses the data in these formatting files to determine what is
displayed and how the data is formatted. The displayed data can include the properties
of an object or the value of a script block. Script blocks are used if you want to display
some value that is not available directly from the properties of an object. For example,
you may want to add the value of two properties of an object and display the sum as a
separate piece of data. When you write your own formatting file, you will need to define
views for the objects that you want to display. You can define a single view for each
object, you can define a single view for multiple objects, or you can define multiple
views for the same object. There is no limit to the number of views that you can define.

Formatting views can display objects in a table format, a list format, a wide format, and a
custom format. For the most part, each formatting definition is described by a set of
XML tags that describe a view. Each view contains the name of the view, the objects that
use the view, and the elements of the view, such as the column and row information for
a table view.

The following views are available.

Table view Lists the properties of an object or a script block value in one or more
columns. Each column represents a property of the object or a script block value. You
can define a table view that displays all the properties of an object, a subset of the
properties of an object, or a combination of properties and script block values. Each row

） Important

Formatting files do not determine the elements of an object that are returned to
the pipeline. When an object is returned to the pipeline, all members of that object
are available.

Format Views



of the table represents a returned object. For more information about this view, see
Table View.

List view Lists the properties of an object or a script block value in a single column. Each
row of the list displays an optional label or the property name followed by the value of
the property or script block. For more information about this view, see List View.

Wide view Lists a single property of an object or a script block value in one or more
columns. There is no label or header for this view. For more information about this view,
see Wide View.

Custom view Displays a customizable view of object properties or script block values
that does not adhere to the rigid structure of table views, list views, or wide views. You
can define a standalone custom view, or you can define a custom view that is used by
another view, such as a table view or list view. For more information about this view, see
Custom View.

The following example shows the XML tags used to define a table view that contains
two columns. The ViewDefinitions element is the container element for all the views
defined in the formatting file. The View element defines the specific table, list, wide, or
custom view. Within each view, the Name element specifies the name of the view, the
ViewSelectedBy element defines the objects that use the view, and the different control
elements (such as the TableControl  element) define the format of the view.

XML

View XML Elements

ViewDefinitions
  <View>
    <Name>Name of View</Name>
    <ViewSelectedBy>
      <TypeName>Object to display using this view</TypeName>
      <TypeName>Object to display using this view</TypeName>
    </ViewSelectedBy>
    <TableControl>
      <TableHeaders>
        <TableColumnHeader>
          <Width></Width>
        </TableColumnHeader>
        <TableColumnHeader>
          <Width></Width>
        </TableColumnHeader>
      </TableHeaders>
      <TableRowEntries>
        <TableRowEntry>
          <TableColumnItems>



Table View

List View

Wide View

Custom View

Writing a Windows PowerShell Cmdlet

            <TableColumnItem>
              <PropertyName>Header for column 1</PropertyName>
            </TableColumnItem>
            <TableColumnItem>
              <PropertyName>Header for column 2</PropertyName>
            </TableColumnItem>
          </TableColumnItems>
        </TableRowEntry>
      </TableRowEntries>
    </TableControl)
  </View>
</ViewDefinitions>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Requesting Confirmation
Article • 09/17/2021

This section discusses confirmation messages that can be displayed before a cmdlet,
function, or provider performs an action.

Requesting Confirmation Process for Commands Discusses the process that cmdlets,
functions, and providers must follow to request a confirmation before they make a
change to the system.

Users Requesting Confirmation Discusses how users can make a cmdlet, function, or
provider request confirmation when the
System.Management.Automation.Cmdlet.ShouldProcess method is called.

Confirmation Messages Provides samples of the different confirmation messages that
can be displayed.

Writing a Windows PowerShell Cmdlet

In This Section

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Frequesting-confirmation%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Frequesting-confirmation.md&documentVersionIndependentId=f31413f6-7d71-d1cf-f5ad-03375c7838d2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5d4ac736-f2b5-182b-d08d-95650a0c74c3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Requesting Confirmation from Cmdlets
Article • 09/17/2021

Cmdlets should request confirmation when they are about to make a change to the
system that is outside of the Windows PowerShell environment. For example, if a cmdlet
is about to add a user account or stop a process, the cmdlet should require confirmation
from the user before it proceeds. In contrast, if a cmdlet is about to change a Windows
PowerShell variable, the cmdlet does not need to require confirmation.

In order to make a confirmation request, the cmdlet must indicate that it supports
confirmation requests, and it must call the
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue (optional) methods to display
a confirmation request message.

To support confirmation requests, the cmdlet must set the SupportsShouldProcess
parameter of the Cmdlet attribute to true . This enables the Confirm  and WhatIf  cmdlet
parameters that are provided by Windows PowerShell. The Confirm  parameter allows
the user to control whether the confirmation request is displayed. The WhatIf  parameter
allows the user to determine whether the cmdlet should display a message or perform
its action. Do not manually add the Confirm  and WhatIf  parameters to a cmdlet.

The following example shows a Cmdlet attribute declaration that supports confirmation
requests.

C#

In the cmdlet code, call the System.Management.Automation.Cmdlet.ShouldProcess
method before the operation that changes the system is performed. Design the cmdlet
so that if the call returns a value of false , the operation is not performed, and the
cmdlet processes the next operation.

Supporting Confirmation Requests

[Cmdlet(VerbsDiagnostic.Test, "RequestConfirmationTemplate1",
        SupportsShouldProcess = true)]

Calling the Confirmation request methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


Most cmdlets request confirmation using only the
System.Management.Automation.Cmdlet.ShouldProcess method. However, some cases
might require additional confirmation. For these cases, supplement the
System.Management.Automation.Cmdlet.ShouldProcess call with a call to the
System.Management.Automation.Cmdlet.ShouldContinue method. This allows the
cmdlet or provider to more finely control the scope of the Yes to all response to the
confirmation prompt.

If a cmdlet calls the System.Management.Automation.Cmdlet.ShouldContinue method,
the cmdlet must also provide a Force  switch parameter. If the user specifies Force  when
the user invokes the cmdlet, the cmdlet should still call
System.Management.Automation.Cmdlet.ShouldProcess, but it should bypass the call to
System.Management.Automation.Cmdlet.ShouldContinue.

System.Management.Automation.Cmdlet.ShouldContinue will throw an exception when
it is called from a non-interactive environment where the user cannot be prompted.
Adding a Force  parameter ensures that the command can still be performed when it is
invoked in a non-interactive environment.

The following example shows how to call
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue.

C#

The behavior of a System.Management.Automation.Cmdlet.ShouldProcess call can vary
depending on the environment in which the cmdlet is invoked. Using the previous
guidelines will help ensure that the cmdlet behaves consistently with other cmdlets,
regardless of the host environment.

For an example of calling the System.Management.Automation.Cmdlet.ShouldProcess
method, see How to Request Confirmations.

Calling the ShouldContinue Method

if (ShouldProcess (...) )
{
  if (Force || ShouldContinue(...))
  {
     // Add code that performs the operation.
  }
}

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-request-confirmations?view=powershell-7.5


When you create the cmdlet, specify the impact level (the severity) of the change. To do
this, set the value of the ConfirmImpact  parameter of the Cmdlet attribute to High,
Medium, or Low. You can specify a value for ConfirmImpact  only when you also specify
the SupportsShouldProcess  parameter for the cmdlet.

For most cmdlets, you do not have to explicitly specify ConfirmImpact . Instead, use the
default setting of the parameter, which is Medium. If you set ConfirmImpact  to High, the
operation will be confirmed by default. Reserve this setting for highly disruptive actions,
such as reformatting a hard-disk volume.

If the cmdlet or provider must send a message but not request confirmation, it can call
the following three methods. Avoid using the
System.Management.Automation.Cmdlet.WriteObject method to send messages of
these types because System.Management.Automation.Cmdlet.WriteObject output is
intermingled with the normal output of your cmdlet or provider, which makes script
writing difficult.

To caution the user and continue with the operation, the cmdlet or provider can
call the System.Management.Automation.Cmdlet.WriteWarning method.

To provide additional information that the user can retrieve using the Verbose
parameter, the cmdlet or provider can call the
System.Management.Automation.Cmdlet.WriteVerbose method.

To provide debugging-level detail for other developers or for product support, the
cmdlet or provider can call the
System.Management.Automation.Cmdlet.WriteDebug method. The user can
retrieve this information using the Debug  parameter.

Cmdlets and providers first call the following methods to request confirmation before
they attempt to perform an operation that changes a system outside of Windows
PowerShell:

System.Management.Automation.Cmdlet.ShouldProcess

System.Management.Automation.Provider.CmdletProvider.ShouldProcess

They do so by calling the System.Management.Automation.Cmdlet.ShouldProcess
method, which prompts the user to confirm the operation based on how the user

Specify the Impact Level

Calling Non-Confirmation Methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


invoked the command.

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Users Requesting Confirmation
Article • 09/24/2024

When you specify a value of true  for the SupportsShouldProcess  parameter of the
Cmdlet attribute declaration, the Confirm parameter is added to the parameters of the
cmdlet.

In the default environment, users can specify the Confirm parameter so that
confirmation is requested when the ShouldProcess()  method is called. This forces
confirmation regardless of the impact level setting.

If Confirm parameter is not used, the ShouldProcess()  call requests confirmation if the

ConfirmImpact  setting is equal to or greater than the $ConfirmPreference  preference
variable. The default setting of $ConfirmPreference  is High. Therefore, in the default
environment, only cmdlets and providers that specify a high-impact action request
confirmation.

If Confirm is explicitly set to false ( -Confirm:$false ), the cmdlet runs without prompting
for confirmation and the $ConfirmPreference  shell variable is ignored.

For cmdlets and providers that specify SupportsShouldProcess , but not
ConfirmImpact , those actions are handled as Medium  impact actions, and they will
not prompt by default. Their impact level is less than the default setting of the
$ConfirmPreference  preference variable.

If the user specifies the Verbose  parameter, they will be notified of the operation
even if they are not prompted for confirmation.

Writing a Windows PowerShell Cmdlet
System.Management.Automation.Cmdlet.ShouldProcess

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


Confirmation Messages
Article • 03/24/2025

Here are different confirmation messages that can be displayed depending on the
variants of the System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue methods that are called.

You can specify the resource that is about to be changed by calling the
System.Management.Automation.Cmdlet.ShouldProcess method. In this case, you
supply the resource by using the target  parameter of the method, and the operation is
added by Windows PowerShell. In the following message, the text "MyResource" is the
resource acted on and the operation is the name of the command that makes the call.

Output

If the user selects Yes or Yes to All to the confirmation request (as shown in the
following example), a call to the
System.Management.Automation.Cmdlet.ShouldContinue method is made, which
causes a second confirmation message to be displayed.

Output

） Important

For sample code that shows how to request confirmations, see How to Request
Confirmations.

Specifying the Resource

Confirm
Are you sure you want to perform this action?
Performing operation "Test-RequestConfirmationTemplate1" on Target 
"MyResource".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):

Confirm
Are you sure you want to perform this action?
Performing operation "Test-RequestConfirmationTemplate1" on Target 
"MyResource".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): y

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-request-confirmations?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-request-confirmations?view=powershell-7.5


You can specify the resource that is about to be changed and the operation that the
command is about to perform by calling the
System.Management.Automation.Cmdlet.ShouldProcess method. In this case, you
supply the resource by using the target  parameter and the operation by using the
target  parameter. In the following message, the text "MyResource" is the resource
acted on and "MyAction" is the operation to be performed.

Output

If the user selects Yes or Yes to All to the previous message, a call to the
System.Management.Automation.Cmdlet.ShouldContinue method is made, which
causes a second confirmation message to be displayed.

Output

Writing a Windows PowerShell Cmdlet

Confirm
Continue with this operation?
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is "Y"):

Specifying the Operation and Resource

Confirm
Are you sure you want to perform this action?
Performing operation "MyAction" on Target "MyResource".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"):

Confirm
Are you sure you want to perform this action?
Performing operation "MyAction" on Target "MyResource".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): y

Confirm
Continue with this operation?
[Y] Yes  [N] No  [S] Suspend  [?] Help (default is "Y"):

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Windows PowerShell Error Reporting
Article • 09/17/2021

The topics in this section discuss how cmdlets report errors.

Error Reporting Concepts Describes the two mechanisms that cmdlets can use to report
errors.

Terminating Errors Describes the method used to report terminating errors, where that
method can be called from within the cmdlet, and exceptions that can be returned by
the Windows PowerShell runtime when the method is called.

Non-Terminating Errors Describes the method used to report non-terminating errors
and where that method can be called from within the cmdlet.

Displaying Error Information by Category Discusses the ways that users can display
error.

Windows PowerShell Error Records Describes the components of an error record.

Interpreting ErrorRecord Objects Discusses how ErrorRecord objects are interpreted.

Writing a Windows PowerShell Cmdlet

In This Section

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fwindows-powershell-error-reporting%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fwindows-powershell-error-reporting.md&documentVersionIndependentId=1ca072fc-1027-26dd-e0eb-16ed5715b429&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0c87a3e1-ecfe-2fc9-498d-e15c6c83dd77+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Error Reporting Concepts
Article • 03/24/2025

Windows PowerShell provides two mechanisms for reporting errors: one mechanism for
terminating errors and another mechanism for non-terminating errors. It is important for
your cmdlet to report errors correctly so that the host application that is running your
cmdlets can react in an appropriate manner.

Your cmdlet should call the
System.Management.Automation.Cmdlet.ThrowTerminatingError* method when an error
occurs that does not or should not allow the cmdlet to continue to process its input
objects. Your cmdlet should call the System.Management.Automation.Cmdlet.WriteError
method to report non-terminating errors when the cmdlet can continue processing the
input objects. Both methods provide an error record that the host application can use to
investigate the cause of the error.

Use the following guidelines to determine whether an error is a terminating or non-
terminating error.

An error is a terminating error if it prevents your cmdlet from continuing to
process the current object or from successfully processing any further input
objects, regardless of their content.

An error is a terminating error if you do not want your cmdlet to continue
processing the current object or any further input objects, regardless of their
content.

An error is a terminating error if it occurs in a cmdlet that does not accept or
return an object or if it occurs in a cmdlet that accepts or returns only one object.

An error is a non-terminating error if you want your cmdlet to continue processing
the current object and any further input objects.

An error is a non-terminating error if it is related to a specific input object or
subset of input objects.

System.Management.Automation.Cmdlet.ThrowTerminatingError*

System.Management.Automation.Cmdlet.WriteError

Windows PowerShell Error Records

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError


Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Terminating Errors
Article • 03/24/2025

This topic discusses the method used to report terminating errors. It also discusses how
to call the method from within the cmdlet, and it discusses the exceptions that can be
returned by the Windows PowerShell runtime when the method is called.

When a terminating error occurs, the cmdlet should report the error by calling the
System.Management.Automation.Cmdlet.ThrowTerminatingError* method. This method
allows the cmdlet to send an error record that describes the condition that caused the
terminating error. For more information about error records, see Windows PowerShell
Error Records.

When the System.Management.Automation.Cmdlet.ThrowTerminatingError* method is
called, the Windows PowerShell runtime permanently stops the execution of the pipeline
and throws a System.Management.Automation.PipelineStoppedException exception.
Any subsequent attempts to call System.Management.Automation.Cmdlet.WriteObject,
System.Management.Automation.Cmdlet.WriteError, or several other APIs causes those
calls to throw a System.Management.Automation.PipelineStoppedException exception.

The System.Management.Automation.PipelineStoppedException exception can also
occur if another cmdlet in the pipeline reports a terminating error, if the user has asked
to stop the pipeline, or if the pipeline has been halted before completion for any reason.
The cmdlet does not need to catch the
System.Management.Automation.PipelineStoppedException exception unless it must
clean up open resources or its internal state.

Cmdlets can write any number of output objects or non-terminating errors before
reporting a terminating error. However, the terminating error permanently stops the
pipeline, and no further output, terminating errors, or non-terminating errors can be
reported.

Cmdlets can call System.Management.Automation.Cmdlet.ThrowTerminatingError* only
from the thread that called the
System.Management.Automation.Cmdlet.BeginProcessing,
System.Management.Automation.Cmdlet.ProcessRecord, or
System.Management.Automation.Cmdlet.EndProcessing input processing method. Do
not attempt to call System.Management.Automation.Cmdlet.ThrowTerminatingError* or
System.Management.Automation.Cmdlet.WriteError from another thread. Instead, errors
must be communicated back to the main thread.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PipelineStoppedException
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PipelineStoppedException
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PipelineStoppedException
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PipelineStoppedException
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError


It is possible for a cmdlet to throw an exception in its implementation of the
System.Management.Automation.Cmdlet.BeginProcessing,
System.Management.Automation.Cmdlet.ProcessRecord, or
System.Management.Automation.Cmdlet.EndProcessing method. Any exception thrown
from these methods (except for a few severe error conditions that stop the Windows
PowerShell host) is interpreted as a terminating error which stops the pipeline, but not
Windows PowerShell as a whole. (This applies only to the main cmdlet thread. Uncaught
exceptions in threads spawned by the cmdlet, in general, halt the Windows PowerShell
host.) We recommend that you use
System.Management.Automation.Cmdlet.ThrowTerminatingError* rather than throwing
an exception because the error record provides additional information about the error
condition, which is useful to the end-user. Cmdlets should honor the managed code
guideline against catching and handling all exceptions ( catch (Exception e) ). Convert
only exceptions of known and expected types into error records.

System.Management.Automation.Cmdlet.BeginProcessing

System.Management.Automation.Cmdlet.EndProcessing

System.Management.Automation.Cmdlet.ProcessRecord

System.Management.Automation.PipelineStoppedException

System.Management.Automation.Cmdlet.ThrowTerminatingError*

System.Management.Automation.Cmdlet.WriteError

Windows PowerShell Error Records

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PipelineStoppedException
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Non-Terminating Errors
Article • 09/17/2021

This topic discusses the method used to report non-terminating errors. It also discusses
how to call the method from within the cmdlet.

When a non-terminating error occurs, the cmdlet should report this error by calling the
System.Management.Automation.Cmdlet.WriteError method. When the cmdlet reports a
non-terminating error, the cmdlet can continue to operate on this input object and on
further incoming pipeline objects. If the cmdlet calls the
System.Management.Automation.Cmdlet.WriteError method, the cmdlet can write an
error record that describes the condition that caused the non-terminating error. For
more information about error records, see Windows PowerShell Error Records.

Cmdlets can call System.Management.Automation.Cmdlet.WriteError as necessary from
within their input processing methods. However, cmdlets can call
System.Management.Automation.Cmdlet.WriteError only from the thread that called the
System.Management.Automation.Cmdlet.BeginProcessing,
System.Management.Automation.Cmdlet.ProcessRecord, or
System.Management.Automation.Cmdlet.EndProcessing input processing method. Do
not call System.Management.Automation.Cmdlet.WriteError from another thread.
Instead, communicate errors back to the main thread.

System.Management.Automation.Cmdlet.WriteError

System.Management.Automation.Cmdlet.BeginProcessing

System.Management.Automation.Cmdlet.ProcessRecord

System.Management.Automation.Cmdlet.EndProcessing

Windows PowerShell Error Records

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fnon-terminating-errors%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fnon-terminating-errors.md&documentVersionIndependentId=fb57e4e0-1cb2-49c0-d86e-4de718ba84c1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+509f3e3e-0fa0-116f-8ff9-d19020011259+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Displaying Error Information
Article • 09/17/2021

This topic discusses the ways in which users can display error information.

When your cmdlet encounters an error, the presentation of the error information will, by
default, resemble the following error output.

PowerShell

However, users can view errors by category by setting the $ErrorView  variable to

"CategoryView" . Category view displays specific information from the error record rather
than a free-text description of the error. This view can be useful if you have a long list of
errors to scan. In category view, the previous error message is displayed as follows.

PowerShell

For more information about error categories, see Windows PowerShell Error Records.

Windows PowerShell Error Records

Writing a Windows PowerShell Cmdlet

$ Stop-Service lanmanworkstation
You do not have sufficient permissions to stop the service Workstation.

$ $ErrorView = "CategoryView"
$ Stop-Service lanmanworkstation
CloseError: (System.ServiceProcess.ServiceController:ServiceController) 
[Stop-Service], ServiceCommandException

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Windows PowerShell Error Records
Article • 09/17/2021

Cmdlets must pass an System.Management.Automation.ErrorRecord object that
identifies the error condition for terminating and non-terminating errors.

The System.Management.Automation.ErrorRecord object contains the following
information:

The exception that describes the error. Often, this is an exception that the cmdlet
caught and converted into an error record. Every error record must contain an
exception.

If the cmdlet did not catch an exception, it must create a new exception and choose the
exception class that best describes the error condition. However, you do not need to
throw the exception because it can be accessed through the
System.Management.Automation.ErrorRecord.Exception property of the
System.Management.Automation.ErrorRecord object.

An error identifier that provides a targeted designator that can be used for
diagnostic purposes and by Windows PowerShell scripts to handle specific error
conditions with specific error handlers. Every error record must contain an error
identifier (see Error Identifier).

An error category that provides a general designator that can be used for
diagnostic purposes. Every error record must specify an error category (see Error
Category).

An optional replacement error message and a recommended action (see
Replacement Error Message).

Optional invocation information about the cmdlet that threw the error. This
information is specified by Windows PowerShell (see Invocation Message).

The target object that was being processed when the error occurred. This might be
the input object, or it might be another object that your cmdlet was processing.
For example, for the command Remove-Item -Recurse C:\somedirectory , the error
might be an instance of a FileInfo object for "C:\somedirectory\lockedfile". The
target object information is optional.

Error Identifier

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.Exception
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord


When you create an error record, specify an identifier that designates the error
condition within your cmdlet. Windows PowerShell combines the targeted identifier with
the name of your cmdlet to create a fully qualified error identifier. The fully qualified
error identifier can be accessed through the
System.Management.Automation.ErrorRecord.FullyQualifiedErrorId property of the
System.Management.Automation.ErrorRecord object. The error identifier is not available
by itself. It is available only as part of the fully qualified error identifier.

Use the following guidelines to generate error identifiers when you create error records:

Make error identifiers specific to an error condition. Target the error identifiers for
diagnostic purposes and for scripts that handle specific error conditions with
specific error handlers. A user should be able to use the error identifier to identify
the error and its source. Error identifiers also enable reporting for specific error
conditions from existing exceptions so that new exception subclasses are not
required.

In general, assign different error identifiers to different code paths. The end-user
benefits from specific identifiers. Often, each code path that calls
System.Management.Automation.Cmdlet.WriteError or
System.Management.Automation.Cmdlet.ThrowTerminatingError* has its own
identifier. As a rule, define a new identifier when you define a new template string
for the error message, and vice-versa. Do not use the error message as an
identifier.

When you publish code using a particular error identifier, you establish the
semantics of errors with that identifier for your complete product support lifecycle.
Do not reuse it in a context that is semantically different from the original context.
If the semantics of this error change, create and then use a new identifier.

You should generally use a particular error identifier only for exceptions of a
particular CLR type. If the type of the exception or the type of the target object
changes, create and then use a new identifier.

Choose text for your error identifier that concisely corresponds to the error that
you are reporting. Use standard .NET Framework naming and capitalization
conventions. Do not use white space or punctuation. Do not localize error
identifiers.

Do not dynamically generate error identifiers in a non-reproducible way. For
example, do not incorporate error information such as a process ID. Error
identifiers are useful only if they correspond to the error identifiers seen by other
users who are experiencing the same error condition.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.FullyQualifiedErrorId
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError


When you create an error record, specify the category of the error using one of the
constants defined by the System.Management.Automation.ErrorCategory enumeration.
Windows PowerShell uses the error category to display error information when users set
the $ErrorView  variable to "CategoryView" .

Avoid using the System.Management.Automation.ErrorCategory NotSpecified constant.
If you have any information about the error or about the operation that caused the
error, choose the category that best describes the error or the operation, even if the
category is not a perfect match.

The information displayed by Windows PowerShell is referred to as the category-view
string and is built from the properties of the
System.Management.Automation.ErrorCategoryInfo class. (This class is accessed through
the error System.Management.Automation.ErrorRecord.CategoryInfo property.)

The following list describes the information displayed:

Category: A Windows PowerShell-defined
System.Management.Automation.ErrorCategory constant.

TargetName: By default, the name of the object the cmdlet was processing when
the error occurred. Or, another cmdlet-defined string.

TargetType: By default, the type of the target object. Or, another cmdlet-defined
string.

Activity: By default, the name of the cmdlet that created the error record. Or, some
other cmdlet-defined string.

Reason: By default, the exception type. Or, another cmdlet-defined string.

When you develop an error record for a cmdlet, the default error message for the error
comes from the default message text in the System.Exception.Message property. This is
a read-only property whose message text is intended only for debugging purposes
(according to the .NET Framework guidelines). We recommend that you create an error

Error Category

{Category}: ({TargetName}:{TargetType}):[{Activity}], {Reason}

Replacement Error Message

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.CategoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Exception.Message


message that replaces or augments the default message text. Make the message more
user-friendly and more specific to the cmdlet.

The replacement message is provided by an
System.Management.Automation.ErrorDetails object. Use one of the following
constructors of this object because they provide additional localization information that
can be used by Windows PowerShell.

ErrorDetails(Cmdlet, String, String, Object[]): Use this constructor if your template
string is a resource string in the same assembly in which the cmdlet is
implemented or if you want to load the template string through an override of the
System.Management.Automation.Cmdlet.GetResourceString method.

ErrorDetails(Assembly, String, String, Object[]): Use this constructor if the template
string is in another assembly and you do not load it through an override of
System.Management.Automation.Cmdlet.GetResourceString.

The replacement message should conform to the .NET Framework design guidelines for
writing exception messages with a small difference. The guidelines state that exception
messages should be written for developers. These replacement messages should be
written for the cmdlet user.

The replacement error message must be added before the
System.Management.Automation.Cmdlet.WriteError or
System.Management.Automation.Cmdlet.ThrowTerminatingError* methods are called. To
add a replacement message, set the
System.Management.Automation.ErrorRecord.ErrorDetails property of the error record.
When this property is set, Windows PowerShell displays the
System.Management.Automation.ErrorDetails.Message* property instead of the default
message text.

The System.Management.Automation.ErrorDetails object can also provide information
about what actions are recommended when the error occurs.

When a cmdlet uses System.Management.Automation.Cmdlet.WriteError or
System.Management.Automation.Cmdlet.ThrowTerminatingError* to report an error
record, Windows PowerShell automatically adds information that describes the
command that was invoked when the error occurred. This information is provided by a

Recommended Action Information

Invocation information

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorDetails
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.errordetails.-ctor#System_Management_Automation_ErrorDetails__ctor_System_Management_Automation_Cmdlet_System_String_System_String_System_Object___
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.GetResourceString
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.errordetails.-ctor#System_Management_Automation_ErrorDetails__ctor_System_Reflection_Assembly_System_String_System_String_System_Object___
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.GetResourceString
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.ErrorDetails
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorDetails.Message
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorDetails
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError


System.Management.Automation.InvocationInfo object that contains the name of the
cmdlet that was invoked by the command, the command itself, and information about
the pipeline or script. This property is read-only.

System.Management.Automation.Cmdlet.WriteError

System.Management.Automation.Cmdlet.ThrowTerminatingError*

System.Management.Automation.ErrorCategory

System.Management.Automation.ErrorCategoryInfo

System.Management.Automation.ErrorRecord

System.Management.Automation.ErrorDetails

System.Management.Automation.InvocationInfo

Windows PowerShell Error Reporting

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.InvocationInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorDetails
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.InvocationInfo
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Interpreting ErrorRecord Objects
Article • 09/15/2023

In most cases, an System.Management.Automation.ErrorRecord object represents a non-
terminating error generated by a command or script. Terminating errors can also specify
the additional information in an ErrorRecord via the
System.Management.Automation.IContainsErrorRecord interface.

If you want to write an error handler in your script or a host to handle specific errors
that occur during command or script execution, you must interpret the
System.Management.Automation.ErrorRecord object to determine whether it represents
the class of error that you want to handle.

When a cmdlet encounters a terminating or non-terminating error, it should create an
error record that describes the error condition. The host application must investigate
these error records and perform whatever action will mitigate the error. The host
application must also investigate error records for non-terminating errors that failed to
process a record but were able to continue, and it must investigate error records for
terminating errors that caused the pipeline to stop.

Error records are designed to provide additional error information that is not available in
exceptions while ensuring that the combined information in each error record is unique.
This uniqueness allows the host application to inspect the different parts of the error
record so that it can identify the error condition and the action the host must take.

You can review several parts of the error record to identify the error. These parts include
the following:

７ Note

For terminating errors, the cmdlet calls the
System.Management.Automation.Cmdlet.ThrowTerminatingError method. For
non-terminating errors, the cmdlet calls the
System.Management.Automation.Cmdlet.WriteError method.

Error Record Design

Interpreting Error Records

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.IContainsErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError


The error category

The error exception

The fully qualified error identifier (FQID)

Other information

The error category of the error record is one of the predefined constants provided by
the System.Management.Automation.ErrorCategory enumeration. This information is
available through the System.Management.Automation.ErrorRecord.CategoryInfo
property of the System.Management.Automation.ErrorRecord object.

The cmdlet can specify the CloseError, OpenError, InvalidType, ReadError, and WriteError
categories, and other error categories. The host application can use the error category
to capture groups of errors.

The exception included in the error record is provided by the cmdlet and can be
accessed through the System.Management.Automation.ErrorRecord.Exception property
of the System.Management.Automation.ErrorRecord object.

Host applications can use the is  keyword to identify that the exception is of a specific
class or of a derived class. It is better to branch on the exception type, as shown in the
following example.

PowerShell

This way, you catch the derived classes. However, there are problems if the exception is
deserialized.

The FQID is the most specific information you can use to identify the error. It is a string
that includes a cmdlet-defined identifier, the name of the cmdlet class, and the source

The Error Category

The Exception

`if (MyNonTerminatingError.Exception is AccessDeniedException)`
{
  ...
}

The FQID

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.CategoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.Exception
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord


that reported the error. In general, an error record is analogous to an event record of a
Windows Event log. The FQID is analogous to the following tuple, which identifies the
class of the event record: (log name, source, event ID).

The FQID is designed to be inspected as a single string. However, cases exist in which
the error identifier is designed to be parsed by the host application. The following
example is a well-formed fully qualified error identifier.

CommandNotFoundException,Microsoft.PowerShell.Commands.GetCommandCommand.

In the previous example, the first token is the error identifier, which is followed by the
name of the cmdlet class. The error identifier can be a single token, or it can be a dot-
separated identifier that allows for branching on inspection of the identifier. Do not use
white space or punctuation in the error identifier. It is especially important not to use a
comma; a comma is used by Windows PowerShell to separate the identifier and the
cmdlet class name.

The System.Management.Automation.ErrorRecord object might also provide information
that describes the environment in which the error occurred. This information includes
items such as error details, invocation information, and the target object that was being
processed when the error occurred. Although this information might be useful to the
host application, it is not typically used to identify the error. This information is available
through the following properties:

System.Management.Automation.ErrorRecord.ErrorDetails

System.Management.Automation.ErrorRecord.InvocationInfo

System.Management.Automation.ErrorRecord.TargetObject

System.Management.Automation.ErrorRecord

System.Management.Automation.ErrorCategory

System.Management.Automation.ErrorCategoryinfo

System.Management.Automation.Cmdlet.WriteError

System.Management.Automation.Cmdlet.ThrowTerminatingError*

Other Information

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.ErrorDetails
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.InvocationInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord.TargetObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ThrowTerminatingError


Adding Non-Terminating Error Reporting to Your Cmdlet

Windows PowerShell Error Reporting

Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Background Jobs
Article • 09/17/2021

Cmdlets can perform their action internally or as a Windows PowerShellbackground job.
When a cmdlet runs as a background job, the work is done asynchronously in its own
thread separate from the pipeline thread that the cmdlet is using. From the user
perspective, when a cmdlet runs as a background job, the command prompt returns
immediately even if the job takes an extended amount of time to complete, and the user
can continue without interruption while the job runs.

The job object that is returned by the cmdlets that support background jobs defines the
job. (The Start-Job cmdlet also returns a job object.) The name of the job, an identifier
that is used to specify the job, the state information, and the child jobs are included in
this definition. The job does not perform any of the work. Each background job has at
least one child job because the child job performs the actual work. When you run a
cmdlet so that the work is performed as a background job, the cmdlet must add the job
and the child jobs to a common repository, referred to as the job repository.

For more information about how background jobs are handled at the command line, see
the following:

about_Jobs

about_Job_Details

about_Remote_Jobs

To write a cmdlet that can be run as a background job, you must complete the following
tasks:

Define an asJob  switch parameter so that the user can decide whether to run the
cmdlet as a background job.

Background Jobs, Child Jobs, and the Job
Repository

Writing a Cmdlet That Runs as a Background
Job

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Start-Job
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_jobs
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_job_details
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_remote_jobs


Create an object that derives from the System.Management.Automation.Job class.
This object can be a custom job object or a job object provided by Windows
PowerShell, such as a System.Management.Automation.PSEventJob object.

In a record processing method, add an if  statement that detects whether the
cmdlet should run as a background job.

For custom job objects, implement the job class.

Return the appropriate objects, depending on whether the cmdlet is run as a
background job.

For a code example, see How to Support Jobs.

The following APIs are provided by Windows PowerShell to manage background jobs.

System.Management.Automation.Job Derives custom job objects. This is an abstract
class.

System.Management.Automation.JobRepository Manages and provides information
about the current active background jobs.

System.Management.Automation.JobState Defines the state of the background job.
States include Started, Running, and Stopped.

System.Management.Automation.JobStateInfo Provides information about the state of a
background job and, if the last state change was caused by an error, the reason the job
entered its current state.

System.Management.Automation.JobStateEventArgs Provides the arguments for an
event that is raised when a background job changes state.

The following cmdlets are provided by Windows PowerShell to manage background
jobs.

Get-Job

Gets Windows PowerShell background jobs that are running in the current session.

Receive-Job

Background Job-Related APIs

Windows PowerShell Job Cmdlets

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Job
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSEventJob
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Job
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.JobRepository
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.JobState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.JobStateInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.JobStateEventArgs
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Job
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Receive-Job


Gets the results of the Windows PowerShell background jobs in the current session.

Remove-Job

Deletes a Windows PowerShell background job.

Start-Job

Starts a Windows PowerShell background job.

Stop-Job

Stops a Windows PowerShell background job.

Wait-Job

Suppresses the command prompt until one or all of the Windows PowerShell
background jobs running in the session are complete.

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Remove-Job
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Start-Job
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Stop-Job
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Wait-Job
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Invoking Cmdlets and Scripts Within a
Cmdlet
Article • 12/18/2023

A cmdlet can invoke other cmdlets and scripts from within the input processing method
of the cmdlet. This allows you to add the functionality of existing cmdlets and scripts to
your cmdlet without having to rewrite the code.

All cmdlets can invoke an existing cmdlet by calling the
System.Management.Automation.Cmdlet.Invoke method from within an input
processing method, such as System.Management.Automation.Cmdlet.BeginProcessing,
that is overridden by the cmdlet. However, you can invoke only those cmdlets that
derive directly from the System.Management.Automation.Cmdlet class. You cannot
invoke a cmdlet that derives from the System.Management.Automation.PSCmdlet class.

The System.Management.Automation.Cmdlet.Invoke* method has the following variants.

System.Management.Automation.Cmdlet.Invoke This variant invokes the cmdlet object
and returns a collection of "T" type objects.

System.Management.Automation.Cmdlet.Invoke This variant invokes the cmdlet object
and returns a strongly typed enumerator. This variant allows the user to use the objects
in the collection to perform custom operations.

Example Description

Invoking Cmdlets Within
a Cmdlet

This example shows how to invoke a cmdlet from within another
cmdlet.

Invoking Scripts Within a
Cmdlet

This example shows how to invoke a script that is supplied to the
cmdlet from within another cmdlet.

The Invoke Method

Examples

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.Invoke


Writing a Windows PowerShell Cmdlet

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Finvoking-cmdlets-and-scripts-within-a-cmdlet%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Finvoking-cmdlets-and-scripts-within-a-cmdlet.md&documentVersionIndependentId=8e943312-7cad-c2f7-27a0-b4539f5ed6f4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6b4a93de-f340-d0a1-1d09-717ff19adfd7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Cmdlet Sets
Article • 03/24/2025

When you design your cmdlets, you might encounter cases in which you need to
perform several actions on the same piece of data. For example, you might need to get
and set data or start and stop a process. Although you will need to create separate
cmdlets to perform each action, your cmdlet design should include a base class from
which the classes for the individual cmdlets are derived.

Keep the following things in mind when implementing a base class.

Declare any common parameters used by all the derived cmdlets in the base class.

Add cmdlet-specific parameters to the appropriate cmdlet class.

Override the appropriate input processing method in the base class.

Declare the System.Management.Automation.CmdletAttribute attribute on all
cmdlet classes, but do not declare it on the base class.

Implement a System.Management.Automation.PSSnapIn or
System.Management.Automation.CustomPSSnapIn class whose name and
description reflects the set of cmdlets.

The following example shows the implementation of a base class that is used by Get-
Proc and Stop-Proc cmdlet that derive from the same base class.

C#

Example

using System;
using System.Diagnostics;
using System.Management.Automation;             //Windows PowerShell 
namespace.

namespace Microsoft.Samples.PowerShell.Commands
{

  #region ProcessCommands

  /// <summary>
  /// This class implements a Stop-Proc cmdlet. The parameters
  /// for this cmdlet are defined by the BaseProcCommand class.
  /// </summary>
  [Cmdlet(VerbsLifecycle.Stop, "Proc", SupportsShouldProcess = true)]

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSSnapIn
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CustomPSSnapIn


  public class StopProcCommand : BaseProcCommand
  {
    public override void ProcessObject(Process process)
    {
      if (ShouldProcess(process.ProcessName, "Stop-Proc"))
      {
        process.Kill();
      }
    }
  }

  /// <summary>
  /// This class implements a Get-Proc cmdlet. The parameters
  /// for this cmdlet are defined by the BaseProcCommand class.
  /// </summary>

  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : BaseProcCommand
  {
    public override void ProcessObject(Process process)
    {
      WriteObject(process);
    }
  }

  /// <summary>
  /// This class is the base class that defines the common
  /// functionality used by the Get-Proc and Stop-Proc
  /// cmdlets.
  /// </summary>
  public class BaseProcCommand : Cmdlet
  {
    #region Parameters

    // Defines the Name parameter that is used to
    // specify a process by its name.
    [Parameter(
               Position = 0,
               Mandatory = true,
               ValueFromPipeline = true,
               ValueFromPipelineByPropertyName = true
    )]
    public string[] Name
    {
      get { return processNames; }
      set { processNames = value; }
    }
    private string[] processNames;

    // Defines the Exclude parameter that is used to
    // specify which processes should be excluded when
    // the cmdlet performs its action.
    [Parameter()]
    public string[] Exclude
    {



      get { return excludeNames; }
      set { excludeNames = value; }
    }
    private string[] excludeNames = new string[0];
    #endregion Parameters

    public virtual void ProcessObject(Process process)
    {
      throw new NotImplementedException("This method should be 
overridden.");
    }

    #region Cmdlet Overrides
    // <summary>
    // For each of the requested process names, retrieve and write
    // the associated processes.
    // </summary>
    protected override void ProcessRecord()
    {
      // Set up the wildcard characters used in resolving
      // the process names.
      WildcardOptions options = WildcardOptions.IgnoreCase |
                                WildcardOptions.Compiled;

      WildcardPattern[] include = new WildcardPattern[Name.Length];
      for (int i = 0; i < Name.Length; i++)
      {
        include[i] = new WildcardPattern(Name[i], options);
      }

      WildcardPattern[] exclude = new WildcardPattern[Exclude.Length];
      for (int i = 0; i < Exclude.Length; i++)
      {
        exclude[i] = new WildcardPattern(Exclude[i], options);
      }

      foreach (Process p in Process.GetProcesses())
      {
        foreach (WildcardPattern wIn in include)
        {
          if (wIn.IsMatch(p.ProcessName))
          {
            bool processThisOne = true;
            foreach (WildcardPattern wOut in exclude)
            {
              if (wOut.IsMatch(p.ProcessName))
              {
                processThisOne = false;
                break;
              }
            }
            if (processThisOne)
            {
              ProcessObject(p);
            }



Writing a Windows PowerShell Cmdlet

            break;
          }
        }
      }
    }
    #endregion Cmdlet Overrides
  }
    #endregion ProcessCommands
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Windows PowerShell Session State
Article • 09/17/2021

Session state refers to the current configuration of a Windows PowerShell session or
module. A Windows PowerShell session is the operational environment that is used
interactively by the command-line user or programmatically by a host application. The
session state for a session is referred to as the global session state.

From a developer perspective, a Windows PowerShell session refers to the time between
when a host application opens a Windows PowerShell runspace and when it closes the
runspace. Looked at another way, the session is the lifetime of an instance of the
Windows PowerShell engine that is invoked while the runspace exists.

Module session states are created whenever the module or one of its nested modules is
imported into the session. When a module exports an element such as a cmdlet,
function, or script, a reference to that element is added to the global session state of the
session. However, when the element is run, it is executed within the session state of the
module.

Session state data can be public or private. Public data is available to calls from outside
the session state while private data is available only to calls from within the session
state. For example, a module can have a private function that can be called only by the
module or only internally by a public element that has been exported. This is similar to
the private and public members of a .NET Framework type.

Session-state data is stored by the current instance of the execution engine within the
context of the current Windows PowerShell session. Session-state data consists of the
following items:

Path information

Drive information

Windows PowerShell provider information

Information about the imported modules and references to the module elements
(such as cmdlets, functions, and scripts) that are exported by the module. This

Module Session State

Session-State Data



information and these references are for the global session state only.

Session-state variable information

Cmdlets can access session-state data either indirectly through the
System.Management.Automation.PSCmdlet.SessionState* property of the cmdlet class
or directly through the System.Management.Automation.SessionState class. The
System.Management.Automation.SessionState class provides properties that can be
used to investigate different types of session-state data.

System.Management.Automation.PSCmdlet.SessionState

System.Management.Automation.SessionState

Windows PowerShell Cmdlets

Writing a Windows PowerShell Cmdlet

Windows PowerShell Shell SDK

Accessing Session-State Data Within Cmdlets

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.SessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.SessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionState
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Examples of Cmdlet Code
Article • 09/17/2021

This section contains examples of cmdlet code that you can use to start writing your
own cmdlets.

How to Write a Simple Cmdlet This example shows the basic structure of cmdlet code.

How to Declare Cmdlet Parameters This example shows how to declare the different
types of parameters.

How to Declare Parameter Sets This example shows how to declare sets of parameters
that can change the action a cmdlet performs.

How to Validate Parameter Input These examples show how to validate parameter input.

How to Declare Dynamic Parameters This example shows how to declare a parameter
that is added at runtime.

How to Invoke Scripts Within a Cmdlet This example shows how to invoke a script that is
supplied to a cmdlet.

How To Override Input Processing Methods These examples show the basic structure
used to override the BeginProcessing, ProcessRecord, and EndProcessing methods.

How to Support ShouldProcess Calls This example shows how the
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue methods should be called
from within a cmdlet.

How to Support Transactions This example shows how to indicate that the cmdlet
supports transactions and how to implement the action that is taken when the cmdlet is
used within a transaction.

How to Support Jobs This example shows how to support jobs when you write cmdlets.

） Important

If you want step-by-step instructions for writing cmdlets, see Tutorials for Writing
Cmdlets.

In This Section

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-request-confirmations?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue


How to Invoke a Cmdlet From Within a Cmdlet This example shows how to invoke a
cmdlet from within another cmdlet, which allows you to add the functionality of the
invoked cmdlet to the cmdlet you are developing.

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fexamples-of-cmdlet-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fexamples-of-cmdlet-code.md&documentVersionIndependentId=bb505dea-1928-44ad-6de1-37b3f86a53fc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b859b480-141f-59b9-6fa4-54031f051367+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to write a cmdlet
Article • 09/17/2021

This article shows how to write a cmdlet. The Send-Greeting  cmdlet takes a single user
name as input and then writes a greeting to that user. Although the cmdlet does not do
much work, this example demonstrates the major sections of a cmdlet.

1. To declare the class as a cmdlet, use the Cmdlet attribute. The Cmdlet attribute
specifies the verb and the noun for the cmdlet name.

For more information about the Cmdlet attribute, see CmdletAttribute Declaration.

2. Specify the name of the class.

3. Specify that the cmdlet derives from either of the following classes:

System.Management.Automation.Cmdlet
System.Management.Automation.PSCmdlet

4. To define the parameters for the cmdlet, use the Parameter attribute. In this case,
only one required parameter is specified.

For more information about the Parameter attribute, see ParameterAttribute
Declaration.

5. Override the input processing method that processes the input. In this case, the
System.Management.Automation.Cmdlet.ProcessRecord method is overridden.

6. To write the greeting, use the method
System.Management.Automation.Cmdlet.WriteObject. The greeting is displayed in
the following format:

Output

C#

Steps to write a cmdlet

Hello <UserName>!

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


System.Management.Automation.Cmdlet

System.Management.Automation.PSCmdlet

System.Management.Automation.Cmdlet.ProcessRecord

System.Management.Automation.Cmdlet.WriteObject

CmdletAttribute Declaration

ParameterAttribute Declaration

Writing a Windows PowerShell Cmdlet

using System.Management.Automation;  // Windows PowerShell assembly.

namespace SendGreeting
{
  // Declare the class as a cmdlet and specify the
  // appropriate verb and noun for the cmdlet name.
  [Cmdlet(VerbsCommunications.Send, "Greeting")]
  public class SendGreetingCommand : Cmdlet
  {
    // Declare the parameters for the cmdlet.
    [Parameter(Mandatory=true)]
    public string Name
    {
      get { return name; }
      set { name = value; }
    }
    private string name;

    // Override the ProcessRecord method to process
    // the supplied user name and write out a
    // greeting to the user by calling the WriteObject
    // method.
    protected override void ProcessRecord()
    {
      WriteObject("Hello " + name + "!");
    }
  }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-write-a-simple-cmdlet%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-write-a-simple-cmdlet.md&documentVersionIndependentId=978f08b0-5917-7592-a5bc-a3a82a574bb1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d98fbc73-0a8c-aa2c-81c9-ff6b7c703649+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Declare Cmdlet Parameters
Article • 09/17/2021

These examples show how to declare named, positional, required, optional, and switch
parameters. These examples also show how to define a parameter alias.

Define a public property as shown in the following code. When you add the
Parameter attribute, omit the Position  keyword from the attribute.

C#

For more information about the Parameter attribute, see Parameter Attribute
Declaration.

Define a public property as shown in the following code. When you add the
Parameter attribute, set the Position  keyword to the argument position. A value
of 0 indicates the first position.

C#

For more information about the Parameter attribute, see Parameter Attribute
Declaration.

How to Declare a Named Parameter

[Parameter()]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

How to Declare a Positional Parameter

[Parameter(Position = 0)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;



Define a public property as shown in the following code. When you add the
Parameter attribute, set the Mandatory  keyword to true .

C#

For more information about the Parameter attribute, see Parameter Attribute
Declaration.

Define a public property as shown in the following code. When you add the
Parameter attribute, omit the Mandatory  keyword.

C#

Define a public property as type
System.Management.Automation.SwitchParameter, and then declare the Parameter
attribute.

C#

How to Declare a Mandatory Parameter

[Parameter(Position = 0, Mandatory = true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

How to Declare an Optional Parameter

[Parameter(Position = 0)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

How to Declare a Switch Parameter

[Parameter(Position = 1)]
public SwitchParameter GoodBye
{
  get { return goodbye; }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SwitchParameter


For more information about the Parameter attribute, see Parameter Attribute
Declaration.

Define a public property as shown in the following code. Add an Alias attribute
that lists the aliases for the parameter. In this example, three aliases are defined for
the same parameter. The first alias provides a shortcut. The second and third
aliases provide names you can use for different scenarios.

C#

For more information about the Alias attribute, see Alias Attribute Declaration.

System.Management.Automation.SwitchParameter

Parameter Attribute Declaration

Alias Attribute Declaration

Writing a Windows PowerShell Cmdlet

  set { goodbye = value; }
}
private bool goodbye;

How to Declare a Parameter with Aliases

[Alias("UN","Writer","Editor")]
[Parameter()]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SwitchParameter
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-declare-cmdlet-parameters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-declare-cmdlet-parameters.md&documentVersionIndependentId=fdddafa1-8152-da7a-357e-89debcd12c87&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6ddfc145-6c24-3be3-2e2e-91e777e6c0c7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Declare Parameter Sets
Article • 09/17/2021

This example shows how to define two parameter sets when you declare the parameters
for a cmdlet. Each parameter set has both a unique parameter and a shared parameter
that is used by both parameter sets. For more information about parameters sets,
including how to specify the default parameter set, see Cmdlet Parameter Sets.

1. Add the ParameterSet  keyword to the Parameter attribute for the unique
parameter of the first parameter set.

C#

2. Add the ParameterSet  keyword to the Parameter attribute for the unique
parameter of the second parameter set.

C#

） Important

Whenever possible, define the unique parameter of a parameter set as a required
parameter. However, if you want your cmdlet to run without specifying any
parameters, the unique parameter can be an optional parameter. For example, the
unique parameter of the Get-Command  cmdlet is optional.

How to Define Two Parameter Sets

[Parameter(Position = 0, Mandatory = true,
           ParameterSetName = "Test01")]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

[Parameter(Position = 0, Mandatory = true,
           ParameterSetName = "Test02")]
public string ComputerName
{
  get { return computerName; }
  set { computerName = value; }



3. For the parameter that belongs to both parameter sets, add a Parameter attribute
for each parameter set and then add the ParameterSet  keyword to each set. In
each Parameter attribute, you can specify how that parameter is defined. A
parameter can be optional in one set and mandatory in another.

C#

Cmdlet Parameter Sets

Writing a Windows PowerShell Cmdlet

}
private string computerName;

[Parameter(Mandatory= true, ParameterSetName = "Test01")]
[Parameter(ParameterSetName = "Test02")]
public string SharedParam
{
    get { return sharedParam; }
    set { sharedParam = value; }
}
private string sharedParam;

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-declare-parameter-sets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-declare-parameter-sets.md&documentVersionIndependentId=fd265825-af74-898d-8db7-d8136dd4274f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9f0ffea2-6958-0ac0-a859-84dfdb51f860+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Validate Parameter Input
Article • 09/17/2021

This section contains examples that show how to validate parameter input by using
various attributes to implement validation rules.

How to Validate an Argument with a Script Describes how to validate an argument set
by using the ArgumentSet attribute.

How to Validate an Argument Set Describes how to validate an argument set by using
the ArgumentSet attribute.

How to Validate an Argument Range Describes how to validate an argument range by
using the ArgumentRange attribute.

How to Validate an Argument Pattern Describes how to validate an argument pattern by
using the ArgumentPattern attribute.

How to Validate the Argument Length Describes how to validate the length of an
argument by using the ArgumentLength attribute.

How to Validate an Argument Count Describes how to validate an argument count by
using the ArgumentCount attribute.

The way a parameter is declared can affect validation. For more information, see How to
Declare Cmdlet Parameters.

Writing a Windows PowerShell Cmdlet

In This Section

Reference

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-validate-parameter-input%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-validate-parameter-input.md&documentVersionIndependentId=4d728e81-5dd5-bb6c-67be-eef476c09588&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6deb9066-2e88-20ea-5aa3-a7abaff13c6f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to validate an argument using a
script
Article • 06/11/2024

This example shows how to specify a validation rule that uses a script to check the
parameter argument before the cmdlet is run. The value of the parameter is piped to the
script. The script must return $true  for every value piped to it.

Add the ValidateScript attribute as shown in the following code. This example
specifies a script to validate that the input value is an odd number.

C#

For more information about how to declare this attribute, see ValidateScript Attribute
Declaration.

System.Management.Automation.ValidateScriptAttribute

ValidateScript Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidateScriptAttribute.

To validate an argument using a script

[ValidateScript("$_ % 2", ErrorMessage = "The item '{0}' did not pass 
validation of script '{1}'")]
[Parameter(Position = 0, Mandatory = true)]
public int32 OddNumber
{
   get { return oddNumber; }
   set { oddNumber = value; }
}

private int32 oddNumber;

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateScriptAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateScriptAttribute


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-validate-an-argument-using-script%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-validate-an-argument-using-script.md&documentVersionIndependentId=88a6ff66-8e3c-12f2-ccb2-f88004fae91d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+da98fd74-457c-7335-c15b-b6b268fdedfb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Validate an Argument Set
Article • 03/24/2025

This example shows how to specify a validation rule that the Windows PowerShell
runtime can use to check the parameter argument before the cmdlet is run. This
validation rule provides a set of the valid values for the parameter argument.

Add the ValidateSet attribute as shown in the following code. This example
specifies a set of three possible values for the UserName  parameter.

C#

For more information about how to declare this attribute, see ValidateSet Attribute
Declaration.

System.Management.Automation.ValidateSetAttribute

ValidateSet Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidateSetAttribute.

To validate an argument set

[ValidateSet("Steve", "Mary", "Carl", IgnoreCase = true)]
[Parameter(Position = 0, Mandatory = true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}

private string userName;

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateSetAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateSetAttribute


How to Validate an Argument Range
Article • 03/24/2025

This example shows how to specify a validation rule that the Windows PowerShell
runtime can use to check the minimum and maximum values of the parameter
argument before the cmdlet is run. You set this validation rule by declaring the
ValidateRange attribute.

Add the ValidateRange attribute as shown in the following code. This example
specifies a range of 0 to 5 for the InputData  parameter.

C#

For more information about how to declare this attribute, see ValidateRange Attribute
Declaration.

ValidateRange Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidateRangeAttribute.

To validate an argument range

[ValidateRange(0, 5)]
[Parameter(Position = 0, Mandatory = true)]
public int InputData
{
  get { return inputData; }
  set { inputData = value; }
}
private int inputData;

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateRangeAttribute


How to Validate an Argument Pattern
Article • 09/17/2021

This example shows how to specify a validation rule that the Windows PowerShell
runtime can use to check the character pattern of the parameter argument before the
cmdlet is run. You set this validation rule by declaring the ValidatePattern attribute.

Add the Validate attribute as shown in the following code. This example specifies a
pattern of four digits, where each digit has a value of 0 through 9.

C#

For more information about how to declare this attribute, see ValidatePattern Attribute
Declaration.

ValidatePattern Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidatePatternAttribute.

To validate an argument pattern

[ValidatePattern("[0-9][0-9][0-9][0-9]")]
[Parameter(Position = 0, Mandatory = true)]
public int InputData
{
  get { return inputData; }
  set { inputData = value; }
}

private int inputData;

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidatePatternAttribute


How to Validate the Argument Length
Article • 09/17/2021

This example shows how to specify a validation rule that the Windows PowerShell
runtime can use to check the number of characters (the length) of the parameter
argument before the cmdlet is run. You set this validation rule by declaring the
ValidateLength attribute.

Add the Validate attribute as shown in the following code. This example specifies
that the length of the argument should have a length of 0 to 10 characters.

C#

For more information about how to declare this attribute, see ValidateLength Attribute
Declaration.

ValidateLength Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidateLengthAttribute.

To validate the argument length

[ValidateLength(0, 10)]
[Parameter(Position = 0, Mandatory = true)]
public string UserName
{
  get { return userName; }
  set { userName = value; }
}
private string userName;

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateLengthAttribute


How to Validate an Argument Count
Article • 09/17/2021

This example shows how to specify a validation rule that the Windows PowerShell
runtime can use to check the number of arguments (the count) that a parameter accepts
before the cmdlet is run. You set this validation rule by declaring the ValidateCount
attribute.

Add the Validate attribute as shown in the following code. This example specifies
that the parameter will accept one argument or as many as three arguments.

C#

For more information about how to declare this attribute, see ValidateCount Attribute
Declaration.

ValidateCount Attribute Declaration

Writing a Windows PowerShell Cmdlet

７ Note

For more information about the class that defines this attribute, see
System.Management.Automation.ValidateCountAttribute.

To validate an argument count

[ValidateCount(1, 3)]
[Parameter(Position = 0, Mandatory = true)]
public string[] UserNames
{
  get { return userNames; }
  set { userNames = value; }
}

private string[] userNames;

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateCountAttribute


How to Declare Dynamic Parameters
Article • 03/24/2025

This example shows how to define dynamic parameters that are added to the cmdlet at
runtime. In this example, the Department  parameter is added to the cmdlet whenever
the user specifies the Employee  switch parameter. For more information about dynamic
parameters, see Cmdlet Dynamic Parameters.

1. In the cmdlet class declaration, add the
System.Management.Automation.IDynamicParameters interface as shown.

C#

2. Call the
System.Management.Automation.IDynamicParameters.GetDynamicParameters*
method, which returns the object in which the dynamic parameters are defined. In
this example, the method is called when the Employee  parameter is specified.

C#

3. Declare a class that defines the dynamic parameters to be added. You can use the
attributes that you used to declare the static cmdlet parameters to declare the
dynamic parameters.

C#

To define dynamic parameters

public class SendGreetingCommand : Cmdlet, IDynamicParameters

public object GetDynamicParameters()
{
    if (employee)
    {
      context= new SendGreetingCommandDynamicParameters();
      return context;
    }
    return null;
}
private SendGreetingCommandDynamicParameters context;

public class SendGreetingCommandDynamicParameters
{

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.idynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.idynamicparameters.getdynamicparameters#system-management-automation-idynamicparameters-getdynamicparameters


In this example, the Department  parameter is added whenever the user specifies the

Employee  parameter. The Department  parameter is an optional parameter, and the
ValidateSet attribute is used to specify the allowed arguments.

C#

  [Parameter]
  [ValidateSet ("Marketing", "Sales", "Development")]
  public string Department
  {
    get { return department; }
    set { department = value; }
  }
  private string department;
}

Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management.Automation;     // PowerShell assembly.

namespace SendGreeting
{
  // Declare the cmdlet class that supports the
  // IDynamicParameters interface.
  [Cmdlet(VerbsCommunications.Send, "Greeting")]
  public class SendGreetingCommand : Cmdlet, IDynamicParameters
  {
    // Declare the parameters for the cmdlet.
    [Parameter(Mandatory = true)]
    public string Name
    {
      get { return name; }
      set { name = value; }
    }
    private string name;

    [Parameter]
    [Alias ("FTE")]
    public SwitchParameter Employee
    {
      get { return employee; }
      set { employee = value; }
    }
    private Boolean employee;

    // Implement GetDynamicParameters to
    // retrieve the dynamic parameter.



System.Management.Automation.RuntimeDefinedParameterDictionary
System.Management.Automation.IDynamicParameters.GetDynamicParameters*
Cmdlet Dynamic Parameters
Windows PowerShell SDK

    public object GetDynamicParameters()
    {
      if (employee)
      {
        context= new SendGreetingCommandDynamicParameters();
        return context;
      }
      return null;
   }
   private SendGreetingCommandDynamicParameters context;

    // Override the ProcessRecord method to process the
    // supplied user name and write out a greeting to
    // the user by calling the WriteObject method.
    protected override void ProcessRecord()
    {
      WriteObject("Hello " + name + "! ");
      if (employee)
      {
        WriteObject("Department: " + context.Department);
      }
    }
  }

  // Define the dynamic parameters to be added
  public class SendGreetingCommandDynamicParameters
  {
    [Parameter]
    [ValidateSet ("Marketing", "Sales", "Development")]
    public string Department
    {
      get { return department; }
      set { department = value; }
    }
    private string department;
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runtimedefinedparameterdictionary
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.idynamicparameters.getdynamicparameters#system-management-automation-idynamicparameters-getdynamicparameters


How to Invoke Scripts Within a Cmdlet
Article • 12/05/2023

This example shows how to invoke a script that is supplied to a cmdlet. The script is
executed by the cmdlet, and its results are returned to the cmdlet as a collection of
System.Management.Automation.PSObject objects.

1. The command verifies that a script block was supplied to the cmdlet. If a script
block was supplied, the command invokes the script block with its required
parameters.

C#

2. Then, the script iterates through the returned collection of
System.Management.Automation.PSObject objects and perform the necessary
operations.

C#

To invoke a script block

if (script != null)
{
     WriteDebug("Executing script block.");

     // Invoke the script block with the required arguments.
     Collection<PSObject> PSObjects = script.Invoke(
         line,
         simpleMatch,
         caseSensitive
     );
    // more code as needed...
}

foreach (PSObject object in PSObjects)
{
    if (LanguagePrimitives.IsTrue(object))
    {
         result = new MatchInfo();
         result.Line = line;
         result.IgnoreCase = !caseSensitive;
         break;
    }
}

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject


Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-invoke-scripts-within-a-cmdlet%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-invoke-scripts-within-a-cmdlet.md&documentVersionIndependentId=81107a63-74b7-09cf-e947-a3fe869d0469&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9a97ef5f-e273-06c8-c4a3-e3fbd86dc708+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Override Input Processing
Methods
Article • 09/17/2021

These examples show how to overwrite the input processing methods within a cmdlet.
These methods are used to perform the following operations:

The System.Management.Automation.Cmdlet.BeginProcessing method is used to
perform one-time startup operations that are valid for all the objects processed by
the cmdlet. The Windows PowerShell runtime calls this method only once.

The System.Management.Automation.Cmdlet.ProcessRecord method is used to
process the objects passed to the cmdlet. The Windows PowerShell runtime calls
this method for each object passed to the cmdlet.

The System.Management.Automation.Cmdlet.EndProcessing method is used to
perform one-time post processing operations. The Windows PowerShell runtime
calls this method only once.

Declare a protected override of the
System.Management.Automation.Cmdlet.BeginProcessing method.

The following class prints a sample message. To use this class, change the verb and
noun in the Cmdlet attribute, change the name of the class to reflect the new verb and
noun, and then add the functionality you require to the override of the
System.Management.Automation.Cmdlet.BeginProcessing method.

C#

To override the BeginProcessing method

[Cmdlet(VerbsDiagnostic.Test, "BeginProcessingClass")]
public class TestBeginProcessingClassTemplate : Cmdlet
{
  // Override the BeginProcessing method to add preprocessing
  //operations to the cmdlet.
  protected override void BeginProcessing()
  {
    // Replace the WriteObject method with the logic required
    // by your cmdlet. It is used here to generate the following
    // output:
    // "This is a test of the BeginProcessing template."
    WriteObject("This is a test of the BeginProcessing template.");

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing


Declare a protected override of the
System.Management.Automation.Cmdlet.ProcessRecord method.

The following class prints a sample message. To use this class, change the verb and
noun in the Cmdlet attribute, change the name of the class to reflect the new verb and
noun, and then add the functionality you require to the override of the
System.Management.Automation.Cmdlet.ProcessRecord method.

C#

Declare a protected override of the
System.Management.Automation.Cmdlet.EndProcessing method.

The following class prints a sample. To use this class, change the verb and noun in the
Cmdlet attribute, change the name of the class to reflect the new verb and noun, and
then add the functionality you require to the override of the
System.Management.Automation.Cmdlet.EndProcessing method.

C#

  }
}

To override the ProcessRecord method

[Cmdlet(VerbsDiagnostic.Test, "ProcessRecordClass")]
public class TestProcessRecordClassTemplate : Cmdlet
{
    // Override the ProcessRecord method to add processing
    //operations to the cmdlet.
    protected override void ProcessRecord()
    {
        // Replace the WriteObject method with the logic required
        // by your cmdlet. It is used here to generate the following
        // output:
        // "This is a test of the ProcessRecord template."
        WriteObject("This is a test of the ProcessRecord template.");
    }
}

To override the EndProcessing method

[Cmdlet(VerbsDiagnostic.Test, "EndProcessingClass")]
public class TestEndProcessingClassTemplate : Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing


System.Management.Automation.Cmdlet.BeginProcessing

System.Management.Automation.Cmdlet.EndProcessing

System.Management.Automation.Cmdlet.ProcessRecord

Writing a Windows PowerShell Cmdlet

{
  // Override the EndProcessing method to add postprocessing
  //operations to the cmdlet.
  protected override void EndProcessing()
  {
    // Replace the WriteObject method with the logic required
    // by your cmdlet. It is used here to generate the following
    // output:
    // "This is a test of the BeginProcessing template."
    WriteObject("This is a test of the EndProcessing template.");
  }
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-override-input-processing-methods%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-override-input-processing-methods.md&documentVersionIndependentId=e76109ff-ad79-9159-b168-02149fc0de1d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1ad75c05-8c4e-705f-c71a-179821f0246f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Requesting Confirmation from Cmdlets
Article • 09/17/2021

Cmdlets should request confirmation when they are about to make a change to the
system that is outside of the Windows PowerShell environment. For example, if a cmdlet
is about to add a user account or stop a process, the cmdlet should require confirmation
from the user before it proceeds. In contrast, if a cmdlet is about to change a Windows
PowerShell variable, the cmdlet does not need to require confirmation.

In order to make a confirmation request, the cmdlet must indicate that it supports
confirmation requests, and it must call the
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue (optional) methods to display
a confirmation request message.

To support confirmation requests, the cmdlet must set the SupportsShouldProcess
parameter of the Cmdlet attribute to true . This enables the Confirm  and WhatIf  cmdlet
parameters that are provided by Windows PowerShell. The Confirm  parameter allows
the user to control whether the confirmation request is displayed. The WhatIf  parameter
allows the user to determine whether the cmdlet should display a message or perform
its action. Do not manually add the Confirm  and WhatIf  parameters to a cmdlet.

The following example shows a Cmdlet attribute declaration that supports confirmation
requests.

C#

In the cmdlet code, call the System.Management.Automation.Cmdlet.ShouldProcess
method before the operation that changes the system is performed. Design the cmdlet
so that if the call returns a value of false , the operation is not performed, and the
cmdlet processes the next operation.

Supporting Confirmation Requests

[Cmdlet(VerbsDiagnostic.Test, "RequestConfirmationTemplate1",
        SupportsShouldProcess = true)]

Calling the Confirmation request methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


Most cmdlets request confirmation using only the
System.Management.Automation.Cmdlet.ShouldProcess method. However, some cases
might require additional confirmation. For these cases, supplement the
System.Management.Automation.Cmdlet.ShouldProcess call with a call to the
System.Management.Automation.Cmdlet.ShouldContinue method. This allows the
cmdlet or provider to more finely control the scope of the Yes to all response to the
confirmation prompt.

If a cmdlet calls the System.Management.Automation.Cmdlet.ShouldContinue method,
the cmdlet must also provide a Force  switch parameter. If the user specifies Force  when
the user invokes the cmdlet, the cmdlet should still call
System.Management.Automation.Cmdlet.ShouldProcess, but it should bypass the call to
System.Management.Automation.Cmdlet.ShouldContinue.

System.Management.Automation.Cmdlet.ShouldContinue will throw an exception when
it is called from a non-interactive environment where the user cannot be prompted.
Adding a Force  parameter ensures that the command can still be performed when it is
invoked in a non-interactive environment.

The following example shows how to call
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue.

C#

The behavior of a System.Management.Automation.Cmdlet.ShouldProcess call can vary
depending on the environment in which the cmdlet is invoked. Using the previous
guidelines will help ensure that the cmdlet behaves consistently with other cmdlets,
regardless of the host environment.

For an example of calling the System.Management.Automation.Cmdlet.ShouldProcess
method, see How to Request Confirmations.

Calling the ShouldContinue Method

if (ShouldProcess (...) )
{
  if (Force || ShouldContinue(...))
  {
     // Add code that performs the operation.
  }
}

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-request-confirmations?view=powershell-7.5


When you create the cmdlet, specify the impact level (the severity) of the change. To do
this, set the value of the ConfirmImpact  parameter of the Cmdlet attribute to High,
Medium, or Low. You can specify a value for ConfirmImpact  only when you also specify
the SupportsShouldProcess  parameter for the cmdlet.

For most cmdlets, you do not have to explicitly specify ConfirmImpact . Instead, use the
default setting of the parameter, which is Medium. If you set ConfirmImpact  to High, the
operation will be confirmed by default. Reserve this setting for highly disruptive actions,
such as reformatting a hard-disk volume.

If the cmdlet or provider must send a message but not request confirmation, it can call
the following three methods. Avoid using the
System.Management.Automation.Cmdlet.WriteObject method to send messages of
these types because System.Management.Automation.Cmdlet.WriteObject output is
intermingled with the normal output of your cmdlet or provider, which makes script
writing difficult.

To caution the user and continue with the operation, the cmdlet or provider can
call the System.Management.Automation.Cmdlet.WriteWarning method.

To provide additional information that the user can retrieve using the Verbose
parameter, the cmdlet or provider can call the
System.Management.Automation.Cmdlet.WriteVerbose method.

To provide debugging-level detail for other developers or for product support, the
cmdlet or provider can call the
System.Management.Automation.Cmdlet.WriteDebug method. The user can
retrieve this information using the Debug  parameter.

Cmdlets and providers first call the following methods to request confirmation before
they attempt to perform an operation that changes a system outside of Windows
PowerShell:

System.Management.Automation.Cmdlet.ShouldProcess

System.Management.Automation.Provider.CmdletProvider.ShouldProcess

They do so by calling the System.Management.Automation.Cmdlet.ShouldProcess
method, which prompts the user to confirm the operation based on how the user

Specify the Impact Level

Calling Non-Confirmation Methods

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


invoked the command.

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


How to Support Transactions
Article • 09/17/2021

This example shows the basic code elements that add support for transactions to a
cmdlet.

1. When you declare the Cmdlet attribute, specify that the cmdlet supports
transactions. When the cmdlet supports transactions, Windows PowerShell adds
the UseTransaction  parameter to the cmdlet when it is run.

C#

2. Within one of the input processing methods, add an if  block to determine if a
transaction is available. If the if  statement resolves to true , the actions within this
statement can be performed within the context of the current transaction.

C#

Writing a Windows PowerShell Cmdlet

） Important

For more information about how Windows PowerShell handles transactions, see
About Transactions.

To support transactions

[Cmdlet(VerbsCommunications.Send, "GreetingTx",
        SupportsTransactions=true )]

if (TransactionAvailable())
{
  using (CurrentPSTransaction)
  {
    WriteObject("Hello " + name + "  from within a transaction.");
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/About/about_Transactions


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-support-transactions%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-support-transactions.md&documentVersionIndependentId=38967096-ea28-17ce-a6c2-ebb592b93681&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d06260a5-a229-d59e-180b-00ba54d0c5bc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Support Jobs
Article • 09/23/2021

This example shows how to support jobs when you write cmdlets. If you want users to
run your cmdlet as a background job, you must include the code described in the
following procedure. For more information about background jobs, see Background
Jobs.

1. Define an AsJob  switch parameter so that the user can decide whether to run the
cmdlet as a job.

The following example shows an AsJob parameter declaration.

C#

2. Create an object that derives from the System.Management.Automation.Job class.
This object can be a custom job object or one of the job objects provided by
Windows PowerShell, such a System.Management.Automation.PSEventJob object.

The following example shows a custom job object.

C#

3. In a record processing method, add an if  statement to detect whether the cmdlet
should run as a job. The following code uses the
System.Management.Automation.Cmdlet.ProcessRecord method.

C#

To support jobs

[Parameter()]
public SwitchParameter AsJob
{
  get { return asjob; }
  set { asjob = value; }
}
private bool asjob;

private SampleJob job = new SampleJob("Get-ProcAsJob");

protected override void ProcessRecord()
{

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Job
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSEventJob
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


4. For custom job objects, implement the job class.

C#

  if (asjob)
  {
    // Add the job definition to the job repository,
    // return the job object, and then create the thread
    // used to run the job.
    JobRepository.Add(job);
    WriteObject(job);
    ThreadPool.QueueUserWorkItem(WorkItem);
  }
  else
  {
    job.ProcessJob();
    foreach (PSObject p in job.Output)
    {
      WriteObject(p);
    }
  }
}

private class SampleJob : Job
{
  internal SampleJob(string command)
      : base(command)
  {
    SetJobState(JobState.NotStarted);
  }
  public override string StatusMessage
  {
    get { throw new NotImplementedException(); }
  }

  public override bool HasMoreData
  {
    get
    {
      return hasMoreData;
    }
  }
  private bool hasMoreData = true;

  public override string Location
  {
    get { throw new NotImplementedException(); }
  }

  public override void StopJob()
  {
    throw new NotImplementedException();
  }



5. If the cmdlet performs the work, call the
System.Management.Automation.Cmdlet.WriteObject method to return a process
object to the pipeline. If the work is performed as a job, add child job to the job.

C#

The following sample code shows the code for a Get-Proc  cmdlet that can retrieve
processes internally or by using a background job.

  internal void ProcessJob()
  {
    SetJobState(JobState.Running);
    DoProcessLogic();
    SetJobState(JobState.Completed);
  }

  // Retrieve the processes of the local computer.
  void DoProcessLogic()
  {
    Process[] p = Process.GetProcesses();

    foreach (Process pl in p)
    {
      Output.Add(PSObject.AsPSObject(pl));
    }
    Output.Complete();
  } // End DoProcessLogic.
} // End SampleJob class.

void DoProcessLogic(bool asJob)
{
  Process[] p = Process.GetProcesses();

  foreach (Process pl in p)
  {
    if (!asjob)
    {
      WriteObject(pl);
    }
    else
    {
      job.ChildJobs[0].Output.Add(PSObject.AsPSObject(pl));
    }
  }
} // End DoProcessLogic.

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management.Automation;  // Windows PowerShell namespace.
using System.Threading;              // Thread pool namespace for posting 
work.
using System.Diagnostics;            // Diagnostics namespace for retrieving
                                     // process objects.

// This sample shows a cmdlet whose work can be done by the cmdlet or by 
using
// a background job. Background jobs are executed in their own thread,
// independent of the pipeline thread in which the cmdlet is executed.
//
// To load this cmdlet, create a module folder and copy the 
GetProcessSample06.dll
// assembly into the module folder. Make sure that the path to the module 
folder
// is added to the $PSModulePath environment variable.
// Module folder path:
//    user/documents/WindowsPowerShell/modules/GetProcessSample06
//
// To import the module, run the following command: Import-Module 
GetProcessSample06.
// To test the cmdlet, run the following command: Get-Proc -Name <process 
name>
//

//
namespace Microsoft.Samples.PowerShell.Commands
{
  /// <summary>
  ///  This cmdlet retrieves process internally or returns
  ///  a job that retrieves the processes.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public sealed class GetProcCommand : PSCmdlet
  {

    #region Parameters
    /// <summary>
    /// Specify the Name parameter. This parameter accepts
    /// process names from the command line.
    /// </summary>
    [Parameter(
               Position = 0,
               ValueFromPipeline = true,
               ValueFromPipelineByPropertyName = true)]
    [ValidateNotNullOrEmpty]
    public string[] Name
    {



      get { return processNames; }
      set { processNames = value; }
    }
    private string[] processNames;

    /// <summary>
    /// Specify the AsJob parameter. This parameter indicates
    /// whether the cmdlet should retrieve the processes internally
    /// or return a Job object that retrieves the processes.
    /// </summary>
    [Parameter()]
    public SwitchParameter AsJob
    {
      get { return asjob; }
      set { asjob = value; }
    }
    private bool asjob;

    #endregion Parameters

    #region Cmdlet Overrides

    // Create a custom job object.
    private SampleJob job = new SampleJob("Get-ProcAsJob");

    /// <summary>
    /// Determines if the processes should be retrieved
    /// internally or if a Job object should be returned.
    /// </summary>
    protected override void ProcessRecord()
    {
      if (asjob)
      {
        // Add the job definition to the job repository,
        // return the job object, and then create the thread
        // used to run the job.
        JobRepository.Add(job);
        WriteObject(job);
        ThreadPool.QueueUserWorkItem(WorkItem);
      }
      else
      {
        job.ProcessJob();
        foreach (PSObject p in job.Output)
        {
          WriteObject(p);
        }
      }
    }
    #endregion Overrides

    // Implement a custom job that derives
    // from the System.Management.Automation.Job class.
    private class SampleJob : Job
    {



      internal SampleJob(string command)
          : base(command)
      {
        SetJobState(JobState.NotStarted);
      }
      public override string StatusMessage
      {
        get { throw new NotImplementedException(); }
      }

      public override bool HasMoreData
      {
        get
        {
          return hasMoreData;
        }
      }
      private bool hasMoreData = true;

      public override string Location
      {
        get { throw new NotImplementedException(); }
      }

      public override void StopJob()
      {
        throw new NotImplementedException();
      }

      internal void ProcessJob()
      {
        SetJobState(JobState.Running);
        DoProcessLogic();
        SetJobState(JobState.Completed);
      }

      // Retrieve the processes of the local computer.
      void DoProcessLogic()
      {
        Process[] p = Process.GetProcesses();

        foreach (Process pl in p)
        {
          Output.Add(PSObject.AsPSObject(pl));
        }
        Output.Complete();
      } // End DoProcessLogic.
    } // End SampleJob class.

    void WorkItem(object dummy)
    {
       job.ProcessJob();
    }

    // Display the results of the work. If not a job,



    // process objects are returned. If a job, the
    // output is added to the job as a child job.
    void DoProcessLogic(bool asJob)
    {
      Process[] p = Process.GetProcesses();

      foreach (Process pl in p)
      {
        if (!asjob)
        {
          WriteObject(pl);
        }
        else
        {
          job.ChildJobs[0].Output.Add(PSObject.AsPSObject(pl));
        }
      }
    } // End DoProcessLogic.
  } //End GetProcCommand
}



How to Invoke a Cmdlet from Within a
Cmdlet
Article • 10/20/2022

This example shows how to invoke a binary cmdlet that derives from
[System.Management.Automation.Cmdlet]  directly from within another binary cmdlet,
which allows you to add the functionality of the invoked cmdlet to the binary cmdlet
you are developing. In this example, the Get-Process  cmdlet is invoked to get the
processes that are running on the local computer. The call to the Get-Process  cmdlet is
equivalent to the following command. This command retrieves all the processes whose
names start with the characters "a" through "t".

PowerShell

1. Ensure that the assembly that defines the cmdlet to be invoked is referenced and
that the appropriate using  statement is added. In this example, the following
namespaces are added.

C#

2. In the input processing method of the cmdlet, create a new instance of the cmdlet
to be invoked. In this example, an object of type

Get-Process -Name [a-t]*

） Important

You can invoke only those cmdlets that derive directly from the
System.Management.Automation.Cmdlet class. You can't invoke a cmdlet that
derives from the System.Management.Automation.PSCmdlet class. For an
example, see How to invoke a PSCmdlet from within a PSCmdlet.

To invoke a cmdlet from within a cmdlet

using System.Diagnostics;
using System.Management.Automation;   // PowerShell assembly.
using Microsoft.PowerShell.Commands;  // PowerShell cmdlets assembly 
you want to call.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet


Microsoft.PowerShell.Commands.GetProcessCommand is created along with the
string that contains the arguments that are used when the cmdlet is invoked.

C#

3. Call the System.Management.Automation.Cmdlet.Invoke* method to invoke the
Get-Process  cmdlet.

C#

In this example, the Get-Process  cmdlet is invoked from within the
System.Management.Automation.Cmdlet.BeginProcessing method of a cmdlet.

C#

GetProcessCommand gp = new GetProcessCommand();
gp.Name = new string[] { "[a-t]*" };

  foreach (Process p in gp.Invoke<Process>())
  {
    Console.WriteLine(p.ToString());
  }
}

Example

using System;
using System.Diagnostics;
using System.Management.Automation;   // PowerShell assembly.
using Microsoft.PowerShell.Commands;  // PowerShell cmdlets assembly you 
want to call.

namespace SendGreeting
{
  // Declare the class as a cmdlet and specify an
  // appropriate verb and noun for the cmdlet name.
  [Cmdlet(VerbsCommunications.Send, "GreetingInvoke")]
  public class SendGreetingInvokeCommand : Cmdlet
  {
    // Declare the parameters for the cmdlet.
    [Parameter(Mandatory = true)]
    public string Name { get; set; }

    // Override the BeginProcessing method to invoke
    // the Get-Process cmdlet.
    protected override void BeginProcessing()
    {
      GetProcessCommand gp = new GetProcessCommand();

https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.GetProcessCommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing


Writing a Windows PowerShell Cmdlet

      gp.Name = new string[] { "[a-t]*" };
      foreach (Process p in gp.Invoke<Process>())
      {
        WriteVerbose(p.ToString());
      }
    }

    // Override the ProcessRecord method to process
    // the supplied user name and write out a
    // greeting to the user by calling the WriteObject
    // method.
    protected override void ProcessRecord()
    {
      WriteObject("Hello " + Name + "!");
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


How to invoke a PSCmdlet from within a
PSCmdlet
Article • 10/20/2022

This example shows how to invoke a script based cmdlet or binary cmdlet inheriting
from [System.Management.Automation.PSCmdlet]  from within a binary cmdlet. In this
example, the new cmdlet Get-ClipboardReverse  calls Get-Clipboard  to get the contents
of the clipboard. The Get-ClipboardReverse  reverses the order of the characters and
returns the reversed string.

1. Ensure that the namespace for the [System.Management.Automation.PowerShell]
API is referenced. In this example, the following namespaces are added.

C#

2. To invoke a command from within another binary cmdlet you must use the
[PowerShell]  API to construct a new pipeline and add the cmdlet to be invoked.
Call the System.Management.Automation.PowerShell.Invoke<T>() method to
invoke the pipeline.

C#

７ Note

The [PSCmdlet]  class differs from the [Cmdlet]  class. [PSCmdlet]  implementations
use runspace context information so you must invoke another cmdlet using the
PowerShell pipeline API. In [Cmdlet]  implementations you can call the cmdlet's
.NET API directly. For an example, see How to invoke a Cmdlet from within a
Cmdlet.

To invoke a cmdlet from within a PSCmdlet

using System.Management.Automation;   // PowerShell assembly.
using System.Text;

using var ps = PowerShell.Create(RunspaceMode.CurrentRunspace);
ps.AddCommand("Get-Clipboard").AddParameter("Raw");
var output = ps.Invoke<string>();

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell.invoke#system-management-automation-powershell-invoke-1


To invoke a script based cmdlet or binary cmdlet inheriting from [PSCmdlet]  you must
build a PowerShell pipeline with the command and parameters you want to execute,
then invoke the pipeline.

C#

Writing a Windows PowerShell Cmdlet

Example

using System;
using System.Management.Automation;   // PowerShell assembly.
using System.Text;

namespace ClipboardReverse
{
    [Cmdlet(VerbsCommon.Get,"ClipboardReverse")]
    [OutputType(typeof(string))]
    public class ClipboardReverse : PSCmdlet
    {
        protected override void EndProcessing()
        {
            using var ps = PowerShell.Create(RunspaceMode.CurrentRunspace);
            ps.AddCommand("Get-Clipboard").AddParameter("Raw");
            var output = ps.Invoke<string>();
            if (ps.HadErrors)
            {
                WriteError(new ErrorRecord(ps.Streams.Error[0].Exception,
                           "Get-Clipboard Error", 
ErrorCategory.NotSpecified, null));
            }
            else
            {
                var sb = new StringBuilder();
                foreach (var text in output)
                {
                    sb.Append(text);
                }

                var reversed = sb.ToString().ToCharArray();
                Array.Reverse(reversed);
                WriteObject(new string(reversed));
            }
        }
    }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fhow-to-invoke-a-pscmdlet-from-within-a-pscmdlet%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fhow-to-invoke-a-pscmdlet-from-within-a-pscmdlet.md&documentVersionIndependentId=acda6d04-f5ca-0b73-98a9-ae5c232ceb9e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c1b4fc75-45f4-2f1b-2cf1-3e71233c2a48+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Tutorials for Writing Cmdlets
Article • 09/17/2021

This section contains tutorials for writing cmdlets. These tutorials include the code
needed to write the cmdlets, plus an explanation of why the code is needed. These
topics will be very helpful for those who are just starting to write cmdlets.

GetProc Tutorial - This tutorial describes how to define a cmdlet class and add basic
functionality such as adding parameters and reporting errors. The cmdlet described in
this tutorial is very similar to the Get-Process cmdlet provided by Windows PowerShell.

StopProc Tutorial - This tutorial describes how to define a cmdlet and add functionality
such as user prompts, wildcard support, and the use of parameter sets. The cmdlet
described here performs the same task as the Stop-Process cmdlet provided by
Windows PowerShell.

SelectStr Tutorial - This tutorial describes how to define a cmdlet that accesses a data
store. The cmdlet described here performs the same task as the Select-String cmdlet
provided by Windows PowerShell.

GetProc Tutorial

StopProc Tutorial

SelectStr Tutorial

Windows PowerShell SDK

） Important

For those who want code examples with less description, see Cmdlet Samples.

In This Section

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Stop-Process
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Ftutorials-for-writing-cmdlets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Ftutorials-for-writing-cmdlets.md&documentVersionIndependentId=a4f927c3-b330-1fd2-0e4b-c6b79d001225&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+09cfd3e8-363b-e5fb-1a98-f1eb2ee4ca56+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc Tutorial
Article • 09/15/2023

This section provides a tutorial for creating a Get-Proc cmdlet that is very similar to the
Get-Process cmdlet provided by Windows PowerShell. This tutorial provides fragments
of code that illustrate how cmdlets are implemented, and an explanation of the code.

The topics in this tutorial are designed to be read sequentially, with each topic building
on what was discussed in the previous topic.

Creating a Cmdlet without Parameters: This section describes how to create a
cmdlet that retrieves information from the local computer without the use of
parameters, and then writes the information to the pipeline.

Adding Parameters that Process Command-Line Input: This section describes
how to add a parameter to the Get-Proc cmdlet so that the cmdlet can process
input based on explicit objects passed to the cmdlet. The implementation
described here retrieves processes based on their name, and then writes the
information to the pipeline.

Adding Parameters that Process Pipeline Input: This section describes how to add
a parameter to the Get-Proc cmdlet so that the cmdlet can process objects passed
to it through the pipeline. The implementation cmdlet described here retrieves
processes based on objects passed to the cmdlet, and then writes the information
to the pipeline.

Adding Non-terminating Error Reporting to Your Cmdlet: This section describes
how to add non-terminating error reporting to a cmdlet. The implementation
described here detects non-terminating errors that occur when processing input,
and writes an error record to the error stream.

Windows PowerShell SDK

Topics in this Tutorial

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fgetproc-tutorial%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fgetproc-tutorial.md&documentVersionIndependentId=e07a35dd-b389-8d38-ac7c-d4aaef381ace&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7e99f6c3-2a93-d4b3-f58d-380f40df8b5e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating a Cmdlet without Parameters
Article • 09/17/2021

This section describes how to create a cmdlet that retrieves information from the local
computer without the use of parameters, and then writes the information to the
pipeline. The cmdlet described here is a Get-Proc cmdlet that retrieves information
about the processes of the local computer, and then displays that information at the
command line.

A cmdlet name consists of a verb that indicates the action the cmdlet takes and a noun
that indicates the items that the cmdlet acts upon. Because this sample Get-Proc cmdlet
retrieves process objects, it uses the verb "Get", defined by the
System.Management.Automation.VerbsCommon enumeration, and the noun "Proc" to
indicate that the cmdlet works on process items.

When naming cmdlets, do not use any of the following characters: # , () {} [] & - /\ $ ; : "
'<> | ? @ ` .

You should choose a noun that is specific. It is best to use a singular noun prefixed with
a shortened version of the product name. An example cmdlet name of this type is " Get-
SQLServer ".

You should use a verb from the set of approved cmdlet verb names. For more
information about the approved cmdlet verbs, see Cmdlet Verb Names.

７ Note

Be aware that when writing cmdlets, the Windows PowerShell® reference
assemblies are downloaded onto disk (by default at C:\Program Files\Reference
Assemblies\Microsoft\WindowsPowerShell\v1.0). They are not installed in the
Global Assembly Cache (GAC).

Naming the Cmdlet

Choosing a Noun

Choosing a Verb

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon


Once you have chosen a cmdlet name, define a .NET class to implement the cmdlet.
Here is the class definition for this sample Get-Proc cmdlet:

C#

VB

Notice that previous to the class definition, the
System.Management.Automation.CmdletAttribute attribute, with the syntax
[Cmdlet(verb, noun, ...)] , is used to identify this class as a cmdlet. This is the only
required attribute for all cmdlets, and it allows the Windows PowerShell runtime to call
them correctly. You can set attribute keywords to further declare the class if necessary.
Be aware that the attribute declaration for our sample GetProcCommand class declares
only the noun and verb names for the Get-Proc cmdlet.

When naming the class of the cmdlet, it is a good practice to reflect the cmdlet name in
the class name. To do this, use the form "VerbNounCommand" and replace "Verb" and
"Noun" with the verb and noun used in the cmdlet name. As is shown in the previous
class definition, the sample Get-Proc cmdlet defines a class called GetProcCommand,
which derives from the System.Management.Automation.Cmdlet base class.

Defining the Cmdlet Class

[Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet

<Cmdlet(VerbsCommon.Get, "Proc")> _
Public Class GetProcCommand
    Inherits Cmdlet

７ Note

For all Windows PowerShell attribute classes, the keywords that you can set
correspond to properties of the attribute class.

） Important

If you want to define a cmdlet that accesses the Windows PowerShell runtime
directly, your .NET class should derive from the
System.Management.Automation.PSCmdlet base class. For more information
about this class, see Creating a Cmdlet that Defines Parameter Sets.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet


Windows PowerShell uses the Microsoft.PowerShell.Commands namespace for its
cmdlet classes. It is recommended to place your cmdlet classes in a Commands
namespace of your API namespace, for example, xxx.PS.Commands.

The System.Management.Automation.Cmdlet class provides three main input processing
methods, at least one of which your cmdlet must override. For more information about
how Windows PowerShell processes records, see How Windows PowerShell Works .

For all types of input, the Windows PowerShell runtime calls
System.Management.Automation.Cmdlet.BeginProcessing to enable processing. If your
cmdlet must perform some preprocessing or setup, it can do this by overriding this
method.

If your cmdlet accepts pipeline input, it must override the
System.Management.Automation.Cmdlet.ProcessRecord method, and optionally the
System.Management.Automation.Cmdlet.EndProcessing method. For example, a cmdlet
might override both methods if it gathers all input using
System.Management.Automation.Cmdlet.ProcessRecord and then operates on the input
as a whole rather than one element at a time, as the Sort-Object  cmdlet does.

If your cmdlet does not take pipeline input, it should override the
System.Management.Automation.Cmdlet.EndProcessing method. Be aware that this
method is frequently used in place of
System.Management.Automation.Cmdlet.BeginProcessing when the cmdlet cannot
operate on one element at a time, as is the case for a sorting cmdlet.

７ Note

The class for a cmdlet must be explicitly marked as public. Classes that are not
marked as public will default to internal and will not be found by the Windows
PowerShell runtime.

Overriding an Input Processing Method

７ Note

Windows PowerShell uses the term "record" to describe the set of parameter values
supplied when a cmdlet is called.

https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing


Because this sample Get-Proc cmdlet must receive pipeline input, it overrides the
System.Management.Automation.Cmdlet.ProcessRecord method and uses the default
implementations for System.Management.Automation.Cmdlet.BeginProcessing and
System.Management.Automation.Cmdlet.EndProcessing. The
System.Management.Automation.Cmdlet.ProcessRecord override retrieves processes
and writes them to the command line using the
System.Management.Automation.Cmdlet.WriteObject method.

C#

VB

The default source for input is an explicit object (for example, a string) provided by
the user on the command line. For more information, see Creating a Cmdlet to
Process Command Line Input.

An input processing method can also receive input from the output object of an
upstream cmdlet on the pipeline. For more information, see Creating a Cmdlet to

protected override void ProcessRecord()
{
  // Get the current processes
  Process[] processes = Process.GetProcesses();

  // Write the processes to the pipeline making them available
  // to the next cmdlet. The second parameter of this call tells
  // PowerShell to enumerate the array, and send one process at a
  // time to the pipeline.
  WriteObject(processes, true);
}

Protected Overrides Sub ProcessRecord()

    '/ Get the current processes.
    Dim processes As Process()
    processes = Process.GetProcesses()

    '/ Write the processes to the pipeline making them available
    '/ to the next cmdlet. The second parameter of this call tells
    '/ PowerShell to enumerate the array, and send one process at a
    '/ time to the pipeline.
    WriteObject(processes, True)

End Sub 'ProcessRecord

Things to Remember About Input Processing

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


Process Pipeline Input. Be aware that your cmdlet can receive input from a
combination of command-line and pipeline sources.

The downstream cmdlet might not return for a long time, or not at all. For that
reason, the input processing method in your cmdlet should not hold locks during
calls to System.Management.Automation.Cmdlet.WriteObject, especially locks for
which the scope extends beyond the cmdlet instance.

Your cmdlet might have object variables to clean up when it is finished processing
(for example, if it opens a file handle in the
System.Management.Automation.Cmdlet.BeginProcessing method and keeps the
handle open for use by System.Management.Automation.Cmdlet.ProcessRecord). It
is important to remember that the Windows PowerShell runtime does not always
call the System.Management.Automation.Cmdlet.EndProcessing method, which
should perform object cleanup.

For example, System.Management.Automation.Cmdlet.EndProcessing might not be
called if the cmdlet is canceled midway or if a terminating error occurs in any part of the
cmdlet. Therefore, a cmdlet that requires object cleanup should implement the
complete System.IDisposable pattern, including the finalizer, so that the runtime can call
both System.Management.Automation.Cmdlet.EndProcessing and
System.IDisposable.Dispose* at the end of processing.

For the complete C# sample code, see GetProcessSample01 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet might need to define its own type, or the cmdlet might need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

） Important

Cmdlets should never call System.Console.Writeline* or its equivalent.

Code Sample

Defining Object Types and Formatting

Building the Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.EndProcessing
https://learn.microsoft.com/en-us/dotnet/api/System.IDisposable.Dispose
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/dotnet/api/System.Console.WriteLine


After implementing a cmdlet, you must register it with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with Windows PowerShell, you can test it by
running it on the command line. The code for our sample Get-Proc cmdlet is small, but
it still uses the Windows PowerShell runtime and an existing .NET object, which is
enough to make it useful. Let's test it to better understand what Get-Proc can do and
how its output can be used. For more information about using cmdlets from the
command line, see the Getting Started with Windows PowerShell.

1. Start Windows PowerShell, and get the current processes running on the
computer.

PowerShell

The following output appears.

Output

2. Assign a variable to the cmdlet results for easier manipulation.

PowerShell

3. Get the number of processes.

PowerShell

Testing the Cmdlet

Get-Proc

Handles  NPM(K)  PM(K)  WS(K)  VS(M)  CPU(s)  Id   ProcessName
-------  ------  -----  -----  -----  ------  --   ----------
254      7       7664   12048  66     173.75  1200  QCTRAY
32       2       1372   2628   31       0.04  1860  DLG
271      6       1216   3688   33       0.03  3816  lg
27       2       560    1920   24       0.01  1768  TpScrex
...

$p=Get-Proc

$p.Length

https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


The following output appears.

Output

4. Retrieve a specific process.

PowerShell

The following output appears.

Output

5. Get the start time of this process.

PowerShell

The following output appears.

Output

PowerShell

Output

6. Get the processes for which the handle count is greater than 500, and sort the
result.

63

$p[6]

Handles  NPM(K)  PM(K)  WS(K)  VS(M)  CPU(s)  Id    ProcessName
-------  ------  -----  -----  -----  ------  --    -----------
1033     3       2400   3336   35     0.53    1588  rundll32

$p[6].StartTime

Tuesday, July 26, 2005 9:34:15 AM

$p[6].StartTime.DayOfYear

207



PowerShell

The following output appears.

Output

7. Use the Get-Member  cmdlet to list the properties available for each process.

PowerShell

Output

The following output appears.

Output

Creating a Cmdlet to Process Command Line Input

Creating a Cmdlet to Process Pipeline Input

$p | Where-Object {$_.HandleCount -gt 500 } | Sort-Object HandleCount

Handles  NPM(K)  PM(K)  WS(K)  VS(M)  CPU(s)  Id   ProcessName
-------  ------  -----  -----  -----  ------  --   ----------
568      14      2164   4972   39     5.55    824  svchost
716       7      2080   5332   28    25.38    468  csrss
761      21      33060  56608  440  393.56    3300 WINWORD
791      71      7412   4540   59     3.31    492  winlogon
...

$p | Get-Member -MemberType Property

    TypeName: System.Diagnostics.Process

Name                     MemberType Definition
----                     ---------- ----------
BasePriority             Property   System.Int32 BasePriority {get;}
Container                Property   System.ComponentModel.IContainer 
Conta...
EnableRaisingEvents      Property   System.Boolean EnableRaisingEvents 
{ge...
...

See Also



How to Create a Windows PowerShell Cmdlet

Extending Object Types and Formatting

How Windows PowerShell Works

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Reference

Cmdlet Samples

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Adding Parameters That Process
Command-Line Input
Article • 09/17/2021

One source of input for a cmdlet is the command line. This topic describes how to add a
parameter to the Get-Proc  cmdlet (which is described in Creating Your First Cmdlet) so
that the cmdlet can process input from the local computer based on explicit objects
passed to the cmdlet. The Get-Proc  cmdlet described here retrieves processes based on
their names, and then displays information about the processes at a command prompt.

The first step in cmdlet creation is cmdlet naming and the declaration of the .NET
Framework class that implements the cmdlet. This cmdlet retrieves process information,
so the verb name chosen here is "Get." (Almost any sort of cmdlet that is capable of
retrieving information can process command-line input.) For more information about
approved cmdlet verbs, see Cmdlet Verb Names.

Here's the class declaration for the Get-Proc  cmdlet. Details about this definition are
provided in Creating Your First Cmdlet.

C#

VB

A cmdlet parameter enables the user to provide input to the cmdlet. In the following
example, Get-Proc  and Get-Member  are the names of pipelined cmdlets, and MemberType
is a parameter for the Get-Member  cmdlet. The parameter has the argument "property."

PS> Get-Proc ; Get-Member  -MemberType Property

Defining the Cmdlet Class

[Cmdlet(VerbsCommon.Get, "proc")]
public class GetProcCommand: Cmdlet

<Cmdlet(VerbsCommon.Get, "Proc")> _
Public Class GetProcCommand
    Inherits Cmdlet

Declaring Parameters



To declare parameters for a cmdlet, you must first define the properties that represent
the parameters. In the Get-Proc  cmdlet, the only parameter is Name , which in this case
represents the name of the .NET Framework process object to retrieve. Therefore, the
cmdlet class defines a property of type string to accept an array of names.

Here's the parameter declaration for the Name  parameter of the Get-Proc  cmdlet.

C#

VB

To inform the Windows PowerShell runtime that this property is the Name  parameter, a
System.Management.Automation.ParameterAttribute attribute is added to the property
definition. The basic syntax for declaring this attribute is [Parameter()] .

/// <summary>
/// Specify the cmdlet Name parameter.
/// </summary>
  [Parameter(Position = 0)]
  [ValidateNotNullOrEmpty]
  public string[] Name
  {
    get { return processNames; }
    set { processNames = value; }
  }
  private string[] processNames;

  #endregion Parameters

<Parameter(Position:=0), ValidateNotNullOrEmpty()> _
Public Property Name() As String()
    Get
        Return processNames
    End Get

    Set(ByVal value As String())
        processNames = value
    End Set

End Property

７ Note

A parameter must be explicitly marked as public. Parameters that are not marked as
public default to internal and are not found by the Windows PowerShell runtime.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


This cmdlet uses an array of strings for the Name  parameter. If possible, your cmdlet
should also define a parameter as an array, because this allows the cmdlet to accept
more than one item.

Predefined Windows PowerShell parameter names and data types should be
reused as much as possible to ensure that your cmdlet is compatible with
Windows PowerShell cmdlets. For example, if all cmdlets use the predefined Id
parameter name to identify a resource, user will easily understand the meaning of
the parameter, regardless of what cmdlet they are using. Basically, parameter
names follow the same rules as those used for variable names in the common
language runtime (CLR). For more information about parameter naming, see
Cmdlet Parameter Names.

Windows PowerShell reserves a few parameter names to provide a consistent user
experience. Do not use these parameter names: WhatIf , Confirm , Verbose , Debug ,
Warn , ErrorAction , ErrorVariable , OutVariable , and OutBuffer . Additionally, the
following aliases for these parameter names are reserved: vb , db , ea , ev , ov , and
ob .

Name  is a simple and common parameter name, recommended for use in your
cmdlets. It is better to choose a parameter name like this than a complex name
that is unique to a specific cmdlet and hard to remember.

Parameters are case-insensitive in Windows PowerShell, although by default the
shell preserves case. Case-sensitivity of the arguments depends on the operation
of the cmdlet. Arguments are passed to a parameter as specified at the command
line.

For examples of other parameter declarations, see Cmdlet Parameters.

A cmdlet must set each parameter as either a positional or named parameter. Both
kinds of parameters accept single arguments, multiple arguments separated by
commas, and Boolean settings. A Boolean parameter, also called a switch, handles only
Boolean settings. The switch is used to determine the presence of the parameter. The
recommended default is false .

Things to Remember About Parameter Definitions

Declaring Parameters as Positional or Named

https://learn.microsoft.com/en-us/previous-versions/ms714468(v=vs.85)


The sample Get-Proc  cmdlet defines the Name  parameter as a positional parameter with
position 0. This means that the first argument the user enters on the command line is
automatically inserted for this parameter. If you want to define a named parameter, for
which the user must specify the parameter name from the command line, leave the
Position  keyword out of the attribute declaration.

A cmdlet must set each parameter as either an optional or a mandatory parameter. In
the sample Get-Proc  cmdlet, the Name  parameter is defined as optional because the

Mandatory  keyword is not set in the attribute declaration.

The sample Get-Proc  cmdlet adds an input validation attribute,
System.Management.Automation.ValidateNotNullOrEmptyAttribute, to the Name
parameter to enable validation that the input is neither null  nor empty. This attribute is
one of several validation attributes provided by Windows PowerShell. For examples of
other validation attributes, see Validating Parameter Input.

If your cmdlet is to handle command-line input, it must override the appropriate input
processing methods. The basic input processing methods are introduced in Creating
Your First Cmdlet.

７ Note

Unless parameters must be named, we recommend that you make the most-used
parameters positional so that users will not have to type the parameter name.

Declaring Parameters as Mandatory or
Optional

Supporting Parameter Validation

[Parameter(Position = 0)]
[ValidateNotNullOrEmpty]
public string[] Name

Overriding an Input Processing Method

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ValidateNotNullOrEmptyAttribute


The Get-Proc  cmdlet overrides the
System.Management.Automation.Cmdlet.ProcessRecord method to handle the Name
parameter input provided by the user or a script. This method gets the processes for
each requested process name, or all for processes if no name is provided. Notice that in
System.Management.Automation.Cmdlet.ProcessRecord, the call to
System.Management.Automation.Cmdlet.WriteObject is the output mechanism for
sending output objects to the pipeline. The second parameter of this call,
enumerateCollection , is set to true  to inform the Windows PowerShell runtime to
enumerate the output array of process objects and write one process at a time to the
command line.

C#

VB

protected override void ProcessRecord()
{
  // If no process names are passed to the cmdlet, get all processes.
  if (processNames == null)
  {
    // Write the processes to the pipeline making them available
    // to the next cmdlet. The second argument of this call tells
    // PowerShell to enumerate the array, and send one process at a
    // time to the pipeline.
    WriteObject(Process.GetProcesses(), true);
  }
  else
  {
    // If process names are passed to the cmdlet, get and write
    // the associated processes.
    foreach (string name in processNames)
    {
      WriteObject(Process.GetProcessesByName(name), true);
    }
  }
}

Protected Overrides Sub ProcessRecord()

    '/ If no process names are passed to the cmdlet, get all processes.
    If processNames Is Nothing Then
        Dim processes As Process()
        processes = Process.GetProcesses()
    End If

    '/ If process names are specified, write the processes to the
    '/ pipeline to display them or make them available to the next cmdlet.

    For Each name As String In processNames

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject


For the complete C# sample code, see GetProcessSample02 Sample.

Windows PowerShell passes information between cmdlets by using .NET Framework
objects. Consequently, a cmdlet might need to define its own type, or a cmdlet might
need to extend an existing type provided by another cmdlet. For more information
about defining new types or extending existing types, see Extending Object Types and
Formatting.

After you implement a cmdlet, you must register it with Windows PowerShell by using a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications.

When your cmdlet is registered with Windows PowerShell, you can test it by running it
on the command line. Here are two ways to test the code for the sample cmdlet. For
more information about using cmdlets from the command line, see Getting Started with
Windows PowerShell.

At the Windows PowerShell prompt, use the following command to list the
Internet Explorer process, which is named "IEXPLORE."

PowerShell

The following output appears.

        '/ The second parameter of this call tells PowerShell to enumerate 
the
        '/ array, and send one process at a time to the pipeline.
        WriteObject(Process.GetProcessesByName(name), True)
    Next

End Sub 'ProcessRecord

Code Sample

Defining Object Types and Formatting

Building the Cmdlet

Testing the Cmdlet

Get-Proc -Name iexplore

https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


Output

To list the Internet Explorer, Outlook, and Notepad processes named "IEXPLORE,"
"OUTLOOK," and "NOTEPAD," use the following command. If there are multiple
processes, all of them are displayed.

PowerShell

The following output appears.

Adding Parameters that Process Pipeline Input

Creating Your First Cmdlet

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Reference

Cmdlet Samples

Handles  NPM(K)  PM(K)   WS(K)  VS(M)  CPU(s)   Id   ProcessName
-------  ------  -----   -----  -----   ------ --   -----------
    354      11  10036   18992    85   0.67   3284   iexplore

Get-Proc -Name iexplore, outlook, notepad

Handles  NPM(K)  PM(K)   WS(K)  VS(M)  CPU(s)   Id   ProcessName
-------  ------  -----   -----  -----  ------   --   -----------
    732      21  24696    5000    138   2.25  2288   iexplore
    715      19  20556   14116    136   1.78  3860   iexplore
   3917      62  74096   58112    468 191.56  1848   OUTLOOK
     39       2   1024    3280     30   0.09  1444   notepad
     39       2   1024     356     30   0.08  3396   notepad

See Also

https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Adding Parameters that Process Pipeline
Input
Article • 09/17/2021

One source of input for a cmdlet is an object on the pipeline that originates from an
upstream cmdlet. This section describes how to add a parameter to the Get-Proc cmdlet
(described in Creating Your First Cmdlet) so that the cmdlet can process pipeline objects.

This Get-Proc cmdlet uses a Name  parameter that accepts input from a pipeline object,
retrieves process information from the local computer based on the supplied names,
and then displays information about the processes at the command line.

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. This cmdlet retrieves process information, so the verb
name chosen here is "Get". (Almost any sort of cmdlet that is capable of retrieving
information can process command-line input.) For more information about approved
cmdlet verbs, see Cmdlet Verb Names.

The following is the definition for this Get-Proc cmdlet. Details of this definition are
given in Creating Your First Cmdlet.

C#

VB

This section describes how to define input from the pipeline for a cmdlet. This Get-Proc
cmdlet defines a property that represents the Name  parameter as described in Adding
Parameters that Process Command Line Input. (See that topic for general information
about declaring parameters.)

Defining the Cmdlet Class

[Cmdlet(VerbsCommon.Get, "proc")]
public class GetProcCommand : Cmdlet

<Cmdlet(VerbsCommon.Get, "Proc")> _
Public Class GetProcCommand
    Inherits Cmdlet

Defining Input from the Pipeline



However, when a cmdlet needs to process pipeline input, it must have its parameters
bound to input values by the Windows PowerShell runtime. To do this, you must add the
ValueFromPipeline  keyword or add the ValueFromPipelineByProperty  keyword to the
System.Management.Automation.ParameterAttribute attribute declaration. Specify the
ValueFromPipeline  keyword if the cmdlet accesses the complete input object. Specify
the ValueFromPipelineByProperty  if the cmdlet accesses only a property of the object.

Here is the parameter declaration for the Name  parameter of this Get-Proc cmdlet that
accepts pipeline input.

C#

VB

The previous declaration sets the ValueFromPipeline  keyword to true  so that the
Windows PowerShell runtime will bind the parameter to the incoming object if the
object is the same type as the parameter, or if it can be coerced to the same type. The
ValueFromPipelineByPropertyName  keyword is also set to true  so that the Windows
PowerShell runtime will check the incoming object for a Name  property. If the incoming
object has such a property, the runtime will bind the Name  parameter to the Name
property of the incoming object.

[Parameter(
   Position = 0,
   ValueFromPipeline = true,
   ValueFromPipelineByPropertyName = true)]
[ValidateNotNullOrEmpty]
public string[] Name
{
   get { return this.processNames; }
   set { this.processNames = value; }
}

<Parameter(Position:=0, ValueFromPipeline:=True, _
ValueFromPipelineByPropertyName:=True), ValidateNotNullOrEmpty()> _
Public Property Name() As String()
    Get
        Return processNames
    End Get

    Set(ByVal value As String())
        processNames = value
    End Set

End Property

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


If your cmdlet is to handle pipeline input, it needs to override the appropriate input
processing methods. The basic input processing methods are introduced in Creating
Your First Cmdlet.

This Get-Proc cmdlet overrides the
System.Management.Automation.Cmdlet.ProcessRecord method to handle the Name
parameter input provided by the user or a script. This method will get the processes for
each requested process name or all processes if no name is provided. Notice that within
System.Management.Automation.Cmdlet.ProcessRecord, the call to
WriteObject(System.Object,System.Boolean) is the output mechanism for sending
output objects to the pipeline. The second parameter of this call, enumerateCollection ,
is set to true  to tell the Windows PowerShell runtime to enumerate the array of process
objects, and write one process at a time to the command line.

C#

７ Note

The setting of the ValueFromPipeline  attribute keyword for a parameter takes
precedence over the setting for the ValueFromPipelineByPropertyName  keyword.

Overriding an Input Processing Method

protected override void ProcessRecord()
{
  // If no process names are passed to the cmdlet, get all processes.
  if (processNames == null)
  {
      // Write the processes to the pipeline making them available
      // to the next cmdlet. The second argument of this call tells
      // PowerShell to enumerate the array, and send one process at a
      // time to the pipeline.
      WriteObject(Process.GetProcesses(), true);
  }
  else
  {
    // If process names are passed to the cmdlet, get and write
    // the associated processes.
    foreach (string name in processNames)
    {
      WriteObject(Process.GetProcessesByName(name), true);
    } // End foreach (string name...).
  }
}

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.cmdlet.writeobject#System_Management_Automation_Cmdlet_WriteObject_System_Object_System_Boolean_


VB

For the complete C# sample code, see GetProcessSample03 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet may need to define its own type, or the cmdlet may need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

After implementing a cmdlet it must be registered with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

Protected Overrides Sub ProcessRecord()
    Dim processes As Process()

    '/ If no process names are passed to the cmdlet, get all processes.
    If processNames Is Nothing Then
        processes = Process.GetProcesses()
    Else

        '/ If process names are specified, write the processes to the
        '/ pipeline to display them or make them available to the next 
cmdlet.
        For Each name As String In processNames
            '/ The second parameter of this call tells PowerShell to 
enumerate the
            '/ array, and send one process at a time to the pipeline.
            WriteObject(Process.GetProcessesByName(name), True)
        Next
    End If

End Sub 'ProcessRecord

Code Sample

Defining Object Types and Formatting

Building the Cmdlet

Testing the Cmdlet

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


When your cmdlet has been registered with Windows PowerShell, test it by running it on
the command line. For example, test the code for the sample cmdlet. For more
information about using cmdlets from the command line, see the Getting Started with
Windows PowerShell.

At the Windows PowerShell prompt, enter the following commands to retrieve the
process names through the pipeline.

PowerShell

The following output appears.

Enter the following lines to get the process objects that have a Name  property from
the processes called "IEXPLORE". This example uses the Get-Process  cmdlet
(provided by Windows PowerShell) as an upstream command to retrieve the
"IEXPLORE" processes.

PowerShell

The following output appears.

PS> type ProcessNames | Get-Proc

Handles  NPM(K)  PM(K)   WS(K)  VS(M)  CPU(s)    Id  ProcessName
-------  ------  -----   ----- -----   ------    --  -----------
    809      21  40856    4448    147    9.50  2288  iexplore
    737      21  26036   16348    144   22.03  3860  iexplore
     39       2   1024     388     30    0.08  3396  notepad
   3927      62  71836   26984    467  195.19  1848  OUTLOOK

PS> Get-Process iexplore | Get-Proc

Handles  NPM(K)  PM(K)   WS(K)  VS(M)  CPU(s)    Id  ProcessName
-------  ------  -----   ----- -----   ------    --  -----------
    801      21  40720    6544    142    9.52  2288  iexplore
    726      21  25872   16652    138   22.09  3860  iexplore
    801      21  40720    6544    142    9.52  2288  iexplore
    726      21  25872   16652    138   22.09  3860  iexplore

See Also

https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


Adding Parameters that Process Command Line Input

Creating Your First Cmdlet

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Reference

Cmdlet Samples

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Adding Non-Terminating Error
Reporting to Your Cmdlet
Article • 09/15/2023

Cmdlets can report non-terminating errors by calling the
System.Management.Automation.Cmdlet.WriteError method and still continue to
operate on the current input object or on further incoming pipeline objects. This section
explains how to create a cmdlet that reports non-terminating errors from its input
processing methods.

For non-terminating errors (as well as terminating errors), the cmdlet must pass an
System.Management.Automation.ErrorRecord object identifying the error. Each error
record is identified by a unique string called the "error identifier". In addition to the
identifier, the category of each error is specified by constants defined by a
System.Management.Automation.ErrorCategory enumeration. The user can view errors
based on their category by setting the $ErrorView  variable to "CategoryView".

For more information about error records, see Windows PowerShell Error Records.

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. This cmdlet retrieves process information, so the verb
name chosen here is "Get". (Almost any sort of cmdlet that is capable of retrieving
information can process command-line input.) For more information about approved
cmdlet verbs, see Cmdlet Verb Names.

The following is the definition for this Get-Proc  cmdlet. Details of this definition are
given in Creating Your First Cmdlet.

C#

VB

Defining the Cmdlet

[Cmdlet(VerbsCommon.Get, "proc")]
public class GetProcCommand: Cmdlet

<Cmdlet(VerbsCommon.Get, "Proc")> _
Public Class GetProcCommand
    Inherits Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorCategory


If necessary, your cmdlet must define parameters for processing input. This Get-Proc
cmdlet defines a Name parameter as described in Adding Parameters that Process
Command-Line Input.

Here is the parameter declaration for the Name parameter of this Get-Proc cmdlet.

C#

VB

All cmdlets must override at least one of the input processing methods provided by the
System.Management.Automation.Cmdlet class. These methods are discussed in Creating
Your First Cmdlet.

Defining Parameters

[Parameter(
           Position = 0,
           ValueFromPipeline = true,
           ValueFromPipelineByPropertyName = true
)]
[ValidateNotNullOrEmpty]
public string[] Name
{
  get { return processNames; }
  set { processNames = value; }
}
private string[] processNames;

<Parameter(Position:=0, ValueFromPipeline:=True, _
ValueFromPipelineByPropertyName:=True), ValidateNotNullOrEmpty()> _
Public Property Name() As String()
    Get
        Return processNames
    End Get

    Set(ByVal value As String())
        processNames = value
    End Set

End Property

Overriding Input Processing Methods

７ Note

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet


This Get-Proc cmdlet overrides the
System.Management.Automation.Cmdlet.ProcessRecord method to handle the Name
parameter for input provided by the user or a script. This method will get the processes
for each requested process name or all processes if no name is provided. Details of this
override are given in Creating Your First Cmdlet.

The System.Management.Automation.ErrorRecord object that the cmdlet passes when
writing an error requires an exception at its core. Follow the .NET guidelines when
determining the exception to use. Basically, if the error is semantically the same as an
existing exception, the cmdlet should use or derive from that exception. Otherwise, it
should derive a new exception or exception hierarchy directly from the System.Exception
class.

When creating error identifiers (accessed through the FullyQualifiedErrorId property of
the ErrorRecord class) keep the following in mind.

Use strings that are targeted for diagnostic purposes so that when inspecting the
fully qualified identifier you can determine what the error is and where the error
came from.

A well formed fully qualified error identifier might be as follows.

CommandNotFoundException,Microsoft.PowerShell.Commands.GetCommandCommand

Notice that in the previous example, the error identifier (the first token) designates what
the error is and the remaining part indicates where the error came from.

For more complex scenarios, the error identifier can be a dot separated token that
can be parsed on inspection. This allows you too branch on the parts of the error
identifier as well as the error identifier and error category.

The cmdlet should assign specific error identifiers to different code paths. Keep the
following information in mind for assignment of error identifiers:

An error identifier should remain constant throughout the cmdlet life cycle. Do not
change the semantics of an error identifier between cmdlet versions.
Use text for an error identifier that tersely corresponds to the error being reported.
Do not use white space or punctuation.

Your cmdlet should handle each record as independently as possible.

Things to Remember When Reporting Errors

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ErrorRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Exception


Have your cmdlet generate only error identifiers that are reproducible. For
example, it should not generate an identifier that includes a process identifier.
Error identifiers are useful to a user only when they correspond to identifiers that
are seen by other users experiencing the same problem.

Unhandled exceptions are not caught by PowerShell in the following conditions:

If a cmdlet creates a new thread and code running in that thread throws an
unhandled exception, PowerShell will not catch the error and will terminate the
process.
If an object has code in its destructor or Dispose methods that causes an
unhandled exception, PowerShell will not catch the error and will terminate the
process.

Any one of the input processing methods can report a non-terminating error to the
output stream using the System.Management.Automation.Cmdlet.WriteError method.

Here is a code example from this Get-Proc cmdlet that illustrates the call to
System.Management.Automation.Cmdlet.WriteError from within the override of the
System.Management.Automation.Cmdlet.ProcessRecord method. In this case, the call is
made if the cmdlet cannot find a process for a specified process identifier.

C#

Reporting Non-terminating Errors

protected override void ProcessRecord()
{
  // If no name parameter passed to cmdlet, get all processes.
  if (processNames == null)
  {
    WriteObject(Process.GetProcesses(), true);
  }
    else
    {
      // If a name parameter is passed to cmdlet, get and write
      // the associated processes.
      // Write a non-terminating error for failure to retrieve
      // a process.
      foreach (string name in processNames)
      {
        Process[] processes;

        try
        {
          processes = Process.GetProcessesByName(name);
        }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


For a non-terminating error, the cmdlet must generate a specific error identifier for each
specific input object.

A cmdlet frequently needs to modify the PowerShell action produced by a non-
terminating error. It can do this by defining the ErrorAction  and ErrorVariable
parameters. If defining the ErrorAction  parameter, the cmdlet presents the user options
System.Management.Automation.ActionPreference, you can also directly influence the
action by setting the $ErrorActionPreference  variable.

The cmdlet can save non-terminating errors to a variable using the ErrorVariable
parameter, which is not affected by the setting of ErrorAction . Failures can be
appended to an existing error variable by adding a plus sign (+) to the front of the
variable name.

For the complete C# sample code, see GetProcessSample04 Sample.

PowerShell passes information between cmdlets using .NET objects. Consequently, a
cmdlet might need to define its own type, or the cmdlet might need to extend an
existing type provided by another cmdlet. For more information about defining new
types or extending existing types, see Extending Object Types and Formatting.

        catch (InvalidOperationException ex)
        {
          WriteError(new ErrorRecord(
                     ex,
                     "NameNotFound",
                     ErrorCategory.InvalidOperation,
                     name));
          continue;
        }

        WriteObject(processes, true);
      } // foreach (...
    } // else
  }

Things to Remember About Writing Non-terminating
Errors

Code Sample

Define Object Types and Formatting

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ActionPreference
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)


After implementing a cmdlet, you must register it with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with PowerShell, you can test it by running it on
the command line. Let's test the sample Get-Proc cmdlet to see whether it reports an
error:

Start PowerShell, and use the Get-Proc cmdlet to retrieve the processes named
"TEST".

PowerShell

The following output appears.

Adding Parameters that Process Pipeline Input

Adding Parameters that Process Command-Line Input

Creating Your First Cmdlet

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Reference

Cmdlet Samples

Building the Cmdlet

Testing the Cmdlet

Get-Proc -Name test

Get-Proc : Operation is not valid due to the current state of the 
object.
At line:1 char:9
+ Get-Proc  <<<< -Name test

See Also

https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


StopProc Tutorial
Article • 09/15/2023

This section provides a tutorial for creating the Stop-Proc cmdlet, which is very similar to
the Stop-Process cmdlet provided by Windows PowerShell. This tutorial provides
fragments of code that illustrate how cmdlets are implemented, and an explanation of
the code.

The topics in this tutorial are designed to be read sequentially, with each topic building
on what was discussed in the previous topic.

Creating a Cmdlet that Modifies the System: This section describes how to create
a cmdlet that supports system modifications, such as stopping a process running
on the computer.

Adding User Messages to Your Cmdlet: This section describes how to add the
ability to write user messages, debug messages, warning messages, and progress
information to your cmdlet.

Adding Aliases, Wildcard Expansion, and Help to Cmdlet Parameters: This section
describes how to create a cmdlet that supports parameter aliases, Help, and
wildcard expansion.

Adding Parameter Sets to Cmdlets: This section describes how to add parameter
sets to a cmdlet. Parameter sets allow the cmdlet to operate differently based on
what parameters are specified by the user.

Windows PowerShell SDK

Topics in this Tutorial

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Stop-Process
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fstopproc-tutorial%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fstopproc-tutorial.md&documentVersionIndependentId=65052cb0-0190-7b0e-61cf-39cbe05dccc8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ec26d36b-e6b5-f5e7-6f9c-c37c66ac6420+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.   Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


Creating a Cmdlet that Modifies the
System
Article • 09/17/2021

Sometimes a cmdlet must modify the running state of the system, not just the state of
the Windows PowerShell runtime. In these cases, the cmdlet should allow the user a
chance to confirm whether or not to make the change.

To support confirmation a cmdlet must do two things.

Declare that the cmdlet supports confirmation when you specify the
System.Management.Automation.CmdletAttribute attribute by setting the
SupportsShouldProcess keyword to true .

Call System.Management.Automation.Cmdlet.ShouldProcess during the execution
of the cmdlet (as shown in the following example).

By supporting confirmation, a cmdlet exposes the Confirm  and WhatIf  parameters that
are provided by Windows PowerShell, and also meets the development guidelines for
cmdlets (For more information about cmdlet development guidelines, see Cmdlet
Development Guidelines.).

The act of "changing the system" refers to any cmdlet that potentially changes the state
of the system outside Windows PowerShell. For example, stopping a process, enabling
or disabling a user account, or adding a row to a database table are all changes to the
system that should be confirmed. In contrast, operations that read data or establish
transient connections do not change the system and generally do not require
confirmation. Confirmation is also not needed for actions whose effect is limited to
inside the Windows PowerShell runtime, such as Set-Variable . Cmdlets that might or
might not make a persistent change should declare SupportsShouldProcess  and call
System.Management.Automation.Cmdlet.ShouldProcess only if they are about to make
a persistent change.

Changing the System

７ Note

ShouldProcess confirmation applies only to cmdlets. If a command or script
modifies the running state of a system by directly calling .NET methods or

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


This topic describes a Stop-Proc cmdlet that attempts to stop processes that are
retrieved using the Get-Proc cmdlet (described in Creating Your First Cmdlet).

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. Because you are writing a cmdlet to change the
system, it should be named accordingly. This cmdlet stops system processes, so the verb
name chosen here is "Stop", defined by the
System.Management.Automation.VerbsLifecycle class, with the noun "Proc" to indicate
that the cmdlet stops processes. For more information about approved cmdlet verbs,
see Cmdlet Verb Names.

The following is the class definition for this Stop-Proc cmdlet.

C#

Be aware that in the System.Management.Automation.CmdletAttribute declaration, the
SupportsShouldProcess  attribute keyword is set to true  to enable the cmdlet to make
calls to System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue. Without this keyword set, the
Confirm  and WhatIf  parameters will not be available to the user.

Some operations are extremely destructive, such as reformatting an active hard disk
partition. In these cases, the cmdlet should set ConfirmImpact  = ConfirmImpact.High
when declaring the System.Management.Automation.CmdletAttribute attribute. This
setting forces the cmdlet to request user confirmation even when the user has not
specified the Confirm  parameter. However, cmdlet developers should avoid overusing

ConfirmImpact  for operations that are just potentially destructive, such as deleting a

properties, or by calling applications outside of Windows PowerShell, this form of
confirmation will not be available.

The StopProc Cmdlet

Defining the Cmdlet

[Cmdlet(VerbsLifecycle.Stop, "Proc",
        SupportsShouldProcess = true)]
public class StopProcCommand : Cmdlet

Extremely Destructive Actions

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute


user account. Remember that if ConfirmImpact  is set to
System.Management.Automation.ConfirmImpact High.

Similarly, some operations are unlikely to be destructive, although they do in theory
modify the running state of a system outside Windows PowerShell. Such cmdlets can set
ConfirmImpact  to System.Management.Automation.ConfirmImpact.Low. This will bypass
confirmation requests where the user has asked to confirm only medium-impact and
high-impact operations.

This section describes how to define the cmdlet parameters, including those that are
needed to support system modification. See Adding Parameters that Process
CommandLine Input if you need general information about defining parameters.

The Stop-Proc cmdlet defines three parameters: Name , Force , and PassThru .

The Name  parameter corresponds to the Name  property of the process input object. Be
aware that the Name  parameter in this sample is mandatory, as the cmdlet will fail if it
does not have a named process to stop.

The Force  parameter allows the user to override calls to
System.Management.Automation.Cmdlet.ShouldContinue. In fact, any cmdlet that calls
System.Management.Automation.Cmdlet.ShouldContinue should have a Force
parameter so that when Force  is specified, the cmdlet skips the call to
System.Management.Automation.Cmdlet.ShouldContinue and proceeds with the
operation. Be aware that this does not affect calls to
System.Management.Automation.Cmdlet.ShouldProcess.

The PassThru  parameter allows the user to indicate whether the cmdlet passes an
output object through the pipeline, in this case, after a process is stopped. Be aware that
this parameter is tied to the cmdlet itself instead of to a property of the input object.

Here is the parameter declaration for the Stop-Proc cmdlet.

C#

Defining Parameters for System Modification

[Parameter(
           Position = 0,
           Mandatory = true,
           ValueFromPipeline = true,
           ValueFromPipelineByPropertyName = true
)]
public string[] Name

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ConfirmImpact
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.confirmimpact
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


The cmdlet must override an input processing method. The following code illustrates
the System.Management.Automation.Cmdlet.ProcessRecord override used in the sample
Stop-Proc cmdlet. For each requested process name, this method ensures that the
process is not a special process, tries to stop the process, and then sends an output
object if the PassThru  parameter is specified.

C#

{
  get { return processNames; }
  set { processNames = value; }
}
private string[] processNames;

/// <summary>
/// Specify the Force parameter that allows the user to override
/// the ShouldContinue call to force the stop operation. This
/// parameter should always be used with caution.
/// </summary>
[Parameter]
public SwitchParameter Force
{
  get { return force; }
  set { force = value; }
}
private bool force;

/// <summary>
/// Specify the PassThru parameter that allows the user to specify
/// that the cmdlet should pass the process object down the pipeline
/// after the process has been stopped.
/// </summary>
[Parameter]
public SwitchParameter PassThru
{
  get { return passThru; }
  set { passThru = value; }
}
private bool passThru;

Overriding an Input Processing Method

protected override void ProcessRecord()
{
  foreach (string name in processNames)
  {
    // For every process name passed to the cmdlet, get the associated
    // process(es). For failures, write a non-terminating error
    Process[] processes;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


    try
    {
      processes = Process.GetProcessesByName(name);
    }
    catch (InvalidOperationException ioe)
    {
      WriteError(new ErrorRecord(ioe,"Unable to access the target process by 
name",
                 ErrorCategory.InvalidOperation, name));
      continue;
    }

    // Try to stop the process(es) that have been retrieved for a name
    foreach (Process process in processes)
    {
      string processName;

      try
      {
        processName = process.ProcessName;
      }

      catch (Win32Exception e)
        {
          WriteError(new ErrorRecord(e, "ProcessNameNotFound",
                     ErrorCategory.ReadError, process));
          continue;
        }

        // Call Should Process to confirm the operation first.
        // This is always false if WhatIf is set.
        if (!ShouldProcess(string.Format("{0} ({1})", processName,
                           process.Id)))
        {
          continue;
        }
        // Call ShouldContinue to make sure the user really does want
        // to stop a critical process that could possibly stop the computer.
        bool criticalProcess =
             criticalProcessNames.Contains(processName.ToLower());

        if (criticalProcess &&!force)
        {
          string message = String.Format
                ("The process \"{0}\" is a critical process and should not 
be stopped. Are you sure you wish to stop the process?",
                processName);

          // It is possible that ProcessRecord is called multiple times
          // when the Name parameter receives objects as input from the
          // pipeline. So to retain YesToAll and NoToAll input that the
          // user may enter across multiple calls to ProcessRecord, this
          // information is stored as private members of the cmdlet.
          if (!ShouldContinue(message, "Warning!",
                              ref yesToAll,



The input processing method of your cmdlet should call the
System.Management.Automation.Cmdlet.ShouldProcess method to confirm execution
of an operation before a change (for example, deleting files) is made to the running
state of the system. This allows the Windows PowerShell runtime to supply the correct
"WhatIf" and "Confirm" behavior within the shell.

                              ref noToAll))
          {
            continue;
          }
        } // if (criticalProcess...
        // Stop the named process.
        try
        {
          process.Kill();
        }
        catch (Exception e)
        {
          if ((e is Win32Exception) || (e is SystemException) ||
              (e is InvalidOperationException))
          {
            // This process could not be stopped so write
            // a non-terminating error.
            string message = String.Format("{0} {1} {2}",
                             "Could not stop process \"", processName,
                             "\".");
            WriteError(new ErrorRecord(e, message,
                       ErrorCategory.CloseError, process));
                       continue;
          } // if ((e is...
          else throw;
        } // catch

        // If the PassThru parameter argument is
        // True, pass the terminated process on.
        if (passThru)
        {
          WriteObject(process);
        }
    } // foreach (Process...
  } // foreach (string...
} // ProcessRecord

Calling the ShouldProcess Method

７ Note

If a cmdlet states that it supports should process and fails to make the
System.Management.Automation.Cmdlet.ShouldProcess call, the user might

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess


The call to System.Management.Automation.Cmdlet.ShouldProcess sends the name of
the resource to be changed to the user, with the Windows PowerShell runtime taking
into account any command-line settings or preference variables in determining what
should be displayed to the user.

The following example shows the call to
System.Management.Automation.Cmdlet.ShouldProcess from the override of the
System.Management.Automation.Cmdlet.ProcessRecord method in the sample Stop-
Proc cmdlet.

C#

The call to the System.Management.Automation.Cmdlet.ShouldContinue method sends
a secondary message to the user. This call is made after the call to
System.Management.Automation.Cmdlet.ShouldProcess returns true  and if the Force
parameter was not set to true . The user can then provide feedback to say whether the
operation should be continued. Your cmdlet calls
System.Management.Automation.Cmdlet.ShouldContinue as an additional check for
potentially dangerous system modifications or when you want to provide yes-to-all and
no-to-all options to the user.

The following example shows the call to
System.Management.Automation.Cmdlet.ShouldContinue from the override of the
System.Management.Automation.Cmdlet.ProcessRecord method in the sample Stop-
Proc cmdlet.

C#

modify the system unexpectedly.

if (!ShouldProcess(string.Format("{0} ({1})", processName,
                   process.Id)))
{
  continue;
}

Calling the ShouldContinue Method

if (criticalProcess &&!force)
{
  string message = String.Format
        ("The process \"{0}\" is a critical process and should not be 
stopped. Are you sure you wish to stop the process?",
        processName);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


The input processing method of a cmdlet that makes system modifications must provide
a way of stopping the processing of input. In the case of this Stop-Proc cmdlet, a call is
made from the System.Management.Automation.Cmdlet.ProcessRecord method to the
System.Diagnostics.Process.Kill* method. Because the PassThru  parameter is set to
true , System.Management.Automation.Cmdlet.ProcessRecord also calls
System.Management.Automation.Cmdlet.WriteObject to send the process object to the
pipeline.

For the complete C# sample code, see StopProcessSample01 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet may need to define its own type, or the cmdlet may need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

After implementing a cmdlet, it must be registered with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

  // It is possible that ProcessRecord is called multiple times
  // when the Name parameter receives objects as input from the
  // pipeline. So to retain YesToAll and NoToAll input that the
  // user may enter across multiple calls to ProcessRecord, this
  // information is stored as private members of the cmdlet.
  if (!ShouldContinue(message, "Warning!",
                      ref yesToAll,
                      ref noToAll))
  {
    continue;
  }
} // if (criticalProcess...

Stopping Input Processing

Code Sample

Defining Object Types and Formatting

Building the Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.Kill
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


When your cmdlet has been registered with Windows PowerShell, you can test it by
running it on the command line. Here are several tests that test the Stop-Proc cmdlet.
For more information about using cmdlets from the command line, see the Getting
Started with Windows PowerShell.

Start Windows PowerShell and use the Stop-Proc cmdlet to stop processing as
shown below. Because the cmdlet specifies the Name  parameter as mandatory, the
cmdlet queries for the parameter.

PowerShell

The following output appears.

Now let's use the cmdlet to stop the process named "NOTEPAD". The cmdlet asks
you to confirm the action.

PowerShell

The following output appears.

Use Stop-Proc as shown to stop the critical process named "WINLOGON". You are
prompted and warned about performing this action because it will cause the
operating system to reboot.

Testing the Cmdlet

PS> Stop-Proc

Cmdlet Stop-Proc at command pipeline position 1
Supply values for the following parameters:
Name[0]:

PS> Stop-Proc -Name notepad

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (4996)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y

https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


PowerShell

The following output appears.

Output

Let's now try to stop the WINLOGON process without receiving a warning. Be
aware that this command entry uses the Force  parameter to override the warning.

PowerShell

The following output appears.

Output

Adding Parameters that Process Command-Line Input

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell SDK

PS> Stop-Proc -Name Winlogon

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "winlogon (656)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y
Warning!
The process " winlogon " is a critical process and should not be 
stopped. Are you sure you wish to stop the process?
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): N

PS> Stop-Proc -Name winlogon -Force

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "winlogon (656)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): N

See Also

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Cmdlet Samples



Adding User Messages to Your Cmdlet
Article • 09/17/2021

Cmdlets can write several kinds of messages that can be displayed to the user by the
Windows PowerShell runtime. These messages include the following types:

Verbose messages that contain general user information.

Debug messages that contain troubleshooting information.

Warning messages that contain a notification that the cmdlet is about to perform
an operation that can have unexpected results.

Progress report messages that contain information about how much work the
cmdlet has completed when performing an operation that takes a long time.

There are no limits to the number of messages that your cmdlet can write or the type of
messages that your cmdlet writes. Each message is written by making a specific call from
within the input processing method of your cmdlet.

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. Any sort of cmdlet can write user notifications from its
input processing methods; so, in general, you can name this cmdlet using any verb that
indicates what system modifications the cmdlet performs. For more information about
approved cmdlet verbs, see Cmdlet Verb Names.

The Stop-Proc cmdlet is designed to modify the system; therefore, the
System.Management.Automation.CmdletAttribute declaration for the .NET class must
include the SupportsShouldProcess  attribute keyword and be set to true .

The following code is the definition for this Stop-Proc cmdlet class. For more
information about this definition, see Creating a Cmdlet that Modifies the System.

C#

Defining the Cmdlet

[Cmdlet(VerbsLifecycle.Stop, "proc",
        SupportsShouldProcess = true)]
public class StopProcCommand : Cmdlet

Defining Parameters for System Modification

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CmdletAttribute


The Stop-Proc cmdlet defines three parameters: Name , Force , and PassThru . For more
information about defining these parameters, see Creating a Cmdlet that Modifies the
System.

Here is the parameter declaration for the Stop-Proc cmdlet.

C#

[Parameter(
           Position = 0,
           Mandatory = true,
           ValueFromPipeline = true,
           ValueFromPipelineByPropertyName = true
)]
public string[] Name
{
  get { return processNames; }
  set { processNames = value; }
}
private string[] processNames;

/// <summary>
/// Specify the Force parameter that allows the user to override
/// the ShouldContinue call to force the stop operation. This
/// parameter should always be used with caution.
/// </summary>
[Parameter]
public SwitchParameter Force
{
  get { return force; }
  set { force = value; }
}
private bool force;

/// <summary>
/// Specify the PassThru parameter that allows the user to specify
/// that the cmdlet should pass the process object down the pipeline
/// after the process has been stopped.
/// </summary>
[Parameter]
public SwitchParameter PassThru
{
  get { return passThru; }
  set { passThru = value; }
}
private bool passThru;

Overriding an Input Processing Method



Your cmdlet must override an input processing method, most often it will be
System.Management.Automation.Cmdlet.ProcessRecord. This Stop-Proc cmdlet
overrides the System.Management.Automation.Cmdlet.ProcessRecord input processing
method. In this implementation of the Stop-Proc cmdlet, calls are made to write verbose
messages, debug messages, and warning messages.

The System.Management.Automation.Cmdlet.WriteVerbose method is used to write
general user-level information that is unrelated to specific error conditions. The system
administrator can then use that information to continue processing other commands. In
addition, any information written using this method should be localized as needed.

The following code from this Stop-Proc cmdlet shows two calls to the
System.Management.Automation.Cmdlet.WriteVerbose method from the override of the
System.Management.Automation.Cmdlet.ProcessRecord method.

C#

C#

The System.Management.Automation.Cmdlet.WriteDebug method is used to write
debug messages that can be used to troubleshoot the operation of the cmdlet. The call
is made from an input processing method.

７ Note

For more information about how this method calls the
System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue methods, see Creating
a Cmdlet that Modifies the System.

Writing a Verbose Message

message = String.Format("Attempting to stop process \"{0}\".", name);
WriteVerbose(message);

message = String.Format("Stopped process \"{0}\", pid {1}.",
                        processName, process.Id);

WriteVerbose(message);

Writing a Debug Message

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue


The following two sections of code from the sample Stop-Proc cmdlet show calls to the
System.Management.Automation.Cmdlet.WriteDebug method from the override of the
System.Management.Automation.Cmdlet.ProcessRecord method.

This debug message is written immediately before
System.Management.Automation.Cmdlet.ShouldProcess is called.

C#

This debug message is written immediately before
System.Management.Automation.Cmdlet.WriteObject is called.

C#

Windows PowerShell automatically routes any
System.Management.Automation.Cmdlet.WriteDebug calls to the tracing infrastructure
and cmdlets. This allows the method calls to be traced to the hosting application, a file,
or a debugger without your having to do any extra development work within the
cmdlet. The following command-line entry implements a tracing operation.

PS> Trace-Expression Stop-Proc -File proc.log -Command Stop-Proc notepad

７ Note

Windows PowerShell also defines a Debug  parameter that presents both verbose
and debug information. If your cmdlet supports this parameter, it does not need to
call System.Management.Automation.Cmdlet.WriteDebug in the same code that
calls System.Management.Automation.Cmdlet.WriteVerbose.

message =
          String.Format("Acquired name for pid {0} : \"{1}\"",
                       process.Id, processName);
WriteDebug(message);

message =
         String.Format("Writing process \"{0}\" to pipeline",
         processName);
WriteDebug(message);
WriteObject(process);

Writing a Warning Message

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteDebug
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose


The System.Management.Automation.Cmdlet.WriteWarning method is used to write a
warning when the cmdlet is about to perform an operation that might have an
unexpected result, for example, overwriting a read-only file.

The following code from the sample Stop-Proc cmdlet shows the call to the
System.Management.Automation.Cmdlet.WriteWarning method from the override of
the System.Management.Automation.Cmdlet.ProcessRecord method.

C#

The System.Management.Automation.Cmdlet.WriteProgress is used to write progress
messages when cmdlet operations take an extended amount of time to complete. A call
to System.Management.Automation.Cmdlet.WriteProgress passes a
System.Management.Automation.Progressrecord object that is sent to the hosting
application for rendering to the user.

The following code is an example of a progress message written by a cmdlet that is
attempting to copy an item.

C#

 if (criticalProcess)
 {
   message =
             String.Format("Stopping the critical process \"{0}\".",
                           processName);
   WriteWarning(message);
} // if (criticalProcess...

Writing a Progress Message

７ Note

This Stop-Proc cmdlet does not include a call to the
System.Management.Automation.Cmdlet.WriteProgress method.

int myId = 0;
string myActivity = "Copy-item: Copying *.* to C:\abc";
string myStatus = "Copying file bar.txt";
ProgressRecord pr = new ProgressRecord(myId, myActivity, myStatus);
WriteProgress(pr);

pr.RecordType = ProgressRecordType.Completed;
WriteProgress(pr);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteProgress
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteProgress
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProgressRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteProgress


For the complete C# sample code, see StopProcessSample02 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet might need to define its own type, or the cmdlet might need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

After implementing a cmdlet, it must be registered with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with Windows PowerShell, you can test it by
running it on the command line. Let's test the sample Stop-Proc cmdlet. For more
information about using cmdlets from the command line, see the Getting Started with
Windows PowerShell.

The following command-line entry uses Stop-Proc to stop the process named
"NOTEPAD", provide verbose notifications, and print debug information.

PowerShell

The following output appears.

Code Sample

Define Object Types and Formatting

Building the Cmdlet

Testing the Cmdlet

PS> Stop-Proc -Name notepad -Verbose -Debug

VERBOSE: Attempting to stop process " notepad ".
DEBUG: Acquired name for pid 5584 : "notepad"

Confirm
Continue with this operation?
[Y] Yes  [A] Yes to All  [H] Halt Command  [S] Suspend  [?] Help 

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


Create a Cmdlet that Modifies the System

How to Create a Windows PowerShell Cmdlet

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell SDK

(default is "Y"): Y

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (5584)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y
VERBOSE: Stopped process "notepad", pid 5584.

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Adding Aliases, Wildcard Expansion, and
Help to Cmdlet Parameters
Article • 05/12/2022

This section describes how to add aliases, wildcard expansion, and Help messages to the
parameters of the Stop-Proc  cmdlet (described in Creating a Cmdlet that Modifies the
System).

This Stop-Proc  cmdlet attempts to stop processes that are retrieved using the Get-Proc
cmdlet (described in Creating Your First Cmdlet).

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. Because you are writing a cmdlet to change the
system, it should be named accordingly. Because this cmdlet stops system processes, it
uses the verb Stop, defined by the System.Management.Automation.VerbsLifecycle class,
with the noun Proc to indicate process. For more information about approved cmdlet
verbs, see Cmdlet Verb Names.

The following code is the class definition for this Stop-Proc  cmdlet.

C#

Your cmdlet needs to define parameters that support system modifications and user
feedback. The cmdlet should define a Name parameter or equivalent so that the cmdlet
will be able to modify the system by some sort of identifier. In addition, the cmdlet
should define the Force and PassThru parameters. For more information about these
parameters, see Creating a Cmdlet that Modifies the System.

Defining the Cmdlet

[Cmdlet(VerbsLifecycle.Stop, "proc",
        SupportsShouldProcess = true)]
public class StopProcCommand : Cmdlet

Defining Parameters for System Modification

Defining a Parameter Alias

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsLifecycle


A parameter alias can be an alternate name or a well-defined 1-letter or 2-letter short
name for a cmdlet parameter. In both cases, the goal of using aliases is to simplify user
entry from the command line. Windows PowerShell supports parameter aliases through
the System.Management.Automation.AliasAttribute attribute, which uses the declaration
syntax [Alias()] .

The following code shows how an alias is added to the Name parameter.

C#

In addition to using the System.Management.Automation.AliasAttribute attribute, the
Windows PowerShell runtime performs partial name matching, even if no aliases are
specified. For example, if your cmdlet has a FileName parameter and that is the only
parameter that starts with F , the user could enter Filename , Filenam , File , Fi , or F
and still recognize the entry as the FileName parameter.

Windows PowerShell allows you to create Help for cmdlet parameters. Do this for any
parameter used for system modification and user feedback. For each parameter to
support Help, you can set the HelpMessage attribute keyword in the
System.Management.Automation.ParameterAttribute attribute declaration. This keyword
defines the text to display to the user for assistance in using the parameter. You can also
set the HelpMessageBaseName keyword to identify the base name of a resource to use

/// <summary>
/// Specify the mandatory Name parameter used to identify the
/// processes to be stopped.
/// </summary>
[Parameter(
           Position = 0,
           Mandatory = true,
           ValueFromPipeline = true,
           ValueFromPipelineByPropertyName = true,
           HelpMessage = "The name of one or more processes to stop. 
Wildcards are permitted."
)]
[Alias("ProcessName")]
public string[] Name
{
  get { return processNames; }
  set { processNames = value; }
}
private string[] processNames;

Creating Help for Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.AliasAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.AliasAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


for the message. If you set this keyword, you must also set the HelpMessageResourceId
keyword to specify the resource identifier.

The following code from this Stop-Proc  cmdlet defines the HelpMessage attribute
keyword for the Name parameter.

C#

Your cmdlet must override an input processing method, most often this will be
System.Management.Automation.Cmdlet.ProcessRecord. When modifying the system,
the cmdlet should call the System.Management.Automation.Cmdlet.ShouldProcess and
System.Management.Automation.Cmdlet.ShouldContinue methods to allow the user to
provide feedback before a change is made. For more information about these methods,
see Creating a Cmdlet that Modifies the System.

To allow the selection of multiple objects, your cmdlet can use the
System.Management.Automation.WildcardPattern and
System.Management.Automation.WildcardOptions classes to provide wildcard
expansion support for parameter input. Examples of wildcard patterns are lsa* , *.txt ,
and [a-c]* . Use the back-quote character ( ` ) as an escape character when the pattern
contains a character that should be used literally.

Wildcard expansions of file and path names are examples of common scenarios where
the cmdlet may want to allow support for path inputs when the selection of multiple
objects is required. A common case is in the file system, where a user wants to see all
files residing in the current folder.

/// <summary>
/// Specify the mandatory Name parameter used to identify the
/// processes to be stopped.
/// </summary>
[Parameter(
           Position = 0,
           Mandatory = true,
           ValueFromPipeline = true,
           ValueFromPipelineByPropertyName = true,
           HelpMessage = "The name of one or more processes to stop. 
Wildcards are permitted."
)]

Overriding an Input Processing Method

Supporting Wildcard Expansion

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.WildcardPattern
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.WildcardOptions


You should need a customized wildcard pattern matching implementation only rarely. In
this case, your cmdlet should support either the full POSIX 1003.2, 3.13 specification for
wildcard expansion or the following simplified subset:

Question mark ( ? ). Matches any character at the specified location.
Asterisk ( * ). Matches zero or more characters starting at the specified location.
Open bracket ( [ ). Introduces a pattern bracket expression that can contain
characters or a range of characters. If a range is required, a hyphen ( - ) is used to
indicate the range.
Close bracket ( ] ). Ends a pattern bracket expression.
Back-quote escape character ( ` ). Indicates that the next character should be
taken literally. Be aware that when specifying the back-quote character from the
command line (as opposed to specifying it programmatically), the back-quote
escape character must be specified twice.

The following code shows how to set wildcard options and define the wildcard pattern
used for resolving the Name parameter for this cmdlet.

C#

The following code shows how to test whether the process name matches the defined
wildcard pattern. Notice that, in this case, if the process name does not match the
pattern, the cmdlet continues on to get the next process name.

C#

７ Note

For more information about wildcard patterns, see Supporting Wildcards in
Cmdlet Parameters.

WildcardOptions options = WildcardOptions.IgnoreCase |
                          WildcardOptions.Compiled;
WildcardPattern wildcard = new WildcardPattern(name,options);

if (!wildcard.IsMatch(processName))
{
  continue;
}

Code Sample



For the complete C# sample code, see StopProcessSample03 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet may need to define its own type, or the cmdlet may need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

After implementing a cmdlet, it must be registered with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with Windows PowerShell, you can test it by
running it on the command line. Let's test the sample Stop-Proc cmdlet. For more
information about using cmdlets from the command line, see the Getting Started with
Windows PowerShell.

Start Windows PowerShell and use Stop-Proc  to stop a process using the
ProcessName alias for the Name parameter.

PowerShell

The following output appears.

Make the following entry on the command line. Because the Name parameter is
mandatory, you are prompted for it. Entering !?  brings up the help text associated

Define Object Types and Formatting

Building the Cmdlet

Testing the Cmdlet

PS> Stop-Proc -ProcessName notepad

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (3496)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell


with the parameter.

PowerShell

The following output appears.

Now make the following entry to stop all processes that match the wildcard
pattern *note* . You are prompted before stopping each process that matches the
pattern.

PowerShell

The following output appears.

The following output appears.

The following output appears.

PS> Stop-Proc

Cmdlet Stop-Proc at command pipeline position 1
Supply values for the following parameters:
(Type !? for Help.)
Name[0]: !?
The name of one or more processes to stop. Wildcards are permitted.
Name[0]: notepad

PS> Stop-Proc -Name *note*

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (1112)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "ONENOTEM (3712)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): N



Create a Cmdlet that Modifies the System
How to Create a Windows PowerShell Cmdlet
Extending Object Types and Formatting
How to Register Cmdlets, Providers, and Host Applications
Supporting Wildcards in Cmdlet Parameters
Windows PowerShell SDK

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "ONENOTE (3592)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): N

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Adding Parameter Sets to a Cmdlet
Article • 09/17/2021

Windows PowerShell defines a parameter set as a group of parameters that operate
together. By grouping the parameters of a cmdlet, you can create a single cmdlet that
can change its functionality based on what group of parameters the user specifies.

An example of a cmdlet that uses two parameter sets to define different functionalities
is the Get-EventLog  cmdlet that is provided by Windows PowerShell. This cmdlet returns
different information when the user specifies the List  or LogName  parameter. If the
LogName  parameter is specified, the cmdlet returns information about the events in a
given event log. If the List  parameter is specified, the cmdlet returns information about
the log files themselves (not the event information they contain). In this case, the List
and LogName  parameters identify two separate parameter sets.

Two important things to remember about parameter sets is that the Windows
PowerShell runtime uses only one parameter set for a particular input, and that each
parameter set must have at least one parameter that is unique for that parameter set.

To illustrate that last point, this Stop-Proc cmdlet uses three parameter sets:
ProcessName , ProcessId , and InputObject . Each of these parameter sets has one
parameter that is not in the other parameter sets. The parameter sets could share other
parameters, but the cmdlet uses the unique parameters ProcessName , ProcessId , and
InputObject  to identify which set of parameters that the Windows PowerShell runtime
should use.

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. For this cmdlet, the lifecycle verb "Stop" is used
because the cmdlet stops system processes. The noun name "Proc" is used because the
cmdlet works on processes. In the declaration below, note that the cmdlet verb and
noun name are reflected in the name of the cmdlet class.

Things to Know About Parameter Sets

Declaring the Cmdlet Class

７ Note



The following code is the class definition for this Stop-Proc cmdlet.

C#

VB

This cmdlet defines three parameters needed as input to the cmdlet (these parameters
also define the parameter sets), as well as a Force  parameter that manages what the
cmdlet does and a PassThru  parameter that determines whether the cmdlet sends an
output object through the pipeline. By default, this cmdlet does not pass an object
through the pipeline. For more information about these last two parameters, see
Creating a Cmdlet that Modifies the System.

This input parameter allows the user to specify the names of the processes to be
stopped. Note that the ParameterSetName  attribute keyword of the
System.Management.Automation.ParameterAttribute attribute specifies the ProcessName
parameter set for this parameter.

C#

For more information about approved cmdlet verb names, see Cmdlet Verb
Names.

[Cmdlet(VerbsLifecycle.Stop, "Proc",
        DefaultParameterSetName = "ProcessId",
        SupportsShouldProcess = true)]
public class StopProcCommand : PSCmdlet

<Cmdlet(VerbsLifecycle.Stop, "Proc", DefaultParameterSetName:="ProcessId", _
SupportsShouldProcess:=True)> _
Public Class StopProcCommand
    Inherits PSCmdlet

Declaring the Parameters of the Cmdlet

Declaring the Name Parameter

[Parameter(
   Position = 0,
   ParameterSetName = "ProcessName",
   Mandatory = true,
   ValueFromPipeline = true,
   ValueFromPipelineByPropertyName = true,

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


VB

Note also that the alias "ProcessName" is given to this parameter.

This input parameter allows the user to specify the identifiers of the processes to be
stopped. Note that the ParameterSetName  attribute keyword of the
System.Management.Automation.ParameterAttribute attribute specifies the ProcessId
parameter set.

C#

   HelpMessage = "The name of one or more processes to stop. Wildcards are 
permitted."
)]
[Alias("ProcessName")]
public string[] Name
{
    get { return processNames; }
    set { processNames = value; }
}
private string[] processNames;

<Parameter(Position:=0, ParameterSetName:="ProcessName", _
Mandatory:=True, _
ValueFromPipeline:=True, ValueFromPipelineByPropertyName:=True, _
HelpMessage:="The name of one or more processes to stop. " & _
    "Wildcards are permitted."), [Alias]("ProcessName")> _
Public Property Name() As String()
    Get
        Return processNames
    End Get
    Set(ByVal value As String())
        processNames = value
    End Set
End Property

Private processNames() As String

Declaring the Id Parameter

[Parameter(
           ParameterSetName = "ProcessId",
           Mandatory = true,
           ValueFromPipelineByPropertyName = true,
           ValueFromPipeline = true
)]
[Alias("ProcessId")]
public int[] Id
{

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


VB

Note also that the alias "ProcessId" is given to this parameter.

This input parameter allows the user to specify an input object that contains information
about the processes to be stopped. Note that the ParameterSetName  attribute keyword
of the System.Management.Automation.ParameterAttribute attribute specifies the
InputObject  parameter set for this parameter.

C#

VB

  get { return processIds; }
  set { processIds = value; }
}
private int[] processIds;

<Parameter(ParameterSetName:="ProcessId", _
Mandatory:=True, _
ValueFromPipelineByPropertyName:=True, _
ValueFromPipeline:=True), [Alias]("ProcessId")> _
Public Property Id() As Integer()
    Get
        Return processIds
    End Get
    Set(ByVal value As Integer())
        processIds = value
    End Set
End Property
Private processIds() As Integer

Declaring the InputObject Parameter

[Parameter(
           ParameterSetName = "InputObject",
           Mandatory = true,
           ValueFromPipeline = true)]
public Process[] InputObject
{
  get { return inputObject; }
  set { inputObject = value; }
}
private Process[] inputObject;

<Parameter(ParameterSetName:="InputObject", _
Mandatory:=True, ValueFromPipeline:=True)> _
Public Property InputObject() As Process()

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute


Note also that this parameter has no alias.

Although there must be a unique parameter for each parameter set, parameters can
belong to more than one parameter set. In these cases, give the shared parameter a
System.Management.Automation.ParameterAttribute attribute declaration for each set
to which that the parameter belongs. If a parameter is in all parameter sets, you only
have to declare the parameter attribute once and do not need to specify the parameter
set name.

Every cmdlet must override an input processing method, most often this will be the
System.Management.Automation.Cmdlet.ProcessRecord method. In this cmdlet, the
System.Management.Automation.Cmdlet.ProcessRecord method is overridden so that
the cmdlet can process any number of processes. It contains a Select statement that
calls a different method based on which parameter set the user has specified.

C#

    Get
        Return myInputObject
    End Get
    Set(ByVal value As Process())
        myInputObject = value
    End Set
End Property
Private myInputObject() As Process

Declaring Parameters in Multiple Parameter Sets

Overriding an Input Processing Method

protected override void ProcessRecord()
{
  switch (ParameterSetName)
  {
    case "ProcessName":
         ProcessByName();
         break;

    case "ProcessId":
         ProcessById();
         break;

    case "InputObject":
         foreach (Process process in inputObject)
         {
           SafeStopProcess(process);
         }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


VB

The Helper methods called by the Select statement are not described here, but you can
see their implementation in the complete code sample in the next section.

For the complete C# sample code, see StopProcessSample04 Sample.

Windows PowerShell passes information between cmdlets using .NET objects.
Consequently, a cmdlet might need to define its own type, or the cmdlet might need to
extend an existing type provided by another cmdlet. For more information about
defining new types or extending existing types, see Extending Object Types and
Formatting .

         break;

    default:
         throw new ArgumentException("Bad ParameterSet Name");
  } // switch (ParameterSetName...
} // ProcessRecord

Protected Overrides Sub ProcessRecord()
    Select Case ParameterSetName
        Case "ProcessName"
            ProcessByName()

        Case "ProcessId"
            ProcessById()

        Case "InputObject"
            Dim process As Process
            For Each process In myInputObject
                SafeStopProcess(process)
            Next process

        Case Else
            Throw New ArgumentException("Bad ParameterSet Name")
    End Select

End Sub 'ProcessRecord ' ProcessRecord

Code Sample

Defining Object Types and Formatting

Building the Cmdlet

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)


After implementing a cmdlet, you must register it with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with Windows PowerShell, test it by running it on
the command line. Here are some tests that show how the ProcessId  and InputObject
parameters can be used to test their parameter sets to stop a process.

With Windows PowerShell started, run the Stop-Proc cmdlet with the ProcessId
parameter set to stop a process based on its identifier. In this case, the cmdlet is
using the ProcessId  parameter set to stop the process.

With Windows PowerShell started, run the Stop-Proc cmdlet with the InputObject
parameter set to stop processes on the Notepad object retrieved by the Get-
Process  command.

Creating a Cmdlet that Modifies the System

How to Create a Windows PowerShell Cmdlet

Extending Object Types and Formatting

Testing the Cmdlet

PS> Stop-Proc -Id 444
Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (444)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): Y

PS> Get-Process notepad | Stop-Proc
Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Proc" on Target "notepad (444)".
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help 
(default is "Y"): N

See Also

https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)


How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell SDK

https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


SelectStr Tutorial
Article • 09/17/2021

This section provides a tutorial for creating the Select-Str cmdlet, which is very similar to
the Select-String cmdlet provided by Windows PowerShell. This tutorial provides
fragments of code that illustrate how cmdlets are implemented, and an explanation of
the code.

Creating a Cmdlet to Access a Data Store This section describes how to create a cmdlet
that selects strings that are in a file or object.

Creating a Cmdlet to Access a Data Store

Windows PowerShell SDK

Topic in this Tutorial

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select-string
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fselectstr-tutorial%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fselectstr-tutorial.md&documentVersionIndependentId=61555f49-38d8-ab02-3279-16739e977f0f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0e08d34f-60f7-a880-ee2d-04f45377b0c1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating a Cmdlet to Access a Data
Store
Article • 09/17/2021

This section describes how to create a cmdlet that accesses stored data by way of a
Windows PowerShell provider. This type of cmdlet uses the Windows PowerShell
provider infrastructure of the Windows PowerShell runtime and, therefore, the cmdlet
class must derive from the System.Management.Automation.PSCmdlet base class.

The Select-Str cmdlet described here can locate and select strings in a file or object. The
patterns used to identify the string can be specified explicitly through the Path
parameter of the cmdlet or implicitly through the Script  parameter.

The cmdlet is designed to use any Windows PowerShell provider that derives from
System.Management.Automation.Provider.IContentCmdletProvider. For example, the
cmdlet can specify the FileSystem provider or the Variable provider that is provided by
Windows PowerShell. For more information aboutWindows PowerShell providers, see
Designing Your Windows PowerShell provider.

The first step in cmdlet creation is always naming the cmdlet and declaring the .NET
class that implements the cmdlet. This cmdlet detects certain strings, so the verb name
chosen here is "Select", defined by the System.Management.Automation.VerbsCommon
class. The noun name "Str" is used because the cmdlet acts upon strings. In the
declaration below, note that the cmdlet verb and noun name are reflected in the name
of the cmdlet class. For more information about approved cmdlet verbs, see Cmdlet
Verb Names.

The .NET class for this cmdlet must derive from the
System.Management.Automation.PSCmdlet base class, because it provides the support
needed by the Windows PowerShell runtime to expose the Windows PowerShell
provider infrastructure. Note that this cmdlet also makes use of the .NET Framework
regular expressions classes, such as System.Text.RegularExpressions.Regex.

The following code is the class definition for this Select-Str cmdlet.

C#

Defining the Cmdlet Class

[Cmdlet(VerbsCommon.Select, "Str", 
DefaultParameterSetName="PatternParameterSet")]

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.VerbsCommon
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Text.RegularExpressions.Regex


This cmdlet defines a default parameter set by adding the DefaultParameterSetName
attribute keyword to the class declaration. The default parameter set
PatternParameterSet  is used when the Script  parameter is not specified. For more
information about this parameter set, see the Pattern  and Script  parameter discussion
in the following section.

This cmdlet defines several parameters that allow the user to access and examine stored
data. These parameters include a Path  parameter that indicates the location of the data
store, a Pattern  parameter that specifies the pattern to be used in the search, and
several other parameters that support how the search is performed.

To locate the data store, this cmdlet must use a Windows PowerShell path to identify the
Windows PowerShell provider that is designed to access the data store. Therefore, it
defines a Path  parameter of type string array to indicate the location of the provider.

C#

public class SelectStringCommand : PSCmdlet

Defining Parameters for Data Access

７ Note

For more information about the basics of defining parameters, see Adding
Parameters that Process Command Line Input.

Declaring the Path Parameter

[Parameter(
           Position = 0,
           ParameterSetName = "ScriptParameterSet",
           Mandatory = true)]
[Parameter(
           Position = 0,
           ParameterSetName = "PatternParameterSet",
           ValueFromPipeline = true,
           Mandatory = true)]
           [Alias("PSPath")]
public string[] Path
{
  get { return paths; }
  set { paths = value; }



Note that this parameter belongs to two different parameter sets and that it has an alias.

Two System.Management.Automation.ParameterAttribute attributes declare that the
Path  parameter belongs to the ScriptParameterSet  and the PatternParameterSet . For
more information about parameter sets, see Adding Parameter Sets to a Cmdlet.

The System.Management.Automation.AliasAttribute attribute declares a PSPath  alias for
the Path  parameter. Declaring this alias is strongly recommended for consistency with
other cmdlets that access Windows PowerShell providers. For more information
aboutWindows PowerShell paths, see "PowerShell Path Concepts" in How Windows
PowerShell Works .

To specify the patterns to search for, this cmdlet declares a Pattern  parameter that is an
array of strings. A positive result is returned when any of the patterns are found in the
data store. Note that these patterns can be compiled into an array of compiled regular
expressions or an array of wildcard patterns used for literal searches.

C#

When this parameter is specified, the cmdlet uses the default parameter set
PatternParameterSet . In this case, the cmdlet uses the patterns specified here to select
strings. In contrast, the Script  parameter could also be used to provide a script that
contains the patterns. The Script  and Pattern  parameters define two separate
parameter sets, so they are mutually exclusive.

}
private string[] paths;

Declaring the Pattern Parameter

[Parameter(
           Position = 1,
           ParameterSetName = "PatternParameterSet",
           Mandatory = true)]
public string[] Pattern
{
  get { return patterns; }
  set { patterns = value; }
}
private string[] patterns;
private Regex[] regexPattern;
private WildcardPattern[] wildcardPattern;

Declaring Search Support Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ParameterAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.AliasAttribute
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)


This cmdlet defines the following support parameters that can be used to modify the
search capabilities of the cmdlet.

The Script  parameter specifies a script block that can be used to provide an alternate
search mechanism for the cmdlet. The script must contain the patterns used for
matching and return a System.Management.Automation.PSObject object. Note that this
parameter is also the unique parameter that identifies the ScriptParameterSet
parameter set. When the Windows PowerShell runtime sees this parameter, it uses only
parameters that belong to the ScriptParameterSet  parameter set.

C#

The SimpleMatch  parameter is a switch parameter that indicates whether the cmdlet is to
explicitly match the patterns as they are supplied. When the user specifies the parameter
at the command line ( true ), the cmdlet uses the patterns as they are supplied. If the
parameter is not specified ( false ), the cmdlet uses regular expressions. The default for
this parameter is false .

C#

The CaseSensitive  parameter is a switch parameter that indicates whether a case-
sensitive search is performed. When the user specifies the parameter at the command
line ( true ), the cmdlet checks for the uppercase and lowercase of characters when
comparing patterns. If the parameter is not specified ( false ), the cmdlet does not
distinguish between uppercase and lowercase. For example "MyFile" and "myfile" would
both be returned as positive hits. The default for this parameter is false .

[Parameter(
           Position = 1,
           ParameterSetName = "ScriptParameterSet",
           Mandatory = true)]
public ScriptBlock Script
{
  set { script = value; }
  get { return script; }
}
ScriptBlock script;

[Parameter]
public SwitchParameter SimpleMatch
{
  get { return simpleMatch; }
  set { simpleMatch = value; }
}
private bool simpleMatch;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject


C#

The Exclude  and Include  parameters identify items that are explicitly excluded from or
included in the search. By default, the cmdlet will search all items in the data store.
However, to limit the search performed by the cmdlet, these parameters can be used to
explicitly indicate items to be included in the search or omitted.

C#

C#

[Parameter]
public SwitchParameter CaseSensitive
{
  get { return caseSensitive; }
  set { caseSensitive = value; }
}
private bool caseSensitive;

[Parameter]
public SwitchParameter CaseSensitive
{
  get { return caseSensitive; }
  set { caseSensitive = value; }
}
private bool caseSensitive;

[Parameter]
[ValidateNotNullOrEmpty]
public string[] Include
{
  get
  {
    return includeStrings;
  }
  set
  {
    includeStrings = value;

    this.include = new WildcardPattern[includeStrings.Length];
    for (int i = 0; i < includeStrings.Length; i++)
    {
      this.include[i] = new WildcardPattern(includeStrings[i], 
WildcardOptions.IgnoreCase);
    }
  }
}



This cmdlet uses two parameter sets ( ScriptParameterSet  and PatternParameterSet ,
which is the default) as the names of two parameter sets used in data access.
PatternParameterSet  is the default parameter set and is used when the Pattern
parameter is specified. ScriptParameterSet  is used when the user specifies an alternate
search mechanism through the Script  parameter. For more information about
parameter sets, see Adding Parameter Sets to a Cmdlet.

Cmdlets must override one or more of the input processing methods for the
System.Management.Automation.PSCmdlet class. For more information about the input
processing methods, see Creating Your First Cmdlet.

This cmdlet overrides the System.Management.Automation.Cmdlet.BeginProcessing
method to build an array of compiled regular expressions at startup. This increases
performance during searches that do not use simple matching.

C#

internal string[] includeStrings = null;
internal WildcardPattern[] include = null;

Declaring Parameter Sets

Overriding Input Processing Methods

protected override void BeginProcessing()
{
  WriteDebug("Validating patterns.");
  if (patterns != null)
  {
    foreach(string pattern in patterns)
    {
      if (pattern == null)
      ThrowTerminatingError(new ErrorRecord(
                            new ArgumentNullException(
                            "Search pattern cannot be null."),
                            "NullSearchPattern",
                            ErrorCategory.InvalidArgument,
                            pattern)
                            );
    }

    WriteVerbose("Search pattern(s) are valid.");

    // If a simple match is not specified, then
    // compile the regular expressions once.
    if (!simpleMatch)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.BeginProcessing


    {
      WriteDebug("Compiling search regular expressions.");

      RegexOptions regexOptions = RegexOptions.Compiled;
      if (!caseSensitive)
         regexOptions |= RegexOptions.Compiled;
      regexPattern = new Regex[patterns.Length];

      for (int i = 0; i < patterns.Length; i++)
      {
        try
        {
          regexPattern[i] = new Regex(patterns[i], regexOptions);
        }
        catch (ArgumentException ex)
        {
          ThrowTerminatingError(new ErrorRecord(
                        ex,
                        "InvalidRegularExpression",
                        ErrorCategory.InvalidArgument,
                        patterns[i]
                     ));
        }
      } //Loop through patterns to create RegEx objects.

      WriteVerbose("Pattern(s) compiled into regular expressions.");
    }// If not a simple match.

    // If a simple match is specified, then compile the
    // wildcard patterns once.
    else
    {
      WriteDebug("Compiling search wildcards.");

      WildcardOptions wildcardOptions = WildcardOptions.Compiled;

      if (!caseSensitive)
      {
        wildcardOptions |= WildcardOptions.IgnoreCase;
      }

      wildcardPattern = new WildcardPattern[patterns.Length];
      for (int i = 0; i < patterns.Length; i++)
      {
        wildcardPattern[i] =
                     new WildcardPattern(patterns[i], wildcardOptions);
      }

      WriteVerbose("Pattern(s) compiled into wildcard expressions.");
    }// If match is a simple match.
  }// If valid patterns are available.
}// End of function BeginProcessing().



This cmdlet also overrides the System.Management.Automation.Cmdlet.ProcessRecord
method to process the string selections that the user makes on the command line. It
writes the results of string selection in the form of a custom object by calling a private
MatchString method.

C#

protected override void ProcessRecord()
{
  UInt64 lineNumber = 0;
  MatchInfo result;
  ArrayList nonMatches = new ArrayList();

  // Walk the list of paths and search the contents for
  // any of the specified patterns.
  foreach (string psPath in paths)
  {
    // Once the filepaths are expanded, we may have more than one
    // path, so process all referenced paths.
    foreach(PathInfo path in
            SessionState.Path.GetResolvedPSPathFromPSPath(psPath)
           )
    {
      WriteVerbose("Processing path " + path.Path);

      // Check if the path represents one of the items to be
      // excluded. If so, continue to next path.
      if (!MeetsIncludeExcludeCriteria(path.ProviderPath))
         continue;

      // Get the content reader for the item(s) at the
      // specified path.
      Collection<IContentReader> readerCollection = null;
      try
      {
        readerCollection =
                    this.InvokeProvider.Content.GetReader(path.Path);
      }
      catch (PSNotSupportedException ex)
      {
        WriteError(new ErrorRecord(ex,
                   "ContentAccessNotSupported",
                    ErrorCategory.NotImplemented,
                    path.Path)
                   );
        return;
      }

      foreach(IContentReader reader in readerCollection)
      {
        // Reset the line number for this path.
        lineNumber = 0;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.ProcessRecord


        // Read in a single block (line in case of a file)
        // from the object.
        IList items = reader.Read(1);

        // Read and process one block(line) at a time until
        // no more blocks(lines) exist.
        while (items != null && items.Count == 1)
        {
          // Increment the line number each time a line is
          // processed.
          lineNumber++;

          String message = String.Format("Testing line {0} : {1}",
                                        lineNumber, items[0]);

          WriteDebug(message);

          result = SelectString(items[0]);

          if (result != null)
          {
            result.Path = path.Path;
            result.LineNumber = lineNumber;

            WriteObject(result);
          }
          else
          {
            // Add the block(line) that did not match to the
            // collection of non matches , which will be stored
            // in the SessionState variable $NonMatches
            nonMatches.Add(items[0]);
          }

          // Get the next line from the object.
          items = reader.Read(1);

        }// While loop for reading one line at a time.
      }// Foreach loop for reader collection.
    }// Foreach loop for processing referenced paths.
  }// Foreach loop for walking of path list.

  // Store the list of non-matches in the
  // session state variable $NonMatches.
  try
  {
    this.SessionState.PSVariable.Set("NonMatches", nonMatches);
  }
  catch (SessionStateUnauthorizedAccessException ex)
  {
    WriteError(new ErrorRecord(ex,
               "CannotWriteVariableNonMatches",
               ErrorCategory.InvalidOperation,
               nonMatches)
              );



Your cmdlet must open the provider indicated by the Windows PowerShell path so that
it can access the data. The System.Management.Automation.SessionState object for the
runspace is used for access to the provider, while the
System.Management.Automation.PSCmdlet.InvokeProvider* property of the cmdlet is
used to open the provider. Access to content is provided by retrieval of the
System.Management.Automation.ProviderIntrinsics object for the provider opened.

This sample Select-Str cmdlet uses the
System.Management.Automation.ProviderIntrinsics.Content* property to expose the
content to scan. It can then call the
System.Management.Automation.ContentCmdletProviderIntrinsics.GetReader* method,
passing the required Windows PowerShell path.

The following code shows the implementation of this version of this Select-Str cmdlet.
Note that this code includes the cmdlet class, private methods used by the cmdlet, and
the Windows PowerShell snap-in code used to register the cmdlet. For more information
about registering the cmdlet, see Building the Cmdlet.

C#

  }

}// End of protected override void ProcessRecord().

Accessing Content

Code Sample

//
// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
using System;
using System.Text.RegularExpressions;
using System.Collections;
using System.Collections.ObjectModel;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;

namespace Microsoft.Samples.PowerShell.Commands

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCmdlet.InvokeProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderIntrinsics
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderIntrinsics.Content
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ContentCmdletProviderIntrinsics.GetReader


{
  #region SelectStringCommand
  /// <summary>
  /// This cmdlet searches through PSObjects for particular patterns.
  /// </summary>
  /// <remarks>
  /// This cmdlet can be used to search any object, such as a file or a
  /// variable, whose provider exposes methods for reading and writing
  /// content.
  /// </remarks>
  [Cmdlet(VerbsCommon.Select, "Str", 
DefaultParameterSetName="PatternParameterSet")]
  public class SelectStringCommand : PSCmdlet
  {
    #region Parameters
    /// <summary>
    /// Declare a Path parameter that specifies where the data is stored.
    /// This parameter must specify a PowerShell that indicates the
    /// PowerShell provider that is used to access the objects to be
    /// searched for matching patterns. This parameter should also have
    /// a PSPath alias to provide consistency with other cmdlets that use
    /// PowerShell providers.
    /// </summary>
    /// <value>Path of the object(s) to search.</value>
    [Parameter(
               Position = 0,
               ParameterSetName = "ScriptParameterSet",
               Mandatory = true)]
    [Parameter(
               Position = 0,
               ParameterSetName = "PatternParameterSet",
               ValueFromPipeline = true,
               Mandatory = true)]
               [Alias("PSPath")]
    public string[] Path
    {
      get { return paths; }
      set { paths = value; }
    }
    private string[] paths;

    /// <summary>
    /// Declare a Pattern parameter that specifies the pattern(s)
    /// used to find matching patterns in the string representation
    /// of the objects. A positive result will be returned
    /// if any of the patterns are found in the objects.
    /// </summary>
    /// <remarks>
    /// The patterns will be compiled into an array of wildcard
    /// patterns for a simple match (literal string matching),
    /// or the patterns will be converted into an array of compiled
    /// regular expressions.
    /// </remarks>
    /// <value>Array of patterns to search.</value>
    [Parameter(



               Position = 1,
               ParameterSetName = "PatternParameterSet",
               Mandatory = true)]
    public string[] Pattern
    {
      get { return patterns; }
      set { patterns = value; }
    }
    private string[] patterns;
    private Regex[] regexPattern;
    private WildcardPattern[] wildcardPattern;

    /// <summary>
    /// Declare a Script parameter that specifies a script block
    /// that is called to perform the matching operations
    /// instead of the matching performed by the cmdlet.
    /// </summary>
    /// <value>Script block that will be called for matching</value>
    [Parameter(
               Position = 1,
               ParameterSetName = "ScriptParameterSet",
               Mandatory = true)]
    public ScriptBlock Script
    {
      set { script = value; }
      get { return script; }
    }
    ScriptBlock script;

    /// <summary>
    /// Declare a switch parameter that specifies if the pattern(s) are used
    /// literally. If not (default), searching is
    /// done using regular expressions.
    /// </summary>
    /// <value>If True, a literal pattern is used.</value>
    [Parameter]
    public SwitchParameter SimpleMatch
    {
      get { return simpleMatch; }
      set { simpleMatch = value; }
    }
    private bool simpleMatch;

    /// <summary>
    /// Declare a switch parameter that specifies if a case-sensitive
    /// search is performed.  If not (default), a case-insensitive search
    /// is performed.
    /// </summary>
    /// <value>If True, a case-sensitive search is made.</value>
    [Parameter]
    public SwitchParameter CaseSensitive
    {
      get { return caseSensitive; }
      set { caseSensitive = value; }
    }



    private bool caseSensitive;

    /// <summary>
    /// Declare an Include parameter that species which
    /// specific items are searched.  When this parameter
    /// is used, items that are not listed here are omitted
    /// from the search.
    /// </summary>
    [Parameter]
    [ValidateNotNullOrEmpty]
    public string[] Include
    {
      get
      {
        return includeStrings;
      }
      set
      {
        includeStrings = value;

        this.include = new WildcardPattern[includeStrings.Length];
        for (int i = 0; i < includeStrings.Length; i++)
        {
          this.include[i] = new WildcardPattern(includeStrings[i], 
WildcardOptions.IgnoreCase);
        }
      }
    }

    internal string[] includeStrings = null;
    internal WildcardPattern[] include = null;

    /// <summary>
    /// Declare an Exclude parameter that species which
    /// specific items are omitted from the search.
    /// </summary>
    ///
    [Parameter]
    [ValidateNotNullOrEmpty]
    public string[] Exclude
    {
      get
      {
        return excludeStrings;
      }
      set
      {
        excludeStrings = value;

        this.exclude = new WildcardPattern[excludeStrings.Length];
        for (int i = 0; i < excludeStrings.Length; i++)
        {
          this.exclude[i] = new WildcardPattern(excludeStrings[i], 
WildcardOptions.IgnoreCase);
        }



      }
    }
    internal string[] excludeStrings;
    internal WildcardPattern[] exclude;

    #endregion Parameters

    #region Overrides
    /// <summary>
    /// If regular expressions are used for pattern matching,
    /// then build an array of compiled regular expressions
    /// at startup. This increases performance during scanning
    /// operations when simple matching is not used.
    /// </summary>
    protected override void BeginProcessing()
    {
      WriteDebug("Validating patterns.");
      if (patterns != null)
      {
        foreach(string pattern in patterns)
        {
          if (pattern == null)
          ThrowTerminatingError(new ErrorRecord(
                                new ArgumentNullException(
                                "Search pattern cannot be null."),
                                "NullSearchPattern",
                                ErrorCategory.InvalidArgument,
                                pattern)
                                );
        }

        WriteVerbose("Search pattern(s) are valid.");

        // If a simple match is not specified, then
        // compile the regular expressions once.
        if (!simpleMatch)
        {
          WriteDebug("Compiling search regular expressions.");

          RegexOptions regexOptions = RegexOptions.Compiled;
          if (!caseSensitive)
             regexOptions |= RegexOptions.Compiled;
          regexPattern = new Regex[patterns.Length];

          for (int i = 0; i < patterns.Length; i++)
          {
            try
            {
              regexPattern[i] = new Regex(patterns[i], regexOptions);
            }
            catch (ArgumentException ex)
            {
              ThrowTerminatingError(new ErrorRecord(
                            ex,
                            "InvalidRegularExpression",



                            ErrorCategory.InvalidArgument,
                            patterns[i]
                         ));
            }
          } //Loop through patterns to create RegEx objects.

          WriteVerbose("Pattern(s) compiled into regular expressions.");
        }// If not a simple match.

        // If a simple match is specified, then compile the
        // wildcard patterns once.
        else
        {
          WriteDebug("Compiling search wildcards.");

          WildcardOptions wildcardOptions = WildcardOptions.Compiled;

          if (!caseSensitive)
          {
            wildcardOptions |= WildcardOptions.IgnoreCase;
          }

          wildcardPattern = new WildcardPattern[patterns.Length];
          for (int i = 0; i < patterns.Length; i++)
          {
            wildcardPattern[i] =
                         new WildcardPattern(patterns[i], wildcardOptions);
          }

          WriteVerbose("Pattern(s) compiled into wildcard expressions.");
        }// If match is a simple match.
      }// If valid patterns are available.
    }// End of function BeginProcessing().

    /// <summary>
    /// Process the input and search for the specified patterns.
    /// </summary>
    protected override void ProcessRecord()
    {
      UInt64 lineNumber = 0;
      MatchInfo result;
      ArrayList nonMatches = new ArrayList();

      // Walk the list of paths and search the contents for
      // any of the specified patterns.
      foreach (string psPath in paths)
      {
        // Once the filepaths are expanded, we may have more than one
        // path, so process all referenced paths.
        foreach(PathInfo path in
                SessionState.Path.GetResolvedPSPathFromPSPath(psPath)
               )
        {
          WriteVerbose("Processing path " + path.Path);



          // Check if the path represents one of the items to be
          // excluded. If so, continue to next path.
          if (!MeetsIncludeExcludeCriteria(path.ProviderPath))
             continue;

          // Get the content reader for the item(s) at the
          // specified path.
          Collection<IContentReader> readerCollection = null;
          try
          {
            readerCollection =
                        this.InvokeProvider.Content.GetReader(path.Path);
          }
          catch (PSNotSupportedException ex)
          {
            WriteError(new ErrorRecord(ex,
                       "ContentAccessNotSupported",
                        ErrorCategory.NotImplemented,
                        path.Path)
                       );
            return;
          }

          foreach(IContentReader reader in readerCollection)
          {
            // Reset the line number for this path.
            lineNumber = 0;

            // Read in a single block (line in case of a file)
            // from the object.
            IList items = reader.Read(1);

            // Read and process one block(line) at a time until
            // no more blocks(lines) exist.
            while (items != null && items.Count == 1)
            {
              // Increment the line number each time a line is
              // processed.
              lineNumber++;

              String message = String.Format("Testing line {0} : {1}",
                                            lineNumber, items[0]);

              WriteDebug(message);

              result = SelectString(items[0]);

              if (result != null)
              {
                result.Path = path.Path;
                result.LineNumber = lineNumber;

                WriteObject(result);
              }
              else



              {
                // Add the block(line) that did not match to the
                // collection of non matches , which will be stored
                // in the SessionState variable $NonMatches
                nonMatches.Add(items[0]);
              }

              // Get the next line from the object.
              items = reader.Read(1);

            }// While loop for reading one line at a time.
          }// Foreach loop for reader collection.
        }// Foreach loop for processing referenced paths.
      }// Foreach loop for walking of path list.

      // Store the list of non-matches in the
      // session state variable $NonMatches.
      try
      {
        this.SessionState.PSVariable.Set("NonMatches", nonMatches);
      }
      catch (SessionStateUnauthorizedAccessException ex)
      {
        WriteError(new ErrorRecord(ex,
                   "CannotWriteVariableNonMatches",
                   ErrorCategory.InvalidOperation,
                   nonMatches)
                  );
      }

    }// End of protected override void ProcessRecord().
    #endregion Overrides

    #region PrivateMethods
    /// <summary>
    /// Check for a match using the input string and the pattern(s)
    /// specified.
    /// </summary>
    /// <param name="input">The string to test.</param>
    /// <returns>MatchInfo object containing information about
    /// result of a match</returns>
    private MatchInfo SelectString(object input)
    {
      string line = null;

      try
      {
        // Convert the object to a string type
        // safely using language support methods
        line = (string)LanguagePrimitives.ConvertTo(
                                                    input,
                                                    typeof(string)
                                                    );
        line = line.Trim(' ','\t');
      }



      catch (PSInvalidCastException ex)
      {
        WriteError(new ErrorRecord(
                   ex,
                   "CannotCastObjectToString",
                   ErrorCategory.InvalidOperation,
                   input)
                   );

        return null;
      }

      MatchInfo result = null;

      // If a scriptblock has been specified, call it
      // with the path for processing.  It will return
      // one object.
      if (script != null)
      {
        WriteDebug("Executing script block.");

        Collection<PSObject> psObjects =
                             script.Invoke(
                                           line,
                                           simpleMatch,
                                           caseSensitive
                                          );

        foreach (PSObject psObject in psObjects)
        {
          if (LanguagePrimitives.IsTrue(psObject))
          {
            result = new MatchInfo();
            result.Line = line;
            result.IgnoreCase = !caseSensitive;

            break;
          } //End of If.
        } //End ForEach loop.
      } // End of If if script exists.

      // If script block exists, see if this line matches any
      // of the match patterns.
      else
      {
        int patternIndex = 0;

        while (patternIndex < patterns.Length)
        {
          if ((simpleMatch &&
              wildcardPattern[patternIndex].IsMatch(line))
              || (regexPattern != null
              && regexPattern[patternIndex].IsMatch(line))
             )
          {



            result = new MatchInfo();
            result.IgnoreCase = !caseSensitive;
            result.Line = line;
            result.Pattern = patterns[patternIndex];

            break;
          }

          patternIndex++;

        }// While loop through patterns.
      }// Else for no script block specified.

      return result;

    }// End of SelectString

    /// <summary>
    /// Check whether the supplied name meets the include/exclude criteria.
    /// That is - it's on the include list if the include list was
    /// specified, and not on the exclude list if the exclude list was 
specified.
    /// </summary>
    /// <param name="path">path to validate</param>
    /// <returns>True if the path is acceptable.</returns>
    private bool MeetsIncludeExcludeCriteria(string path)
    {
      bool ok = false;

      // See if the file is on the include list.
      if (this.include != null)
      {
        foreach (WildcardPattern patternItem in this.include)
        {
          if (patternItem.IsMatch(path))
          {
            ok = true;
            break;
          }
        }
      }
      else
      {
        ok = true;
      }

      if (!ok)
         return false;

      // See if the file is on the exclude list.
      if (this.exclude != null)
      {
        foreach (WildcardPattern patternItem in this.exclude)
        {
          if (patternItem.IsMatch(path))



          {
            ok = false;
            break;
          }
        }
      }

      return ok;
    } //MeetsIncludeExcludeCriteria
    #endregion Private Methods

  }// class SelectStringCommand

  #endregion SelectStringCommand

  #region MatchInfo

  /// <summary>
  /// Class representing the result of a pattern/literal match
  /// that is passed through the pipeline by the Select-Str cmdlet.
  /// </summary>
  public class MatchInfo
  {
    /// <summary>
    /// Indicates if the match was done ignoring case.
    /// </summary>
    /// <value>True if case was ignored.</value>
    public bool IgnoreCase
    {
      get { return ignoreCase; }
      set { ignoreCase = value; }
    }
    private bool ignoreCase;

    /// <summary>
    /// Specifies the number of the matching line.
    /// </summary>
    /// <value>The number of the matching line.</value>
    public UInt64 LineNumber
    {
      get { return lineNumber; }
      set { lineNumber = value; }
    }
    private UInt64 lineNumber;

    /// <summary>
    /// Specifies the text of the matching line.
    /// </summary>
    /// <value>The text of the matching line.</value>
    public string Line
    {
      get { return line; }
      set { line = value; }
    }
    private string line;



    /// <summary>
    /// Specifies the full path of the object(file) containing the
    /// matching line.
    /// </summary>
    /// <remarks>
    /// It will be "inputStream" if the object came from the input
    /// stream.
    /// </remarks>
    /// <value>The path name</value>
    public string Path
    {
      get { return path; }
      set
      {
        pathSet = true;
        path = value;
      }
    }
    private string path;
    private bool pathSet;

    /// <summary>
    /// Specifies the pattern that was used in the match.
    /// </summary>
    /// <value>The pattern string</value>
    public string Pattern
    {
      get { return pattern; }
      set { pattern = value; }
    }
    private string pattern;

    private const string MatchFormat = "{0}:{1}:{2}";

    /// <summary>
    /// Returns the string representation of this object. The format
    /// depends on whether a path has been set for this object or
    /// not.
    /// </summary>
    /// <remarks>
    /// If the path component is set, as would be the case when
    /// matching in a file, ToString() returns the path, line
    /// number and line text.  If path is not set, then just the
    /// line text is presented.
    /// </remarks>
    /// <returns>The string representation of the match object.</returns>
    public override string ToString()
    {
      if (pathSet)
         return String.Format(
         System.Threading.Thread.CurrentThread.CurrentCulture,
         MatchFormat,
         this.path,
         this.lineNumber,



         this.line
         );
      else
         return this.line;
    }
  }// End class MatchInfo

  #endregion

  #region PowerShell snap-in

  /// <summary>
  /// Create a PowerShell snap-in for the Select-Str cmdlet.
  /// </summary>
  [RunInstaller(true)]
  public class SelectStringPSSnapIn : PSSnapIn
  {
    /// <summary>
    /// Create an instance of the SelectStrPSSnapin class.
    /// </summary>
    public SelectStringPSSnapIn()
           : base()
    {
    }

    /// <summary>
    /// Specify the name of the PowerShell snap-in.
    /// </summary>
    public override string Name
    {
      get
      {
        return "SelectStrPSSnapIn";
      }
    }

    /// <summary>
    /// Specify the vendor of the PowerShell snap-in.
    /// </summary>
    public override string Vendor
    {
      get
      {
        return "Microsoft";
      }
    }

    /// <summary>
    /// Specify the localization resource information for the vendor.
    /// Use the format: SnapinName,VendorName.
    /// </summary>
    public override string VendorResource
    {
      get
      {



After implementing a cmdlet, you must register it with Windows PowerShell through a
Windows PowerShell snap-in. For more information about registering cmdlets, see How
to Register Cmdlets, Providers, and Host Applications .

When your cmdlet has been registered with Windows PowerShell, you can test it by
running it on the command line. The following procedure can be used to test the
sample Select-Str cmdlet.

1. Start Windows PowerShell, and search the Notes file for occurrences of lines with
the expression ".NET". Note that the quotation marks around the name of the path
are required only if the path consists of more than one word.

        return "SelectStrSnapIn,Microsoft";
      }
    }

    /// <summary>
    /// Specify the description of the PowerShell snap-in.
    /// </summary>
    public override string Description
    {
      get
        {
          return "This is a PowerShell snap-in for the Select-Str cmdlet.";
        }
    }

    /// <summary>
    /// Specify the localization resource information for the description.
    /// Use the format: SnapinName,Description.

    /// </summary>
    public override string DescriptionResource
    {
      get
      {
          return "SelectStrSnapIn,This is a PowerShell snap-in for the 
Select-Str cmdlet.";
      }
    }
  }
  #endregion PowerShell snap-in

} //namespace Microsoft.Samples.PowerShell.Commands;

Building the Cmdlet

Testing the Cmdlet

https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


PowerShell

The following output appears.

Output

2. Search the Notes file for occurrences of lines with the word "over", followed by any
other text. The SimpleMatch  parameter is using the default value of false . The
search is case-insensitive because the CaseSensitive  parameter is set to false .

PowerShell

The following output appears.

Output

3. Search the Notes file using a regular expression as the pattern. The cmdlet
searches for alphabetical characters and blank spaces enclosed in parentheses.

Select-Str -Path "notes" -Pattern ".NET" -SimpleMatch=$false

IgnoreCase   : True
LineNumber   : 8
Line         : Because Windows PowerShell works directly with .NET 
objects, there is often a .NET object
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : .NET
IgnoreCase   : True
LineNumber   : 21
Line         : You should normally define the class for a cmdlet in a 
.NET namespace
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : .NET

Select-Str -Path notes -Pattern "over*" -SimpleMatch -
CaseSensitive:$false

IgnoreCase   : True
LineNumber   : 45
Line         : Override StopProcessing
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : over*
IgnoreCase   : True
LineNumber   : 49
Line         : overriding the StopProcessing method
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : over*



PowerShell

The following output appears.

Output

4. Perform a case-sensitive search of the Notes file for occurrences of the word
"Parameter".

PowerShell

The following output appears.

Output

5. Search the Variable provider shipped with Windows PowerShell for variables that
have numerical values from 0 through 9.

PowerShell

Select-Str -Path notes -Pattern "\([A-Za-z:blank:]" -SimpleMatch:$false

IgnoreCase   : True
LineNumber   : 1
Line         : Advisory Guidelines (Consider Following)
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : \([A-Za-z:blank:]
IgnoreCase   : True
LineNumber   : 53
Line         : If your cmdlet has objects that are not disposed of 
(written to the pipeline)
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : \([A-Za-z:blank:]

Select-Str -Path notes -Pattern Parameter -CaseSensitive

IgnoreCase   : False
LineNumber   : 6
Line         : Support an InputObject Parameter
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : Parameter
IgnoreCase   : False
LineNumber   : 30
Line         : Support Force Parameter
Path         : C:\PowerShell-Progs\workspace\Samples\SelectStr\notes
Pattern      : Parameter



The following output appears.

Output

6. Use a script block to search the file SelectStrCommandSample.cs for the string
"Pos". The -cmatch  operator performs a case-insensitive pattern match.

PowerShell

The following output appears.

Output

How to Create a Windows PowerShell Cmdlet

Creating Your First Cmdlet

Creating a Cmdlet that Modifies the System

Design Your Windows PowerShell Provider

How Windows PowerShell Works

How to Register Cmdlets, Providers, and Host Applications

Select-Str -Path * -Pattern "[0-9]"

IgnoreCase   : True
LineNumber   : 1
Line         : 64
Path         : Variable:\MaximumHistoryCount
Pattern      : [0-9]

Select-Str -Path "SelectStrCommandSample.cs" -Script { if ($args[0] -
cmatch "Pos"){ return $true } return $false }

IgnoreCase   : True
LineNumber   : 37
Line         :    Position = 0.
Path         : C:\PowerShell-
Progs\workspace\Samples\SelectStr\SelectStrCommandSample.cs
Pattern      :

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Windows PowerShell SDK



Cmdlet Samples
Article • 09/15/2023

This section describes sample code that is provided in the Windows PowerShell 2.0 SDK.

GetProcessSample01 Sample: This sample shows how to write a cmdlet that
retrieves the processes on the local computer.

GetProcessSample02 Sample: This sample shows how to write a cmdlet that
retrieves the processes on the local computer. It provides a Name parameter that
can be used to specify the processes to be retrieved.

GetProcessSample03 Sample: This sample shows how to write a cmdlet that
retrieves the processes on the local computer. It provides a Name parameter that
can accept an object from the pipeline or a value from a property of an object
whose property name is the same as the parameter name.

GetProcessSample04 Sample: This sample shows how to write a cmdlet that
retrieves the processes on the local computer. It generates a non-terminating error
if an error occurs while retrieving a process.

GetProcessSample05 Sample: This sample shows a complete version of the Get-
Proc cmdlet.

StopProcessSample01 Sample: This sample shows how to write a cmdlet that
requests feedback from the user before it attempts to stop a process, and how to
implement a PassThru  parameter that indicates that the user wants the cmdlet to
return an object.

StopProcessSample02 Sample: This sample shows how to write a cmdlet that
writes debug, verbose, and warning messages while stopping processes on the
local computer.

StopProcessSample03 Sample: This sample shows how to write a cmdlet whose
parameters have aliases and that support wildcard characters.

StopProcessSample04 Sample: This sample shows how to write a cmdlet that
declares parameter sets, specifies the default parameter set, and can accept an
input object.

In This Section



Events01 Sample: This sample shows how to create a cmdlet that allows the user
to register for events raised by System.IO.FileSystemWatcher. With this cmdlet
users can, for example, register an action to execute when a file is created under a
specific directory. This sample derives from the
Microsoft.PowerShell.Commands.ObjectEventRegistrationBase base class.

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileSystemWatcher
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.ObjectEventRegistrationBase
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fcmdlet%2Fcmdlet-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fcmdlet%2Fcmdlet-samples.md&documentVersionIndependentId=2b3f6beb-20f2-ff02-5ec1-cab71c2d757e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+24cc7024-1698-68f3-7181-d1cb048a1f7a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProcessSample01 Sample
Article • 04/10/2024

This sample shows how to implement a cmdlet that retrieves the processes on the local
computer. This cmdlet is a simplified version of the Get-Process  cmdlet that is provided
by Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
GetProcessSample01 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\GetProcessSample01 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Open a Command Prompt window.

2. Navigate to the directory containing the sample .dll file.

3. Run installutil "GetProcessSample01.dll" .

4. Start Windows PowerShell.

5. Run the following command to add the snap-in to the shell.

Add-PSSnapin GetProcPSSnapIn01

6. Enter the following command to run the cmdlet. Get-Proc

Get-Proc

This is a sample output that results from following these steps.

Output

How to build the sample by using Visual Studio

How to run the sample



PowerShell

Output

This sample requires Windows PowerShell 1.0 or later.

This sample demonstrates the following.

Creating a basic sample cmdlet.

Defining a cmdlet class by using the Cmdlet attribute.

Creating a snap-in that works with both Windows PowerShell 1.0 and Windows
PowerShell 2.0. Subsequent samples use modules instead of snap-ins so they
require Windows PowerShell 2.0.

This sample shows how to create a simple cmdlet and its snap-in.

C#

Id              Name            State      HasMoreData     Location       
Command
--              ----            -----      -----------     --------       
-------
1               26932870-d3b... NotStarted False                          
Write-Host "A f...

Set-Content $Env:TEMP\test.txt "This is a test file"

A file was created in the TEMP directory

Requirements

Demonstrates

Example

using System;
using System.Diagnostics;
using System.Management.Automation;             //Windows PowerShell 
namespace
using System.ComponentModel;



namespace Microsoft.Samples.PowerShell.Commands
{

   #region GetProcCommand

   /// <summary>
   /// This class implements the Get-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet
   {
      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses
      /// method to retrieve the processes of the local computer.
      /// Then, the WriteObject method writes the associated processes
      /// to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
         // Retrieve the current processes.
         Process[] processes = Process.GetProcesses();

         // Write the processes to the pipeline to make them available
         // to the next cmdlet. The second argument (true) tells Windows
         // PowerShell to enumerate the array and to send one process
         // object at a time to the pipeline.
         WriteObject(processes, true);
      }

      #endregion Overrides

   } //GetProcCommand

   #endregion GetProcCommand

   #region PowerShell snap-in

   /// <summary>
   /// Create this sample as a PowerShell snap-in
   /// </summary>
   [RunInstaller(true)]
   public class GetProcPSSnapIn01 : PSSnapIn
   {
       /// <summary>
       /// Create an instance of the GetProcPSSnapIn01
       /// </summary>
       public GetProcPSSnapIn01()
           : base()
       {
       }

       /// <summary>



       /// Get a name for this PowerShell snap-in. This name will be used in 
registering
       /// this PowerShell snap-in.
       /// </summary>
       public override string Name
       {
           get
           {
               return "GetProcPSSnapIn01";
           }
       }

       /// <summary>
       /// Vendor information for this PowerShell snap-in.
       /// </summary>
       public override string Vendor
       {
           get
           {
               return "Microsoft";
           }
       }

       /// <summary>
       /// Gets resource information for vendor. This is a string of format:
       /// resourceBaseName,resourceName.
       /// </summary>
       public override string VendorResource
       {
           get
           {
               return "GetProcPSSnapIn01,Microsoft";
           }
       }

       /// <summary>
       /// Description of this PowerShell snap-in.
       /// </summary>
       public override string Description
       {
           get
           {
               return "This is a PowerShell snap-in that includes the Get-
Proc cmdlet.";
           }
       }
   }

   #endregion PowerShell snap-in
}

See Also



Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


GetProcessSample02 Sample
Article • 09/15/2023

This sample shows how to write a cmdlet that retrieves the processes on the local
computer. It provides a Name  parameter that can be used to specify the processes to be
retrieved. This cmdlet is a simplified version of the Get-Process  cmdlet provided by
Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
GetProcessSample02 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\GetProcessSample02 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\GetProcessSample02

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module getprossessample02

5. Run the following command to run the cmdlet:

Get-Proc

How to build the sample using Visual Studio

How to run the sample

Requirements



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class using the Cmdlet attribute.

Declaring a cmdlet parameter using the Parameter attribute.

Specifying the position of the parameter.

Declaring a validation attribute for the parameter input.

This sample shows an implementation of the Get-Proc cmdlet that includes a Name
parameter.

C#

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Commands
{
  using System;
  using System.Diagnostics;
  using System.Management.Automation;     // Windows PowerShell namespace

  #region GetProcCommand

  /// <summary>
  /// This class implements the Get-Proc cmdlet.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet
  {
    #region Parameters

    /// <summary>
    /// The names of the processes retrieved by the cmdlet.
    /// </summary>
    private string[] processNames;

    /// <summary>
    /// Gets or sets the list of process names on which
    /// the Get-Proc cmdlet will work.
    /// </summary>
    [Parameter(Position = 0)]
    [ValidateNotNullOrEmpty]
    public string[] Name



Writing a Windows PowerShell Cmdlet

    {
      get { return this.processNames; }
      set { this.processNames = value; }
    }

    #endregion Parameters

    #region Cmdlet Overrides

    /// <summary>
    /// The ProcessRecord method calls the Process.GetProcesses
    /// method to retrieve the processes specified by the Name
    /// parameter. Then, the WriteObject method writes the
    /// associated process objects to the pipeline.
    /// </summary>
    protected override void ProcessRecord()
    {
      // If no process names are passed to the cmdlet, get all
      // processes.
      if (this.processNames == null)
      {
        WriteObject(Process.GetProcesses(), true);
      }
      else
      {
        // If process names are passed to cmdlet, get and write
        // the associated processes.
        foreach (string name in this.processNames)
        {
          WriteObject(Process.GetProcessesByName(name), true);
        }
      } // End if (processNames...).
    } // End ProcessRecord.
    #endregion Cmdlet Overrides
  } // End GetProcCommand class.
  #endregion GetProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


GetProcessSample03 Sample
Article • 03/24/2025

This sample shows how to implement a cmdlet that retrieves the processes on the local
computer. It provides a Name  parameter that can accept an object from the pipeline or a
value from a property of an object whose property name is the same as the parameter
name. This cmdlet is a simplified version of the Get-Process  cmdlet provided by
Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
GetProcessSample03 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\GetProcessSample03 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\GetProcessSample03

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module getprossessample03

5. Run the following command to run the cmdlet:

Get-Proc

How to build the sample using Visual Studio

How to run the sample

Requirements



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class using the Cmdlet attribute.

Declaring a cmdlet parameter using the Parameter attribute.

Specifying the position of the parameter.

Specifying that the parameter takes input from the pipeline. The input can be
taken from an object or a value from a property of an object whose property name
is the same as the parameter name.

Declaring a validation attribute for the parameter input.

This sample shows an implementation of the Get-Proc cmdlet that includes a Name
parameter that accepts input from the pipeline.

C#

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Commands
{
  using System;
  using System.Diagnostics;
  using System.Management.Automation;           // Windows PowerShell 
namespace
  #region GetProcCommand

  /// <summary>
  /// This class implements the Get-Proc cmdlet.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet
  {
    #region Parameters

    /// <summary>
    /// The names of the processes retrieved by the cmdlet.
    /// </summary>
    private string[] processNames;

    /// <summary>
    /// Gets or sets the names of the



Writing a Windows PowerShell Cmdlet

    /// process that the cmdlet will retrieve.
    /// </summary>
    [Parameter(
               Position = 0,
               ValueFromPipeline = true,
               ValueFromPipelineByPropertyName = true)]
    [ValidateNotNullOrEmpty]
    public string[] Name
    {
      get { return this.processNames; }
      set { this.processNames = value; }
    }

    #endregion Parameters

    #region Cmdlet Overrides

    /// <summary>
    /// The ProcessRecord method calls the Process.GetProcesses
    /// method to retrieve the processes specified by the Name
    /// parameter. Then, the WriteObject method writes the
    /// associated processes to the pipeline.
    /// </summary>
    protected override void ProcessRecord()
    {
      // If no process names are passed to the cmdlet, get all
      // processes.
      if (this.processNames == null)
      {
        WriteObject(Process.GetProcesses(), true);
      }
      else
      {
        // If process names are passed to the cmdlet, get and write
        // the associated processes.
        foreach (string name in this.processNames)
        {
          WriteObject(Process.GetProcessesByName(name), true);
        }
      } // End if (processNames ...)
    } // End ProcessRecord.

    #endregion Overrides
  } // End GetProcCommand.
  #endregion GetProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


GetProcessSample04 Sample
Article • 03/24/2025

This sample shows how to implement a cmdlet that retrieves the processes on the local
computer. It generates a non-terminating error if an error occurs while retrieving a
process. This cmdlet is a simplified version of the Get-Process  cmdlet provided by
Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
GetProcessSample04 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\GetProcessSample04 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\GetProcessSample04

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module getprossessample04

5. Run the following command to run the cmdlet:

Get-Proc

This sample requires Windows PowerShell 2.0.

How to build the sample using Visual Studio

How to run the sample

Requirements



This sample demonstrates the following.

Declaring a cmdlet class using the Cmdlet attribute.

Declaring a cmdlet parameter using the Parameter attribute.

Specifying the position of the parameter.

Specifying that the parameter takes input from the pipeline. The input can be
taken from an object or a value from a property of an object whose property name
is the same as the parameter name.

Declaring a validation attribute for the parameter input.

Trapping a non-terminating error and writing an error message to the error stream.

This sample shows how to create a cmdlet that handles non-terminating errors and
writes error messages to the error stream.

C#

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Diagnostics;
    using System.Management.Automation;      // Windows PowerShell 
namespace.
   #region GetProcCommand

   /// <summary>
   /// This class implements the Get-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet
   {
      #region Parameters

       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
       private string[] processNames;

      /// <summary>
      /// Gets or sets the list of process names on
      /// which the Get-Proc cmdlet will work.



      /// </summary>
      [Parameter(
         Position = 0,
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }

      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses
      /// method to retrieve the processes specified by the Name
      /// parameter. Then, the WriteObject method writes the
      /// associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
          // If no process names are passed to cmdlet, get all
          // processes.
          if (this.processNames == null)
          {
              WriteObject(Process.GetProcesses(), true);
          }
          else
          {
              // If process names are passed to the cmdlet, get and write
              // the associated processes.
              // If a non-terminating error occurs while retrieving 
processes,
              // call the WriteError method to send an error record to the
              // error stream.
              foreach (string name in this.processNames)
              {
                  Process[] processes;

                  try
                  {
                      processes = Process.GetProcessesByName(name);
                  }
                  catch (InvalidOperationException ex)
                  {
                      WriteError(new ErrorRecord(
                         ex,
                         "UnableToAccessProcessByName",
                         ErrorCategory.InvalidOperation,
                         name));
                      continue;
                  }



Writing a Windows PowerShell Cmdlet

                  WriteObject(processes, true);
              } // foreach (string name...
          } // else
      } // ProcessRecord

      #endregion Overrides
    } // End GetProcCommand class.

   #endregion GetProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


GetProcessSample05 Sample
Article • 09/15/2023

This sample shows a complete version of the Get-Proc cmdlet.

1. Open Windows Explorer and navigate to the GetProcessSample05 directory under
the Samples directory.

With the Windows PowerShell 2.0 SDK installed, navigate to the
GetProcessSample05 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\GetProcessSample05 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\GetProcessSample05

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module getprossessample05

5. Run the following command to run the cmdlet:

Get-Proc

This sample requires Windows PowerShell 2.0.

How to build the sample using Visual Studio.

How to run the sample

Requirements



This sample demonstrates the following.

Declaring a cmdlet class using the Cmdlet attribute.

Declaring a cmdlet parameter using the Parameter attribute.

Specifying positions for parameters.

Specifying that parameters can take input from the pipeline. The input can be
taken from an object or a value from a property of an object whose property name
is the same as the parameter name.

Declaring a validation attribute for the parameter input.

Handling errors and exceptions.

Writing debug messages.

This sample shows how to create a cmdlet that displays a list of specified processes.

C#

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Management.Automation;    // Windows PowerShell namespace.
    using System.Security.Permissions;
    using Win32Exception = System.ComponentModel.Win32Exception;
    #region GetProcCommand

    /// <summary>
   /// This class implements the Get-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc",
      DefaultParameterSetName = "ProcessName")]
   public class GetProcCommand : PSCmdlet
   {
       #region Fields
       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
       private string[] processNames;



       /// <summary>
       /// The identifiers of the processes to act on.
       /// </summary>
       private int[] processIds;

       /// <summary>
       /// The process objects to act on.
       /// </summary>
       private Process[] inputObjects;

       #endregion Fields

       #region Parameters

      /// <summary>
      /// Gets or sets the list of process names on
      /// which the Get-Proc cmdlet will work.
      /// </summary>
      [Parameter(
         Position = 0,
         ParameterSetName = "ProcessName",
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }

      /// <summary>
      /// Gets or sets the list of process identifiers on
      /// which the Get-Proc cmdlet will work.
      /// </summary>
      [Parameter(
         ParameterSetName = "Id",
         Mandatory = true,
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true,
         HelpMessage = "The unique id of the process to get.")]
      public int[] Id
      {
         get { return this.processIds; }
         set { this.processIds = value; }
      }

      /// <summary>
      /// Gets or sets Process objects directly. If the input is a
      /// stream of [collection of] Process objects, the cmdlet bypasses the
      /// ProcessName and Id parameters and reads the Process objects
      /// directly.  This allows the cmdlet to deal with processes that have
      /// wildcard characters in their name.
      /// <value>Process objects</value>
      /// </summary>
      [Parameter(



         ParameterSetName = "InputObject",
         Mandatory = true,
         ValueFromPipeline = true)]
      public Process[] Input
      {
         get { return this.inputObjects; }
         set { this.inputObjects = value; }
      }

      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses
      /// method to retrieve the processes. Then, the WriteObject
      /// method writes the associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
         List<Process> matchingProcesses;

         WriteDebug("Obtaining the list of matching process objects.");

         switch (ParameterSetName)
         {
            case "Id":
               matchingProcesses = this.GetMatchingProcessesById();
               break;
            case "ProcessName":
               matchingProcesses = this.GetMatchingProcessesByName();
               break;
            case "InputObject":
               matchingProcesses = this.GetProcessesByInput();
               break;
            default:
               ThrowTerminatingError(
                   new ErrorRecord(
                       new ArgumentException("Bad ParameterSetName"),
                       "UnableToAccessProcessList",
                       ErrorCategory.InvalidOperation,
                       null));
               return;
         } // switch (ParameterSetName)

         WriteDebug("Outputting the matching process objects.");

         matchingProcesses.Sort(ProcessComparison);

         foreach (Process process in matchingProcesses)
         {
            WriteObject(process);
         }
      } // ProcessRecord



      #endregion Overrides

      #region protected Methods and Data

      /// <summary>
      /// Retrieves the list of all processes matching the ProcessName
      /// parameter and generates a non-terminating error for each
      /// specified process name which is not found even though the name
      /// contains no wildcards.
      /// </summary>
      /// <returns>The matching processes.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand,
         Unrestricted = true)]
      private List<Process> GetMatchingProcessesByName()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();

         List<Process> allProcesses =
            new List<Process>(Process.GetProcesses());

         // The keys dictionary is used for rapid lookup of
         // processes that are already in the matchingProcesses list.
         Dictionary<int, byte> keys = new Dictionary<int, byte>();

         List<Process> matchingProcesses = new List<Process>();

         if (null == this.processNames)
         {
             matchingProcesses.AddRange(allProcesses);
         }
         else
         {
             foreach (string pattern in this.processNames)
             {
                 WriteVerbose("Finding matches for process name \""
                    + pattern + "\".");

                 // WildCard search on the available processes
                 WildcardPattern wildcard =
                    new WildcardPattern(
                        pattern,
                        WildcardOptions.IgnoreCase);

                 bool found = false;

                 foreach (Process process in allProcesses)
                 {
                     if (!keys.ContainsKey(process.Id))
                     {
                         string processName = SafeGetProcessName(process);

                         // Remove the process from the allProcesses list
                         // so that it is not tested again.



                         if (processName.Length == 0)
                         {
                             allProcesses.Remove(process);
                         }

                         // Perform a wildcard search on this particular
                         // process name and check whether it matches the
                         // pattern specified.
                         if (!wildcard.IsMatch(processName))
                         {
                             continue;
                         }

                         WriteDebug("Found matching process id "
                            + process.Id + ".");

                         // A match is found.
                         found = true;

                         // Store the process identifier so that the same 
process
                         // is not added twice.
                         keys.Add(process.Id, 0);

                         // Add the process to the processes list.
                         matchingProcesses.Add(process);
                     }
                 } // foreach (Process...

                 if (!found &&
                   !WildcardPattern.ContainsWildcardCharacters(pattern))
                 {
                     WriteError(new ErrorRecord(
                        new ArgumentException("Cannot find process name "
                           + "\"" + pattern + "\"."),
                        "ProcessNameNotFound",
                        ErrorCategory.ObjectNotFound,
                        pattern));
                 }
             } // foreach (string...
         } // if (null...

         return matchingProcesses;
      } // GetMatchingProcessesByName

      /// <summary>
      /// Returns the name of a process.  If an error occurs, a blank
      /// string is returned.
      /// </summary>
      /// <param name="process">The process whose name is
      /// returned.</param>
      /// <returns>The name of the process.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand, Unrestricted = true)]
      protected static string SafeGetProcessName(Process process)



      {
         new EnvironmentPermission(PermissionState.Unrestricted).Assert();
         string name = String.Empty;

         if (process != null)
         {
            try
            {
                return process.ProcessName;
            }
            catch (Win32Exception)
            {
            }
            catch (InvalidOperationException)
            {
            }
         }

         return name;
     } // SafeGetProcessName

      #endregion Cmdlet Overrides

      #region Private Methods

      /// <summary>
      /// Function to sort by process name first, and then by
      /// the process identifier.
      /// </summary>
      /// <param name="x">First process object.</param>
      /// <param name="y">Second process object.</param>
      /// <returns>
      /// Returns less than zero if x is less than y,
      /// greater than 0 if x is greater than y, and 0 if x == y.
      /// </returns>
      private static int ProcessComparison(Process x, Process y)
      {
         int diff = String.Compare(
            SafeGetProcessName(x),
            SafeGetProcessName(y),
            StringComparison.CurrentCultureIgnoreCase);

         if (0 != diff)
         {
             return diff;
         }
         else
         {
             return x.Id.CompareTo(y.Id);
         }
      }

      /// <summary>
      /// Retrieves the list of all processes matching the Id
      /// parameter and generates a non-terminating error for



      /// each specified process identifier which is not found.
      /// </summary>
      /// <returns>
      /// An array of processes that match the given identifier.
      /// </returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand,
         Unrestricted = true)]
      private List<Process> GetMatchingProcessesById()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();

         List<Process> matchingProcesses = new List<Process>();

         if (null != this.processIds)
         {
            // The keys dictionary is used for rapid lookup of the
            // processes already in the matchingProcesses list.
            Dictionary<int, byte> keys = new Dictionary<int, byte>();

            foreach (int processId in this.processIds)
            {
               WriteVerbose("Finding match for process id "
                  + processId + ".");

               if (!keys.ContainsKey(processId))
               {
                  Process process;
                  try
                  {
                      process = Process.GetProcessById(processId);
                  }
                  catch (ArgumentException ex)
                  {
                     WriteError(new ErrorRecord(
                        ex,
                        "ProcessIdNotFound",
                        ErrorCategory.ObjectNotFound,
                        processId));
                     continue;
                  }

                  WriteDebug("Found matching process.");

                  matchingProcesses.Add(process);
                  keys.Add(processId, 0);
               }
            }
         }

         return matchingProcesses;
      } // GetMatchingProcessesById

      /// <summary>



      /// Retrieves the list of all processes matching the InputObject
      /// parameter.
      /// </summary>
      /// <returns>The matching processes.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand,
         Unrestricted = true)]
      private List<Process> GetProcessesByInput()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();

         List<Process> matchingProcesses = new List<Process>();

         if (null != this.Input)
         {
            // The keys dictionary is used for rapid lookup of the
            // processes already in the matchingProcesses list.
            Dictionary<int, byte> keys = new Dictionary<int, byte>();

            foreach (Process process in this.Input)
            {
               WriteVerbose("Refreshing process object.");

               if (!keys.ContainsKey(process.Id))
               {
                  try
                  {
                      process.Refresh();
                  }
                  catch (Win32Exception)
                  {
                  }
                  catch (InvalidOperationException)
                  {
                  }

                  matchingProcesses.Add(process);
               }
            }
         }

         return matchingProcesses;
      } // GetProcessesByInput
      #endregion Private Methods
    } // End GetProcCommand class.

    #endregion GetProcCommand
}

See Also



Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


StopProcessSample01 Sample
Article • 09/15/2023

This sample shows how to write a cmdlet that requests feedback from the user before it
attempts to stop a process, and how to implement a PassThru  parameter indicating that
the user wants the cmdlet to return an object. This cmdlet is similar to the Stop-Process
cmdlet provided by Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
StopProcessSample01 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\StopProcessSample01

.

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\StopProcessSample01

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module stopprossessample01

5. Run the following command to run the cmdlet:

Stop-Proc

How to build the sample by using Visual Studio

How to run the sample

Requirements



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class by using the Cmdlet attribute.

Declaring a cmdlet parameters by using the Parameter attribute.

Calling the ShouldProcess method to request confirmation.

Implementing a PassThru  parameter that indicates if the user wants the cmdlet to
return an object. By default, this cmdlet does not return an object to the pipeline.

This sample shows how to implement a PassThru  parameter that indicates that the user
wants the cmdlet to return an object, and how to request user feedback by calls to the
ShouldProcess  and ShouldContinue  methods.

C#

Demonstrates

Example

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;    // Windows PowerShell namespace
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Commands
{
   #region StopProcCommand

    /// <summary>
   /// This class implements the Stop-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       SupportsShouldProcess = true)]
   public class StopProcCommand : Cmdlet
   {
       #region Parameters

      /// <summary>
      /// This parameter provides the list of process names on
      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(



          Position = 0,
          Mandatory = true,
          ValueFromPipeline = true,
          ValueFromPipelineByPropertyName = true
       )]
       public string[] Name
       {
           get { return processNames; }
           set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force
       /// the cmdlet to stop its operation. This parameter should always
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
           get { return force; }
           set { force = value; }
       }
       private bool force;

       /// <summary>
       /// This parameter indicates that the cmdlet should return
       /// an object to the pipeline after the processing has been
       /// completed.
       /// </summary>
       [Parameter]
       public SwitchParameter PassThru
       {
           get { return passThru; }
           set { passThru = value; }
       }
       private bool passThru;

       #endregion Parameters

       #region Cmdlet Overrides

       /// <summary>
       /// The ProcessRecord method does the following for each of the
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.
       /// </summary>
       protected override void ProcessRecord()
       {
           foreach (string name in processNames)
           {
               // For every process name passed to the cmdlet, get the 
associated



               // processes.
               // Write a non-terminating error for failure to retrieve
               // a process.
               Process[] processes;

               try
               {
                   processes = Process.GetProcessesByName(name);
               }
               catch (InvalidOperationException ioe)
               {
                   WriteError(new 
ErrorRecord(ioe,"UnableToAccessProcessByName",
                       ErrorCategory.InvalidOperation, name));

                   continue;
               }

               // Try to stop the processes that have been retrieved.
               foreach (Process process in processes)
               {
                   string processName;

                   try
                   {
                       processName = process.ProcessName;
                   }
                   catch (Win32Exception e)
                   {
                      WriteError(new ErrorRecord(e, "ProcessNameNotFound",
                                           ErrorCategory.ReadError, 
process));
                      continue;
                   }

                   // Confirm the operation with the user first.
                   // This is always false if the WhatIf parameter is set.
                   if 
(!ShouldProcess(string.Format(CultureInfo.CurrentCulture,"{0} ({1})", 
processName,
                               process.Id)))
                   {
                       continue;
                   }

                   // Make sure that the user really wants to stop a 
critical
                   // process that could possibly stop the computer.
                   bool criticalProcess =
                       
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));

                   if (criticalProcess &&!force)
                   {



                       string message = String.Format
                           (CultureInfo.CurrentCulture,
                                "The process \"{0}\" is a critical process 
and should not be stopped. Are you sure you wish to stop the process?",
                                    processName);

                       // It is possible that the ProcessRecord method is 
called
                       // multiple times when objects are received as inputs 
from
                       // the pipeline. So to retain YesToAll and NoToAll 
input that
                       // the user may enter across multiple calls to this 
function,
                       // they are stored as private members of the cmdlet.
                       if (!ShouldContinue(message, "Warning!",
                                               ref yesToAll, ref noToAll))
                       {
                           continue;
                       }
                   } // if (criticalProcess...

                   // Stop the named process.
                   try
                   {
                       process.Kill();
                   }
                   catch (Exception e)
                   {
                       if ((e is Win32Exception) || (e is SystemException) 
||
                          (e is InvalidOperationException))
                       {
                           // This process could not be stopped so write
                           // a non-terminating error.
                           WriteError(new ErrorRecord(e, 
"CouldNotStopProcess",
                                           ErrorCategory.CloseError, 
process));
                           continue;
                       } // if ((e is...
                       else throw;
                   } // catch

                   // If the PassThru parameter is
                   // specified, return the terminated process.
                   if (passThru)
                   {
                       WriteObject(process);
                   }
               } // foreach (Process...
           } // foreach (string...
       } // ProcessRecord

       #endregion Cmdlet Overrides



Writing a Windows PowerShell Cmdlet

       #region Private Data

       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of critical processes that should not be
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


StopProcessSample02 Sample
Article • 09/15/2023

This sample shows how to write a cmdlet that writes debug (WriteDebug), verbose
(WriteVerbose), and warning (WriteWarning) messages while stopping processes on the
local computer. This cmdlet is similar to the Stop-Process  cmdlet provided by Windows
PowerShell 2.0.

1. Open Windows Internet Explorer and navigate to the StopProcessSample02
directory under the Samples directory.

With the Windows PowerShell 2.0 SDK installed, navigate to the
StopProcessSample02 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\StopProcessSample02

.

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\StopProcessSample02

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module stopprossessample02

5. Run the following command to run the cmdlet:

Stop-Proc

How to build the sample by using Visual Studio

How to run the sample



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class by using the Cmdlet attribute.

Declaring a cmdlet parameters by using the Parameter attribute.

Writing verbose messages. For more information about the method used to write
verbose messages, see System.Management.Automation.Cmdlet.WriteVerbose.

Writing error messages. For more information about the method used to write
error messages, see System.Management.Automation.Cmdlet.WriteError.

Writing warning messages. For more information about the method used to write
warning messages, see System.Management.Automation.Cmdlet.WriteWarning.

This sample shows how to write debug, verbose, and warning messages by using the
WriteDebug , WriteVerbose , and WriteWarning  methods.

C#

Requirements

Demonstrates

Example

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;             //Windows PowerShell 
namespace
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Commands
{
   #region StopProcCommand

    /// <summary>
   /// This class implements the Stop-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       SupportsShouldProcess = true)]
   public class StopProcCommand : Cmdlet
   {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteVerbose
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteWarning


       #region Parameters

      /// <summary>
      /// This parameter provides the list of process names on
      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(
          Position = 0,
          Mandatory = true,
          ValueFromPipeline = true,
          ValueFromPipelineByPropertyName = true
       )]
       public string[] Name
       {
          get { return processNames; }
          set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force
       /// the cmdlet to stop its operation. This parameter should always
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
           get { return force; }
           set { force = value; }
       }
       private bool force;

       /// <summary>
       /// This parameter indicates that the cmdlet should return
       /// an object to the pipeline after the processing has been
       /// completed.
       /// </summary>
       [Parameter]
       public SwitchParameter PassThru
       {
           get { return passThru; }
           set { passThru = value; }
       }
       private bool passThru;

       #endregion Parameters

       #region Cmdlet Overrides

       /// <summary>
       /// The ProcessRecord method does the following for each of the
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.



       /// </summary>
       protected override void ProcessRecord()
       {
           foreach (string name in processNames)
           {
               string message = null;

               // For every process name passed to the cmdlet, get the 
associated
               // processes.
               // Write a non-terminating error for failure to retrieve
               // a process.

               // Write a user-friendly verbose message to the pipeline. 
These
               // messages are intended to give the user detailed 
information
               // on the operations performed by the cmdlet. These messages 
will
               // appear with the -Verbose option.
               message = String.Format(CultureInfo.CurrentCulture,
                              "Attempting to stop process \"{0}\".", name);
               WriteVerbose(message);

               Process[] processes;

               try
               {
                   processes = Process.GetProcessesByName(name);
               }
               catch (InvalidOperationException ioe)
               {
                   WriteError(new ErrorRecord(ioe,
                                     "UnableToAccessProcessByName",
                                         ErrorCategory.InvalidOperation,
                                             name));
                   continue;
               }

               // Try to stop the processes that have been retrieved.
               foreach (Process process in processes)
               {
                   string processName;

                   try
                   {
                       processName = process.ProcessName;
                   }
                   catch (Win32Exception e)
                   {
                       WriteError(new ErrorRecord(e, "ProcessNameNotFound",
                                         ErrorCategory.ObjectNotFound, 
process));
                       continue;
                   }



                   // Write a debug message to the host that can be used 
when
                   // troubleshooting a problem. All debug messages will 
appear
                   // with the -Debug option.
                   message = String.Format(CultureInfo.CurrentCulture,
                                 "Acquired name for pid {0} : \"{1}\"",
                                        process.Id, processName);
                   WriteDebug(message);

                   // Confirm the operation first.
                   // This is always false if the WhatIf parameter is 
specified.
                   if 
(!ShouldProcess(string.Format(CultureInfo.CurrentCulture,
                                        "{0} ({1})",
                                            processName, process.Id)))
                   {
                       continue;
                   }

                   // Make sure that the user really wants to stop a 
critical
                   // process that can possibly stop the computer.
                   bool criticalProcess = 
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));

                   if (criticalProcess && !force)
                   {
                       message = String.Format(CultureInfo.CurrentCulture,
                                    "The process \"{0}\" is a critical 
process and should not be stopped. Are you sure you wish to stop the 
process?",
                                        processName);

                       // It is possible that the ProcessRecord method is 
called
                       // multiple times when objects are received as inputs 
from
                       // the pipeline. So to retain YesToAll and NoToAll 
input that
                       // the user may enter across multiple calls to this 
function,
                       // they are stored as private members of the cmdlet.
                       if (!ShouldContinue(message, "Warning!",
                                    ref yesToAll, ref noToAll))
                       {
                           continue;
                       }
                   } // if (criticalProcess...

                   // Display a warning message if the cmdlet is stopping a
                   // critical process.



                   if (criticalProcess)
                   {
                       message = String.Format(CultureInfo.CurrentCulture,
                                     "Stopping the critical process \"
{0}\".",
                                          processName);
                       WriteWarning(message);
                   } // if (criticalProcess...

                   // Stop the named process.
                   try
                   {
                       process.Kill();
                   }
                   catch (Exception e)
                   {
                       if ((e is Win32Exception) || (e is SystemException) 
||
                           (e is InvalidOperationException))
                       {
                           // This process could not be stopped so write
                           // a non-terminating error.
                           WriteError(new ErrorRecord(
                                            e,
                                            "CouldNotStopProcess",
                                            ErrorCategory.CloseError,
                                            process)
                                      );
                           continue;
                       } // if ((e is...
                           else throw;
                   } // catch

                   message = String.Format(CultureInfo.CurrentCulture,
                                  "Stopped process \"{0}\", pid {1}.",
                                        processName, process.Id);

                   WriteVerbose(message);

                   // If the PassThru parameter is specified,
                   // return the terminated process object to the pipeline.
                   if (passThru)
                   {
                       message = String.Format(CultureInfo.CurrentCulture,
                                     "Writing process \"{0}\" to pipeline",
                                          processName);
                       WriteDebug(message);
                       WriteObject(process);
                   } // if (passThru...
               } // foreach (Process...
            } // foreach (string...
        } // ProcessRecord

       #endregion Cmdlet Overrides



Writing a Windows PowerShell Cmdlet

       #region Private Data

       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of critical processes that should not be
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


StopProcessSample03 Sample
Article • 09/15/2023

This sample shows how to write a cmdlet whose parameters have aliases and whose
parameters support wildcard characters. This cmdlet is similar to the Stop-Process
cmdlet provided by Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
StopProcessSample03 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\StopProcessSample03

.

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\StopProcessSample03

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module stopprossessample03

5. Run the following command to run the cmdlet:

Stop-Proc

How to build the sample by using Visual Studio

How to run the sample

Requirements



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class by using the Cmdlet attribute.

Declaring a cmdlet parameters by using the Parameter attribute.

Adding aliases to parameter declarations..

Adding wildcard support to parameters.

This sample shows how to declare parameter aliases and support wildcards.

C#

Demonstrates

Example

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;             //Windows PowerShell 
namespace
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Commands
{

   #region StopProcCommand

    /// <summary>
   /// This class implements the Stop-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       SupportsShouldProcess = true)]
   public class StopProcCommand : Cmdlet
   {
       #region Parameters

      /// <summary>
      /// This parameter provides the list of process names on
      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(
          Position = 0,
          Mandatory = true,
          ValueFromPipeline = true,



          ValueFromPipelineByPropertyName = true,
          HelpMessage = "The name of one or more processes to stop. 
Wildcards are permitted."
       )]
       [Alias("ProcessName")]
       public string[] Name
       {
           get { return processNames; }
           set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force
       /// the cmdlet to stop its operation. This parameter should always
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
          get { return force; }
          set { force = value; }
       }
       private bool force;

       /// <summary>
       /// This parameter indicates that the cmdlet should return
       /// an object to the pipeline after the processing has been
       /// completed.
       /// </summary>
       [Parameter(
          ValueFromPipelineByPropertyName = true,
          HelpMessage = "If set, the process(es) will be passed to the 
pipeline after stopped."
       )]
       public SwitchParameter PassThru
       {
          get { return passThru; }
          set { passThru = value; }
       }
       private bool passThru;

       #endregion Parameters

       #region Cmdlet Overrides
       /// <summary>
       /// The ProcessRecord method does the following for each of the
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.
       /// </summary>
       protected override void ProcessRecord()
       {
           Process[] processes = null;



           try
           {
               processes = Process.GetProcesses();
           }
           catch (InvalidOperationException ioe)
           {
               base.ThrowTerminatingError(new ErrorRecord(ioe,
                         "UnableToAccessProcessList",
                             ErrorCategory.InvalidOperation,
                                 null));
           }

           // For every process name passed to the cmdlet, get the 
associated
           // processes.
           // Write a non-terminating error for failure to retrieve
           // a process.
           foreach (string name in processNames)
           {
               // Write a user-friendly verbose message to the pipeline. 
These
               // messages are intended to give the user detailed 
information
               // on the operations performed by the cmdlet. These messages 
will
               // appear with the -Verbose option.
               string message = String.Format(CultureInfo.CurrentCulture,
                                    "Attempting to stop process \"{0}\".", 
name);
               WriteVerbose(message);

               // Validate the process name against a wildcard pattern.
               // If the name does not contain any wildcard patterns, it
               // will be treated as an exact match.
               WildcardOptions options = WildcardOptions.IgnoreCase |
                                         WildcardOptions.Compiled;
               WildcardPattern wildcard = new WildcardPattern(name,options);

               foreach (Process process in processes)
               {
                   string processName;

                   try
                   {
                       processName = process.ProcessName;
                   }
                   catch (Win32Exception e)
                   {
                       WriteError(new ErrorRecord(
                                              e, "ProcessNameNotFound",
                                                
ErrorCategory.ObjectNotFound,
                                                  process)
                                 );



                       continue;
                   }

                   // Write a debug message to the host that can be used 
when
                   // troubleshooting a problem. All debug messages will 
appear
                   // with the -Debug option.
                   message = String.Format(CultureInfo.CurrentCulture,
                                "Acquired name for pid {0} : \"{1}\"",
                                      process.Id, processName);
                   WriteDebug(message);

                   // Check to see if this process matches the current 
process
                   // name pattern. Skip this process if it does not.
                   if (!wildcard.IsMatch(processName))
                   {
                       continue;
                   }

                   // Stop the process.
                   SafeStopProcess(process);
               } // foreach (Process...
           } // foreach (string...
       } // ProcessRecord

       #endregion Cmdlet Overrides

       #region Helper Methods

       /// <summary>
       /// Safely stops a named process.  Used as standalone function
       /// to declutter the ProcessRecord method.
       /// </summary>
       /// <param name="process">The process to stop.</param>
       private void SafeStopProcess(Process process)
       {
           string processName = null;
           try
           {
               processName = process.ProcessName;
           }
           catch (Win32Exception e)
           {
               WriteError(new ErrorRecord(e, "ProcessNameNotFound",
                                 ErrorCategory.ObjectNotFound, process));
               return;
           }

           string message = null;

           // Confirm the operation first.
           // This is always false if the WhatIf parameter is specified.
           if (!ShouldProcess(string.Format(CultureInfo.CurrentCulture,



                    "{0} ({1})", processName, process.Id)))
           {
               return;
           }

           // Make sure that the user really wants to stop a critical
           // process that could possibly stop the computer.
           bool criticalProcess = 
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));

           if (criticalProcess && !force)
           {
               message = String.Format(CultureInfo.CurrentCulture,
                            "The process \"{0}\" is a critical process and 
should not be stopped. Are you sure you wish to stop the process?",
                                processName);

               // It is possible that ProcessRecord is called multiple
               // when objects are received as inputs from a pipeline.
               // So, to retain YesToAll and NoToAll input that the
               // user may enter across multiple calls to this
               // function, they are stored as private members of the
               // Cmdlet.
               if (!ShouldContinue(message, "Warning!",
                            ref yesToAll, ref noToAll))
               {
                   return;
               }
           } // if (criticalProcess...

           // Display a warning message if stopping a critical
           // process.
           if (criticalProcess)
           {
               message = String.Format(CultureInfo.CurrentCulture,
                            "Stopping the critical process \"{0}\".",
                                processName);
               WriteWarning(message);
           } // if (criticalProcess...

           try
           {
               // Stop the process.
               process.Kill();
           }
           catch (Exception e)
           {
               if ((e is Win32Exception) || (e is SystemException) ||
                   (e is InvalidOperationException))
               {
                   // This process could not be stopped so write
                   // a non-terminating error.
                   WriteError(new ErrorRecord(e, "CouldNotStopProcess",
                                    ErrorCategory.CloseError,



Writing a Windows PowerShell Cmdlet

                                    process)
                              );
                   return;
               } // if ((e is...
               else throw;
           } // catch

           message = String.Format(CultureInfo.CurrentCulture,
                        "Stopped process \"{0}\", pid {1}.",
                              processName, process.Id);

           WriteVerbose(message);

           // If the PassThru parameter is specified,
           // return the terminated process to the pipeline.
           if (passThru)
           {
               message = String.Format(CultureInfo.CurrentCulture,
                            "Writing process \"{0}\" to pipeline",
                                processName);
               WriteDebug(message);
               WriteObject(process);
           } // if (passThru...
       } // SafeStopProcess

       #endregion Helper Methods

       #region Private Data

       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of the critical processes that should not be
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
} // namespace Microsoft.Samples.PowerShell.Commands

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


StopProcessSample04 Sample
Article • 09/15/2023

This sample shows how to write a cmdlet that declares parameter sets, specifies the
default parameter set, and can accept an input object. This cmdlet is similar to the Stop-
Process  cmdlet provided by Windows PowerShell 2.0.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the
StopProcessSample04 folder. The default location is C:\Program Files
(x86)\Microsoft

SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\StopProcessSample04

.

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\StopProcessSample04

2. Copy the sample assembly to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the assembly into Windows PowerShell:

Import-Module stopprossessample04

5. Run the following command to run the cmdlet:

Stop-Proc

How to build the sample by using Visual Studio

How to run the sample

Requirements



This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Declaring a cmdlet class by using the Cmdlet attribute.

Declaring a cmdlet parameters by using the Parameter attribute.

Adding a parameter that accepts input object.

Adding parameters to parameter sets

Specifying the default parameter set.

The following code shows an implementation of the Stop-Proc cmdlet that declare
parameter sets, specifies the default parameter set, and can accept an input object.

This sample shows the input object, how to declare parameter sets, and how to specify
the default parameter set to use.

C#

Demonstrates

Example

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;             //Windows PowerShell 
namespace
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Commands
{
   #region StopProcCommand

   /// <summary>
   /// This class implements the Stop-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       DefaultParameterSetName = "ProcessId",
       SupportsShouldProcess = true)]
   public class StopProcCommand : PSCmdlet
   {
       #region Parameters



      /// <summary>
      /// This parameter provides the list of process names on
      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(
          Position = 0,
          ParameterSetName = "ProcessName",
          Mandatory = true,
          ValueFromPipeline = true,
          ValueFromPipelineByPropertyName = true,
          HelpMessage = "The name of one or more processes to stop. 
Wildcards are permitted."
       )]
       [Alias("ProcessName")]
       public string[] Name
       {
           get { return processNames; }
           set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force
       /// the cmdlet to stop its operation. This parameter should always
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
           get { return force; }
           set { force = value; }
       }
       private bool force;

       /// <summary>
       /// This parameter indicates that the cmdlet should return
       /// an object to the pipeline after the processing has been
       /// completed.
       /// </summary>
       [Parameter(
          HelpMessage = "If set the process(es) will be passed to the 
pipeline after stopped."
       )]
       public SwitchParameter PassThru
       {
           get { return passThru; }
           set { passThru = value; }
       }
       private bool passThru;

      /// This parameter provides the list of process identifiers on
      /// which the Stop-Proc cmdlet will work.
       [Parameter(
          ParameterSetName = "ProcessId",
          Mandatory = true,



          ValueFromPipelineByPropertyName = true,
          ValueFromPipeline = true
       )]
       [Alias("ProcessId")]
       public int[] Id
       {
           get { return processIds; }
           set { processIds = value; }
       }
       private int[] processIds;

       /// <summary>
       /// This parameter accepts an array of Process objects from the
       /// the pipeline. This object contains the processes to stop.
       /// </summary>
       /// <value>Process objects</value>
       [Parameter(
           ParameterSetName = "InputObject",
           Mandatory = true,
           ValueFromPipeline = true)]
       public Process[] InputObject
       {
           get { return inputObject; }
           set { inputObject = value; }
       }
       private Process[] inputObject;

       #endregion Parameters

       #region CmdletOverrides

       /// <summary>
       /// The ProcessRecord method does the following for each of the
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.
       /// </summary>
       protected override void ProcessRecord()
       {
           switch (ParameterSetName)
           {
               case "ProcessName":
                   ProcessByName();
               break;

               case "ProcessId":
                   ProcessById();
                   break;

               case "InputObject":
                   foreach (Process process in inputObject)
                   {
                       SafeStopProcess(process);
                   }



                   break;

               default:
                   throw new ArgumentException("Bad ParameterSet Name");
           } // switch (ParameterSetName...
       } // ProcessRecord

       #endregion Cmdlet Overrides

       #region Helper Methods

       /// <summary>
       /// Returns all processes with matching names.
       /// </summary>
       /// <param name="processName">
       /// The name of the processes to return.
       /// </param>
       /// <param name="allProcesses">An array of all
       /// computer processes.</param>
       /// <returns>An array of matching processes.</returns>
       internal ArrayList SafeGetProcessesByName(string processName,
                                ref ArrayList allProcesses)
       {
           // Create and array to store the matching processes.
           ArrayList matchingProcesses = new ArrayList();

           // Create the wildcard for pattern matching.
           WildcardOptions options = WildcardOptions.IgnoreCase |
                                     WildcardOptions.Compiled;
           WildcardPattern wildcard = new WildcardPattern(processName, 
options);

           // Walk all of the machine processes.
           foreach(Process process in allProcesses)
           {
               string processNameToMatch = null;
               try
               {
                   processNameToMatch = process.ProcessName;
               }
               catch (Win32Exception e)
               {
                   // Remove the process from the list so that it is not
                   // checked again.
                   allProcesses.Remove(process);

                   string message =
                         String.Format(CultureInfo.CurrentCulture, "The 
process \"{0}\" could not be found",
                                             processName);
                   WriteVerbose(message);
                   WriteError(new ErrorRecord(e, "ProcessNotFound",
                                    ErrorCategory.ObjectNotFound, 
processName));



                   continue;
               }

               if (!wildcard.IsMatch(processNameToMatch))
               {
                   continue;
               }

               matchingProcesses.Add(process);
           } // foreach(Process...

           return matchingProcesses;
       } // SafeGetProcessesByName

       /// <summary>
       /// Safely stops a named process.  Used as standalone function
       /// to declutter the ProcessRecord method.
       /// </summary>
       /// <param name="process">The process to stop.</param>
       private void SafeStopProcess(Process process)
       {
           string processName = null;

           try
           {
               processName = process.ProcessName;
           }
           catch (Win32Exception e)
           {
               WriteError(new ErrorRecord(e, "ProcessNotFound",
                                ErrorCategory.OpenError, processName));

               return;
           }

           // Confirm the operation first.
           // This is always false if the WhatIf parameter is specified.
           if (!ShouldProcess(string.Format(CultureInfo.CurrentCulture,
                    "{0} ({1})", processName, process.Id)))
           {
               return;
           }

           // Make sure that the user really wants to stop a critical
           // process that can possibly stop the computer.
           bool criticalProcess = 
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));

           string message = null;
           if (criticalProcess && !force)
           {
               message = String.Format(CultureInfo.CurrentCulture,
                                            "The process \"{0}\" is a 
critical process and should not be stopped. Are you sure you wish to stop 



the process?",
                                                processName);
               // It is possible that the ProcessRecord method is called
               // multiple times when objects are received as inputs from
               // the pipeline. So to retain YesToAll and NoToAll input that
               // the user may enter across multiple calls to this function,
               // they are stored as private members of the cmdlet.
               if (!ShouldContinue(message, "Warning!",
                            ref yesToAll, ref noToAll))
               {
                   return;
               }
           } // if (criticalProcess...

           // Display a warning message if stopping a critical
           // process.
           if (criticalProcess)
           {
               message =
                 String.Format(CultureInfo.CurrentCulture,
                                "Stopping the critical process \"{0}\".",
                                    processName);
               WriteWarning(message);
           } // if (criticalProcess...

           try
           {
               // Stop the process.
               process.Kill();
           }
           catch (Exception e)
           {
               if ((e is Win32Exception) || (e is SystemException) ||
                   (e is InvalidOperationException))
               {
                   // This process could not be stopped so write
                   // a non-terminating error.
                   WriteError(new ErrorRecord(e, "CouldNotStopProcess",
                                    ErrorCategory.CloseError,
                                    process)
                              );

                   return;
               } // if ((e is...
               else throw;
           } // catch

           // Write a user-level verbose message to the pipeline. These are
           // intended to give the user detailed information on the
           // operations performed by the cmdlet. These messages will
           // appear with the -Verbose option.
           message = String.Format(CultureInfo.CurrentCulture,
                                        "Stopped process \"{0}\", pid {1}.",
                                            processName, process.Id);



           WriteVerbose(message);

           // If the PassThru parameter is specified, return the terminated
           // process to the pipeline.
           if (passThru)
           {
               // Write a debug message to the host that can be used
               // when troubleshooting a problem. All debug messages
               // will appear with the -Debug option
               message =
                   String.Format(CultureInfo.CurrentCulture,
                                    "Writing process \"{0}\" to pipeline",
                                        processName);
               WriteDebug(message);
               WriteObject(process);
           } // if (passThru..
       } // SafeStopProcess

       /// <summary>
       /// Stop processes based on their names (using the
       /// ParameterSetName as ProcessName)
       /// </summary>
       private void ProcessByName()
       {
           ArrayList allProcesses = null;

           // Get a list of all processes.
           try
           {
               allProcesses = new ArrayList(Process.GetProcesses());
           }
           catch (InvalidOperationException ioe)
           {
               base.ThrowTerminatingError(new ErrorRecord(
                    ioe, "UnableToAccessProcessList",
                    ErrorCategory.InvalidOperation, null));
           }

           // If a process name is passed to the cmdlet, get
           // the associated processes.
           // Write a non-terminating error for failure to
           // retrieve a process.
           foreach (string name in processNames)
           {
               // The allProcesses array list is passed as a reference 
because
               // any process whose name cannot be obtained will be removed
               // from the list so that its not compared the next time.
               ArrayList processes =
                   SafeGetProcessesByName(name, ref allProcesses);

               // If no processes were found write a non-
               // terminating error.
               if (processes.Count == 0)
               {



                   WriteError(new ErrorRecord(
                       new Exception("Process not found."),
                       "ProcessNotFound",
                       ErrorCategory.ObjectNotFound,
                       name));
               } // if (processes...
               // Otherwise terminate all processes in the list.
               else
               {
                   foreach (Process process in processes)
                   {
                       SafeStopProcess(process);
                   } // foreach (Process...
               } // else
           } // foreach (string...
       } // ProcessByName

       /// <summary>
       /// Stop processes based on their identifiers (using the
       /// ParameterSetName as ProcessIds)
       /// </summary>
       internal void ProcessById()
       {
           foreach (int processId in processIds)
           {
               Process process = null;
               try
               {
                   process = Process.GetProcessById(processId);

                   // Write a debug message to the host that can be used
                   // when troubleshooting a problem. All debug messages
                   // will appear with the -Debug option
                   string message =
                       String.Format(CultureInfo.CurrentCulture,
                                        "Acquired process for pid : {0}",
                                            process.Id);
                   WriteDebug(message);
               }
               catch (ArgumentException ae)
               {
                   string
                       message = String.Format(CultureInfo.CurrentCulture,
                                            "The process id {0} could not be 
found",
                                                processId);
                   WriteVerbose(message);
                   WriteError(new ErrorRecord(ae, "ProcessIdNotFound",
                                    ErrorCategory.ObjectNotFound, 
processId));
                   continue;
               }

               SafeStopProcess(process);
           } // foreach (int...



Writing a Windows PowerShell Cmdlet

       } // ProcessById

       #endregion Helper Methods

       #region Private Data

       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of critical processes that should not be
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv", "calc" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Events01 Sample
Article • 09/15/2023

This sample shows how to create a cmdlet that allows the user to register for events that
are raised by System.IO.FileSystemWatcher. With this cmdlet, users can register an action
to execute when a file is created under a specific directory. This sample derives from the
Microsoft.PowerShell.Commands.ObjectEventRegistrationBase base class.

1. With the Windows PowerShell 2.0 SDK installed, navigate to the Events01 folder.
The default location is C:\Program Files (x86)\Microsoft
SDKs\Windows\v7.0\Samples\sysmgmt\WindowsPowerShell\csharp\Events01 .

2. Double-click the icon for the solution (.sln) file. This opens the sample project in
Microsoft Visual Studio.

3. In the Build menu, select Build Solution to build the library for the sample in the
default \bin  or \bin\debug  folders.

1. Create the following module folder:

[user]\Documents\WindowsPowerShell\Modules\events01

2. Copy the library file for the sample to the module folder.

3. Start Windows PowerShell.

4. Run the following command to load the cmdlet into Windows PowerShell:

PowerShell

5. Use the Register-FileSystemEvent cmdlet to register an action that will write a
message when a file is created under the TEMP directory.

PowerShell

How to build the sample by using Visual Studio

How to run the sample

Import-Module events01

https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileSystemWatcher
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.ObjectEventRegistrationBase


6. Create a file under the TEMP directory and note that the action is executed (the
message is displayed).

This is a sample output that results by following these steps.

Output

PowerShell

Output

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

The cmdlet derives from the
Microsoft.PowerShell.Commands.ObjectEventRegistrationBase class, which provides
support for parameters common to the Register-*Event  cmdlets. Cmdlets that are
derived from Microsoft.PowerShell.Commands.ObjectEventRegistrationBase need only

Register-FileSystemEvent $Env:TEMP Created -Filter "*.txt" -Action { 
Write-Host "A file was created in the TEMP directory" }

Id              Name            State      HasMoreData     Location            
Command
--              ----            -----      -----------     --------            
-------
1               26932870-d3b... NotStarted False                               
Write-Host "A f...

Set-Content $Env:TEMP\test.txt "This is a test file"

A file was created in the TEMP directory

Requirements

Demonstrates

How to write a cmdlet for event registration

https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.ObjectEventRegistrationBase
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.ObjectEventRegistrationBase


to define their particular parameters and override the GetSourceObject  and
GetSourceObjectEventName  abstract methods.

This sample shows how to register for events raised by System.IO.FileSystemWatcher.

C#

Example

namespace Sample
{
    using System;
    using System.IO;
    using System.Management.Automation;
    using System.Management.Automation.Runspaces;
    using Microsoft.PowerShell.Commands;

    [Cmdlet(VerbsLifecycle.Register, "FileSystemEvent")]
    public class RegisterObjectEventCommand : ObjectEventRegistrationBase
    {
        /// <summary>The FileSystemWatcher that exposes the events.
</summary>
        private FileSystemWatcher fileSystemWatcher = new 
FileSystemWatcher();

        /// <summary>Name of the event to which the cmdlet registers.
</summary>
        private string eventName = null;

        /// <summary>
        /// Gets or sets the path that will be monitored by the 
FileSystemWatcher.
        /// </summary>
        [Parameter(Mandatory = true, Position = 0)]
        public string Path
        {
            get
            {
                return this.fileSystemWatcher.Path;
            }

            set
            {
                this.fileSystemWatcher.Path = value;
            }
        }

        /// <summary>
        /// Gets or sets the name of the event to which the cmdlet 
registers.
        /// <para>
        /// Currently System.IO.FileSystemWatcher exposes 6 events: Changed, 

https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileSystemWatcher


Created,
        /// Deleted, Disposed, Error, and Renamed. Check the documentation 
of
        /// FileSystemWatcher for details on each event.
        /// </para>
        /// </summary>
        [Parameter(Mandatory = true, Position = 1)]
        public string EventName
        {
            get
            {
                return this.eventName;
            }

            set
            {
                this.eventName = value;
            }
        }

        /// <summary>
        /// Gets or sets the filter that will be user by the 
FileSystemWatcher.
        /// </summary>
        [Parameter(Mandatory = false)]
        public string Filter
        {
            get
            {
                return this.fileSystemWatcher.Filter;
            }

            set
            {
                this.fileSystemWatcher.Filter = value;
            }
        }

        /// <summary>
        /// Derived classes must implement this method to return the object 
that generates
        /// the events to be monitored.
        /// </summary>
        /// <returns> This sample returns an instance of 
System.IO.FileSystemWatcher</returns>
        protected override object GetSourceObject()
        {
            return this.fileSystemWatcher;
        }

        /// <summary>
        /// Derived classes must implement this method to return the name of 
the event to
        /// be monitored. This event must be exposed by the input object.
        /// </summary>



Writing a Windows PowerShell Cmdlet

        /// <returns> This sample returns the event specified by the user 
with the -EventName parameter.</returns>
        protected override string GetSourceObjectEventName()
        {
            return this.eventName;
        }
    }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Writing a Windows PowerShell Module
Article • 09/17/2021

This document is written for administrators, script developers, and cmdlet developers
who need to package and distribute their Windows PowerShell cmdlets. By using
Windows PowerShell modules, you can package and distribute your Windows
PowerShell solutions without using a compiled language.

Windows PowerShell modules enable you to partition, organize, and abstract your
Windows PowerShell code into self-contained, reusable units. With these reusable units,
you can easily share your modules directly with others. If you are a script developer, you
can also repackage third-party modules to create custom script-based applications.
Modules, similar to modules in other scripting languages such as Perl and Python,
enable production-ready scripting solutions that use reusable, redistributable
components, with the added benefit of enabling you to repackage and abstract multiple
components to create custom solutions.

At their most basic, Windows PowerShell will treat any valid Windows PowerShell script
code saved in a .psm1  file as a module. PowerShell will also automatically treat any
binary cmdlet assembly as a module. However, you can also use a module (or more
specifically, a module manifest) to bundle an entire solution together. The following
scenarios describe typical uses for Windows PowerShell modules.

Modules can be used to package and distribute cohesive libraries of functions that
perform common tasks. Typically, the names of these functions share one or more
nouns that reflect the common task that they are used for. These functions can also be
similar to .NET Framework classes in that they can have public and private members. For
example, a library can contain a set of functions for file transfers. In this case, the noun
reflecting the common task might be "file."

Modules can be used to customize your environment by adding specific cmdlets,
providers, functions, and variables.

Libraries

Configuration

Compiled Code Development and Distribution



Cmdlet and provider developers can use modules to test and distribute their compiled
code without needing to create snap-ins. They can import the assembly that contains
the compiled code as a module (a binary module) without needing to create and
register snap-ins.

Understanding a Windows PowerShell Module

How to Write a PowerShell Script Module

How to Write a PowerShell Binary Module

How to Write a PowerShell Module Manifest

about_PSModulePath

Importing a PowerShell Module

Installing a PowerShell Module

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fmodule%2Fwriting-a-windows-powershell-module%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fmodule%2Fwriting-a-windows-powershell-module.md&documentVersionIndependentId=21e62146-3008-27b9-8552-ef3d2ea9f018&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+12b79db9-5e99-62d2-9831-ba880ef4f31d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Understanding a Windows PowerShell
Module
Article • 09/17/2021

A module is a set of related Windows PowerShell functionalities, grouped together as a
convenient unit (usually saved in a single directory). By defining a set of related script
files, assemblies, and related resources as a module, you can reference, load, persist, and
share your code much easier than you would otherwise.

The main purpose of a module is to allow the modularization (ie, reuse and abstraction)
of Windows PowerShell code. For example, the most basic way of creating a module is
to simply save a Windows PowerShell script as a .psm1  file. Doing so allows you to
control (ie, make public or private) the functions and variables contained in the script.
Saving the script as a .psm1  file also allows you to control the scope of certain variables.
Finally, you can also use cmdlets such as Install-Module to organize, install, and use your
script as building blocks for larger solutions.

A module is made up of four basic components:

1. Some sort of code file - usually either a PowerShell script or a managed cmdlet
assembly.

2. Anything else that the above code file may need, such as additional assemblies,
help files, or scripts.

3. A manifest file that describes the above files, as well as stores metadata such as
author and versioning information.

4. A directory that contains all of the above content, and is located where PowerShell
can reasonably find it.

Module Components and Types

７ Note

None of these components, by themselves, are actually necessary. For
example, a module can technically be only a script stored in a .psm1  file. You
can also have a module that is nothing but a manifest file, which is used
mainly for organizational purposes. You can also write a script that
dynamically creates a module, and as such doesn't actually need a directory to

https://learn.microsoft.com/en-us/powershell/module/PowershellGet/Install-Module


As the name implies, a script module is a file ( .psm1 ) that contains any valid Windows
PowerShell code. Script developers and administrators can use this type of module to
create modules whose members include functions, variables, and more. At heart, a script
module is simply a Windows PowerShell script with a different extension, which allows
administrators to use import, export, and management functions on it.

In addition, you can use a manifest file to include other resources in your module, such
as data files, other dependent modules, or runtime scripts. Manifest files are also useful
for tracking metadata such as authoring and versioning information.

Finally, a script module, like any other module that isn't dynamically created, needs to
be saved in a folder that PowerShell can reasonably discover. Usually, this is on the
PowerShell module path; but if necessary you can explicitly describe where your module
is installed. For more information, see How to Write a PowerShell Script Module.

A binary module is a .NET Framework assembly ( .dll ) that contains compiled code,
such as C#. Cmdlet developers can use this type of module to share cmdlets, providers,
and more. (Existing snap-ins can also be used as binary modules.) Compared to a script
module, a binary module allows you to create cmdlets that are faster or use features
(such as multithreading) that are not as easy to code in Windows PowerShell scripts.

As with script modules, you can include a manifest file to describe additional resources
that your module uses, and to track metadata about your module. Similarly, you
probably should install your binary module in a folder somewhere along the PowerShell
module path. For more information, see How to How to Write a PowerShell Binary
Module.

A manifest module is a module that uses a manifest file to describe all of its
components, but doesn't have any sort of core assembly or script. (Formally, a manifest
module leaves the ModuleToProcess  or RootModule  element of the manifest empty.)
However, you can still use the other features of a module, such as the ability to load up

store anything in. The following sections describe the types of modules you
can get by mixing and matching the different possible parts of a module
together.

Script Modules

Binary Modules

Manifest Modules



dependent assemblies or automatically run certain pre-processing scripts. You can also
use a manifest module as a convenient way to package up resources that other modules
will use, such as nested modules, assemblies, types, or formats. For more information,
see How to Write a PowerShell Module Manifest.

A dynamic module is a module that is not loaded from, or saved to, a file. Instead, they
are created dynamically by a script, using the New-Module cmdlet. This type of module
enables a script to create a module on demand that does not need to be loaded or
saved to persistent storage. By its nature, a dynamic module is intended to be short-
lived, and therefore cannot be accessed by the Get-Module  cmdlet. Similarly, they usually
do not need module manifests, nor do they likely need permanent folders to store their
related assemblies.

A module manifest is a .psd1  file that contains a hash table. The keys and values in the
hash table do the following things:

Describe the contents and attributes of the module.

Define the prerequisites.

Determine how the components are processed.

Manifests are not required for a module. Modules can reference script files ( .ps1 ),
script module files ( .psm1 ), manifest files ( .psd1 ), formatting and type files
( .ps1xml ), cmdlet and provider assemblies ( .dll ), resource files, Help files,
localization files, or any other type of file or resource that is bundled as part of the
module. For an internationalized script, the module folder also contains a set of
message catalog files. If you add a manifest file to the module folder, you can
reference the multiple files as a single unit by referencing the manifest.

The manifest itself describes the following categories of information:

Metadata about the module, such as the module version number, the author, and
the description.

Prerequisites needed to import the module, such as the Windows PowerShell
version, the common language runtime (CLR) version, and the required modules.

Processing directives, such as the scripts, formats, and types to process.

Dynamic Modules

Module Manifests

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/New-Module


Restrictions on the members of the module to export, such as the aliases,
functions, variables, and cmdlets to export.

For more information, see How to Write a PowerShell Module Manifest.

Once you have created a script, binary, or manifest module, you can save your work in a
location that others may access it. For example, your module can be stored in the
system folder where Windows PowerShell is installed, or it can be stored in a user folder.

Generally speaking, you can determine where you should install your module by using
one of the paths stored in the $Env:PSModulePath  variable. Using one of these paths
means that PowerShell can automatically find and load your module when a user makes
a call to it in their code. If you store your module somewhere else, you can explicitly let
PowerShell know by passing in the location of your module as a parameter when you
call Install-Module .

Regardless, the path of the folder is referred to as the base of the module (ModuleBase),
and the name of the script, binary, or manifest module file should be the same as the
module folder name, with the following exceptions:

Dynamic modules that are created by the New-Module  cmdlet can be named using
the Name  parameter of the cmdlet.

Modules imported from assembly objects by the Import-Module -Assembly
command are named according to the following syntax: "dynamic_code_module_" +
assembly.GetName() .

For more information, see Installing a PowerShell Module and
about_PSModulePath.

The following cmdlets and variables are provided by Windows PowerShell for the
creation and management of modules.

New-Module cmdlet This cmdlet creates a new dynamic module that exists only in
memory. The module is created from a script block, and its exported members, such as
its functions and variables, are immediately available in the session and remain available
until the session is closed.

Storing and Installing a Module

Module Cmdlets and Variables

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/New-Module


New-ModuleManifest cmdlet This cmdlet creates a new module manifest ( .psd1 ) file,
populates its values, and saves the manifest file to the specified path. This cmdlet can
also be used to create a module manifest template that can be filled in manually.

Import-Module cmdlet This cmdlet adds one or more modules to the current session.

Get-Module cmdlet This cmdlet retrieves information about the modules that have been
or that can be imported into the current session.

Export-ModuleMember cmdlet This cmdlet specifies the module members (such as
cmdlets, functions, variables, and aliases) that are exported from a script module ( .psm1 )
file or from a dynamic module created by using the New-Module  cmdlet.

Remove-Module cmdlet This cmdlet removes modules from the current session.

Test-ModuleManifest cmdlet This cmdlet verifies that a module manifest accurately
describes the components of a module by verifying that the files that are listed in the
module manifest file ( .psd1 ) actually exist in the specified paths.

$PSScriptRoot This variable contains the directory from which the script module is being
executed. It enables scripts to use the module path to access other resources.

$Env:PSModulePath This environment variable contains a list of the directories in which
Windows PowerShell modules are stored. Windows PowerShell uses the value of this
variable when importing modules automatically and updating Help topics for modules.

Writing a Windows PowerShell Module

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/New-ModuleManifest
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Export-ModuleMember
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Remove-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Test-ModuleManifest


How to Write a PowerShell Script
Module
Article • 06/09/2022

A script module is any valid PowerShell script saved in a .psm1  extension. This extension
allows the PowerShell engine to use rules and module cmdlets on your file. Most of
these capabilities are there to help you install your code on other systems, as well as
manage scoping. You can also use a module manifest file, which describes more
complex installations and solutions.

To create a script module, save a valid PowerShell script to a .psm1  file. The script and
the directory where it's stored must use the same name. For example, a script named
MyPsScript.psm1  is stored in a directory named MyPsScript .

The module's directory needs to be in a path specified in $Env:PSModulePath . The
module's directory can contain any resources that are needed to run the script, and a
module manifest file that describes to PowerShell how your module works.

The following steps describe how to create a PowerShell module.

1. Save a PowerShell script with a .psm1  extension. Use the same name for the script
and the directory where the script is saved.

Saving a script with the .psm1  extension means that you can use the module
cmdlets, such as Import-Module. The module cmdlets exist primarily so that you
can import and export your code onto other user's systems. The alternate solution
would be to load your code on other systems and then dot-source it into active
memory, which isn't a scalable solution. For more information, see Understanding
a Windows PowerShell Module. By default, when users import your .psm1  file, all
functions in your script are accessible, but variables aren't.

An example PowerShell script, entitled Show-Calendar , is available at the end of this
article.

PowerShell

Writing a PowerShell script module

Create a basic PowerShell module

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module


2. To control user access to certain functions or variables, call Export-ModuleMember
at the end of your script.

The example code at the bottom of the article has only one function, which by
default would be exposed. However, it's recommended you explicitly call out which
functions you wish to expose, as described in the following code:

PowerShell

You can restrict what's imported using a module manifest. For more information,
see Importing a PowerShell Module and How to Write a PowerShell Module
Manifest.

3. If you have modules that your own module needs to load, you can use Import-
Module , at the top of your module.

The Import-Module  cmdlet imports a targeted module onto a system, and can be
used at a later point in the procedure to install your own module. The sample code
at the bottom of this article doesn't use any import modules. But if it did, they
would be listed at the top of the file, as shown in the following code:

PowerShell

4. To describe your module to the PowerShell Help system, you can either use
standard help comments inside the file, or create an additional Help file.

function Show-Calendar {
param(
    [datetime] $Start = [datetime]::Today,
    [datetime] $End = $Start,
    $FirstDayOfWeek,
    [int[]] $HighlightDay,
    [string[]] $HighlightDate = [datetime]::Today.ToString('yyyy-MM-
dd')
    )

    #actual code for the function goes here see the end of the topic 
for the complete code sample
}

function Show-Calendar {
      }
Export-ModuleMember -Function Show-Calendar

Import-Module GenericModule

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Export-ModuleMember


The code sample at the bottom of this article includes the help information in the
comments. You could also write expanded XML files that contain additional help
content. For more information, see Writing Help for Windows PowerShell Modules.

5. If you have additional modules, XML files, or other content you want to package
with your module, you can use a module manifest.

A module manifest is a file that contains the names of other modules, directory
layouts, versioning numbers, author data, and other pieces of information.
PowerShell uses the module manifest file to organize and deploy your solution. For
more information, see How to write a PowerShell module manifest.

6. To install and run your module, save the module to one of the appropriate
PowerShell paths, and use Import-Module .

The paths where you can install your module are located in the $Env:PSModulePath
global variable. For example, a common path to save a module on a system would
be %SystemRoot%/users/<user>/Documents/PowerShell/Modules/<moduleName> . Be
sure to create a directory for your module that uses the same name as the script
module, even if it's only a single .psm1  file. If you didn't save your module to one
of these paths, you would have to specify the module's location in the Import-
Module  command. Otherwise, PowerShell wouldn't be able to find the module.

7. To remove a module from active service in the current PowerShell session, use
Remove-Module.

７ Note

Starting with PowerShell 3.0, if you've placed your module in one of the
PowerShell module paths, you don't need to explicitly import it. Your module
is automatically loaded when a user calls your function. For more information
about the module path, see Importing a PowerShell Module and
about_PSModulePath.

７ Note

Remove-Module  removes a module from the current PowerShell session, but
doesn't uninstall the module or delete the module's files.

Show-Calendar code example

https://learn.microsoft.com/en-us/powershell/scripting/developer/module/writing-help-for-windows-powershell-modules?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Remove-Module
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath


The following example is a script module that contains a single function named Show-
Calendar . This function displays a visual representation of a calendar. The sample
contains the PowerShell Help strings for the synopsis, description, parameter values, and
code. When the module is imported, the Export-ModuleMember  command ensures that
the Show-Calendar  function is exported as a module member.

PowerShell

<#
 .SYNOPSIS
  Displays a visual representation of a calendar.

 .DESCRIPTION
  Displays a visual representation of a calendar. This function supports 
multiple months
  and lets you highlight specific date ranges or days.

 .PARAMETER Start
  The first month to display.

 .PARAMETER End
  The last month to display.

 .PARAMETER FirstDayOfWeek
  The day of the month on which the week begins.

 .PARAMETER HighlightDay
  Specific days (numbered) to highlight. Used for date ranges like (25..31).
  Date ranges are specified by the Windows PowerShell range syntax. These 
dates are
  enclosed in square brackets.

 .PARAMETER HighlightDate
  Specific days (named) to highlight. These dates are surrounded by 
asterisks.

 .EXAMPLE
   # Show a default display of this month.
   Show-Calendar

 .EXAMPLE
   # Display a date range.
   Show-Calendar -Start "March, 2010" -End "May, 2010"

 .EXAMPLE
   # Highlight a range of days.
   Show-Calendar -HighlightDay (1..10 + 22) -HighlightDate "2008-12-25"
#>
function Show-Calendar {
param(
    [datetime] $Start = [datetime]::Today,
    [datetime] $End = $Start,



    $FirstDayOfWeek,
    [int[]] $HighlightDay,
    [string[]] $HighlightDate = [datetime]::Today.ToString('yyyy-MM-dd')
    )

## Determine the first day of the start and end months.
$Start = New-Object DateTime $Start.Year,$Start.Month,1
$End = New-Object DateTime $End.Year,$End.Month,1

## Convert the highlighted dates into real dates.
[datetime[]] $HighlightDate = [datetime[]] $HighlightDate

## Retrieve the DateTimeFormat information so that the
## calendar can be manipulated.
$dateTimeFormat  = (Get-Culture).DateTimeFormat
if($FirstDayOfWeek)
{
    $dateTimeFormat.FirstDayOfWeek = $FirstDayOfWeek
}

$currentDay = $Start

## Process the requested months.
while($Start -le $End)
{
    ## Return to an earlier point in the function if the first day of the 
month
    ## is in the middle of the week.
    while($currentDay.DayOfWeek -ne $dateTimeFormat.FirstDayOfWeek)
    {
        $currentDay = $currentDay.AddDays(-1)
    }

    ## Prepare to store information about this date range.
    $currentWeek = New-Object PsObject
    $dayNames = @()
    $weeks = @()

    ## Continue processing dates until the function reaches the end of the 
month.
    ## The function continues until the week is completed with
    ## days from the next month.
    while(($currentDay -lt $Start.AddMonths(1)) -or
        ($currentDay.DayOfWeek -ne $dateTimeFormat.FirstDayOfWeek))
    {
        ## Determine the day names to use to label the columns.
        $dayName = "{0:ddd}" -f $currentDay
        if($dayNames -notcontains $dayName)
        {
            $dayNames += $dayName
        }

        ## Pad the day number for display, highlighting if necessary.
        $displayDay = " {0,2} " -f $currentDay.Day



        ## Determine whether to highlight a specific date.
        if($HighlightDate)
        {
            $compareDate = New-Object DateTime $currentDay.Year,
                $currentDay.Month,$currentDay.Day
            if($HighlightDate -contains $compareDate)
            {
                $displayDay = "*" + ("{0,2}" -f $currentDay.Day) + "*"
            }
        }

        ## Otherwise, highlight as part of a date range.
        if($HighlightDay -and ($HighlightDay[0] -eq $currentDay.Day))
        {
            $displayDay = "[" + ("{0,2}" -f $currentDay.Day) + "]"
            $null,$HighlightDay = $HighlightDay
        }

        ## Add the day of the week and the day of the month as note 
properties.
        $currentWeek | Add-Member NoteProperty $dayName $displayDay

        ## Move to the next day of the month.
        $currentDay = $currentDay.AddDays(1)

        ## If the function reaches the next week, store the current week
        ## in the week list and continue.
        if($currentDay.DayOfWeek -eq $dateTimeFormat.FirstDayOfWeek)
        {
            $weeks += $currentWeek
            $currentWeek = New-Object PsObject
        }
    }

    ## Format the weeks as a table.
    $calendar = $weeks | Format-Table $dayNames -AutoSize | Out-String

    ## Add a centered header.
    $width = ($calendar.Split("`n") | Measure-Object -Maximum 
Length).Maximum
    $header = "{0:MMMM yyyy}" -f $Start
    $padding = " " * (($width - $header.Length) / 2)
    $displayCalendar = " `n" + $padding + $header + "`n " + $calendar
    $displayCalendar.TrimEnd()

    ## Move to the next month.
    $Start = $Start.AddMonths(1)

}
}
Export-ModuleMember -Function Show-Calendar



How to Write a PowerShell Binary
Module
Article • 09/17/2021

A binary module can be any assembly (.dll) that contains cmdlet classes. By default, all
the cmdlets in the assembly are imported when the binary module is imported.
However, you can restrict the cmdlets that are imported by creating a module manifest
whose root module is the assembly. (For example, the CmdletsToExport key of the
manifest can be used to export only those cmdlets that are needed.) In addition, a
binary module can contain additional files, a directory structure, and other pieces of
useful management information that a single cmdlet cannot.

The following procedure describes how to create and install a PowerShell binary
module.

1. Create a binary PowerShell solution (such as a cmdlet written in C#), with the
capabilities you need, and ensure that it runs properly.

From a code perspective, the core of a binary module is simply a cmdlet assembly.
In fact, PowerShell will treat a single cmdlet assembly as a module, in terms of
loading and unloading, with no additional effort on the part of the developer. For
more information about writing a cmdlet, see Writing a Windows PowerShell
Cmdlet.

2. If necessary, create the rest of your solution: (additional cmdlets, XML files, and so
on) and describe them with a module manifest.

In addition to describing the cmdlet assemblies in your solution, a module
manifest can describe how you want your module exported and imported, what
cmdlets will be exposed, and what additional files will go into the module. As
stated previously however, PowerShell can treat a binary cmdlet like a module with
no additional effort. As such, a module manifest is useful mainly for combining
multiple files into a single package, or for explicitly controlling publication for a
given assembly. For more information, see How to Write a PowerShell Module
Manifest.

How to create and install a PowerShell binary
module

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


The following code is an extremely simple C# code block that contains three
cmdlets in the same file that can be used as a module.

C#

3. Package your solution, and save the package to somewhere in the PowerShell
module path.

The PSModulePath  global environment variable describes the default paths that
PowerShell will use to locate your module. For example, a common path to save a
module on a system would be %SystemRoot%\Users\
<user>\Documents\WindowsPowerShell\Modules\<moduleName> . If you do not use the
default paths, you will need to explicitly state the location of your module during

using System.Management.Automation;           // Windows PowerShell 
namespace.

namespace ModuleCmdlets
{
  [Cmdlet(VerbsDiagnostic.Test,"BinaryModuleCmdlet1")]
  public class TestBinaryModuleCmdlet1Command : Cmdlet
  {
    protected override void BeginProcessing()
    {
      WriteObject("BinaryModuleCmdlet1 exported by the ModuleCmdlets 
module.");
    }
  }

  [Cmdlet(VerbsDiagnostic.Test, "BinaryModuleCmdlet2")]
  public class TestBinaryModuleCmdlet2Command : Cmdlet
  {
      protected override void BeginProcessing()
      {
          WriteObject("BinaryModuleCmdlet2 exported by the 
ModuleCmdlets module.");
      }
  }

  [Cmdlet(VerbsDiagnostic.Test, "BinaryModuleCmdlet3")]
  public class TestBinaryModuleCmdlet3Command : Cmdlet
  {
      protected override void BeginProcessing()
      {
          WriteObject("BinaryModuleCmdlet3 exported by the 
ModuleCmdlets module.");
      }
  }

}



installation. Be sure to create a folder to save your module in, as you may need the
folder to store multiple assemblies and files for your solution.

Note that technically you do not need to install your module anywhere on the
PSModulePath  - those are simply the default locations that PowerShell will look for
your module. However, it is considered best practice to do so, unless you have a
good reason for storing your module somewhere else. For more information, see
Installing a PowerShell Module and about_PSModulePath.

4. Import your module into PowerShell with a call to Import-Module.

Calling to Import-Module will load your module into active memory. If you are
using PowerShell 3.0 and later, simply calling the name of your module in code will
also import it; for more information, see Importing a PowerShell Module.

Cmdlets and providers that exist in snap-in assemblies can be loaded as binary modules.
When the snap-in assemblies are loaded as binary modules, the cmdlets and providers
in the snap-in are available to the user, but the snap-in class in the assembly is ignored,
and the snap-in is not registered. As a result, the snap-in cmdlets provided by Windows
PowerShell cannot detect the snap-in even though the cmdlets and providers are
available to the session.

In addition, any formatting or types files that are referenced by the snap-in cannot be
imported as part of a binary module. To import the formatting and types files you must
create a module manifest. See, How to Write a PowerShell Module Manifest.

Writing a Windows PowerShell Module

Importing Snap-in Assemblies as Modules

See Also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module


How to write a PowerShell module
manifest
Article • 02/06/2024

After you've written your PowerShell module, you can add an optional module manifest
that includes information about the module. For example, you can describe the author,
specify files in the module (such as nested modules), run scripts to customize the user's
environment, load type and formatting files, define system requirements, and limit the
members that the module exports.

A module manifest is a PowerShell data file ( .psd1 ) that describes the contents of a
module and determines how a module is processed. The manifest file is a text file that
contains a hash table of keys and values. You link a manifest file to a module by naming
the manifest the same as the module, and storing the manifest in the module's root
directory.

For simple modules that contain only a single .psm1  or binary assembly, a module
manifest is optional. But, the recommendation is to use a module manifest whenever
possible, as they're useful to help you organize your code and maintain versioning
information. And, a module manifest is required to export an assembly that is installed
in the Global Assembly Cache. A module manifest is also required for modules that
support the Updatable Help feature. Updatable Help uses the HelpInfoUri key in the
module manifest to find the Help information (HelpInfo XML) file that contains the
location of the updated help files for the module. For more information about
Updatable Help, see Supporting Updatable Help.

1. The best practice to create a module manifest is to use the New-ModuleManifest
cmdlet. You can use parameters to specify one or more of the manifest's default
keys and values. The only requirement is to name the file. New-ModuleManifest
creates a module manifest with your specified values, and includes the remaining
keys and their default values. If you need to create multiple modules, use New-
ModuleManifest  to create a module manifest template that can be modified for
your different modules. For an example of a default module manifest, see the
Sample module manifest.

Creating a module manifest

To create and use a module manifest

https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac
https://learn.microsoft.com/en-us/powershell/scripting/developer/module/supporting-updatable-help?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest?view=powershell-7.5


New-ModuleManifest -Path C:\myModuleName.psd1 -ModuleVersion "2.0" -Author

"YourNameHere"

An alternative is to manually create the module manifest's hash table using the
minimal information required, the ModuleVersion. You save the file with the same
name as your module and use the .psd1  file extension. You can then edit the file
and add the appropriate keys and values.

2. Add any additional elements that you want in the manifest file.

To edit the manifest file, use any text editor you prefer. But, the manifest file is a
script file that contains code, so you may wish to edit it in a scripting or
development environment, such as Visual Studio Code. All elements of a manifest
file are optional, except for the ModuleVersion number.

For descriptions of the keys and values you can include in a module manifest, see
the Module manifest elements table. For more information, see the parameter
descriptions in the New-ModuleManifest cmdlet.

3. To address any scenarios that might not be covered by the base module manifest
elements, you have the option to add additional code to your module manifest.

For security concerns, PowerShell only runs a small subset of the available
operations in a module manifest file. Generally, you can use the if  statement,
arithmetic and comparison operators, and the basic PowerShell data types.

4. After you've created your module manifest, you can test it to confirm that any
paths described in the manifest are correct. To test your module manifest, use Test-
ModuleManifest.

Test-ModuleManifest myModuleName.psd1

5. Be sure that your module manifest is located in the top level of the directory that
contains your module.

When you copy your module onto a system and import it, PowerShell uses the
module manifest to import your module.

6. Optionally, you can directly test your module manifest with a call to Import-
Module by dot-sourcing the manifest itself.

Import-Module .\myModuleName.psd1

Module manifest elements

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/test-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/test-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5


The following table describes the elements you can include in a module manifest.

Element Default Description

RootModule
Type: String

<empty

string>

Script module or binary module file associated
with this manifest. Previous versions of PowerShell
called this element the ModuleToProcess.
Possible types for the root module can be empty,
which creates a Manifest module, the name of a
script module ( .psm1 ), or the name of a binary
module ( .exe  or .dll ). Placing the name of a
module manifest ( .psd1 ) or a script file ( .ps1 ) in
this element causes an error.
Example: RootModule = 'ScriptModule.psm1'

ModuleVersion
Type: Version

'0.0.1' Version number of this module. If a value isn't
specified, New-ModuleManifest  uses the default.
The string must be able to convert to the type
Version  for example #.#.#.# . Import-Module
loads the first module it finds on the
$PSModulePath that matches the name, and has
at least as high a ModuleVersion, as the
MinimumVersion parameter. To import a specific
version, use the Import-Module  cmdlet's
RequiredVersion parameter.
Example: ModuleVersion = '1.0'

GUID
Type: GUID

'<GUID>' ID used to uniquely identify this module. If a value
isn't specified, New-ModuleManifest  autogenerates
the value. You can't currently import a module by
GUID.
Example: GUID = 'cfc45206-1e49-459d-a8ad-
5b571ef94857'

Author
Type: String

'<Current

user>'

Author of this module. If a value isn't specified,
New-ModuleManifest  uses the current user.
Example: Author = 'AuthorNameHere'

CompanyName
Type: String

'Unknown' Company or vendor of this module. If a value isn't
specified, New-ModuleManifest  uses the default.
Example: CompanyName = 'Fabrikam'

Copyright
Type: String

'(c)

<Author>.

All rights

reserved.'

Copyright statement for this module. If a value
isn't specified, New-ModuleManifest  uses the
default with the current user as the <Author> . To
specify an author, use the Author parameter.

ﾉ Expand table



Element Default Description

Example: Copyright = '2019 AuthorName. All
rights reserved.'

Description
Type: String

<empty

string>

Description of the functionality provided by this
module.
Example: Description = 'This is the module's
description.'

PowerShellVersion
Type: Version

<empty

string>

Minimum version of the PowerShell engine
required by this module. Valid values are 1.0, 2.0,
3.0, 4.0, 5.0, 5.1, 6.0, 6.1, 6.2, 7.0 and 7.1.
Example: PowerShellVersion = '5.0'

PowerShellHostName
Type: String

<empty

string>

Name of the PowerShell host required by this
module. This name is provided by PowerShell. To
find the name of a host program, in the program,
type: $Host.Name .
Example: PowerShellHostName = 'ConsoleHost'

PowerShellHostVersion
Type: Version

<empty

string>

Minimum version of the PowerShell host required
by this module.
Example: PowerShellHostVersion = '2.0'

DotNetFrameworkVersion
Type: Version

<empty

string>

Minimum version of Microsoft .NET Framework
required by this module. This prerequisite is valid
for the PowerShell Desktop edition only, such as
Windows PowerShell 5.1, and only applies to .NET
Framework versions lower than 4.5.
Example: DotNetFrameworkVersion = '3.5'

CLRVersion
Type: Version

<empty

string>

Minimum version of the common language
runtime (CLR) required by this module. This
prerequisite is valid for the PowerShell Desktop
edition only, such as Windows PowerShell 5.1, and
only applies to .NET Framework versions lower
than 4.5.
Example: CLRVersion = '3.5'

ProcessorArchitecture
Type: ProcessorArchitecture

<empty

string>

Processor architecture (None, X86, Amd64)
required by this module. Valid values are x86,
AMD64, Arm, IA64, MSIL, and None (unknown or
unspecified).
Example: ProcessorArchitecture = 'x86'

RequiredModules
Type: Object[]

@() Modules that must be imported into the global
environment prior to importing this module. This
loads any modules listed unless they've already
been loaded. For example, some modules may
already be loaded by a different module. It's



Element Default Description

possible to specify a specific version to load using
RequiredVersion  rather than ModuleVersion . When
ModuleVersion  is used it will load the newest
version available with a minimum of the version
specified. You can combine strings and hash tables
in the parameter value.
Example: RequiredModules = @("MyModule",
@{ModuleName="MyDependentModule";

ModuleVersion="2.0"; GUID="cfc45206-1e49-459d-

a8ad-5b571ef94857"})

Example: RequiredModules = @("MyModule",
@{ModuleName="MyDependentModule";

RequiredVersion="1.5"; GUID="cfc45206-1e49-

459d-a8ad-5b571ef94857"})

RequiredAssemblies
Type: String[]

@() Assemblies that must be loaded prior to importing
this module. Specifies the assembly ( .dll ) file
names that the module requires.
PowerShell loads the specified assemblies before
updating types or formats, importing nested
modules, or importing the module file that is
specified in the value of the RootModule key. Use
this parameter to list all the assemblies that the
module requires.
Example: RequiredAssemblies =
@("assembly1.dll", "assembly2.dll",

"assembly3.dll")

ScriptsToProcess
Type: String[]

@() Script ( .ps1 ) files that are run in the caller's
session state when the module is imported. This
could be the global session state or, for nested
modules, the session state of another module. You
can use these scripts to prepare an environment
just as you might use a log in script.
These scripts are run before any of the modules
listed in the manifest are loaded.
Example: ScriptsToProcess = @("script1.ps1",
"script2.ps1", "script3.ps1")

TypesToProcess
Type: String[]

@() Type files ( .ps1xml ) to be loaded when importing
this module.
Example: TypesToProcess = @("type1.ps1xml",
"type2.ps1xml", "type3.ps1xml")

FormatsToProcess
Type: String[]

@() Format files ( .ps1xml ) to be loaded when
importing this module.



Element Default Description

Example: FormatsToProcess = @("format1.ps1xml",
"format2.ps1xml", "format3.ps1xml")

NestedModules
Type: Object[]

@() Modules to import as nested modules of the
module specified in RootModule
(alias:ModuleToProcess).
Adding a module name to this element is similar
to calling Import-Module  from within your script or
assembly code. The main difference by using a
manifest file is that it's easier to see what you're
loading. And, if a module fails to load, you will not
yet have loaded your actual module.
In addition to other modules, you may also load
script ( .ps1 ) files here. These files will execute in
the context of the root module. This is equivalent
to dot sourcing the script in your root module.
Example: NestedModules = @("script.ps1",
@{ModuleName="MyModule";

ModuleVersion="1.0.0.0"; GUID="50cdb55f-5ab7-

489f-9e94-4ec21ff51e59"})

FunctionsToExport
Type: String[]

@() Specifies the functions to export from this module,
for best performance, do not use wildcards and do
not delete the entry, use an empty array if there
are no functions to export. By default, no functions
are exported. You can use this key to list the
functions that are exported by the module.
The module exports the functions to the caller's
session state. The caller's session state can be the
global session state or, for nested modules, the
session state of another module. When chaining
nested modules, all functions that are exported by
a nested module will be exported to the global
session state unless a module in the chain restricts
the function by using the FunctionsToExport key.
If the manifest exports aliases for the functions,
this key can remove functions whose aliases are
listed in the AliasesToExport key, but this key
cannot add function aliases to the list.
Example: FunctionsToExport = @("function1",
"function2", "function3")

CmdletsToExport
Type: String[]

@() Specifies the cmdlets to export from this module,
for best performance, do not use wildcards and do
not delete the entry, use an empty array if there
are no cmdlets to export. By default, no cmdlets
are exported. You can use this key to list the
cmdlets that are exported by the module.



Element Default Description

The caller's session state can be the global session
state or, for nested modules, the session state of
another module. When you're chaining nested
modules, all cmdlets that are exported by a nested
module will be exported to the global session
state unless a module in the chain restricts the
cmdlet by using the CmdletsToExport key.
If the manifest exports aliases for the cmdlets, this
key can remove cmdlets whose aliases are listed in
the AliasesToExport key, but this key cannot add
cmdlet aliases to the list.
Example: CmdletsToExport = @("Get-MyCmdlet",
"Set-MyCmdlet", "Test-MyCmdlet")

VariablesToExport
Type: String[]

'*' Specifies the variables that the module exports to
the caller's session state. Wildcard characters are
permitted. By default, all variables ( '*' ) are
exported. You can use this key to restrict the
variables that are exported by the module.
The caller's session state can be the global session
state or, for nested modules, the session state of
another module. When you are chaining nested
modules, all variables that are exported by a
nested module will be exported to the global
session state unless a module in the chain restricts
the variable by using the VariablesToExport key.
If the manifest also exports aliases for the
variables, this key can remove variables whose
aliases are listed in the AliasesToExport key, but
this key cannot add variable aliases to the list.
Example: VariablesToExport = @('$MyVariable1',
'$MyVariable2', '$MyVariable3')

AliasesToExport
Type: String[]

@() Specifies the aliases to export from this module,
for best performance, do not use wildcards and do
not delete the entry, use an empty array if there
are no aliases to export. By default, no aliases are
exported. You can use this key to list the aliases
that are exported by the module.
The module exports the aliases to caller's session
state. The caller's session state can be the global
session state or, for nested modules, the session
state of another module. When you are chaining
nested modules, all aliases that are exported by a
nested module will be ultimately exported to the
global session state unless a module in the chain
restricts the alias by using the AliasesToExport
key.



Element Default Description

Example: AliasesToExport = @("MyAlias1",
"MyAlias2", "MyAlias3")

DscResourcesToExport
Type: String[]

@() Specifies DSC resources to export from this
module. Wildcards are permitted.
Example: DscResourcesToExport =
@("DscResource1", "DscResource2",

"DscResource3")

ModuleList
Type: Object[]

@() Specifies all the modules that are packaged with
this module. These modules can be entered by
name, using a comma-separated string, or as a
hash table with ModuleName and GUID keys. The
hash table can also have an optional
ModuleVersion key. The ModuleList key is
designed to act as a module inventory. These
modules are not automatically processed.
Example: ModuleList = @("SampleModule",
"MyModule", @{ModuleName="MyModule";

ModuleVersion="1.0.0.0"; GUID="50cdb55f-5ab7-

489f-9e94-4ec21ff51e59"})

FileList
Type: String[]

@() List of all files packaged with this module. As with
ModuleList, FileList is an inventory list, and isn't
otherwise processed.
Example: FileList = @("File1", "File2",
"File3")

PrivateData
Type: Object

@{...} Specifies any private data that needs to be passed
to the root module specified by the RootModule
(alias: ModuleToProcess) key. PrivateData is a
hash table that comprises several elements: Tags,
LicenseUri, ProjectURI, IconUri, ReleaseNotes,
Prerelease, RequireLicenseAcceptance, and
ExternalModuleDependencies.

Tags
Type: String[]

@() Tags help with module discovery in online
galleries.
Example: Tags = "PackageManagement",
"PowerShell", "Manifest"

LicenseUri
Type: Uri

<empty

string>

A URL to the license for this module.
Example: LicenseUri =
'https://www.contoso.com/license'

ProjectUri
Type: Uri

<empty

string>

A URL to the main website for this project.
Example: ProjectUri =
'https://www.contoso.com/project'



Element Default Description

IconUri
Type: Uri

<empty

string>

A URL to an icon representing this module.
Example: IconUri =
'https://www.contoso.com/icons/icon.png'

ReleaseNotes
Type: String

<empty

string>

Specifies the module's release notes.
Example: ReleaseNotes = 'The release notes
provide information about the module.

PreRelease
Type: String

<empty

string>

This parameter was added in PowerShellGet 1.6.6.
A PreRelease string that identifies the module as a
prerelease version in online galleries.
Example: PreRelease = 'alpha'

RequireLicenseAcceptance
Type: Boolean

$false This parameter was added in PowerShellGet 1.5.
Flag to indicate whether the module requires
explicit user acceptance for install, update, or save.
Example: RequireLicenseAcceptance = $false

ExternalModuleDependencies
Type: String[]

@() This parameter was added in PowerShellGet v2. A
list of external modules that this module is
dependent upon.
Example: ExternalModuleDependencies =
@("ExtModule1", "ExtModule2", "ExtModule3")

HelpInfoURI
Type: String

<empty

string>

HelpInfo URI of this module.
Example: HelpInfoURI =
'https://www.contoso.com/help'

DefaultCommandPrefix
Type: String

<empty

string>

Default prefix for commands exported from this
module. Override the default prefix using Import-
Module -Prefix .
Example: DefaultCommandPrefix = 'My'

The following sample module manifest was created with New-ModuleManifest  in
PowerShell 7 and contains the default keys and values.

PowerShell

Sample module manifest

#
# Module manifest for module 'SampleModuleManifest'
#
# Generated by: User01
#
# Generated on: 10/15/2019



#

@{

# Script module or binary module file associated with this manifest.
# RootModule = ''

# Version number of this module.
ModuleVersion = '0.0.1'

# Supported PSEditions
# CompatiblePSEditions = @()

# ID used to uniquely identify this module
GUID = 'b632e90c-df3d-4340-9f6c-3b832646bf87'

# Author of this module
Author = 'User01'

# Company or vendor of this module
CompanyName = 'Unknown'

# Copyright statement for this module
Copyright = '(c) User01. All rights reserved.'

# Description of the functionality provided by this module
# Description = ''

# Minimum version of the PowerShell engine required by this module
# PowerShellVersion = ''

# Name of the PowerShell host required by this module
# PowerShellHostName = ''

# Minimum version of the PowerShell host required by this module
# PowerShellHostVersion = ''

# Minimum version of Microsoft .NET Framework required by this module. This 
prerequisite is valid for the PowerShell Desktop edition only.
# DotNetFrameworkVersion = ''

# Minimum version of the common language runtime (CLR) required by this 
module. This prerequisite is valid for the PowerShell Desktop edition only.
# CLRVersion = ''

# Processor architecture (None, X86, Amd64) required by this module
# ProcessorArchitecture = ''

# Modules that must be imported into the global environment prior to 
importing this module
# RequiredModules = @()

# Assemblies that must be loaded prior to importing this module
# RequiredAssemblies = @()



# Script files (.ps1) that are run in the caller's environment prior to 
importing this module.
# ScriptsToProcess = @()

# Type files (.ps1xml) to be loaded when importing this module
# TypesToProcess = @()

# Format files (.ps1xml) to be loaded when importing this module
# FormatsToProcess = @()

# Modules to import as nested modules of the module specified in 
RootModule/ModuleToProcess
# NestedModules = @()

# Functions to export from this module, for best performance, do not use 
wildcards and do not delete the entry, use an empty array if there are no 
functions to export.
FunctionsToExport = @()

# Cmdlets to export from this module, for best performance, do not use 
wildcards and do not delete the entry, use an empty array if there are no 
cmdlets to export.
CmdletsToExport = @()

# Variables to export from this module
VariablesToExport = '*'

# Aliases to export from this module, for best performance, do not use 
wildcards and do not delete the entry, use an empty array if there are no 
aliases to export.
AliasesToExport = @()

# DSC resources to export from this module
# DscResourcesToExport = @()

# List of all modules packaged with this module
# ModuleList = @()

# List of all files packaged with this module
# FileList = @()

# Private data to pass to the module specified in 
RootModule/ModuleToProcess. This may also contain a PSData hashtable with 
additional module metadata used by PowerShell.
PrivateData = @{

    PSData = @{

        # Tags applied to this module. These help with module discovery in 
online galleries.
        # Tags = @()

        # A URL to the license for this module.
        # LicenseUri = ''



about_Comparison_Operators
about_If
Global Assembly Cache
Import-Module
New-ModuleManifest
Test-ModuleManifest
Update-ModuleManifest
Writing a Windows PowerShell Module

        # A URL to the main website for this project.
        # ProjectUri = ''

        # A URL to an icon representing this module.
        # IconUri = ''

        # ReleaseNotes of this module
        # ReleaseNotes = ''

        # Prerelease string of this module
        # Prerelease = ''

        # Flag to indicate whether the module requires explicit user 
acceptance for install/update/save
        # RequireLicenseAcceptance = $false

        # External dependent modules of this module
        # ExternalModuleDependencies = @()

    } # End of PSData hashtable

} # End of PrivateData hashtable

# HelpInfo URI of this module
# HelpInfoURI = ''

# Default prefix for commands exported from this module. Override the 
default prefix using Import-Module -Prefix.
# DefaultCommandPrefix = ''

}

See also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comparison_operators
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if
https://learn.microsoft.com/en-us/dotnet/framework/app-domains/gac
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/test-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/powershellget/update-modulemanifest


Installing a PowerShell Module
Article • 11/15/2022

After you have created your PowerShell module, you will likely want to install the
module on a system, so that you or others may use it. Generally speaking, this consists
of copying the module files (ie, the .psm1 , or the binary assembly, the module manifest,
and any other associated files) onto a directory on that computer. For a very small
project, this may be as simple as copying and pasting the files with Windows Explorer
onto a single remote computer; however, for larger solutions you may wish to use a
more sophisticated installation process. Regardless of how you get your module onto
the system, PowerShell can use a number of techniques that will let users find and use
your modules. Therefore, the main issue for installation is ensuring that PowerShell will
be able to find your module. For more information, see Importing a PowerShell Module.

The following information pertains to all modules, including modules that you create for
your own use, modules that you get from other parties, and modules that you distribute
to others.

Whenever possible, install all modules in a path that is listed in the PSModulePath
environment variable or add the module path to the PSModulePath environment
variable value.

The PSModulePath environment variable ( $Env:PSModulePath ) contains the locations of
Windows PowerShell modules. Cmdlets rely on the value of this environment variable to
find modules.

By default, the PSModulePath environment variable value contains the following system
and user module directories, but you can add to and edit the value.

$PSHOME\Modules  ( %windir%\System32\WindowsPowerShell\v1.0\Modules )

Rules for Installing Modules

Install Modules in PSModulePath

２ Warning

This location is reserved for modules that ship with Windows. Do not install
modules to this location.



$HOME\Documents\WindowsPowerShell\Modules

( %HOMEDRIVE%%HOMEPATH%\Documents\WindowsPowerShell\Modules )

$Env:ProgramFiles\WindowsPowerShell\Modules

( %ProgramFiles%\WindowsPowerShell\Modules )

To get the value of the PSModulePath environment variable, use either of the
following commands.

PowerShell

To add a module path to value of the PSModulePath environment variable value,
use the following command format. This format uses the SetEnvironmentVariable
method of the System.Environment class to make a session-independent change
to the PSModulePath environment variable.

PowerShell

$Env:PSModulePath
[Environment]::GetEnvironmentVariable("PSModulePath")

#Save the current value in the $p variable.
$p = [Environment]::GetEnvironmentVariable("PSModulePath")

#Add the new path to the $p variable. Begin with a semi-colon 
separator.
$p += ";C:\Program Files (x86)\MyCompany\Modules\"

#Add the paths in $p to the PSModulePath value.
[Environment]::SetEnvironmentVariable("PSModulePath",$p)

） Important

Once you have added the path to PSModulePath, you should broadcast an
environment message about the change. Broadcasting the change allows
other applications, such as the shell, to pick up the change. To broadcast the
change, have your product installation code send a WM_SETTINGCHANGE
message with lParam  set to the string "Environment". Be sure to send the
message after your module installation code has updated PSModulePath.

Use the Correct Module Directory Name



A well-formed module is a module that is stored in a directory that has the same name
as the base name of at least one file in the module directory. If a module is not well-
formed, Windows PowerShell does not recognize it as a module.

The "base name" of a file is the name without the file name extension. In a well-formed
module, the name of the directory that contains the module files must match the base
name of at least one file in the module.

For example, in the sample Fabrikam module, the directory that contains the module
files is named "Fabrikam" and at least one file has the "Fabrikam" base name. In this
case, both Fabrikam.psd1 and Fabrikam.dll have the "Fabrikam" base name.

If the module is not well-formed and its location is not included in the value of the
PSModulePath environment variable, basic discovery features of Windows PowerShell,
such as the following, do not work.

The Module Auto-Loading feature cannot import the module automatically.

The ListAvailable  parameter of the Get-Module cmdlet cannot find the module.

The Import-Module cmdlet cannot find the module. To import the module, you
must provide the full path to the root module file or module manifest file.

Additional features, such as the following, do not work unless the module is
imported into the session. In well-formed modules in the PSModulePath
environment variable, these features work even when the module is not imported
into the session.

The Get-Command cmdlet cannot find commands in the module.

The Update-Help and Save-Help cmdlets cannot update or save help for the
module.

C:\Program Files
  Fabrikam Technologies
    Fabrikam Manager
      Modules
        Fabrikam
          Fabrikam.psd1 (module manifest)
          Fabrikam.dll (module assembly)

Effect of Incorrect Installation

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Command
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Save-Help


The Show-Command cmdlet cannot find and display the commands in the module.

The commands in the module are missing from the Show-Command  window in
Windows PowerShell Integrated Scripting Environment (ISE).

This section explains where in the file system to install Windows PowerShell modules.
The location depends on how the module is used.

If you create your own module or get a module from another party, such as a Windows
PowerShell community website, and you want the module to be available for your user
account only, install the module in your user-specific Modules directory.

$HOME\Documents\WindowsPowerShell\Modules\<Module Folder>\<Module Files>

The user-specific Modules directory is added to the value of the PSModulePath
environment variable by default.

If you want a module to be available to all user accounts on the computer, install the
module in the Program Files location.

$Env:ProgramFiles\WindowsPowerShell\Modules\<Module Folder>\<Module Files>

If you are distributing the module to other parties, use the default Program Files
location described above, or create your own company-specific or product-specific
subdirectory of the %ProgramFiles% directory.

Where to Install Modules

Installing Modules for a Specific User

Installing Modules for all Users in Program Files

７ Note

The Program Files location is added to the value of the PSModulePath environment
variable by default in Windows PowerShell 4.0 and later. For earlier versions of
Windows PowerShell, you can manually create the Program Files location
(%ProgramFiles%\WindowsPowerShell\Modules) and add this path to your
PSModulePath environment variable as described above.

Installing Modules in a Product Directory

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Show-Command


For example, Fabrikam Technologies, a fictitious company, is shipping a Windows
PowerShell module for their Fabrikam Manager product. Their module installer creates a
Modules subdirectory in the Fabrikam Manager product subdirectory.

To enable the Windows PowerShell module discovery features to find the Fabrikam
module, the Fabrikam module installer adds the module location to the value of the
PSModulePath environment variable.

PowerShell

If a module is used by multiple components of a product or by multiple versions of a
product, install the module in a module-specific subdirectory of the
%ProgramFiles%\Common Files\Modules subdirectory.

In the following example, the Fabrikam module is installed in a Fabrikam subdirectory of
the %ProgramFiles%\Common Files\Modules  subdirectory. Note that each module resides
in its own subdirectory in the Modules subdirectory.

Then, the installer assures the value of the PSModulePath environment variable includes
the path of the Common Files\Modules  subdirectory.

C:\Program Files
  Fabrikam Technologies
    Fabrikam Manager
      Modules
        Fabrikam
          Fabrikam.psd1 (module manifest)
          Fabrikam.dll (module assembly)

$p = [Environment]::GetEnvironmentVariable("PSModulePath")
$p += ";C:\Program Files\Fabrikam Technologies\Fabrikam Manager\Modules\"
[Environment]::SetEnvironmentVariable("PSModulePath",$p)

Installing Modules in the Common Files Directory

C:\Program Files
  Common Files
    Modules
      Fabrikam
        Fabrikam.psd1 (module manifest)
        Fabrikam.dll (module assembly)



PowerShell

To install multiple versions of the same module, use the following procedure.

1. Create a directory for each version of the module. Include the version number in
the directory name.

2. Create a module manifest for each version of the module. In the value of the
ModuleVersion key in the manifest, enter the module version number. Save the
manifest file ( .psd1 ) in the version-specific directory for the module.

3. Add the module root folder path to the value of the PSModulePath environment
variable, as shown in the following examples.

To import a particular version of the module, the end-user can use the MinimumVersion
or RequiredVersion  parameters of the Import-Module cmdlet.

For example, if the Fabrikam module is available in versions 8.0 and 9.0, the Fabrikam
module directory structure might resemble the following.

The installer adds both of the module paths to the PSModulePath environment variable
value.

$m = $Env:ProgramFiles + '\Common Files\Modules'
$p = [Environment]::GetEnvironmentVariable("PSModulePath")
$q = $p -split ';'
if ($q -notcontains $m) {
    $q += ";$m"
}
$p = $q -join ';'
[Environment]::SetEnvironmentVariable("PSModulePath", $p)

Installing Multiple Versions of a Module

C:\Program Files
Fabrikam Manager
 Fabrikam8
   Fabrikam
     Fabrikam.psd1 (module manifest: ModuleVersion = "8.0")
     Fabrikam.dll (module assembly)
 Fabrikam9
   Fabrikam
     Fabrikam.psd1 (module manifest: ModuleVersion = "9.0")
     Fabrikam.dll (module assembly)

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module


PowerShell

When these steps are complete, the ListAvailable parameter of the Get-Module cmdlet
gets both of the Fabrikam modules. To import a particular module, use the
MinimumVersion  or RequiredVersion  parameters of the Import-Module cmdlet.

If both modules are imported into the same session, and the modules contain cmdlets
with the same names, the cmdlets that are imported last are effective in the session.

Command name conflicts can occur when the commands that a module exports have
the same name as commands in the user's session.

When a session contains two commands that have the same name, Windows PowerShell
runs the command type that takes precedence. When a session contains two commands
that have the same name and the same type, Windows PowerShell runs the command
that was added to the session most recently. To run a command that is not run by
default, users can qualify the command name with the module name.

For example, if the session contains a Get-Date  function and the Get-Date  cmdlet,
Windows PowerShell runs the function by default. To run the cmdlet, preface the
command with the module name, such as:

PowerShell

To prevent name conflicts, module authors can use the DefaultCommandPrefix key in
the module manifest to specify a noun prefix for all commands exported from the
module.

Users can use the Prefix parameter of the Import-Module  cmdlet to use an alternate
prefix. The value of the Prefix parameter takes precedence over the value of the
DefaultCommandPrefix key.

$p = [Environment]::GetEnvironmentVariable("PSModulePath")
$p += ";C:\Program Files\Fabrikam\Fabrikam8;C:\Program 
Files\Fabrikam\Fabrikam9"
[Environment]::SetEnvironmentVariable("PSModulePath",$p)

Handling Command Name Conflicts

Microsoft.PowerShell.Utility\Get-Date

Supporting paths on non-Windows systems

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module


Non-Windows platforms use the colon ( : ) character as a path separator and a forward-
slash ( / ) character as a directory separator. The [System.IO.Path]  class has static
members that can be used to make your code work on any platform:

[System.IO.Path]::PathSeparator  - returns the character used to separate paths in
a PATH environment variable for the host platform
[System.IO.Path]::DirectorySeparatorChar  - returns the character used to
separate directory names with a path for the host platform

Use these static properties to in place of the ;  and \  characters when you are
constructing path strings.

about_Command_Precedence

Writing a Windows PowerShell Module

See Also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_command_precedence


Registering Cmdlets
Article • 09/17/2021

The topics in this section describe modules and snap-ins and how to use modules and
snap-ins to make cmdlets available in a Windows PowerShell session.

Modules and Snap-ins Describes the differences between registering cmdlets through
modules and through snap-ins.

How to Register Cmdlets using Modules Describes how to register cmdlets using
modules.

How to Create a Windows PowerShell Snap-in Describes how to register cmdlets using
snap-ins.

Writing a Windows PowerShell Cmdlet

In This Section

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fmodule%2Fregistering-cmdlets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fmodule%2Fregistering-cmdlets.md&documentVersionIndependentId=e791df92-c89d-1959-7556-03e837b68c8b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a918e8bd-af41-e396-2450-fd41e78ba11a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Modules and Snap-ins
Article • 09/17/2021

Cmdlets can be added to a session using modules (introduced by Windows PowerShell
2.0) or snap-ins. Once the cmdlet is added to the session it can be run programmatically
by a host application or interactively at the command line.

We recommend that you use modules as the delivery method for adding cmdlets to a
session for the following reasons:

Modules allow you to add cmdlets by loading the assembly where the cmdlet is
defined. There is no need to implement a snap-in class.

Modules allow you to add other resources, such as variables, functions, scripts,
types and formatting files, and more.

Snap-ins can be used only to add cmdlets and providers to the session.

Writing a Windows PowerShell Module

Writing a Windows PowerShell Cmdlet

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fmodule%2Fmodules-and-snap-ins%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fmodule%2Fmodules-and-snap-ins.md&documentVersionIndependentId=676f2ca4-70fd-2a36-114a-e414d66f57bc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c2479e6c-5793-8538-efcf-df5fccd5b9a4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Import Cmdlets Using Modules
Article • 09/17/2021

This article describes how to import cmdlets to a PowerShell session by using a binary
module.

1. Create a module folder that has the same name as the assembly file in which the
cmdlets are implemented. In this procedure, the module folder is created in the
Windows system32  folder.

%SystemRoot%\system32\WindowsPowerShell\v1.0\Modules\mymodule

2. Make sure that the PSModulePath  environment variable includes the path to your
new module folder. By default, the system folder is already added to the
PSModulePath  environment variable. To view the PSModulePath , type:
$Env:PSModulePath .

3. Copy the cmdlet assembly into the module folder.

4. Add a module manifest file ( .psd1 ) in the module's root folder. PowerShell uses
the module manifest to import your module. For more information, see How to
Write a PowerShell Module Manifest.

5. Run the following command to add the cmdlets to the session:

Import-Module [Module_Name]

This procedure can be used to test your cmdlets. It adds all the cmdlets in the
assembly to the session. For more information about modules, see Writing a
Windows PowerShell Module.

７ Note

The members of modules can include cmdlets, providers, functions, variables,
aliases, and much more. Snap-ins can contain only cmdlets and providers.

How to load cmdlets using a module

See also



How to Write a PowerShell Module Manifest

Importing a PowerShell Module

Import-Module

Installing Modules

about_PSModulePath

Writing a Windows PowerShell Cmdlet

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath


How to Create a Windows PowerShell
Snap-in
Article • 03/24/2025

A Windows PowerShell snap-in provides a mechanism for registering sets of cmdlets
and another Windows PowerShell provider with the shell, thus extending the
functionality of the shell. A Windows PowerShell snap-in can register all the cmdlets and
providers in a single assembly, or it can register a specific list of cmdlets and providers.

Snap-in assemblies should be installed in a protected directory, just as they would be
with other operating systems. Otherwise, malicious users can replace an assembly with
unsafe code.

All Windows PowerShell snap-in classes derive from the
System.Management.Automation.PSSnapIn or
System.Management.Automation.CustomPSSnapIn classes.

Writing a Windows PowerShell Snap-in: This example shows how to create a snap-in
that is used to register all the cmdlets and providers in an assembly.

Writing a Custom Windows PowerShell Snap-in: This example shows how to create a
custom snap-in that is used to register a specific set of cmdlets and providers that might
or might not exist in a single assembly.

System.Management.Automation.PSSnapIn

System.Management.Automation.CustomPSSnapIn

Registering Cmdlets

Windows PowerShell Shell SDK

Windows PowerShell Snap-in Classes

Examples

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSSnapIn
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CustomPSSnapIn
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSSnapIn
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CustomPSSnapIn


Writing a Windows PowerShell Snap-in
Article • 09/17/2021

This example shows how to write a Windows PowerShell snap-in that can be used to
register all the cmdlets and Windows PowerShell providers in an assembly.

With this type of snap-in, you do not select which cmdlets and providers you want to
register. To write a snap-in that allows you to select what is registered, see Writing a
Custom Windows PowerShell Snap-in.

1. Add the RunInstallerAttribute attribute.

2. Create a public class that derives from the
System.Management.Automation.PSSnapIn class.

In this example, the class name is "GetProcPSSnapIn01".

3. Add a public property for the name of the snap-in (required). When naming snap-
ins, do not use any of the following characters: # , . , , , ( , ) , { , } , [ , ] , & , - , / ,
\ , $ , ; , : , " , ' , < , > , | , ? , @ , ` , *

In this example, the name of the snap-in is "GetProcPSSnapIn01".

4. Add a public property for the vendor of the snap-in (required).

In this example, the vendor is "Microsoft".

5. Add a public property for the vendor resource of the snap-in (optional).

In this example, the vendor resource is "GetProcPSSnapIn01,Microsoft".

6. Add a public property for the description of the snap-in (required).

In this example, the description is "This is a Windows PowerShell snap-in that
registers the Get-Proc cmdlet".

7. Add a public property for the description resource of the snap-in (optional).

In this example, the vendor resource is "GetProcPSSnapIn01,This is a Windows
PowerShell snap-in that registers the Get-Proc cmdlet".

Writing a Windows PowerShell Snap-in

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSSnapIn


This example shows how to write a Windows PowerShell snap-in that can be used to
register the Get-Proc cmdlet in the Windows PowerShell shell. Be aware that in this
example, the complete assembly would contain only the GetProcPSSnapIn01 snap-in
class and the Get-Proc  cmdlet class.

C#

Example

[RunInstaller(true)]
public class GetProcPSSnapIn01 : PSSnapIn
{
  /// <summary>
  /// Create an instance of the GetProcPSSnapIn01 class.
  /// </summary>
  public GetProcPSSnapIn01()
         : base()
  {
  }

  /// <summary>
  /// Specify the name of the PowerShell snap-in.
  /// </summary>
  public override string Name
  {
    get
    {
      return "GetProcPSSnapIn01";
    }
  }

  /// <summary>
  /// Specify the vendor for the PowerShell snap-in.
  /// </summary>
  public override string Vendor
  {
    get
    {
      return "Microsoft";
    }
  }

  /// <summary>
  /// Specify the localization resource information for the vendor.
  /// Use the format: resourceBaseName,VendorName.
  /// </summary>
  public override string VendorResource
  {
    get
    {
      return "GetProcPSSnapIn01,Microsoft";
    }



How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Shell SDK

  }

  /// <summary>
  /// Specify a description of the PowerShell snap-in.
  /// </summary>
  public override string Description
  {
    get
    {
      return "This is a PowerShell snap-in that includes the Get-Proc 
cmdlet.";
    }
  }

  /// <summary>
  /// Specify the localization resource information for the description.
  /// Use the format: resourceBaseName,Description.
  /// </summary>
  public override string DescriptionResource
  {
    get
    {
      return "GetProcPSSnapIn01,This is a PowerShell snap-in that includes 
the Get-Proc cmdlet.";
    }
  }
}

See Also

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Writing a Custom Windows PowerShell
Snap-in
Article • 09/17/2021

This example shows how to write a Windows PowerShell snap-in that registers specific
cmdlets.

With this type of snap-in, you specify which cmdlets, providers, types, or formats to
register. For more information about how to write a snap-in that registers all the
cmdlets and providers in an assembly, see Writing a Windows PowerShell Snap-in.

1. Add the RunInstallerAttribute attribute.

2. Create a public class that derives from the
System.Management.Automation.CustomPSSnapIn class.

In this example, the class name is "CustomPSSnapinTest".

3. Add a public property for the name of the snap-in (required). When naming snap-
ins, do not use any of the following characters: # , . , , , ( , ) , { , } , [ , ] , & , - , / ,
\ , $ , ; , : , " , ' , < , > , | , ? , @ , ` , *

In this example, the name of the snap-in is "CustomPSSnapInTest".

4. Add a public property for the vendor of the snap-in (required).

In this example, the vendor is "Microsoft".

5. Add a public property for the vendor resource of the snap-in (optional).

In this example, the vendor resource is "CustomPSSnapInTest,Microsoft".

6. Add a public property for the description of the snap-in (required).

In this example, the description is: "This is a custom Windows PowerShell snap-in
that includes the Test-HelloWorld  and Test-CustomSnapinTest  cmdlets".

7. Add a public property for the description resource of the snap-in (optional).

In this example, the vendor resource is:

To write a Windows PowerShell Snap-in that
registers specific cmdlets.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CustomPSSnapIn


CustomPSSnapInTest, This is a custom Windows PowerShell snap-in that
includes the Test-HelloWorld and Test-CustomSnapinTest cmdlets".

8. Specify the cmdlets that belong to the custom snap-in (optional) using the
System.Management.Automation.Runspaces.CmdletConfigurationEntry class. The
information added here includes the name of the cmdlet, its .NET type, and the
cmdlet Help file name (the format of the cmdlet Help file name should be
name.dll-help.xml ).

This example adds the Test-HelloWorld and TestCustomSnapinTest cmdlets.

9. Specify the providers that belong to the custom snap-in (optional).

This example does not specify any providers.

10. Specify the types that belong to the custom snap-in (optional).

This example does not specify any types.

11. Specify the formats that belong to the custom snap-in (optional).

This example does not specify any formats.

This example shows how to write a Custom Windows PowerShell snap-in that can be
used to register the Test-HelloWorld  and Test-CustomSnapinTest  cmdlets. Be aware that
in this example, the complete assembly could contain other cmdlets and providers that
would not be registered by this snap-in.

C#

Example

[RunInstaller(true)]
public class CustomPSSnapinTest : CustomPSSnapIn
{
  /// <summary>
  /// Creates an instance of CustomPSSnapInTest class.
  /// </summary>
  public CustomPSSnapinTest()
          : base()
  {
  }

  /// <summary>
  /// Specify the name of the custom PowerShell snap-in.
  /// </summary>
  public override string Name
  {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.CmdletConfigurationEntry


    get
    {
      return "CustomPSSnapInTest";
    }
  }

  /// <summary>
  /// Specify the vendor for the custom PowerShell snap-in.
  /// </summary>
  public override string Vendor
  {
    get
    {
      return "Microsoft";
    }
  }

  /// <summary>
  /// Specify the localization resource information for the vendor.
  /// Use the format: resourceBaseName,resourceName.
  /// </summary>
  public override string VendorResource
  {
    get
    {
        return "CustomPSSnapInTest,Microsoft";
    }
  }

  /// <summary>
  /// Specify a description of the custom PowerShell snap-in.
  /// </summary>
  public override string Description
  {
    get
    {
      return "This is a custom PowerShell snap-in that includes the Test-
HelloWorld and Test-CustomSnapinTest cmdlets.";
    }
  }

  /// <summary>
  /// Specify the localization resource information for the description.
  /// Use the format: resourceBaseName,Description.
  /// </summary>
  public override string DescriptionResource
  {
    get
    {
        return "CustomPSSnapInTest,This is a custom PowerShell snap-in that 
includes the Test-HelloWorld and Test-CustomSnapinTest cmdlets.";
    }
  }

  /// <summary>



  /// Specify the cmdlets that belong to this custom PowerShell snap-in.
  /// </summary>
  private Collection<CmdletConfigurationEntry> _cmdlets;
  public override Collection<CmdletConfigurationEntry> Cmdlets
  {
    get
    {
      if (_cmdlets == null)
      {
        _cmdlets = new Collection<CmdletConfigurationEntry>();
        _cmdlets.Add(new CmdletConfigurationEntry("test-customsnapintest", 
typeof(TestCustomSnapinTest), "TestCmdletHelp.dll-help.xml"));
        _cmdlets.Add(new CmdletConfigurationEntry("test-helloworld", 
typeof(TestHelloWorld), "HelloWorldHelp.dll-help.xml"));
      }

      return _cmdlets;
    }
  }

  /// <summary>
  /// Specify the providers that belong to this custom PowerShell snap-in.
  /// </summary>
  private Collection<ProviderConfigurationEntry> _providers;
  public override Collection<ProviderConfigurationEntry> Providers
  {
    get
    {
      if (_providers == null)
      {
        _providers = new Collection<ProviderConfigurationEntry>();
      }

      return _providers;
    }
  }

  /// <summary>
  /// Specify the types that belong to this custom PowerShell snap-in.
  /// </summary>
  private Collection<TypeConfigurationEntry> _types;
  public override Collection<TypeConfigurationEntry> Types
  {
    get
    {
      if (_types == null)
      {
        _types = new Collection<TypeConfigurationEntry>();
      }

      return _types;
    }
  }

  /// <summary>



For more information about registering snap-ins, see How to Register Cmdlets,
Providers, and Host Applications in the Windows PowerShell Programmer's Guide.

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Shell SDK

  /// Specify the formats that belong to this custom PowerShell snap-in.
  /// </summary>
  private Collection<FormatConfigurationEntry> _formats;
  public override Collection<FormatConfigurationEntry> Formats
  {
    get
    {
      if (_formats == null)
      {
        _formats = new Collection<FormatConfigurationEntry>();
      }

      return _formats;
    }
  }
}

See Also

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Importing a PowerShell Module
Article • 09/17/2021

Once you have installed a module on a system, you will likely want to import the
module. Importing is the process that loads the module into active memory, so that a
user can access that module in their PowerShell session. In PowerShell 2.0, you can
import a newly-installed PowerShell module with a call to Import-Module cmdlet. In
PowerShell 3.0, PowerShell is able to implicitly import a module when one of the
functions or cmdlets in the module is called by a user. Note that both versions assume
that you install your module in a location where PowerShell is able to find it; for more
information, see Installing a PowerShell Module. You can use a module manifest to
restrict what parts of your module are exported, and you can use parameters of the
Import-Module  call to restrict what parts are imported.

Modules did not exist in PowerShell 1.0: instead, you had to register and use snap-ins.
However, it is not recommended that you use this technology at this point, as modules
are generally easier to install and import. For more information, see How to Create a
Windows PowerShell Snap-in.

PowerShell 2.0 uses the appropriately-named Import-Module cmdlet to import modules.
When this cmdlet is run, Windows PowerShell searches for the specified module within
the directories specified in the PSModulePath  variable. When the specified directory is
found, Windows PowerShell searches for files in the following order: module manifest
files ( .psd1 ), script module files ( .psm1 ), binary module files (.dll). For more information
about adding directories to the search, see about_PSModulePath. The following code
describes how to import a module:

PowerShell

Assuming that myModule was located in the PSModulePath , PowerShell would load
myModule into active memory. If myModule was not located on a PSModulePath  path,

Importing a Snap-In (PowerShell 1.0)

Importing a Module with Import-Module
(PowerShell 2.0)

Import-Module myModule

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_psmodulepath


you could still explicitly tell PowerShell where to find it:

PowerShell

You can also use the -Verbose  parameter to identify what is being exported out of the
module, and what is being imported into active memory. Both exports and imports
restrict what is exposed to the user: the difference is who is controlling the visibility.
Essentially, exports are controlled by code within the module. In contrast, imports are
controlled by the Import-Module  call. For more information, see Restricting Members
That Are Imported, below.

Beginning in Windows PowerShell 3.0, modules are imported automatically when any
cmdlet or function in the module is used in a command. This feature works on any
module in a directory that is included in the value of the PSModulePath environment
variable. If you do not save your module on a valid path however, you can still load
them using the explicit Import-Module option, described above.

The following actions trigger automatic importing of a module, also known as "module
auto-loading."

Using a cmdlet in a command. For example, typing Get-ExecutionPolicy  imports
the Microsoft.PowerShell.Security module that contains the Get-ExecutionPolicy
cmdlet.

Using the Get-Command cmdlet to get the command. For example, typing Get-
Command Get-JobTrigger  imports the PSScheduledJob module that contains the
Get-JobTrigger  cmdlet. A Get-Command  command that includes wildcard characters
is considered to be discovery and does not trigger importing of a module.

Using the Get-Help cmdlet to get help for a cmdlet. For example, typing Get-Help
Get-WinEvent  imports the Microsoft.PowerShell.Diagnostics module that contains
the Get-WinEvent  cmdlet.

To support automatic importing of modules, the Get-Command  cmdlet gets all cmdlets
and functions in all installed modules, even if the module is not imported into the
session. For more information, see the help topic for the Get-Command cmdlet.

Import-Module -Name C:\myRandomDirectory\myModule -Verbose

Implicitly Importing a Module (PowerShell 3.0)

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Command
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Command


When a module is imported, a new session state is created for the module, and a
System.Management.Automation.PSModuleInfo object is created in memory. A session-
state is created for each module that is imported (this includes the root module and any
nested modules). The members that are exported from the root module, including any
members that were exported to the root module by any nested modules, are then
imported into the caller's session state.

The metadata of members that are exported from a module have a ModuleName
property. This property is populated with the name of the module that exported them.

By default, the Import-Module cmdlet does not return any objects to the pipeline.
However, the cmdlet supports a PassThru parameter that can be used to return a
System.Management.Automation.PSModuleInfo object for each module that is
imported. To send output to the host, users should run the Write-Host cmdlet.

When a module is imported by using the Import-Module cmdlet, by default, all exported
module members are imported into the session, including any commands exported to
the module by a nested module. By default, variables and aliases are not exported. To
restrict the members that are exported, use a module manifest. To restrict the members
that are imported, use the following parameters of the Import-Module  cmdlet.

Function: This parameter restricts the functions that are exported. (If you are using
a module manifest, see the FunctionsToExport key.)

`Cmdlet: This parameter restricts the cmdlets that are exported (If you are using a
module manifest, see the CmdletsToExport key.)

Variable: This parameter restricts the variables that are exported (If you are using a
module manifest, see the VariablesToExport key.)

Alias: This parameter restricts the aliases that are exported (If you are using a
module manifest, see the AliasesToExport key.)

The Importing Process

２ Warning

If the name of an exported member uses an unapproved verb or if the name of the
member uses restricted characters, a warning is displayed when the Import-
Module cmdlet is run.

Restricting the Members That Are Imported

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSModuleInfo
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSModuleInfo
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Write-Host
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Import-Module


Writing a Windows PowerShell Module

See Also



Windows PowerShell Provider
Quickstart
Article • 03/24/2025

This topic explains how to create a Windows PowerShell provider that has basic
functionality of creating a new drive. For general information about providers, see
Windows PowerShell Provider Overview. For examples of providers with more complete
functionality, see Provider Samples.

The most basic functionality of a Windows PowerShell provider is to create and remove
drives. In this example, we implement the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* and
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* methods
of the System.Management.Automation.Provider.DriveCmdletProvider class. You will
also see how to declare a provider class.

When you write a provider, you can specify default drives-drives that are created
automatically when the provider is available. You also define a method to create new
drives that use that provider.

The examples provided in this topic are based on the AccessDBProviderSample02
sample, which is part of a larger sample that represents an Access database as a
Windows PowerShell drive.

In Visual Studio, create a Class Library project named AccessDBProviderSample.
Complete the following steps to configure your project so that Windows PowerShell will
start, and the provider will be loaded into the session, when you build and start your
project.

1. Add the System.Management.Automation assembly as a reference to your project.

2. Click Project > AccessDBProviderSample Properties > Debug. In Start project,
click Start external program, and navigate to the Windows PowerShell executable
(typically C:\Windows\System32\WindowsPowerShell\v1.0\.powershell.exe).

Writing a basic provider

Setting up the project

Configure the provider project

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider


3. Under Start Options, enter the following into the Command line arguments box:
-NoExit -Command "[Reflection.Assembly]::LoadFrom(AccessDBProviderSample.dll'

) | Import-Module"

Our provider derives from the
System.Management.Automation.Provider.DriveCmdletProvider class. Most providers
that provide real functionality (accessing and manipulating items, navigating the data
store, and getting and setting content of items) derive from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

In addition to specifying that the class derives from
System.Management.Automation.Provider.DriveCmdletProvider, you must decorate it
with the System.Management.Automation.Provider.CmdletProviderAttribute as shown in
the example.

C#

The System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* method
is called by the Windows PowerShell engine when a user calls the
Microsoft.PowerShell.Commands.NewPSDriveCommand cmdlet specifying the name of
your provider. The PSDriveInfo parameter is passed by the Windows PowerShell engine,
and the method returns the new drive to the Windows PowerShell engine. This method
must be declared within the class created above.

Declaring the provider class

namespace Microsoft.Samples.PowerShell.Providers
{
  using System;
  using System.Data;
  using System.Data.Odbc;
  using System.IO;
  using System.Management.Automation;
  using System.Management.Automation.Provider;

  #region AccessDBProvider

  [CmdletProvider("AccessDB", ProviderCapabilities.None)]
  public class AccessDBProvider : DriveCmdletProvider
  {

}
}

Implementing NewDrive

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.Newpsdrivecommand


The method first checks to make sure both the drive object and the drive root that were
passed in exist, returning null  if either of them do not. It then uses a constructor of the
internal class AccessDBPSDriveInfo to create a new drive and a connection to the Access
database the drive represents.

C#

protected override PSDriveInfo NewDrive(PSDriveInfo drive)
    {
      // Check if the drive object is null.
      if (drive == null)
      {
        WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null));

        return null;
      }

      // Check if the drive root is not null or empty
      // and if it is an existing file.
      if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) == 
false))
      {
        WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive));

        return null;
      }

      // Create a new drive and create an ODBC connection to the new drive.
      AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);
      OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

      builder.Driver = "Microsoft Access Driver (*.mdb)";
      builder.Add("DBQ", drive.Root);

      OdbcConnection conn = new OdbcConnection(builder.ConnectionString);
      conn.Open();
      accessDBPSDriveInfo.Connection = conn;

      return accessDBPSDriveInfo;
    }



The following is the AccessDBPSDriveInfo internal class that includes the constructor
used to create a new drive, and contains the state information for the drive.

C#

The System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive*
method is called by the Windows PowerShell engine when a user calls the
Microsoft.PowerShell.Commands.RemovePSDriveCommand cmdlet. The method in this
provider closes the connection to the Access database.

C#

internal class AccessDBPSDriveInfo : PSDriveInfo
  {
    /// <summary>
    /// A reference to the connection to the database.
    /// </summary>
    private OdbcConnection connection;

    /// <summary>
    /// Initializes a new instance of the AccessDBPSDriveInfo class.
    /// The constructor takes a single argument.
    /// </summary>
    /// <param name="driveInfo">Drive defined by this provider</param>
    public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
    {
    }

    /// <summary>
    /// Gets or sets the ODBC connection information.
    /// </summary>
    public OdbcConnection Connection
    {
        get { return this.connection; }
        set { this.connection = value; }
    }
  }

Implementing RemoveDrive

protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
    {
      // Check if drive object is null.
      if (drive == null)
      {
        WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.removepsdrivecommand


                   drive));

        return null;
      }

      // Close the ODBC connection to the drive.
      AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

      if (accessDBPSDriveInfo == null)
      {
         return null;
      }

      accessDBPSDriveInfo.Connection.Close();

      return accessDBPSDriveInfo;
    }



Windows PowerShell Provider Overview
Article • 09/17/2021

A Windows PowerShell provider allows any data store to be exposed like a file system as
if it were a mounted drive. For example, the built-in Registry provider allows you to
navigate the registry like you would navigate the c  drive of your computer. A provider
can also override the Item  cmdlets (for example, Get-Item , Set-Item , etc.) such that the
data in your data store can be treated like files and directories are treated when
navigating a file system. For more information about providers and drives, and the built-
in providers in Windows PowerShell, see about_Providers.

A Provider defines the logic that is used to access, navigate, and edit a data store, while
a drive specifies a specific entry point to a data store (or a portion of a data store) that is
of the type defined by the provider. For example, the Registry provider allows you to
access hives and keys in a registry, and the HKLM and HKCU drives specify the
corresponding hives within the registry. The HKLM and HKCU drives both use the
Registry provider.

When you write a provider, you can specify default drives-drives that are created
automatically when the provider is available. You also define a method to create new
drives that use that provider.

There are several types of providers, each of which provides a different level of
functionality. A provider is implemented as a class that derives from one of the
descendants of the System.Management.Automation.SessionStateCategory
CmdletProvider class. For information about the different types of providers, see
Provider types.

Providers can implement methods that correspond to cmdlets, creating custom
behaviors for those cmdlets when used in a drive for that provider. Depending on the
type of provider, different sets of cmdlets are available. For a complete list of the
cmdlets available for customization in providers, see Provider cmdlets.

Providers and Drives

Type of Providers

Provider cmdlets

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_providers
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.sessionstatecategory


Users navigate provider drives like file systems. Because of this, they expect the syntax
of paths to correspond to the paths used in file system navigation. When a user runs a
provider cmdlet, they specify a path to the item to be accessed. The path that is
specified can be interpreted in several ways. A provider should support one or more of
the following path types.

A drive-qualified path is a combination of the item name, the container and
subcontainers in which the item is located, and the Windows PowerShell drive through
which the item is accessed. (Drives are defined by the provider that is used to access the
data store. This path starts with the drive name followed by a colon (:). For example:
Get-ChildItem C:

To allow the Windows PowerShell engine to initialize and uninitialize your provider, the
provider must support a provider-qualified path. For example, the user can initialize and
uninitialize the FileSystem provider because it defines the following provider-qualified
path: FileSystem::\\uncshare\abc\bar .

To allow remote access to your Windows PowerShell provider, it should support a
provider-direct path to pass directly to the Windows PowerShell provider for the current
location. For example, the registry Windows PowerShell provider can use
\\server\regkeypath  as a provider-direct path.

To allow the provider cmdlet to access data using non-Windows PowerShell application
programming interfaces (APIs), your Windows PowerShell provider should support a
provider-internal path. This path is indicated after the "::" in the provider-qualified path.
For example, the provider-internal path for the FileSystem Windows PowerShell provider
is \\uncshare\abc\bar .

Provider paths

Drive-qualified paths

Provider-qualified paths

Provider-direct paths

Provider-internal paths

Overriding cmdlet parameters



The behavior of some provider-specific cmdlets can be overridden by a provider. For a
list of parameters that can be overridden, and how to override them in your provider
class, see Provider cmdlet parameters

Providers can define dynamic parameters that are added to a provider cmdlet when the
user specifies a certain value for one of the static parameters of the cmdlet. A provider
does this by implementing one or more dynamic parameter methods. For a list of
cmdlet parameters that can be used to add dynamic parameter, and the methods used
to implement them, see Provider cmdlet dynamic parameters.

The System.Management.Automation.Provider.ProviderCapabilities enumeration defines
a number of capabilities that providers can support. These include the ability to use
wildcards, filter items, and support transactions. To specify capabilities for a provider,
add a list of values of the System.Management.Automation.Provider.ProviderCapabilities
enumeration, combined with a logical OR  operation, as the
System.Management.Automation.Provider.CmdletProviderAttribute.ProviderCapabilities*
property (the second parameter of the attribute) of the
System.Management.Automation.Provider.CmdletProviderAttribute attribute for your
provider class. For example, the following attribute specifies that the provider supports
the System.Management.Automation.Provider.ProviderCapabilities ShouldProcess and
System.Management.Automation.Provider.ProviderCapabilities Transactions capabilities.

C#

When writing a provider, you can implement your own Help for the provider cmdlets
that you support. This includes a single help topic for each provider cmdlet or multiple
versions of a help topic for cases where the provider cmdlet acts differently based on
the use of dynamic parameters. To support provider cmdlet-specific help, your provider
must implement the
System.Management.Automation.Provider.ICmdletProviderSupportsHelp interface.

Dynamic parameters

Provider capabilities

[CmdletProvider(RegistryProvider.ProviderName, 
ProviderCapabilities.ShouldProcess | ProviderCapabilities.Transactions)]

Provider cmdlet help

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ICmdletProviderSupportsHelp


The Windows PowerShell engine calls the
System.Management.Automation.Provider.ICmdletProviderSupportsHelp.GetHelpMaml*
method to display the Help topic for your provider cmdlets. The engine provides the
name of the cmdlet that the user specified when running the Get-Help  cmdlet and the
current path of the user. The current path is required if your provider implements
different versions of the same provider cmdlet for different drives. The method must
return a string that contains the XML for the cmdlet Help.

The content for the Help file is written using PSMAML XML. This is the same XML
schema that is used for writing Help content for stand-alone cmdlets. Add the content
for your custom cmdlet Help to the Help file for your provider under the
CmdletHelpPaths  element. The following example shows the command  element for a
single provider cmdlet, and it shows how you specify the name of the provider cmdlet
that your provider. supports

XML

Windows PowerShell Provider Functionality

Provider Cmdlets

Writing a Windows PowerShell Provider

<CmdletHelpPaths>
  <command:command>
    <command:details>
      <command:name>ProviderCmdletName</command:name>
      <command:verb>Verb</command:verb>
      <command:noun>Noun</command:noun>
    <command:details>
  </command:command>
<CmdletHelpPath>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ICmdletProviderSupportsHelp.GetHelpMaml
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5


Provider types
Article • 01/31/2024

Providers define their basic functionality by changing how the provider cmdlets,
provided by PowerShell, perform their actions. For example, providers can use the
default functionality of the Get-Item  cmdlet, or they can change how that cmdlet
operates when retrieving items from the data store. The provider functionality described
in this document includes functionality defined by overwriting methods from specific
provider base classes and interfaces.

Drive-enabled providers specify the default drives available to the user and allow the
user to add or remove drives. In most cases, providers are drive-enabled providers
because they require some default drive to access the data store. However, when writing
your own provider you might or might not want to allow the user to create and remove
drives.

To create a drive-enabled provider, your provider class must derive from the
System.Management.Automation.Provider.DriveCmdletProvider class or another class
that derives from that class. The DriveCmdletProvider class defines the following
methods for implementing the default drives of the provider and supporting the New-
PSDrive  and Remove-PSDrive  cmdlets. In most cases, to support a provider cmdlet you
must overwrite the method that the PowerShell engine calls to invoke the cmdlet, such
as the NewDrive  method for the New-PSDrive  cmdlet, and optionally you can overwrite a
second method, such as NewDriveDynamicParameters , for adding dynamic parameters to
the cmdlet.

The InitializeDefaultDrives method defines the default drives that are available to
the user whenever the provider is used.

The NewDrive and NewDriveDynamicParameters methods defines how your
provider supports the New-PSDrive  provider cmdlet. This cmdlet allows the user to
create drives to access the data store.

７ Note

For provider features that are pre-defined by PowerShell, see Provider
capabilities .

Drive-enabled providers

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.initializedefaultdrives#system-management-automation-provider-drivecmdletprovider-initializedefaultdrives
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrive
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrivedynamicparameters
https://learn.microsoft.com/en-us/previous-versions//ee126189(v=vs.85)


The RemoveDrive method defines how your provider supports the Remove-PSDrive
provider cmdlet. This cmdlet allows the user to remove drives from the data store.

Item-enabled providers allow the user to get, set, or clear the items in the data store. An
"item" is an element of the data store that the user can access or manage
independently. To create an item-enabled provider, your provider class must derive from
the System.Management.Automation.Provider.ItemCmdletProvider class or another class
that derives from that class.

The ItemCmdletProvider class defines the following methods for implementing specific
provider cmdlets. In most cases, to support a provider cmdlet you must overwrite the
method that the PowerShell engine calls to invoke the cmdlet, such as the ClearItem
method for the Clear-Item  cmdlet, and optionally you can overwrite a second method,
such as ClearItemDynamicParameters , for adding dynamic parameters to the cmdlet.

The ClearItem and ClearItemDynamicParameters methods define how your
provider supports the Clear-Item  provider cmdlet. This cmdlet allows the user to
remove of the value of an item in the data store.

The GetItem and GetItemDynamicParameters methods define how your provider
supports the Get-Item  provider cmdlet. This cmdlet allows the user to retrieve data
from the data store.

The SetItem and SetItemDynamicParameters methods define how your provider
supports the Set-Item  provider cmdlet. This cmdlet allows the user to update the
values of items in the data store.

The InvokeDefaultAction and InvokeDefaultActionDynamicParameters methods
define how your provider supports the Invoke-Item  provider cmdlet. This cmdlet
allows the user to perform the default action specified by the item.

The ItemExists and ItemExistsDynamicParameters methods define how your
provider supports the Test-Path  provider cmdlet. This cmdlet allows the user to
determine if all the elements of a path exist.

In addition to the methods used to implement provider cmdlets, the
ItemCmdletProvider class also defines the following methods:

The ExpandPath method allows the user to use wildcards when specifying the
provider path.

Item-enabled providers

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.removedrive
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultaction
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultactiondynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.itemexists
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.itemexistsdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.expandpath


The IsValidPath is used to determine if a path is syntactically and semantically valid
for the provider.

Container-enabled providers allow the user to manage items that are containers. A
container is a group of child items under a common parent item. To create a container-
enabled provider, your provider class must derive from the
System.Management.Automation.Provider.ContainerCmdletProvider class or another
class that derives from that class.

The ContainerCmdletProvider class defines the following methods for implementing
specific provider cmdlets. In most cases, to support a provider cmdlet you must
overwrite the method that the PowerShell engine calls to invoke the cmdlet, such as the
CopyItem  method for the Copy-Item  cmdlet, and optionally you can overwrite a second
method, such as CopyItemDynamicParameters , for adding dynamic parameters to the
cmdlet.

The CopyItem and CopyItemDynamicParameters methods define how your
provider supports the Copy-Item  provider cmdlet. This cmdlet allows the user to
copy an item from one location to another.

The GetChildItems and GetChildItemsDynamicParameters methods define how
your provider supports the Get-ChildItem  provider cmdlet. This cmdlet allows the
user to retrieve the child items of the parent item.

The GetChildNames and GetChildNamesDynamicParameters methods define how
your provider supports the Get-ChildItem  provider cmdlet if its Name  parameter is
specified.

The NewItem and NewItemDynamicParameters methods define how your provider
supports the New-Item  provider cmdlet. This cmdlet allows the user to create new
items in the data store.

Container-enabled providers

） Important

Container-enabled providers can't access data stores that contain nested
containers. If a child item of a container is another container, you must implement a
navigation-enabled provider.

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.isvalidpath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditems
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditemsdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnames
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnamesdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.newitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.newitemdynamicparameters


The RemoveItem and RemoveItemDynamicParameters methods define how your
provider supports the Remove-Item  provider cmdlet. This cmdlet allows the user to
remove items from the data store.

The RenameItem and RenameItemDynamicParameters methods define how your
provider supports the Rename-Item  provider cmdlet. This cmdlet allows the user to
rename items in the data store.

In addition to the methods used to implement provider cmdlets, the
ContainerCmdletProvider class also defines the following methods:

The HasChildItems method can be used by the provider class to determine
whether an item has child items.

The ConvertPath method can be used by the provider class to create a new
provider-specific path from a specified path.

Navigation-enabled providers allow the user to move items in the data store. To create a
navigation-enabled provider, your provider class must derive from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

The NavigationCmdletProvider class defines the following methods for implementing
specific provider cmdlets. In most cases, to support a provider cmdlet you must
overwrite the method that the PowerShell engine calls to invoke the cmdlet, such as the
MoveItem  method for the Move-Item  cmdlet, and optionally you can overwrite a second
method, such as MoveItemDynamicParameters , for adding dynamic parameters to the
cmdlet.

The MoveItem and MoveItemDynamicParameters methods define how your
provider supports the Move-Item  provider cmdlet. This cmdlet allows the user to
move an item from one location in the store to another location.

The MakePath method defines how your provider supports the Join-Path  provider
cmdlet. This cmdlet allows the user to combine a parent and child path segment to
create a provider-internal path.

In addition to the methods used to implement provider cmdlets, the
NavigationCmdletProvider class also defines the following methods:

The GetChildName method extracts the name of the child node of a path.

Navigation-enabled providers

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.haschilditems
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.convertpath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.makepath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.getchildname


The GetParentPath method extracts the parent part of a path.

The IsItemContainer method determines whether the item is a container item. In
this context, a container is a group of child items under a common parent item.

The NormalizeRelativePath method returns a path to an item that's relative to a
specified base path.

Content-enabled providers allow the user to clear, get, or set the content of items in a
data store. For example, the FileSystem provider allows you to clear, get, and set the
content of files in the file system. To create a content enabled provider, your provider
class must implement the methods of the
System.Management.Automation.Provider.IContentCmdletProvider interface.

The IContentCmdletProvider interface defines the following methods for implementing
specific provider cmdlets. In most cases, to support a provider cmdlet you must
overwrite the method that the PowerShell engine calls to invoke the cmdlet, such as the
ClearContent  method for the Clear-Content  cmdlet, and optionally you can overwrite a
second method, such as ClearContentDynamicParameters , for adding dynamic
parameters to the cmdlet.

The ClearContent and ClearContentDynamicParameters methods define how your
provider supports the Clear-Content  provider cmdlet. This cmdlet allows the user
to delete the content of an item without deleting the item.

The GetContentReader and GetContentReaderDynamicParameters methods define
how your provider supports the Get-Content  provider cmdlet. This cmdlet allows
the user to retrieve the content of an item. The GetContentReader  method returns
an System.Management.Automation.Provider.IContentReader interface that defines
the methods used to read the content.

The GetContentWriter and GetContentWriterDynamicParameters methods define
how your provider supports the Set-Content  provider cmdlet. This cmdlet allows
the user to update the content of an item. The GetContentWriter  method returns
an System.Management.Automation.Provider.IContentWriter interface that defines
the methods used to write the content.

Content-enabled providers

Property-enabled providers

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.getparentpath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.isitemcontainer
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.normalizerelativepath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontent
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontentdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreader
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreaderdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentreader
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriter
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriterdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentwriter


Property-enabled providers allow the user to manage the properties of the items in the
data store. To create a property-enabled provider, your provider class must implement
the methods of the System.Management.Automation.Provider.IPropertyCmdletProvider
and System.Management.Automation.Provider.IDynamicPropertyCmdletProvider
interfaces. In most cases, to support a provider cmdlet you must overwrite the method
that the PowerShell engine calls to invoke the cmdlet, such as the ClearProperty
method for the Clear-Property cmdlet, and optionally you can overwrite a second
method, such as ClearPropertyDynamicParameters , for adding dynamic parameters to
the cmdlet.

The IPropertyCmdletProvider interface defines the following methods for implementing
specific provider cmdlets:

The ClearProperty and ClearPropertyDynamicParameters methods define how your
provider supports the Clear-ItemProperty  provider cmdlet. This cmdlet allows the
user to delete the value of a property.

The GetProperty and GetPropertyDynamicParameters methods define how your
provider supports the Get-ItemProperty  provider cmdlet. This cmdlet allows the
user to retrieve the property of an item.

The SetProperty and SetPropertyDynamicParameters methods define how your
provider supports the Set-ItemProperty  provider cmdlet. This cmdlet allows the
user to update the properties of an item.

The IDynamicPropertyCmdletProvider interface defines the following methods for
implementing specific provider cmdlets:

The CopyProperty and CopyPropertyDynamicParameters methods define how your
provider supports the Copy-ItemProperty  provider cmdlet. This cmdlet allows the
user to copy a property and its value from one location to another.

The MoveProperty and MovePropertyDynamicParameters methods define how
your provider supports the Move-ItemProperty  provider cmdlet. This cmdlet allows
the user to move a property and its value from one location to another.

The NewProperty and NewPropertyDynamicParameters methods define how your
provider supports the New-ItemProperty  provider cmdlet. This cmdlet allows the
user to create a new property and set its value.

The RemoveProperty and RemovePropertyDynamicParameters methods define
how your provider supports the Remove-ItemProperty  cmdlet. This cmdlet allows
the user to delete a property and its value.

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.copyproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.copypropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.moveproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.movepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removeproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removepropertydynamicparameters


The RenameProperty and RenamePropertyDynamicParameters methods define
how your provider supports the Rename-ItemProperty  cmdlet. This cmdlet allows
the user to change the name of a property.

about_Providers

Writing a Windows PowerShell Provider

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renameproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renamepropertydynamicparameters
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_providers
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprovider%2Fprovider-types%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprovider%2Fprovider-types.md&documentVersionIndependentId=d4db3e0f-f219-1ca4-a682-9b13b57492c5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ba88dae9-7aac-587c-f22d-f6a639d7d88a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Provider cmdlets
Article • 01/31/2024

The cmdlets that the user can run to manage a data store are referred to as provider
cmdlets. To support these cmdlets, you need to overwrite some of the methods defined
by the base provider classes and interfaces.

Here are the provider cmdlets that can be run by the user:

This cmdlet returns the PowerShell drives in the current session. You do not need to
overwrite any methods to support this cmdlet.

This cmdlet allows the user to create PowerShell drives to access the data store. To
support this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.DriveCmdletProvider class:

NewDrive
NewDriveDynamicParameters

This cmdlet allows the user to remove PowerShell drives that access the data store. To
support this cmdlet, overwrite the
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive method.

This cmdlet allows the user to remove the value of an item in the data store. To support
this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.ItemCmdletProvider class:

PSDrive cmdlets

Get-PSDrive

New-PSDrive

Remove-PSDrive

Item cmdlets

Clear-Item

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrive
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrivedynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.removedrive
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider


ClearItem
ClearItemDynamicParameters

This cmdlet allows the user to copy an item from one location to another. To support
this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.ContainerCmdletProvider class:

CopyItem
CopyItemDynamicParameters

This cmdlet allows the user to retrieve data from the data store. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.ItemCmdletProvider class:

GetItem
GetItemDynamicParameters

This cmdlet allows the user to retrieve the child items of the parent item. To support this
cmdlet, overwrite the following methods of
System.Management.Automation.Provider.ContainerCmdletProvider class:

GetChildItems
GetChildItemsDynamicParameters
GetChildNames
GetChildNamesDynamicParameters

This cmdlet allows the user to perform the default action specified by the item. To
support this cmdlet, overwrite the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
method.

Copy-Item

Get-Item

Get-ChildItem

Invoke-Item

Move-Item

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditems
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditemsdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnames
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnamesdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultaction


This cmdlet allows the user to move an item from one location to another location. To
support this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.NavigationCmdletProvider class:

MoveItem
MoveItemDynamicParameters

This cmdlet allows the user to create a new item in the data store.

This cmdlet allows the user to remove items from the data store. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.ContainerCmdletProvider class:

RemoveItem
RemoveItemDynamicParameters

This cmdlet allows the user to rename items in the data store. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.ContainerCmdletProvider class:

RenameItem
RenameItemDynamicParameters

This cmdlet allows the user to update the values of items in the data store. To support
this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.ItemCmdletProvider class:

SetItem
SetItemDynamicParameters

New-ItemProperty

Remove-Item

Rename-Item

Set-Item

Item content cmdlets

Add-Content

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitem
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters


This cmdlet allows the user to add content to an item.

This cmdlet allows the user to delete content from an item without deleting the item. To
support this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.IContentCmdletProvider interface:

ClearContent
ClearContentDynamicParameters

This cmdlet allows the user to retrieve the content of an item. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IContentCmdletProvider interface:

GetContentReader
GetContentReaderDynamicParameters

The GetContentReader method returns an
System.Management.Automation.Provider.IContentReader interface that defines the
methods used to read the content.

This cmdlet allows the user to update the content of an item. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IContentCmdletProvider interface:

GetContentWriter
GetContentWriterDynamicParameters

The GetContentWriter method returns an
System.Management.Automation.Provider.IContentWriter interface that defines the
methods used to write the content.

Clear-Content

Get-Content

Set-Content

Item property cmdlets

Clear-ItemProperty

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontent
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontentdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreader
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreaderdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreader
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentreader
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriter
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriterdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriter
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentwriter


This cmdlet allows the user to delete the value of a property. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IPropertyCmdletProvider interface:

ClearProperty
ClearPropertyDynamicParameters

This cmdlet allows the user to copy a property and its value from one location to
another. To support this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider interface:

CopyProperty
CopyPropertyDynamicParameters

This cmdlet retrieves the properties of an item. To support this cmdlet, overwrite the
following methods of
System.Management.Automation.Provider.IPropertyCmdletProvider interface:

GetProperty
GetPropertyDynamicParameters

This cmdlet allows the user to move a property and its value from one location to
another. To support this cmdlet, overwrite the following methods of
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider interface:

MoveProperty
MovePropertyDynamicParameters

This cmdlet allows the user to create a new property and set its value. To support this
cmdlet, overwrite the following methods of
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider interface:

NewProperty
NewPropertyDynamicParameters

Copy-ItemProperty

Get-ItemProperty

Move-ItemProperty

New-ItemProperty

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.copyproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.copypropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.moveproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.movepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newpropertydynamicparameters


This cmdlet allows the user to delete a property and its value. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider interface:

RemoveProperty
RemovePropertyDynamicParameters

This cmdlet allows the user to change the name of a property. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider interface:

RenameProperty
RenamePropertyDynamicParameters

This cmdlet allows the user to update the properties of an item. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.IPropertyCmdletProvider interface:

SetProperty
SetPropertyDynamicParameters

Retrieves information about the current working location. You do not need to overwrite
any methods to support this cmdlet.

This cmdlet changes the current location to the location most recently pushed onto the
stack. You do not need to overwrite any methods to support this cmdlet.

Remove-ItemProperty

Rename-ItemProperty

Set-ItemProperty

Location cmdlets

Get-Location

Pop-Location

Push-Location

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removeproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renameproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renamepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setpropertydynamicparameters


This cmdlet adds the current location to the top of a list of locations (a "stack"). You do
not need to overwrite any methods to support this cmdlet.

This cmdlet sets the current working location to a specified location. You do not need to
overwrite any methods to support this cmdlet.

This cmdlet allows the user to combine a parent and child path segment to create a
provider-internal path. To support this cmdlet, overwrite the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath method.

This cmdlet converts a path from a PowerShell path to a PowerShell provider path.

Returns the specified part of a path.

Resolves the wildcard characters in a path, and displays the path contents.

This cmdlet determines whether all elements of a path exist. To support this cmdlet,
overwrite the following methods of
System.Management.Automation.Provider.ItemCmdletProvider class:

ItemExists
ItemExistsDynamicParameters

Set-Location

Path cmdlets

Join-Path

Convert-Path

Split-Path

Resolve-Path

Test-Path

PSProvider cmdlets

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.makepath
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.itemexists
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.itemexistsdynamicparameters


This cmdlet returns information about the providers available in the session. You do not
need to overwrite any methods to support this cmdlet.

Get-PSProvider



Provider cmdlet parameters
Article • 03/24/2025

Provider cmdlets come with a set of static parameters that are available to all providers
that support the cmdlet, as well as dynamic parameters that are added when the user
specifies a certain value for certain static parameters of the provider cmdlet.

Static parameters are defined by Windows PowerShell. A large set of these parameters is
implemented by Windows PowerShell to provide consistency across all the providers
and to provide a simpler development experience. Examples of these parameters
include the LiteralPath , Exclude , and Include  parameters of the Get-Item  cmdlet. A
smaller set of these parameters can be overwritten to provide actions that are specific to
your provider. Examples of these parameters include the Path  and Value  parameter of
the Set-Item  cmdlet. Here is a list of the parameters that can be overwritten for the
provider cmdlets.

Clear-Content  cmdlet You can define how your provider will use the values passed to
the Path  parameter of the Clear-Content  cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method.

Clear-Item  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Clear-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.ClearItem* method.

Clear-ItemProperty  cmdlet You can define how your provider will use the values passed
to the Path  and Name  parameters of the Clear-ItemProperty  cmdlet by implementing
the System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*
method.

Copy-Item  cmdlet You can define how your provider will use the values passed to the

Path , Destination , and Recurse  parameters of the Copy-Item  cmdlet by implementing
the System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
method.

Get-ChildItems cmdlet You can define how your provider will use the values passed to
the Path  and Recurse  parameters of the Get-ChildItem  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems* and

Provider Cmdlet Static Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems


System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames*
methods.

Get-Content  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Get-Content  cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader*
method.

Get-Item  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Get-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* method.

Get-ItemProperty  cmdlet You can define how your provider will use the values passed to
the Path  and Name  parameters of the Get-ItemProperty  cmdlet by implementing the
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty*
method.

Invoke-Item  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Invoke-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction*
method.

Move-Item  cmdlet You can define how your provider will use the values passed to the
Path  and Destination  parameters of the Move-Item  cmdlet by implementing the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method.

New-Item  cmdlet You can define how your provider will use the values passed to the

Path , ItemType , and Value  parameters of the New-Item  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem* method.

New-ItemProperty  cmdlet You can define how your provider will use the values passed to
the Path , Name , PropertyType , and Value  parameters of the New-ItemProperty  cmdlet
by implementing the Microsoft.PowerShell.Commands.RegistryProvider.NewProperty*
method.

Remove-Item  You can define how your provider will use the values passed to the Path
and Recurse  parameters of the Remove-Item  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.RegistryProvider.NewProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem


Remove-ItemProperty  You can define how your provider will use the values passed to the
Path  and Name  parameters of the Remove-ItemProperty  cmdlet by implementing the
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RemovePro
perty* method.

Rename-Item  cmdlet You can define how your provider will use the values passed to the

Path  and NewName  parameters of the Rename-Item  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method.

Rename-ItemProperty  You can define how your provider will use the values passed to the
Path , NewName , and Name  parameters of the Rename-ItemProperty  cmdlet by
implementing the
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RenamePro
perty* method.

Set-Content  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Set-Content  cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter*
method.

Set-Item  cmdlet You can define how your provider will use the values passed to the
Path  and Value  parameters of the Set-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem* method.

Set-ItemProperty  cmdlet You can define how your provider will use the values passed to
the Path  and Value  parameters of the Set-Item  cmdlet by implementing the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*
method.

Test-Path  cmdlet You can define how your provider will use the values passed to the
Path  parameter of the Test-Path  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction*
method.

In addition, you cannot specify the characteristics of these parameters, such as whether
they are optional or required, nor can you give these parameters an alias or specify any
of the validation attributes. In contrast, you can specify parameter characteristics in
stand-alone cmdlets by using attributes such as the Parameters  attribute.

Provider Cmdlet Dynamic Parameters

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RemoveProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RemoveProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RenameProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.RenameProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction


Dynamic parameters for cmdlet providers are similar to dynamic providers for stand-
alone cmdlets. In both cases, the parameters are added to the cmdlet when the user
specifies a certain value for one of the default parameters, such as the path  parameter.
However, not all of the static parameters can be used to trigger the addition of dynamic
parameters. For more information about dynamic parameters, see Provider Cmdlet
Dynamic Parameters.

Provider Cmdlet Dynamic Parameters

Writing a Windows PowerShell Provider

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5


Provider cmdlet dynamic parameters
Article • 01/31/2024

Providers can define dynamic parameters that are added to a provider cmdlet when the
user specifies a certain value for one of the static parameters of the cmdlet. For example,
a provider can add different dynamic parameters based on what path the user specifies
when they call the Get-Item  or Set-Item  provider cmdlets.

Dynamic parameters are defined by implementing one of the dynamic parameter
methods, such as the
System.Management.Automation.Provider.ItemCmdletProvider.GetItemDynamicParamet
ers* and
System.Management.Automation.Provider.SetItemDynamicParameters.SetItemDynamicP
arameters* methods. These methods return an object that has public properties that are
decorated with attributes similar to those of stand-alone cmdlets. Here is an example of
an implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.GetItemDynamicParamet
ers* method taken from the Certificate provider:

C#

Unlike the static parameters of provider cmdlets, you can specify the characteristics of
these parameters in the same way that parameters are defined in stand-alone cmdlets.
Here is an example of a dynamic parameter class taken from the Certificate provider:

C#

Dynamic Parameter Methods

protected override object GetItemDynamicParameters(string path)
{
    return new CertificateProviderDynamicParameters();
}

internal sealed class CertificateProviderDynamicParameters
{
  /// <summary>
  /// Dynamic parameter the controls whether we only return
  /// code signing certs.
  /// </summary>
  [Parameter()]
  public SwitchParameter CodeSigningCert
  {

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters


Here is a list of the static parameters that can be used to add dynamic parameters.

Clear-Content  cmdlet - You can define dynamic parameters that are triggered by
the Path  parameter of the Clear-Clear cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContentD
ynamicParameters* method.

Clear-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  parameter of the Clear-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.ClearItemDynamicP
arameters* method.

Clear-ItemProperty  cmdlet - You can define dynamic parameters that are
triggered by the Path  parameter of the Clear-ItemProperty  cmdlet by
implementing the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyD
ynamicParameters* method.

Copy-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path , Destination , and Recurse  parameters of the Copy-Item  cmdlet by
implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDyn
amicParameters* method.

    get
    {
      {
        return codeSigningCert;
      }
    }

    set
    {
      {
        codeSigningCert = value;
      }
    }
  }

    private SwitchParameter codeSigningCert = new SwitchParameter();
}

Dynamic Parameters

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontentdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.clearcontentdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.clearitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.clearpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.copyitemdynamicparameters


Get-ChildItem  cmdlet - You can define dynamic parameters that are triggered by
the Path  and Recurse  parameters of the Get-ChildItem  cmdlet by implementing
the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
DynamicParameters* and
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildName
sDynamicParameters* methods.

Get-Content  cmdlet - You can define dynamic parameters that are triggered by the
Path  parameter of the Get-Content  cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentRea
derDynamicParameters* method.

Get-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  parameter of the Get-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.GetItemDynamicPar
ameters* method.

Get-ItemProperty  cmdlet - You can define dynamic parameters that are triggered
by the Path  and Name  parameters of the Get-ItemProperty  cmdlet by
implementing the
System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDy
namicParameters* method.

Invoke-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  parameter of the Invoke-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultActio
nDynamicParameters* method.

Move-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  and Destination  parameters of the Move-Item  cmdlet by implementing the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDy
namicParameters* method.

New-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path , ItemType , and Value  parameters of the New-Item  cmdlet by implementing
the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItemDyna
micParameters* method.

New-ItemProperty  cmdlet - You can define dynamic parameters that are triggered
by the Path , Name , PropertyType , and Value  parameters of the New-ItemProperty

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditemsdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchilditemsdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnamesdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.getchildnamesdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreaderdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentreaderdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.getitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.getpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultactiondynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultactiondynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider.moveitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.newitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.newitemdynamicparameters


cmdlet by implementing the
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.NewP
ropertyDynamicParameters* method.

New-PSDrive  cmdlet - You can define dynamic parameters that are triggered by the
System.Management.Automation.PSDriveInfo object returned by the New-PSDrive
cmdlet by implementing the
System.Management.Automation.Provider.DriveCmdletProvider.NewDriveDynamic
Parameters* method.

Remove-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  and Recurse  parameters of the Remove-Item  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemD
ynamicParameters* method.

Remove-ItemProperty  cmdlet - You can define dynamic parameters that are
triggered by the Path  and Name  parameters of the Remove-ItemProperty  cmdlet by
implementing the
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.Remo
vePropertyDynamicParameters* method.

Rename-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  and NewName  parameters of the Rename-Item  cmdlet by implementing the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItemD
ynamicParameters* method.

Rename-ItemProperty  - You can define dynamic parameters that are triggered by
the Path , Name , and NewName  parameters of the Rename-ItemProperty  cmdlet by
implementing the
System.Management.Automation.Provider.IDynamicPropertyCmdletProvider.Rena
mePropertyDynamicParameters* method.

Set-Content  cmdlet - You can define dynamic parameters that are triggered by the

Path  parameter of the Set-Content  cmdlet by implementing the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWrit
erDynamicParameters* method.

Set-Item  cmdlet - You can define dynamic parameters that are triggered by the
Path  and Value  parameters of the Set-Item  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.SetItemDynamicPar
ameters* method.

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.newpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psdriveinfo
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrivedynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.drivecmdletprovider.newdrivedynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.removeitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.removepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.containercmdletprovider.renameitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renamepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.idynamicpropertycmdletprovider.renamepropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriterdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.icontentcmdletprovider.getcontentwriterdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.setitemdynamicparameters


Set-ItemProperty  cmdlet - You can define dynamic parameters that are triggered
by the Path  and Value  parameters of the Set-Item  cmdlet by implementing the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetPropertyDy
namicParameters* method.

Test-Path  cmdlet - You can define dynamic parameters that are triggered by the

Path  parameter of the Test-Path  cmdlet by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultActio
nDynamicParameters* method.

Writing a Windows PowerShell Provider

See Also

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.ipropertycmdletprovider.setpropertydynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultactiondynamicparameters
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider.invokedefaultactiondynamicparameters
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5


Writing an item provider
Article • 03/24/2025

This topic describes how to implement the methods of a Windows PowerShell provider
that access and manipulate items in the data store. To be able to access items, a
provider must derive from the
System.Management.Automation.Provider.ItemCmdletProvider class.

The provider in the examples in this topic uses an Access database as its data store.
There are several helper methods and classes that are used to interact with the
database. For the complete sample that includes the helper methods, see
AccessDBProviderSample03

For more information about Windows PowerShell providers, see Windows PowerShell
Provider Overview.

The System.Management.Automation.Provider.ItemCmdletProvider class exposes several
methods that can be used to access and manipulate the items in a data store. For a
complete list of these methods, see ItemCmdletProvider Methods. In this example, we
will implement four of these methods.
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* gets an item at
a specified path.
System.Management.Automation.Provider.ItemCmdletProvider.SetItem* sets the value
of the specified item.
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists* checks
whether an item exists at the specified path.
System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath* checks a
path to see if it maps to a location in the data store.

Implementing item methods

７ Note

This topic builds on the information in Windows PowerShell Provider QuickStart.
This topic does not cover the basics of how to set up a provider project, or how to
implement the methods inherited from the
System.Management.Automation.Provider.DriveCmdletProvider class that create
and remove drives.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.itemcmdletprovider#methods
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider


Declare the provider to derive from the
System.Management.Automation.Provider.ItemCmdletProvider class, and decorate it
with the System.Management.Automation.Provider.CmdletProviderAttribute.

C#

The System.Management.Automation.Provider.ItemCmdletProvider.GetItem* is called by
the PowerShell engine when a user calls the
Microsoft.PowerShell.Commands.GetItemCommand cmdlet on your provider. The
method returns the item at the specified path. In the Access database example, the
method checks whether the item is the drive itself, a table in the database, or a row in
the database. The method sends the item to the PowerShell engine by calling the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject* method.

C#

Declaring the provider class

[CmdletProvider("AccessDB", ProviderCapabilities.None)]

   public class AccessDBProvider : ItemCmdletProvider
   {

  }

Implementing GetItem

protected override void GetItem(string path)
      {
          // check if the path represented is a drive
          if (PathIsDrive(path))
          {
              WriteItemObject(this.PSDriveInfo, path, true);
              return;
          }// if (PathIsDrive...

           // Get table name and row information from the path and do
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.getitemcommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject


The System.Management.Automation.Provider.ItemCmdletProvider.SetItem* method is
called by the PowerShell engine calls when a user calls the
Microsoft.PowerShell.Commands.SetItemCommand cmdlet. It sets the value of the item
at the specified path.

In the Access database example, it makes sense to set the value of an item only if that
item is a row, so the method throws NotSupportedException when the item is not a row.

C#

               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       }

Implementing SetItem

protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }

           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.setitemcommand
https://learn.microsoft.com/en-us/dotnet/api/system.notsupportedexception


The System.Management.Automation.Provider.ItemCmdletProvider.ItemExists* method
is called by the PowerShell engine when a user calls the
Microsoft.PowerShell.Commands.TestPathCommand cmdlet. The method determines
whether there is an item at the specified path. If the item does exist, the method passes
it back to the PowerShell engine by calling
System.Management.Automation.Provider.CmdletProvider.WriteItemObject*.

C#

           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       }

Implementing ItemExists

protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.Testpathcommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject


The System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath* method
checks whether the specified path is syntactically valid for the current provider. It does
not check whether an item exists at the path.

C#

           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       }

Implementing IsValidPath

protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath


A typical real-world provider is capable of supporting items that contain other items,
and of moving items from one path to another within the drive. For an example of a
provider that supports containers, see Writing a container provider. For an example of a
provider that supports moving items, see Writing a navigation provider.

Writing a container provider

Writing a navigation provider

Windows PowerShell Provider Overview

           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {
                   result = false;
               }
           }
           return result;
       }

Next steps

See Also



Writing a container provider
Article • 03/24/2025

This topic describes how to implement the methods of a Windows PowerShell provider
that support items that contain other items, such as folders in the FileSystem provider.
To be able to support containers, a provider must derive from the
System.Management.Automation.Provider.ContainerCmdletProvider class.

The provider in the examples in this topic uses an Access database as its data store.
There are several helper methods and classes that are used to interact with the
database. For the complete sample that includes the helper methods, see
AccessDBProviderSample04.

For more information about Windows PowerShell providers, see Windows PowerShell
Provider Overview.

The System.Management.Automation.Provider.ContainerCmdletProvider class
implements methods that support containers, and create, copy, and remove items. For a
complete list of these methods, see
System.Management.Automation.Provider.ContainerCmdletProvider.

Declare the provider to derive from the
System.Management.Automation.Provider.ContainerCmdletProvider class, and decorate
it with the System.Management.Automation.Provider.CmdletProviderAttribute.

Implementing container methods

７ Note

This topic builds on the information in Windows PowerShell Provider QuickStart.
This topic does not cover the basics of how to set up a provider project, or how to
implement the methods inherited from the
System.Management.Automation.Provider.DriveCmdletProvider class that create
and remove drives. This topic also does not cover how to implement methods
exposed by the System.Management.Automation.Provider.ItemCmdletProvider
class. For an example that shows how to implement item cmdlets, see Writing an
item provider.

Declaring the provider class

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider#methods
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider


C#

The PowerShell engine calls the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
method when a user calls the Microsoft.PowerShell.Commands.GetChildItemCommand
cmdlet. This method gets the items that are the children of the item at the specified
path.

In the Access database example, the behavior of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
method depends on the type of the specified item. If the item is the drive, then the
children are tables, and the method returns the set of tables from the database. If the
specified item is a table, then the children are the rows of that table. If the item is a row,
then it has no children, and the method returns that row only. All child items are sent
back to the PowerShell engine by the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject* method.

C#

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : ContainerCmdletProvider
   {

   }

Implementing GetChildItems

protected override void GetChildItems(string path, bool recurse)
       {
           // If path represented is a drive then the children in the path 
are
           // tables. Hence all tables in the drive represented will have to 
be
           // returned
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table, path, true);

                   // if the specified item exists and recurse has been set 
then
                   // all child items within it have to be obtained as well
                   if (ItemExists(path) && recurse)
                   {
                       GetChildItems(path + pathSeparator + table.Name, 
recurse);
                   }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.Getchilditemcommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject


The
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames*
method is similar to the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
method, except that it returns only the name property of the items, and not the items
themselves.

C#

               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get the table name, row number and type of path from the
               // path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Obtain all the rows within the table
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);
                   WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
               }
               else
               {
                   // In this case, the path specified is not valid
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       }

Implementing GetChildNames

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems


The System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method creates a new item of the specified type at the specified path. The PowerShell

protected override void GetChildNames(string path,
                                     ReturnContainers returnContainers)
       {
           // If the path represented is a drive, then the child items are
           // tables. get the names of all the tables in the drive.
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table.Name, path, true);
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get type, table name and row number from path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Get all the rows in the table and then write out the
                   // row numbers.
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row.RowNumber, path, false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);

                   WriteItemObject(row.RowNumber, path, false);
               }
               else
               {
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       }

Implementing NewItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem


engine calls this method when a user calls the
Microsoft.PowerShell.Commands.NewItemCommand cmdlet.

In this example, the method implements logic to determine that the path and type
match. That is, only a table can be created directly under the drive (the database), and
only a row can be created under a table. If the specified path and item type don't match
in this way, the method throws an exception.

C#

protected override void NewItem(string path, string type,
                                   object newItemValue)
       {
           string tableName;
           int rowNumber;

           PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (pt == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           // Check if type is either "table" or "row", if not throw an
           // exception
           if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
               && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
           {
               WriteError(new ErrorRecord
                                 (new ArgumentException("Type must be either 
a table or row"),
                                     "CannotCreateSpecifiedObject",
                                        ErrorCategory.InvalidArgument,
                                             path
                                  )
                         );

               throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
           }

           // Path type is the type of path of the container. So if a drive
           // is specified, then a table can be created under it and if a 
table
           // is specified, then a row can be created under it. For the sake 
of
           // completeness, if a row is specified, then if the row specified 
by
           // the path does not exist, a new row is created. However, the 

https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.newitemcommand


row
           // number may not match as the row numbers only get incremented 
based
           // on the number of rows

           if (PathIsDrive(path))
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   // Execute command using ODBC connection to create a 
table
                   try
                   {
                       // create the table using an sql statement
                       string newTableName = newItemValue.ToString();

                       if (!TableNameIsValid(newTableName))
                       {
                           return;
                       }
                       string sql = "create table " + newTableName
                                            + " (ID INT)";

                       // Create the table using the Odbc connection from 
the
                       // drive.
                       AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                       if (di == null)
                       {
                           return;
                       }
                       OdbcConnection connection = di.Connection;

                       if (ShouldProcess(newTableName, "create"))
                       {
                           OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                           cmd.ExecuteScalar();
                       }
                   }
                   catch (Exception ex)
                   {
                       WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                 ErrorCategory.InvalidOperation, path)
                                 );
                   }
               } // if (String...
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   throw new



                       ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
               }
           }// if (PathIsDrive...
           else
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   if (rowNumber < 0)
                   {
                       throw new
                           ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                   }
                   else
                   {
                       throw new
                           ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                   }
               } //if (String.Equals....
               // if path specified is a row, create a new row
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   // The user is required to specify the values to be 
inserted
                   // into the table in a single string separated by commas
                   string value = newItemValue as string;

                   if (String.IsNullOrEmpty(value))
                   {
                       throw new
                           ArgumentException("Value argument must have comma 
separated values of each column in a row");
                   }
                   string[] rowValues = value.Split(',');

                   OdbcDataAdapter da = GetAdapterForTable(tableName);

                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   if (rowValues.Length != table.Columns.Count)
                   {
                       string message =
                            String.Format(CultureInfo.CurrentCulture,
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",



                                                table.Columns.Count);

                       throw new ArgumentException(message);
                   }

                   if (!Force && (rowNumber >=0 && rowNumber < 
table.Rows.Count))
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                                        "The row {0} already 
exists. To create a new row specify row number as {1}, or specify path to a 
table, or use the -Force parameter",
                                                            rowNumber, 
table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   if (rowNumber > table.Rows.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   // Create a new row and update the row with the input
                   // provided by the user
                   DataRow row = table.NewRow();
                   for (int i = 0; i < rowValues.Length; i++)
                   {
                       row[i] = rowValues[i];
                   }
                   table.Rows.Add(row);

                   if (ShouldProcess(tableName, "update rows"))
                   {
                       // Update the table from memory back to the data 
source
                       da.Update(ds, tableName);
                   }

               }// else if (String...
           }// else ...

       }

Implementing CopyItem



The System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
copies the specified item to the specified path. The PowerShell engine calls this method
when a user calls the Microsoft.PowerShell.Commands.CopyItemCommand cmdlet. This
method can also be recursive, copying all of the items children in addition to the item
itself.

Similarly to the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem* method,
this method performs logic to make sure that the specified item is of the correct type for
the path to which it is being copied. For example, if the destination path is a table, the
item to be copied must be a row.

C#

protected override void CopyItem(string path, string copyPath, bool recurse)
       {
           string tableName, copyTableName;
           int rowNumber, copyRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           PathType copyType = GetNamesFromPath(copyPath, out copyTableName, 
out copyRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(copyPath);
           }

           // Get the table and the table to copy to
           OdbcDataAdapter da = GetAdapterForTable(tableName);
           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
           if (cda == null)
           {
               return;
           }

           DataSet cds = GetDataSetForTable(cda, copyTableName);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.copyitemcommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem


           DataTable copyTable = GetDataTable(cds, copyTableName);

           // if source represents a table
           if (type == PathType.Table)
           {
               // if copyPath does not represent a table
               if (copyType != PathType.Table)
               {
                   ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                   WriteError(new ErrorRecord(e, "PathNotValid",
                       ErrorCategory.InvalidArgument, copyPath));

                   throw e;
               }

               // if table already exists then Force parameter should be set
               // to force a copy
               if (!Force && GetTable(copyTableName) != null)
               {
                   throw new ArgumentException("Specified path already 
exists");
               }

               for (int i = 0; i < table.Rows.Count; i++)
               {
                   DataRow row = table.Rows[i];
                   DataRow copyRow = copyTable.NewRow();

                   copyRow.ItemArray = row.ItemArray;
                   copyTable.Rows.Add(copyRow);
               }
           } // if (type == ...
           // if source represents a row
           else
           {
               if (copyType == PathType.Row)
               {
                   if (!Force && (copyRowNumber < copyTable.Rows.Count))
                   {
                       throw new ArgumentException("Specified path already 
exists.");
                   }

                   DataRow row = table.Rows[rowNumber];
                   DataRow copyRow = null;

                   if (copyRowNumber < copyTable.Rows.Count)
                   {
                       // copy to an existing row
                       copyRow = copyTable.Rows[copyRowNumber];
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                   }



The System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method removes the item at the specified path. The PowerShell engine calls this method
when a user calls the Microsoft.PowerShell.Commands.RemoveItemCommand cmdlet.

C#

                   else if (copyRowNumber == copyTable.Rows.Count)
                   {
                       // copy to the next row in the table that will
                       // be created
                       copyRow = copyTable.NewRow();
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                       copyTable.Rows.Add(copyRow);
                   }
                   else
                   {
                       // attempting to copy to a nonexistent row or a row
                       // that cannot be created now - throw an exception
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                             "The item cannot be specified 
to the copied row. Specify row number as {0}, or specify a path to the 
table.",
                                                    table.Rows.Count);

                       throw new ArgumentException(message);
                   }
               }
               else
               {
                   // destination path specified represents a table,
                   // create a new row and copy the item
                   DataRow copyRow = copyTable.NewRow();
                   copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                   copyRow[0] = GetNextID(copyTable);
                   copyTable.Rows.Add(copyRow);
               }
           }

           if (ShouldProcess(copyTableName, "CopyItems"))
           {
               cda.Update(cds, copyTableName);
           }

       } //CopyItem

Implementing RemoveItem

protected override void RemoveItem(string path, bool recurse)
       {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.removeitemcommand


           string tableName;
           int rowNumber = 0;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               // if recurse flag has been specified, delete all the rows as 
well
               if (recurse)
               {
                   OdbcDataAdapter da = GetAdapterForTable(tableName);
                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   for (int i = 0; i < table.Rows.Count; i++)
                   {
                       table.Rows[i].Delete();
                   }

                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       da.Update(ds, tableName);
                       RemoveTable(tableName);
                   }
               }//if (recurse...
               else
               {
                   // Remove the table
                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       RemoveTable(tableName);
                   }
               }
           }
           else if (type == PathType.Row)
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               table.Rows[rowNumber].Delete();

               if (ShouldProcess(path, "RemoveItem"))



A typical real-world provider is capable of moving items from one path to another
within the drive. For an example of a provider that supports moving items, see Writing a
navigation provider.

Writing a navigation provider

Windows PowerShell Provider Overview

               {
                   da.Update(ds, tableName);
               }
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       }

Next steps

See Also



Writing a navigation provider
Article • 03/24/2025

This topic describes how to implement the methods of a Windows PowerShell provider
that support nested containers (multi-level data stores), moving items, and relative
paths. A navigation provider must derive from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

The provider in the examples in this topic uses an Access database as its data store.
There are several helper methods and classes that are used to interact with the
database. For the complete sample that includes the helper methods, see
AccessDBProviderSample05.

For more information about Windows PowerShell providers, see Windows PowerShell
Provider Overview.

The System.Management.Automation.Provider.NavigationCmdletProvider class
implements methods that support nested containers, relative paths, and moving items.
For a complete list of these methods, see NavigationCmdletProvider Methods.

Declare the provider to derive from the
System.Management.Automation.Provider.NavigationCmdletProvider class, and

Implementing navigation methods

７ Note

This topic builds on the information in Windows PowerShell Provider QuickStart.
This topic does not cover the basics of how to set up a provider project, or how to
implement the methods inherited from the
System.Management.Automation.Provider.DriveCmdletProvider class that create
and remove drives. This topic also does not cover how to implement methods
exposed by the System.Management.Automation.Provider.ItemCmdletProvider or
System.Management.Automation.Provider.ContainerCmdletProvider classes. For
an example that shows how to implement item cmdlets, see Writing an item
provider. For an example that shows how to implement container cmdlets, see
Writing a container provider.

Declaring the provider class

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.provider.navigationcmdletprovider#methods
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider


decorate it with the System.Management.Automation.Provider.CmdletProviderAttribute.

The
System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer*
method checks whether the item at the specified path is a container.

C#

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : NavigationCmdletProvider
   {

   }

Implementing IsItemContainer

protected override bool IsItemContainer(string path)
      {
         if (PathIsDrive(path))
         {
             return true;
         }

         string[] pathChunks = ChunkPath(path);
         string tableName;
         int rowNumber;

         PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

         if (type == PathType.Table)
         {
            foreach (DatabaseTableInfo ti in GetTables())
            {
                if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
                {
                    return true;
                }
            } // foreach (DatabaseTableInfo...
         } // if (pathChunks...

         return false;
      }

Implementing GetChildName

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer


The
System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName*
method gets the name property of the child item at the specified path. If the item at the
specified path is not a child of a container, then this method should return the path.

C#

The
System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath*
method gets the path of the parent of the item at the specified path. If the item at the
specified path is the root of the data store (so it has no parent), then this method should
return the root path.

C#

protected override string GetChildName(string path)
       {
           if (PathIsDrive(path))
           {
               return path;
           }

           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               return tableName;
           }
           else if (type == PathType.Row)
           {
               return rowNumber.ToString(CultureInfo.CurrentCulture);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

           return null;
       }

Implementing GetParentPath

protected override string GetParentPath(string path, string root)
       {
           // If root is specified then the path has to contain

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath


The System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*
method joins a specified parent path and a specified child path to create a provider-
internal path (for information about path types that providers can support, see Windows
PowerShell Provider Overview. The PowerShell engine calls this method when a user
calls the Microsoft.PowerShell.Commands.JoinPathCommand cmdlet.

C#

           // the root. If not nothing should be returned
           if (!String.IsNullOrEmpty(root))
           {
               if (!path.Contains(root))
               {
                   return null;
               }
           }

           return path.Substring(0, path.LastIndexOf(pathSeparator, 
StringComparison.OrdinalIgnoreCase));
       }

Implementing MakePath

protected override string MakePath(string parent, string child)
       {
           string result;

           string normalParent = NormalizePath(parent);
           normalParent = RemoveDriveFromPath(normalParent);
           string normalChild = NormalizePath(child);
           normalChild = RemoveDriveFromPath(normalChild);

           if (String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               result = String.Empty;
           }
           else if (String.IsNullOrEmpty(normalParent) && 
!String.IsNullOrEmpty(normalChild))
           {
               result = normalChild;
           }
           else if (!String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               if (normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent;
               }
               else

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.joinpathcommand


The
System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelative
Path* method takes path  and basepath  parameters, and returns a normalized path that
is equivalent to the path  parameter and relative to the basepath  parameter.

C#

               {
                   result = normalParent + pathSeparator;
               }
           } // else if (!String...
           else
           {
               if (!normalParent.Equals(String.Empty) &&
                   !normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent + pathSeparator;
               }
               else
               {
                   result = normalParent;
               }

               if (normalChild.StartsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result += normalChild.Substring(1);
               }
               else
               {
                   result += normalChild;
               }
           } // else

           return result;
       }

Implementing NormalizeRelativePath

protected override string NormalizeRelativePath(string path,
                                                            string basepath)
       {
           // Normalize the paths first
           string normalPath = NormalizePath(path);
           normalPath = RemoveDriveFromPath(normalPath);
           string normalBasePath = NormalizePath(basepath);
           normalBasePath = RemoveDriveFromPath(normalBasePath);

           if (String.IsNullOrEmpty(normalBasePath))
           {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath


The System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method moves an item from the specified path to the specified destination path. The
PowerShell engine calls this method when a user calls the
Microsoft.PowerShell.Commands.MoveItemCommand cmdlet.

C#

               return normalPath;
           }
           else
           {
               if (!normalPath.Contains(normalBasePath))
               {
                   return null;
               }

               return normalPath.Substring(normalBasePath.Length + 
pathSeparator.Length);
           }
       }

Implementing MoveItem

protected override void MoveItem(string path, string destination)
       {
           // Get type, table name and rowNumber from the path
           string tableName, destTableName;
           int rowNumber, destRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           PathType destType = GetNamesFromPath(destination, out 
destTableName,
                                    out destRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (destType == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(destination);
           }

           if (type == PathType.Table)
           {
               ArgumentException e = new ArgumentException("Move not 
supported for tables");

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.moveitemcommand


Writing a container provider

               WriteError(new ErrorRecord(e, "MoveNotSupported",
                   ErrorCategory.InvalidArgument, path));

               throw e;
           }
           else
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               OdbcDataAdapter dda = GetAdapterForTable(destTableName);
               if (dda == null)
               {
                   return;
               }

               DataSet dds = GetDataSetForTable(dda, destTableName);
               DataTable destTable = GetDataTable(dds, destTableName);
               DataRow row = table.Rows[rowNumber];

               if (destType == PathType.Table)
               {
                   DataRow destRow = destTable.NewRow();

                   destRow.ItemArray = row.ItemArray;
               }
               else
               {
                   DataRow destRow = destTable.Rows[destRowNumber];

                   destRow.ItemArray = row.ItemArray;
               }

               // Update the changes
               if (ShouldProcess(path, "MoveItem"))
               {
                   WriteItemObject(row, path, false);
                   dda.Update(dds, destTableName);
               }
           }
       }

See Also



Windows PowerShell Provider Overview



Provider Samples
Article • 03/24/2025

This section includes samples of providers that access a Microsoft Access database.
These samples include provider classes that derive from all the base provider classes.

This section includes the following topics:

AccessDBProviderSample01 Sample This sample shows how to declare the provider
class that derives directly from the
System.Management.Automation.Provider.CmdletProvider class. It is included here only
for completeness.

AccessDBProviderSample02 This sample shows how to overwrite the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* and
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* methods
to support calls to the New-PSDrive  and Remove-PSDrive  cmdlets. The provider class in
this sample derives from the
System.Management.Automation.Provider.DriveCmdletProvider class.

AccessDBProviderSample03 This sample shows how to overwrite the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* and
System.Management.Automation.Provider.ItemCmdletProvider.SetItem* methods to
support calls to the Get-Item  and Set-Item  cmdlets. The provider class in this sample
derives from the System.Management.Automation.Provider.ItemCmdletProvider class.

AccessDBProviderSample04 This sample shows how to overwrite container methods to
support calls to the Copy-Item , Get-ChildItem , New-Item , and Remove-Item  cmdlets.
These methods should be implemented when the data store contains items that are
containers. A container is a group of child items under a common parent item. The
provider class in this sample derives from the
System.Management.Automation.Provider.ContainerCmdletProvider class.

AccessDBProviderSample05 This sample shows how to overwrite container methods to
support calls to the Move-Item  and Join-Path  cmdlets. These methods should be
implemented when the user needs to move items within a container and if the data
store contains nested containers. The provider class in this sample derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

In This Section

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


AccessDBProviderSample06 This sample shows how to overwrite content methods to
support calls to the Clear-Content , Get-Content , and Set-Content  cmdlets. These
methods should be implemented when the user needs to manage the content of the
items in the data store. The provider class in this sample derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class, and it
implements the System.Management.Automation.Provider.IContentCmdletProvider
interface.

Writing a Windows PowerShell Provider

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5


AccessDBProviderSample01
Article • 03/24/2025

This sample shows how to declare a provider class that derives directly from the
System.Management.Automation.Provider.CmdletProvider class. It is included here only
for completeness.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.

Defining a provider class that derives directly from the
System.Management.Automation.Provider.CmdletProvider class.

This sample shows how to define a provider class and how to declare the
CmdletProvider  attribute.

C#

Demonstrates

） Important

Your provider class will most likely derive from one of the following classes and
possibly implement other provider interfaces:

System.Management.Automation.Provider.ItemCmdletProvider class. See

AccessDBProviderSample03.
System.Management.Automation.Provider.ContainerCmdletProvider class.

See AccessDBProviderSample04.

System.Management.Automation.Provider.NavigationCmdletProvider class.

See AccessDBProviderSample05.

For more information about choosing which provider class to derive from based on
provider features, see Designing Your Windows PowerShell Provider.

Example

using System.Management.Automation;
using System.Management.Automation.Provider;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

Designing Your Windows PowerShell Provider

using System.ComponentModel;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// Simple provider.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : CmdletProvider
   {

   }

   #endregion AccessDBProvider
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


AccessDBProviderSample02
Article • 03/24/2025

This sample shows how to overwrite the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* and
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* methods
to support calls to the New-PSDrive  and Remove-PSDrive  cmdlets. The provider class in
this sample derives from the
System.Management.Automation.Provider.DriveCmdletProvider class.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.

Defining a provider class that drives from the
System.Management.Automation.Provider.DriveCmdletProvider class.

Overwriting the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* method
to support creating new drives. (This sample does not show how to add dynamic
parameters to the New-PSDrive  cmdlet.)

Demonstrates

） Important

Your provider class will most likely derive from one of the following classes and
possibly implement other provider interfaces:

System.Management.Automation.Provider.ItemCmdletProvider class. See
AccessDBProviderSample03.

System.Management.Automation.Provider.ContainerCmdletProvider class.

See AccessDBProviderSample04.

System.Management.Automation.Provider.NavigationCmdletProvider class.

See AccessDBProviderSample05.

For more information about choosing which provider class to derive from based on
provider features, see Designing Your Windows PowerShell Provider.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


Overwriting the
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive*
method to support removing existing drives.

This sample shows how to overwrite the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* and
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* methods.
For this sample provider, when a drive is created its connection information is stored in
an AccessDBPsDriveInfo  object.

C#

Example

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// A PowerShell Provider which acts upon a access data store.
   /// </summary>
   /// <remarks>
   /// This example only demonstrates the drive overrides
   /// </remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : DriveCmdletProvider
   {
       #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive


           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"), 
                   "NullDrive",
                   ErrorCategory.InvalidArgument, 
                   null)
               );
            
               return null;
           }
        
           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"), 
                   "NoRoot",
                   ErrorCategory.InvalidArgument, 
                   drive)
               );
 
               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);
          
           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {



               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"), 
                   "NullDrive",
                   ErrorCategory.InvalidArgument, 
                   drive)
               );

              return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();
         
           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

   } // AccessDBProvider

   #endregion AccessDBProvider

   #region AccessDBPSDriveInfo

   /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }



System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

Designing Your Windows PowerShell Provider

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


AccessDBProviderSample03
Article • 03/24/2025

This sample shows how to overwrite the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* and
System.Management.Automation.Provider.ItemCmdletProvider.SetItem* methods to
support calls to the Get-Item  and Set-Item  cmdlets. The provider class in this sample
derives from the System.Management.Automation.Provider.ItemCmdletProvider class.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.
Defining a provider class that derives from the
System.Management.Automation.Provider.ItemCmdletProvider class.
Overwriting the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* method
to change the behavior of the New-PSDrive  cmdlet, allowing the user to create new
drives. (This sample does not show how to add dynamic parameters to the New-
PSDrive  cmdlet.)
Overwriting the
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive*
method to support removing existing drives.

Demonstrates

） Important

Your provider class will most likely derive from one of the following classes and
possibly implement other provider interfaces:

System.Management.Automation.Provider.ItemCmdletProvider class.

System.Management.Automation.Provider.ContainerCmdletProvider class.

See AccessDBProviderSample04.
System.Management.Automation.Provider.NavigationCmdletProvider class.

See AccessDBProviderSample05.

For more information about choosing which provider class to derive from based on
provider features, see Designing Your Windows PowerShell Provider.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


Overwriting the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* method
to change the behavior of the Get-Item  cmdlet, allowing the user to retrieve items
from the data store. (This sample does not show how to add dynamic parameters
to the Get-Item  cmdlet.)
Overwriting the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem* method to
change the behavior of the Set-Item  cmdlet, allowing the user to update the items
in the data store. (This sample does not show how to add dynamic parameters to
the Get-Item  cmdlet.)
Overwriting the
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists* method
to change the behavior of the Test-Path  cmdlet. (This sample does not show how
to add dynamic parameters to the Test-Path  cmdlet.)
Overwriting the
System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath*
method to determine if the provided path is valid.

This sample shows how to overwrite the methods needed to get and set items in a
Microsoft Access data base.

C#

Example

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Collections.ObjectModel;
using System.Text;
using System.Diagnostics;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
    /// A PowerShell Provider which acts upon a access database.
    /// </summary>
    /// <remarks>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath


    /// This example implements the item overloads.
    /// </remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]

   public class AccessDBProvider : ItemCmdletProvider
   {
      #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();



           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString); 
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

       #region Item Methods

      /// <summary>
      /// Retrieves an item using the specified path.
      /// </summary>
      /// <param name="path">The path to the item to return.</param>
      protected override void GetItem(string path)
      {
          // check if the path represented is a drive



          if (PathIsDrive(path))
          {
              WriteItemObject(this.PSDriveInfo, path, true);
              return;
          }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }



           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 



rowNumber);

           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)



               {
                   result = false;
               }
           }
           return result;
       } // IsValidPath

       #endregion Item Overloads

      #region Helper Methods

      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

             )
          {
              return true;
          }
          else
          {
              return false;
          }
      } // PathIsDrive

      /// <summary>
      /// Breaks up the path into individual elements.
      /// </summary>
      /// <param name="path">The path to split.</param>
      /// <returns>An array of path segments.</returns>
      private string[] ChunkPath(string path)
      {
          // Normalize the path before splitting
          string normalPath = NormalizePath(path);

          // Return the path with the drive name and first path 
          // separator character removed, split by the path separator.
          string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                         + pathSeparator, "");

          return pathNoDrive.Split(pathSeparator.ToCharArray());



      } // ChunkPath

      /// <summary>
      /// Adapts the path, making sure the correct path separator
      /// character is used.
      /// </summary>
      /// <param name="path"></param>
      /// <returns></returns>
      private string NormalizePath(string path)
      {
          string result = path;

          if (!String.IsNullOrEmpty(path))
          {
              result = path.Replace("/", pathSeparator);
          }

          return result;
      } // NormalizePath

      /// <summary>
      /// Chunks the path and returns the table name and the row number 
      /// from the path
      /// </summary>
      /// <param name="path">Path to chunk and obtain information</param>
      /// <param name="tableName">Name of the table as represented in the 
      /// path</param>
      /// <param name="rowNumber">Row number obtained from the path</param>
      /// <returns>what the path represents</returns>
      private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
      {
          PathType retVal = PathType.Invalid;
          rowNumber = -1;
          tableName = null;

          // Check if the path specified is a drive
          if (PathIsDrive(path))
          {
              return PathType.Database;
          }

          // chunk the path into parts
          string[] pathChunks = ChunkPath(path);

          switch (pathChunks.Length)
          {
              case 1:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                          retVal = PathType.Table;



                      }
                  }
                  break;

              case 2:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                      }

                      int number = SafeConvertRowNumber(pathChunks[1]);

                      if (number >= 0)
                      {
                          rowNumber = number;
                          retVal = PathType.Row;
                      }
                      else
                      {
                          WriteError(new ErrorRecord(
                              new ArgumentException("Row number is not 
valid"),
                              "RowNumberNotValid",
                              ErrorCategory.InvalidArgument,
                              path));
                      }
                  }
                  break;

              default:
                  {
                      WriteError(new ErrorRecord(
                          new ArgumentException("The path supplied has too 
many segments"),
                          "PathNotValid",
                          ErrorCategory.InvalidArgument,
                          path));
                  }
                  break;
          } // switch(pathChunks...

          return retVal;
      } // GetNamesFromPath

      /// <summary>
      /// Throws an argument exception stating that the specified path does
      /// not represent either a table or a row
      /// </summary>
      /// <param name="path">path which is invalid</param>
      private void ThrowTerminatingInvalidPathException(string path)
      {
          StringBuilder message = new StringBuilder("Path must represent 



either a table or a row :");
          message.Append(path);

          throw new ArgumentException(message.ToString());
      }

      /// <summary>
      /// Retrieve the list of tables from the database.
      /// </summary>
      /// <returns>
      /// Collection of DatabaseTableInfo objects, each object representing
      /// information about one database table
      /// </returns>
      private Collection<DatabaseTableInfo> GetTables()
      {
          Collection<DatabaseTableInfo> results =
                  new Collection<DatabaseTableInfo>();

          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null)
          {
              return null;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");
          int count;

          // iterate through all rows in the schema and create 
DatabaseTableInfo
          // objects which represents a table
          foreach (DataRow dr in dt.Rows)
          {
              String tableName = dr["TABLE_NAME"] as String;
              DataColumnCollection columns = null;

              // find the number of rows in the table
              try
              {
                  String cmd = "Select count(*) from \"" + tableName + "\"";
                  OdbcCommand command = new OdbcCommand(cmd, connection);

                  count = (Int32)command.ExecuteScalar();
              }
              catch
              {
                  count = 0;
              }

              // create DatabaseTableInfo object representing the table
              DatabaseTableInfo table =
                      new DatabaseTableInfo(dr, tableName, count, columns);



              results.Add(table);
          } // foreach (DataRow...

          return results;
      } // GetTables

      /// <summary>
      /// Return row information from a specified table.
      /// </summary>
      /// <param name="tableName">The name of the database table from 
      /// which to retrieve rows.</param>
      /// <returns>Collection of row information objects.</returns>
      private Collection<DatabaseRowInfo> GetRows(string tableName)
      {
          Collection<DatabaseRowInfo> results =
                      new Collection<DatabaseRowInfo>();

          // Obtain rows in the table and add it to the collection
          try
          {
              OdbcDataAdapter da = GetAdapterForTable(tableName);

              if (da == null)
              {
                  return null;
              }

              DataSet ds = GetDataSetForTable(da, tableName);
              DataTable table = GetDataTable(ds, tableName);

              int i = 0;
              foreach (DataRow row in table.Rows)
              {
                  results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                  i++;
              } // foreach (DataRow...
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                  ErrorCategory.InvalidOperation, tableName));
          }

          return results;

      } // GetRows

      /// <summary>
      /// Retrieve information about a single table.
      /// </summary>
      /// <param name="tableName">The table for which to retrieve 
      /// data.</param>
      /// <returns>Table information.</returns>



      private DatabaseTableInfo GetTable(string tableName)
      {
          foreach (DatabaseTableInfo table in GetTables())
          {
              if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
              {
                  return table;
              }
          }

          return null;
      } // GetTable

      /// <summary>
      /// Obtain a data adapter for the specified Table
      /// </summary>
      /// <param name="tableName">Name of the table to obtain the 
      /// adapter for</param>
      /// <returns>Adapter object for the specified table</returns>
      /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
      /// representation of table) and the data source</remarks>
      private OdbcDataAdapter GetAdapterForTable(string tableName)
      {
          OdbcDataAdapter da = null;
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
          {
              return null;
          }

          OdbcConnection connection = di.Connection;

          try
          {
              // Create a odbc data adpater. This can be sued to update the
              // data source with the records that will be created here
              // using data sets
              string sql = "Select * from " + tableName;
              da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

              // Create a odbc command builder object. This will create sql
              // commands automatically for a single table, thus
              // eliminating the need to create new sql statements for 
              // every operation to be done.
              OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

              // Open the connection if its not already open                 
              if (connection.State != ConnectionState.Open)
              {
                  connection.Open();
              }



          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                ErrorCategory.InvalidOperation, tableName));
          }

          return da;
      } // GetAdapterForTable

      /// <summary>
      /// Gets the DataSet (in memory representation) for the table
      /// for the specified adapter
      /// </summary>
      /// <param name="adapter">Adapter to be used for obtaining 
      /// the table</param>
      /// <param name="tableName">Name of the table for which a 
      /// DataSet is required</param>
      /// <returns>The DataSet with the filled in schema</returns>
      private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
      {
          Debug.Assert(adapter != null);

          // Create a dataset object which will provide an in-memory
          // representation of the data being worked upon in the 
          // data source. 
          DataSet ds = new DataSet();

          // Create a table named "Table" which will contain the same
          // schema as in the data source.
          //adapter.FillSchema(ds, SchemaType.Source);
          adapter.Fill(ds, tableName);
          ds.Locale = CultureInfo.InvariantCulture;

          return ds;
      } //GetDataSetForTable

      /// <summary>
      /// Get the DataTable object which can be used to operate on
      /// for the specified table in the data source
      /// </summary>
      /// <param name="ds">DataSet object which contains the tables
      /// schema</param>
      /// <param name="tableName">Name of the table</param>
      /// <returns>Corresponding DataTable object representing 
      /// the table</returns>
      /// 
      private DataTable GetDataTable(DataSet ds, string tableName)
      {
          Debug.Assert(ds != null);
          Debug.Assert(tableName != null);

          DataTable table = ds.Tables[tableName];
          table.Locale = CultureInfo.InvariantCulture;



          return table;
      } // GetDataTable

      /// <summary>
      /// Retrieves a single row from the named table.
      /// </summary>
      /// <param name="tableName">The table that contains the 
      /// numbered row.</param>
      /// <param name="row">The index of the row to return.</param>
      /// <returns>The specified table row.</returns>
      private DatabaseRowInfo GetRow(string tableName, int row)
      {
          Collection<DatabaseRowInfo> di = GetRows(tableName);

          // if the row is invalid write an appropriate error else return 
the 
          // corresponding row information
          if (row < di.Count && row >= 0)
          {
              return di[row];
          }
          else
          {
              WriteError(new ErrorRecord(
                 new ItemNotFoundException(),
                 "RowNotFound",
                 ErrorCategory.ObjectNotFound,
                 row.ToString(CultureInfo.CurrentCulture))
              );
          }

          return null;
      } // GetRow

      /// <summary>
      /// Method to safely convert a string representation of a row number 
      /// into its Int32 equivalent
      /// </summary>
      /// <param name="rowNumberAsStr">String representation of the row 
      /// number</param>
      /// <remarks>If there is an exception, -1 is returned</remarks>
      private int SafeConvertRowNumber(string rowNumberAsStr)
      {
          int rowNumber = -1;
          try
          {
              rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
          }
          catch (FormatException fe)
          {
              WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }



          catch (OverflowException oe)
          {
              WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }

          return rowNumber;
      } // SafeConvertRowNumber

      /// <summary>
      /// Check if a table name is valid
      /// </summary>
      /// <param name="tableName">Table name to validate</param>
      /// <remarks>Helps to check for SQL injection attacks</remarks>
      private bool TableNameIsValid(string tableName)
      {
          Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

          if (exp.IsMatch(tableName))
          {
              return true;
          }
          WriteError(new ErrorRecord(
              new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
          return false;
      } // TableNameIsValid

      /// <summary>
      /// Checks to see if the specified table is present in the
      /// database
      /// </summary>
      /// <param name="tableName">Name of the table to check</param>
      /// <returns>true, if table is present, false otherwise</returns>
      private bool TableIsPresent(string tableName)
      {
          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
          if (di == null)
          {
              return false;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");

          // check if the specified tableName is available
          // in the list of tables present in the database
          foreach (DataRow dr in dt.Rows)
          {
              string name = dr["TABLE_NAME"] as string;



              if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
              {
                  return true;
              }
          }

          WriteError(new ErrorRecord(
              new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                   ErrorCategory.InvalidArgument, tableName));

          return false;
      }// TableIsPresent

      #endregion Helper Methods

      #region Private Properties

      private string pathSeparator = "\\";
      private static string pattern = @"^[a-z]+[0-9]*_*$";

      private enum PathType { Database, Table, Row, Invalid };

      #endregion Private Properties
  }

   #endregion AccessDBProvider

   #region Helper Classes

  #region AccessDBPSDriveInfo

  /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)



           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo

   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;
           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount
       {
           get
           {
               return rowCount;



           }
           set
           {
               rowCount = value;
           }
       }
       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo
   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {
       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data



System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


Designing Your Windows PowerShell Provider



AccessDBProviderSample04
Article • 03/24/2025

This sample shows how to overwrite container methods to support calls to the Copy-
Item , Get-ChildItem , New-Item , and Remove-Item  cmdlets. These methods should be
implemented when the data store contains items that are containers. A container is a
group of child items under a common parent item. The provider class in this sample
derives from the System.Management.Automation.Provider.ContainerCmdletProvider
class.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.
Defining a provider class that derives from the
System.Management.Automation.Provider.ContainerCmdletProvider class.
Overwriting the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
method to change the behavior of the Copy-Item  cmdlet which allows the user to
copy items from one location to another. (This sample does not show how to add
dynamic parameters to the Copy-Item  cmdlet.)
Overwriting the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method to change the behavior of the Get-ChildItems cmdlet, which allows the
user to retrieve the child items of the parent item. (This sample does not show how
to add dynamic parameters to the Get-ChildItems cmdlet.)
Overwriting the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildName
s* method to change the behavior of the Get-ChildItems cmdlet when the Name
parameter of the cmdlet is specified.
Overwriting the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*

Demonstrates

） Important

Your provider class will most likely derive from the
System.Management.Automation.Provider.NavigationCmdletProvider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


method to change the behavior of the New-Item  cmdlet, which allows the user to
add items to the data store. (This sample does not show how to add dynamic
parameters to the New-Item  cmdlet.)
Overwriting the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method to change the behavior of the Remove-Item  cmdlet. (This sample does not
show how to add dynamic parameters to the Remove-Item  cmdlet.)

This sample shows how to overwrite the methods needed to copy, create, and remove
items, as well as methods for getting the child items of a parent item.

C#

Example

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Data.OleDb;
using System.Diagnostics;
using System.Collections.ObjectModel;
using System.Text;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// A PowerShell Provider which acts upon an Access database
   /// </summary>
   /// <remarks>
   /// This example implements the container overloads</remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : ContainerCmdletProvider
   {      

       #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem


       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>



       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

       #region Item Methods

       /// <summary>
       /// Retrieves an item using the specified path.
       /// </summary>
       /// <param name="path">The path to the item to return.</param>
       protected override void GetItem(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               WriteItemObject(this.PSDriveInfo, path, true);
               return;
           }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 



rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }

           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)



           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;



               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {
                   result = false;
               }
           }
           return result;
       } // IsValidPath

       #endregion Item Overloads

       #region Container Overloads

       /// <summary>



       /// Return either the tables in the database or the datarows
       /// </summary>
       /// <param name="path">The path to the parent</param>
       /// <param name="recurse">True to return all child items recursively.
       /// </param>
       protected override void GetChildItems(string path, bool recurse)
       {
           // If path represented is a drive then the children in the path 
are 
           // tables. Hence all tables in the drive represented will have to 
be
           // returned
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table, path, true);

                   // if the specified item exists and recurse has been set 
then 
                   // all child items within it have to be obtained as well
                   if (ItemExists(path) && recurse)
                   {
                       GetChildItems(path + pathSeparator + table.Name, 
recurse);
                   }
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get the table name, row number and type of path from the
               // path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Obtain all the rows within the table
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);
                   WriteItemObject(row, path + pathSeparator + 



row.RowNumber,
                               false);
               }
               else
               {
                   // In this case, the path specified is not valid
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildItems

       /// <summary>
       /// Return the names of all child items.
       /// </summary>
       /// <param name="path">The root path.</param>
       /// <param name="returnContainers">Not used.</param>
       protected override void GetChildNames(string path,
                                     ReturnContainers returnContainers)
       {
           // If the path represented is a drive, then the child items are
           // tables. get the names of all the tables in the drive.
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table.Name, path, true);
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get type, table name and row number from path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Get all the rows in the table and then write out the 
                   // row numbers.
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row.RowNumber, path, false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);

                   WriteItemObject(row.RowNumber, path, false);
               }



               else
               {
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildNames

       /// <summary>
       /// Determines if the specified path has child items.
       /// </summary>
       /// <param name="path">The path to examine.</param>
       /// <returns>
       /// True if the specified path has child items.
       /// </returns>
       protected override bool HasChildItems(string path)
       {
           if (PathIsDrive(path))
           {
               return true;
           }

           return (ChunkPath(path).Length == 1);
       } // HasChildItems

       /// <summary>
       /// Creates a new item at the specified path.
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the new item.
       /// </param>
       /// 
       /// <param name="type">
       /// Type for the object to create. "Table" for creating a new table 
and
       /// "Row" for creating a new row in a table.
       /// </param>
       /// 
       /// <param name="newItemValue">
       /// Object for creating new instance of a type at the specified path. 
For
       /// creating a "Table" the object parameter is ignored and for 
creating
       /// a "Row" the object must be of type string which will contain 
comma 
       /// separated values of the rows to insert.
       /// </param>
       protected override void NewItem(string path, string type,
                                   object newItemValue)
       {
           string tableName;
           int rowNumber;

           PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);



           if (pt == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           // Check if type is either "table" or "row", if not throw an 
           // exception
           if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
               && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
           {
               WriteError(new ErrorRecord
                                 (new ArgumentException("Type must be either 
a table or row"),
                                     "CannotCreateSpecifiedObject",
                                        ErrorCategory.InvalidArgument,
                                             path
                                  )
                         );

               throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
           }

           // Path type is the type of path of the container. So if a drive
           // is specified, then a table can be created under it and if a 
table
           // is specified, then a row can be created under it. For the sake 
of 
           // completeness, if a row is specified, then if the row specified 
by
           // the path does not exist, a new row is created. However, the 
row 
           // number may not match as the row numbers only get incremented 
based 
           // on the number of rows

           if (PathIsDrive(path))
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   // Execute command using ODBC connection to create a 
table
                   try
                   {
                       // create the table using an sql statement
                       string newTableName = newItemValue.ToString();

                       if (!TableNameIsValid(newTableName))
                       {
                           return;
                       }



                       string sql = "create table " + newTableName 
                                            + " (ID INT)";

                       // Create the table using the Odbc connection from 
the 
                       // drive.
                       AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                       if (di == null)
                       {
                           return;
                       }
                       OdbcConnection connection = di.Connection;

                       if (ShouldProcess(newTableName, "create"))
                       {
                           OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                           cmd.ExecuteScalar();
                       }
                   }
                   catch (Exception ex)
                   {
                       WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                 ErrorCategory.InvalidOperation, path)
                                 );
                   }
               } // if (String...
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   throw new
                       ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
               }
           }// if (PathIsDrive...
           else
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   if (rowNumber < 0)
                   {
                       throw new
                           ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                   }
                   else
                   {
                       throw new
                           ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                   }



               } //if (String.Equals....
               // if path specified is a row, create a new row
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   // The user is required to specify the values to be 
inserted 
                   // into the table in a single string separated by commas
                   string value = newItemValue as string;

                   if (String.IsNullOrEmpty(value))
                   {
                       throw new
                           ArgumentException("Value argument must have comma 
separated values of each column in a row");
                   }
                   string[] rowValues = value.Split(',');

                   OdbcDataAdapter da = GetAdapterForTable(tableName);

                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   if (rowValues.Length != table.Columns.Count)
                   {
                       string message =
                            String.Format(CultureInfo.CurrentCulture,
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                       throw new ArgumentException(message);
                   }

                   if (!Force && (rowNumber >=0 && rowNumber < 
table.Rows.Count))
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                                        "The row {0} already 
exists. To create a new row specify row number as {1}, or specify path to a 
table, or use the -Force parameter",
                                                            rowNumber, 
table.Rows.Count);

                       throw new ArgumentException(message);
                   }
                   
                   if (rowNumber > table.Rows.Count)
                   {



                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   // Create a new row and update the row with the input
                   // provided by the user
                   DataRow row = table.NewRow();
                   for (int i = 0; i < rowValues.Length; i++)
                   {
                       row[i] = rowValues[i];
                   }
                   table.Rows.Add(row);

                   if (ShouldProcess(tableName, "update rows"))
                   {
                       // Update the table from memory back to the data 
source
                       da.Update(ds, tableName);
                   }

               }// else if (String...
           }// else ...

       } // NewItem

       /// <summary>
       /// Copies an item at the specified path to the location specified
       /// </summary>
       /// 
       /// <param name="path">
       /// Path of the item to copy
       /// </param>
       /// 
       /// <param name="copyPath">
       /// Path of the item to copy to
       /// </param>
       /// 
       /// <param name="recurse">
       /// Tells the provider to recurse subcontainers when copying
       /// </param>
       /// 
       protected override void CopyItem(string path, string copyPath, bool 
recurse)
       {
           string tableName, copyTableName;
           int rowNumber, copyRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           PathType copyType = GetNamesFromPath(copyPath, out copyTableName, 



out copyRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(copyPath);
           }

           // Get the table and the table to copy to 
           OdbcDataAdapter da = GetAdapterForTable(tableName);
           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);
           
           OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
           if (cda == null)
           {
               return;
           }

           DataSet cds = GetDataSetForTable(cda, copyTableName);
           DataTable copyTable = GetDataTable(cds, copyTableName);

           // if source represents a table
           if (type == PathType.Table)
           {
               // if copyPath does not represent a table
               if (copyType != PathType.Table)
               {
                   ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                   WriteError(new ErrorRecord(e, "PathNotValid",
                       ErrorCategory.InvalidArgument, copyPath));

                   throw e;
               }

               // if table already exists then force parameter should be set 
               // to force a copy
               if (!Force && GetTable(copyTableName) != null)
               {
                   throw new ArgumentException("Specified path already 
exists");
               }

               for (int i = 0; i < table.Rows.Count; i++)



               {
                   DataRow row = table.Rows[i];
                   DataRow copyRow = copyTable.NewRow();

                   copyRow.ItemArray = row.ItemArray;
                   copyTable.Rows.Add(copyRow);
               }
           } // if (type == ...
           // if source represents a row
           else
           {
               if (copyType == PathType.Row)
               {
                   if (!Force && (copyRowNumber < copyTable.Rows.Count))
                   {
                       throw new ArgumentException("Specified path already 
exists.");
                   }

                   DataRow row = table.Rows[rowNumber];
                   DataRow copyRow = null;

                   if (copyRowNumber < copyTable.Rows.Count)
                   {
                       // copy to an existing row
                       copyRow = copyTable.Rows[copyRowNumber];
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                   }
                   else if (copyRowNumber == copyTable.Rows.Count)
                   {
                       // copy to the next row in the table that will 
                       // be created
                       copyRow = copyTable.NewRow();
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                       copyTable.Rows.Add(copyRow);
                   }
                   else
                   {
                       // attempting to copy to a nonexistent row or a row
                       // that cannot be created now - throw an exception
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                             "The item cannot be specified 
to the copied row. Specify row number as {0}, or specify a path to the 
table.",
                                                    table.Rows.Count);

                       throw new ArgumentException(message);
                   }
               }
               else
               {
                   // destination path specified represents a table, 



                   // create a new row and copy the item
                   DataRow copyRow = copyTable.NewRow();
                   copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                   copyRow[0] = GetNextID(copyTable);
                   copyTable.Rows.Add(copyRow);
               }
           } 

           if (ShouldProcess(copyTableName, "CopyItems"))
           {
               cda.Update(cds, copyTableName);
           }

       } //CopyItem

       /// <summary>
       /// Removes (deletes) the item at the specified path
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to remove.
       /// </param>
       /// 
       /// <param name="recurse">
       /// True if all children in a subtree should be removed, false if 
only
       /// the item at the specified path should be removed. Is applicable
       /// only for container (table) items. Its ignored otherwise (even if
       /// specified).
       /// </param>
       /// 
       /// <remarks>
       /// There are no elements in this store which are hidden from the 
user.
       /// Hence this method will not check for the presence of the Force
       /// parameter
       /// </remarks>
       /// 
       protected override void RemoveItem(string path, bool recurse)
       {
           string tableName;
           int rowNumber = 0;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           
           if (type == PathType.Table)
           {
               // if recurse flag has been specified, delete all the rows as 
well
               if (recurse)
               {
                   OdbcDataAdapter da = GetAdapterForTable(tableName);
                   if (da == null)
                   {



                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   for (int i = 0; i < table.Rows.Count; i++)
                   {
                       table.Rows[i].Delete();
                   }

                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       da.Update(ds, tableName);
                       RemoveTable(tableName);
                   }
               }//if (recurse...
               else
               {
                   // Remove the table
                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       RemoveTable(tableName);
                   }
               }
           }
           else if (type == PathType.Row)
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               table.Rows[rowNumber].Delete();

               if (ShouldProcess(path, "RemoveItem"))
               {
                   da.Update(ds, tableName);                   
               }
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // RemoveItem

       #endregion Container Overloads

       #region Helper Methods



      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

              )
           {
               return true;
           }
           else
           {
               return false;
           }
       } // PathIsDrive

       /// <summary>
       /// Breaks up the path into individual elements.
       /// </summary>
       /// <param name="path">The path to split.</param>
       /// <returns>An array of path segments.</returns>
       private string[] ChunkPath(string path)
       {
           // Normalize the path before splitting
           string normalPath = NormalizePath(path);

           // Return the path with the drive name and first path 
           // separator character removed, split by the path separator.
           string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                          + pathSeparator, "");

           return pathNoDrive.Split(pathSeparator.ToCharArray());
       } // ChunkPath

       /// <summary>
       /// Adapts the path, making sure the correct path separator
       /// character is used.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       private string NormalizePath(string path)
       {
           string result = path;



           if (!String.IsNullOrEmpty(path))
           {
               result = path.Replace("/", pathSeparator);
           }

           return result;
       } // NormalizePath

       /// <summary>
       /// Chunks the path and returns the table name and the row number 
       /// from the path
       /// </summary>
       /// <param name="path">Path to chunk and obtain information</param>
       /// <param name="tableName">Name of the table as represented in the 
       /// path</param>
       /// <param name="rowNumber">Row number obtained from the path</param>
       /// <returns>what the path represents</returns>
       private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
       {
           PathType retVal = PathType.Invalid;
           rowNumber = -1;
           tableName = null;

           // Check if the path specified is a drive
           if (PathIsDrive(path))
           {
               return PathType.Database;
           }

           // chunk the path into parts
           string[] pathChunks = ChunkPath(path);

           switch (pathChunks.Length)
           {
               case 1:
                   {
                       string name = pathChunks[0];

                       if (TableNameIsValid(name))
                       {
                           tableName = name;
                           retVal = PathType.Table;
                       }
                   }
                   break;

               case 2:
                   {
                       string name = pathChunks[0];

                       if (TableNameIsValid(name))
                       {
                           tableName = name;



                       }

                       int number = SafeConvertRowNumber(pathChunks[1]);

                       if (number >= 0)
                       {
                           rowNumber = number;
                           retVal = PathType.Row;
                       }
                       else
                       {
                           WriteError(new ErrorRecord(
                               new ArgumentException("Row number is not 
valid"),
                               "RowNumberNotValid",
                               ErrorCategory.InvalidArgument,
                               path));
                       }
                   }
                   break;

               default:
                   {
                       WriteError(new ErrorRecord(
                           new ArgumentException("The path supplied has too 
many segments"),
                           "PathNotValid",
                           ErrorCategory.InvalidArgument,
                           path));
                   }
                   break;
           } // switch(pathChunks...

           return retVal;
       } // GetNamesFromPath

       /// <summary>
       /// Throws an argument exception stating that the specified path does
       /// not represent either a table or a row
       /// </summary>
       /// <param name="path">path which is invalid</param>
       private void ThrowTerminatingInvalidPathException(string path)
       {
           StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
           message.Append(path);

           throw new ArgumentException(message.ToString());
       }

       /// <summary>
       /// Retrieve the list of tables from the database.
       /// </summary>
       /// <returns>
       /// Collection of DatabaseTableInfo objects, each object representing



       /// information about one database table
       /// </returns>
       private Collection<DatabaseTableInfo> GetTables()
       {
           Collection<DatabaseTableInfo> results =
                   new Collection<DatabaseTableInfo>();

           // using ODBC connection to the database and get the schema of 
tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

           if (di == null)
           {
               return null;
           }

           OdbcConnection connection = di.Connection;
           DataTable dt = connection.GetSchema("Tables");
           int count;

           // iterate through all rows in the schema and create 
DatabaseTableInfo
           // objects which represents a table
           foreach (DataRow dr in dt.Rows)
           {
               String tableName = dr["TABLE_NAME"] as String;
               DataColumnCollection columns = null;

               // find the number of rows in the table
               try
               {
                   String cmd = "Select count(*) from \"" + tableName + 
"\"";
                   OdbcCommand command = new OdbcCommand(cmd, connection);

                   count = (Int32)command.ExecuteScalar();
               }
               catch
               {
                   count = 0;
               }

               // create DatabaseTableInfo object representing the table
               DatabaseTableInfo table =
                       new DatabaseTableInfo(dr, tableName, count, columns);

               results.Add(table);
           } // foreach (DataRow...

           return results;
       } // GetTables

       /// <summary>
       /// Return row information from a specified table.
       /// </summary>



       /// <param name="tableName">The name of the database table from 
       /// which to retrieve rows.</param>
       /// <returns>Collection of row information objects.</returns>
       private Collection<DatabaseRowInfo> GetRows(string tableName)
       {
           Collection<DatabaseRowInfo> results =
                       new Collection<DatabaseRowInfo>();

           // Obtain rows in the table and add it to the collection
           try
           {               
               OdbcDataAdapter da = GetAdapterForTable(tableName);

               if (da == null)
               {
                   return null;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               int i = 0;
               foreach (DataRow row in table.Rows)
               {
                   results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                   i++;
               } // foreach (DataRow...
           }
           catch (Exception e)
           {
               WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                   ErrorCategory.InvalidOperation, tableName));
           }

           return results;

       } // GetRows

       /// <summary>
       /// Retrieve information about a single table.
       /// </summary>
       /// <param name="tableName">The table for which to retrieve 
       /// data.</param>
       /// <returns>Table information.</returns>
       private DatabaseTableInfo GetTable(string tableName)
       {
           foreach (DatabaseTableInfo table in GetTables())
           {
               if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
               {
                   return table;
               }
           }



           return null;
       } // GetTable

       /// <summary>
       /// Removes the specified table from the database
       /// </summary>
       /// <param name="tableName">Name of the table to remove</param>
       private void RemoveTable(string tableName)
       {
           // validate if tablename is valid and if table is present
           if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
           {
               return;
           }

           // Execute command using ODBC connection to remove a table
           try
           {
               // delete the table using an sql statement
               string sql = "drop table " + tableName;

               AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

               if (di == null)
               {
                   return;
               }
               OdbcConnection connection = di.Connection;

               OdbcCommand cmd = new OdbcCommand(sql, connection);
               cmd.ExecuteScalar();
           }
           catch (Exception ex)
           {
               WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                         ErrorCategory.InvalidOperation, null)
                         );
           }

       } // RemoveTable

       /// <summary>
       /// Obtain a data adapter for the specified Table
       /// </summary>
       /// <param name="tableName">Name of the table to obtain the 
       /// adapter for</param>
       /// <returns>Adapter object for the specified table</returns>
       /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
       /// representation of table) and the data source</remarks>
       private OdbcDataAdapter GetAdapterForTable(string tableName)
       {



           OdbcDataAdapter da = null;
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

           if (di == null || !TableNameIsValid(tableName) 
||!TableIsPresent(tableName))
           {
               return null;
           }

           OdbcConnection connection = di.Connection;

           try
           {
               // Create a odbc data adpater. This can be sued to update the
               // data source with the records that will be created here
               // using data sets
               string sql = "Select * from " + tableName;
               da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

               // Create a odbc command builder object. This will create sql
               // commands automatically for a single table, thus
               // eliminating the need to create new sql statements for 
               // every operation to be done.
               OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

               // Set the delete cmd for the table here
               sql = "Delete from " + tableName + " where ID = ?";
               da.DeleteCommand = new OdbcCommand(sql, connection);

               // Specify a DeleteCommand parameter based on the "ID" 
               // column
               da.DeleteCommand.Parameters.Add(new OdbcParameter());
               da.DeleteCommand.Parameters[0].SourceColumn = "ID";

               // Create an InsertCommand based on the sql string
               // Insert into "tablename" values (?,?,?)" where
               // ? represents a column in the table. Note that 
               // the number of ? will be equal to the number of 
               // columnds
               DataSet ds = new DataSet();

               da.FillSchema(ds, SchemaType.Source);
               ds.Locale = CultureInfo.InvariantCulture;

               sql = "Insert into " + tableName + " values ( ";
               for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
               {
                   sql += "?, ";
               }
               sql = sql.Substring(0, sql.Length - 2);
               sql += ")";
               da.InsertCommand = new OdbcCommand(sql, connection);

               // Create parameters for the InsertCommand based on the
               // captions of each column



               for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
               {
                   da.InsertCommand.Parameters.Add(new OdbcParameter());
                   da.InsertCommand.Parameters[i].SourceColumn = 
                                    ds.Tables["Table"].Columns[i].Caption;
                
               }

               // Open the connection if its not already open                 
               if (connection.State != ConnectionState.Open)
               {
                   connection.Open();
               }
           }
           catch (Exception e)
           {
               WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                 ErrorCategory.InvalidOperation, tableName));
           }

           return da;
       } // GetAdapterForTable

       /// <summary>
       /// Gets the DataSet (in memory representation) for the table
       /// for the specified adapter
       /// </summary>
       /// <param name="adapter">Adapter to be used for obtaining 
       /// the table</param>
       /// <param name="tableName">Name of the table for which a 
       /// DataSet is required</param>
       /// <returns>The DataSet with the filled in schema</returns>
       private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
       {
           Debug.Assert(adapter != null);

           // Create a dataset object which will provide an in-memory
           // representation of the data being worked upon in the 
           // data source. 
           DataSet ds = new DataSet();

           // Create a table named "Table" which will contain the same
           // schema as in the data source.
           //adapter.FillSchema(ds, SchemaType.Source);
           adapter.Fill(ds, tableName);
           ds.Locale = CultureInfo.InvariantCulture;

           return ds;
       } //GetDataSetForTable

       /// <summary>
       /// Get the DataTable object which can be used to operate on
       /// for the specified table in the data source
       /// </summary>



       /// <param name="ds">DataSet object which contains the tables
       /// schema</param>
       /// <param name="tableName">Name of the table</param>
       /// <returns>Corresponding DataTable object representing 
       /// the table</returns>
       /// 
       private DataTable GetDataTable(DataSet ds, string tableName)
       {
           Debug.Assert(ds != null);
           Debug.Assert(tableName != null);

           DataTable table = ds.Tables[tableName];
           table.Locale = CultureInfo.InvariantCulture;

           return table;
       } // GetDataTable

       /// <summary>
       /// Retrieves a single row from the named table.
       /// </summary>
       /// <param name="tableName">The table that contains the 
       /// numbered row.</param>
       /// <param name="row">The index of the row to return.</param>
       /// <returns>The specified table row.</returns>
       private DatabaseRowInfo GetRow(string tableName, int row)
       {
           Collection<DatabaseRowInfo> di = GetRows(tableName);

           // if the row is invalid write an appropriate error else return 
the 
           // corresponding row information
           if (row < di.Count && row >= 0)
           {
               return di[row];
           }
           else
           {
               WriteError(new ErrorRecord(
                  new ItemNotFoundException(),
                  "RowNotFound",
                  ErrorCategory.ObjectNotFound,
                  row.ToString(CultureInfo.CurrentCulture))
               );
           }

           return null;
       } // GetRow

       /// <summary>
       /// Method to safely convert a string representation of a row number 
       /// into its Int32 equivalent
       /// </summary>
       /// <param name="rowNumberAsStr">String representation of the row 
       /// number</param>
       /// <remarks>If there is an exception, -1 is returned</remarks>



       private int SafeConvertRowNumber(string rowNumberAsStr)
       {
           int rowNumber = -1;
           try
           {
               rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
           }
           catch (FormatException fe)
           {
               WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                   ErrorCategory.InvalidData, rowNumberAsStr));
           }
           catch (OverflowException oe)
           {
               WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                   ErrorCategory.InvalidData, rowNumberAsStr));
           }

           return rowNumber;
       } // SafeConvertRowNumber

       /// <summary>
       /// Check if a table name is valid
       /// </summary>
       /// <param name="tableName">Table name to validate</param>
       /// <remarks>Helps to check for SQL injection attacks</remarks>
       private bool TableNameIsValid(string tableName)
       {
           Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

           if (exp.IsMatch(tableName))
           {
               return true;
           }
           WriteError(new ErrorRecord(
               new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                    ErrorCategory.InvalidArgument, tableName));
           return false;
       } // TableNameIsValid

       /// <summary>
       /// Checks to see if the specified table is present in the
       /// database
       /// </summary>
       /// <param name="tableName">Name of the table to check</param>
       /// <returns>true, if table is present, false otherwise</returns>
       private bool TableIsPresent(string tableName)
       {
           // using ODBC connection to the database and get the schema of 
tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;



           if (di == null)
           {
               return false;
           }

           OdbcConnection connection = di.Connection;
           DataTable dt = connection.GetSchema("Tables");

           // check if the specified tableName is available
           // in the list of tables present in the database
           foreach (DataRow dr in dt.Rows)
           {
               string name = dr["TABLE_NAME"] as string;
               if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
               {
                   return true;
               }
           }

           WriteError(new ErrorRecord(
               new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                    ErrorCategory.InvalidArgument, tableName));

           return false;
       }// TableIsPresent

       /// <summary>
       /// Gets the next available ID in the table
       /// </summary>
       /// <param name="table">DataTable object representing the table to 
       /// search for ID</param>
       /// <returns>next available id</returns>
       private int GetNextID(DataTable table)
       {
           int big = 0;
           int id = 0;

           for (int i = 0; i < table.Rows.Count; i++)
           {
               DataRow row = table.Rows[i];

               object o = row["ID"];

               if (o.GetType().Name.Equals("Int16"))
               {
                   id = (int)(short)o;
               }
               else
               {
                   id = (int)o;
               }

               if (big < id)



               {
                   big = id;
               }
           }

           big++;
           return big;
       }

       #endregion Helper Methods

       #region Private Properties

       private string pathSeparator = "\\";
       private static string pattern = @"^[a-z]+[0-9]*_*$";

       private enum PathType { Database, Table, Row, Invalid };

       #endregion Private Properties
   }

   #endregion AccessDBProvider

   #region Helper Classes

  #region AccessDBPSDriveInfo

  /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo



   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;
           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount
       {
           get
           {
               return rowCount;
           }
           set
           {
               rowCount = value;
           }
       }



       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo
   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {
       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set



System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

Designing Your Windows PowerShell Provider

           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


AccessDBProviderSample05
Article • 03/24/2025

This sample shows how to overwrite container methods to support calls to the Move-
Item  and Join-Path  cmdlets. These methods should be implemented when the user
needs to move items within a container and if the data store contains nested containers.
The provider class in this sample derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.

Defining a provider class that derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class.

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method to change the behavior of the Move-Item  cmdlet, allowing the user to
move items from one location to another. (This sample does not show how to add
dynamic parameters to the Move-Item  cmdlet.)

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*

Demonstrates

） Important

Your provider class will most likely derive from one of the following classes and
possibly implement other provider interfaces:

System.Management.Automation.Provider.ItemCmdletProvider class. See

AccessDBProviderSample03.

System.Management.Automation.Provider.ContainerCmdletProvider class.
See AccessDBProviderSample04.

System.Management.Automation.Provider.NavigationCmdletProvider class.

For more information about choosing which provider class to derive from based on
provider features, see Designing Your Windows PowerShell Provider.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


method to change the behavior of the Join-Path  cmdlet.

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContai
ner* method.

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.GetChildNam
e* method.

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPat
h* method.

Overwriting the
System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRel
ativePath* method.

This sample shows how to overwrite the methods needed to move items in a Microsoft
Access data base.

C#

Example

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Diagnostics;
using System.Collections.ObjectModel;
using System.Text;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// This example implements the navigation methods.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : NavigationCmdletProvider
   {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath


      #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 



OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

      #region Item Methods

       /// <summary>
       /// Retrieves an item using the specified path.
       /// </summary>
       /// <param name="path">The path to the item to return.</param>
       protected override void GetItem(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               WriteItemObject(this.PSDriveInfo, path, true);
               return;



           }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }

           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);



           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           DatabaseTableInfo table = GetTable(tableName);



           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {
                   result = false;
               }
           }



           return result;
       } // IsValidPath

       #endregion Item Overloads

      #region Container Overloads

       /// <summary>
       /// Return either the tables in the database or the datarows
       /// </summary>
       /// <param name="path">The path to the parent</param>
       /// <param name="recurse">True to return all child items recursively.
       /// </param>
       protected override void GetChildItems(string path, bool recurse)
       {
           // If path represented is a drive then the children in the path 
are 
           // tables. Hence all tables in the drive represented will have to 
be
           // returned
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table, path, true);

                   // if the specified item exists and recurse has been set 
then 
                   // all child items within it have to be obtained as well
                   if (ItemExists(path) && recurse)
                   {
                       GetChildItems(path + pathSeparator + table.Name, 
recurse);
                   }
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get the table name, row number and type of path from the
               // path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Obtain all the rows within the table
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
                   } // foreach (DatabaseRowInfo...



               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);
                   WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
               }
               else
               {
                   // In this case, the path specified is not valid
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildItems

       /// <summary>
       /// Return the names of all child items.
       /// </summary>
       /// <param name="path">The root path.</param>
       /// <param name="returnContainers">Not used.</param>
       protected override void GetChildNames(string path,
                                     ReturnContainers returnContainers)
       {
           // If the path represented is a drive, then the child items are
           // tables. get the names of all the tables in the drive.
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table.Name, path, true);
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get type, table name and row number from path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Get all the rows in the table and then write out the 
                   // row numbers.
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row.RowNumber, path, false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)



               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);

                   WriteItemObject(row.RowNumber, path, false);
               }
               else
               {
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildNames

       /// <summary>
       /// Determines if the specified path has child items.
       /// </summary>
       /// <param name="path">The path to examine.</param>
       /// <returns>
       /// True if the specified path has child items.
       /// </returns>
       protected override bool HasChildItems(string path)
       {
           if (PathIsDrive(path))
           {
               return true;
           }

           return (ChunkPath(path).Length == 1);
       } // HasChildItems

       /// <summary>
       /// Creates a new item at the specified path.
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the new item.
       /// </param>
       /// 
       /// <param name="type">
       /// Type for the object to create. "Table" for creating a new table 
and
       /// "Row" for creating a new row in a table.
       /// </param>
       /// 
       /// <param name="newItemValue">
       /// Object for creating new instance of a type at the specified path. 
For
       /// creating a "Table" the object parameter is ignored and for 
creating
       /// a "Row" the object must be of type string which will contain 
comma 
       /// separated values of the rows to insert.
       /// </param>



       protected override void NewItem(string path, string type,
                                   object newItemValue)
       {
           string tableName;
           int rowNumber;

           PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (pt == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           // Check if type is either "table" or "row", if not throw an 
           // exception
           if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
               && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
           {
               WriteError(new ErrorRecord
                                 (new ArgumentException("Type must be either 
a table or row"),
                                     "CannotCreateSpecifiedObject",
                                        ErrorCategory.InvalidArgument,
                                             path
                                  )
                         );

               throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
           }

           // Path type is the type of path of the container. So if a drive
           // is specified, then a table can be created under it and if a 
table
           // is specified, then a row can be created under it. For the sake 
of 
           // completeness, if a row is specified, then if the row specified 
by
           // the path does not exist, a new row is created. However, the 
row 
           // number may not match as the row numbers only get incremented 
based 
           // on the number of rows

           if (PathIsDrive(path))
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   // Execute command using ODBC connection to create a 
table
                   try



                   {
                       // create the table using an sql statement
                       string newTableName = newItemValue.ToString();
                       string sql = "create table " + newTableName
                                            + " (ID INT)";

                       // Create the table using the Odbc connection from 
the 
                       // drive.
                       AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                       if (di == null)
                       {
                           return;
                       }
                       OdbcConnection connection = di.Connection;

                       if (ShouldProcess(newTableName, "create"))
                       {
                           OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                           cmd.ExecuteScalar();
                       }
                   }
                   catch (Exception ex)
                   {
                       WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                 ErrorCategory.InvalidOperation, path)
                                 );
                   }
               } // if (String...
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   throw new
                       ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
               }
           }// if (PathIsDrive...
           else
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   if (rowNumber < 0)
                   {
                       throw new
                           ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                   }
                   else
                   {
                       throw new



                           ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                   }
               } //if (String.Equals....
               // if path specified is a row, create a new row
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   // The user is required to specify the values to be 
inserted 
                   // into the table in a single string separated by commas
                   string value = newItemValue as string;

                   if (String.IsNullOrEmpty(value))
                   {
                       throw new
                           ArgumentException("Value argument must have comma 
separated values of each column in a row");
                   }
                   string[] rowValues = value.Split(',');

                   OdbcDataAdapter da = GetAdapterForTable(tableName);

                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   if (rowValues.Length != table.Columns.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                       throw new ArgumentException(message);
                   }

                   if (!Force && (rowNumber >= 0 && rowNumber < 
table.Rows.Count))
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The row {0} already exists. To 
create a new row specify row number as {1}, or specify path to a table, or 
use the -Force parameter",
                                                rowNumber, 
table.Rows.Count);

                       throw new ArgumentException(message);
                   }



                   if (rowNumber > table.Rows.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   // Create a new row and update the row with the input
                   // provided by the user
                   DataRow row = table.NewRow();
                   for (int i = 0; i < rowValues.Length; i++)
                   {
                       row[i] = rowValues[i];
                   }
                   table.Rows.Add(row);

                   if (ShouldProcess(tableName, "update rows"))
                   {
                       // Update the table from memory back to the data 
source
                       da.Update(ds, tableName);
                   }

               }// else if (String...
           }// else ...

       } // NewItem

       /// <summary>
       /// Copies an item at the specified path to the location specified
       /// </summary>
       /// 
       /// <param name="path">
       /// Path of the item to copy
       /// </param>
       /// 
       /// <param name="copyPath">
       /// Path of the item to copy to
       /// </param>
       /// 
       /// <param name="recurse">
       /// Tells the provider to recurse subcontainers when copying
       /// </param>
       /// 
       protected override void CopyItem(string path, string copyPath, bool 
recurse)
       {
           string tableName, copyTableName;
           int rowNumber, copyRowNumber;



           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           PathType copyType = GetNamesFromPath(copyPath, out copyTableName, 
out copyRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(copyPath);
           }

           // Get the table and the table to copy to 
           OdbcDataAdapter da = GetAdapterForTable(tableName);
           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
           if (cda == null)
           {
               return;
           }

           DataSet cds = GetDataSetForTable(cda, copyTableName);
           DataTable copyTable = GetDataTable(cds, copyTableName);

           // if source represents a table
           if (type == PathType.Table)
           {
               // if copyPath does not represent a table
               if (copyType != PathType.Table)
               {
                   ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                   WriteError(new ErrorRecord(e, "PathNotValid",
                       ErrorCategory.InvalidArgument, copyPath));

                   throw e;
               }

               // if table already exists then force parameter should be set 
               // to force a copy
               if (!Force && GetTable(copyTableName) != null)
               {
                   throw new ArgumentException("Specified path already 
exists");



               }

               for (int i = 0; i < table.Rows.Count; i++)
               {
                   DataRow row = table.Rows[i];
                   DataRow copyRow = copyTable.NewRow();

                   copyRow.ItemArray = row.ItemArray;
                   copyTable.Rows.Add(copyRow);
               }
           } // if (type == ...
           // if source represents a row
           else
           {
               if (copyType == PathType.Row)
               {
                   if (!Force && (copyRowNumber < copyTable.Rows.Count))
                   {
                       throw new ArgumentException("Specified path already 
exists.");
                   }

                   DataRow row = table.Rows[rowNumber];
                   DataRow copyRow = null;

                   if (copyRowNumber < copyTable.Rows.Count)
                   {
                       // copy to an existing row
                       copyRow = copyTable.Rows[copyRowNumber];
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                   }
                   else if (copyRowNumber == copyTable.Rows.Count)
                   {
                       // copy to the next row in the table that will 
                       // be created
                       copyRow = copyTable.NewRow();
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                       copyTable.Rows.Add(copyRow);
                   }
                   else
                   {
                       // attempting to copy to a nonexistent row or a row
                       // that cannot be created now - throw an exception
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The item cannot be specified to 
the copied row. Specify row number as {0}, or specify a path to the table.",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }
               }
               else



               {
                   // destination path specified represents a table, 
                   // create a new row and copy the item
                   DataRow copyRow = copyTable.NewRow();
                   copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                   copyRow[0] = GetNextID(copyTable);
                   copyTable.Rows.Add(copyRow);
               }
           }

           if (ShouldProcess(copyTableName, "CopyItems"))
           {
               cda.Update(cds, copyTableName);
           }

       } //CopyItem

       /// <summary>
       /// Removes (deletes) the item at the specified path
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to remove.
       /// </param>
       /// 
       /// <param name="recurse">
       /// True if all children in a subtree should be removed, false if 
only
       /// the item at the specified path should be removed. Is applicable
       /// only for container (table) items. Its ignored otherwise (even if
       /// specified).
       /// </param>
       /// 
       /// <remarks>
       /// There are no elements in this store which are hidden from the 
user.
       /// Hence this method will not check for the presence of the Force
       /// parameter
       /// </remarks>
       /// 
       protected override void RemoveItem(string path, bool recurse)
       {
           string tableName;
           int rowNumber = 0;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               // if recurse flag has been specified, delete all the rows as 
well
               if (recurse)
               {
                   OdbcDataAdapter da = GetAdapterForTable(tableName);



                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   for (int i = 0; i < table.Rows.Count; i++)
                   {
                       table.Rows[i].Delete();
                   }

                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       da.Update(ds, tableName);
                       RemoveTable(tableName);
                   }
               }//if (recurse...
               else
               {
                   // Remove the table
                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       RemoveTable(tableName);
                   }
               }
           }
           else if (type == PathType.Row)
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               table.Rows[rowNumber].Delete();

               if (ShouldProcess(path, "RemoveItem"))
               {
                   da.Update(ds, tableName);
               }
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // RemoveItem

       #endregion Container Overloads



      #region Navigation

      /// <summary>
      /// Determine if the path specified is that of a container.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>True if the path specifies a container.</returns>
      protected override bool IsItemContainer(string path)
      {
         if (PathIsDrive(path)) 
         { 
             return true; 
         }
         
         string[] pathChunks = ChunkPath(path);
         string tableName;
         int rowNumber;

         PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
         
         if (type == PathType.Table)
         {
            foreach (DatabaseTableInfo ti in GetTables())
            {
                if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
                {
                    return true;
                }
            } // foreach (DatabaseTableInfo...
         } // if (pathChunks...

         return false;
      } // IsItemContainer

       /// <summary>
       /// Get the name of the leaf element in the specified path        
       /// </summary>
       /// 
       /// <param name="path">
       /// The full or partial provider specific path
       /// </param>
       /// 
       /// <returns>
       /// The leaf element in the path
       /// </returns>
       protected override string GetChildName(string path)
       {
           if (PathIsDrive(path))
           {
               return path;
           }

           string tableName;



           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               return tableName;
           }
           else if (type == PathType.Row)
           {
               return rowNumber.ToString(CultureInfo.CurrentCulture);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

           return null;
       }

       /// <summary>
       /// Removes the child segment of the path and returns the remaining
       /// parent portion
       /// </summary>
       /// 
       /// <param name="path">
       /// A full or partial provider specific path. The path may be to an
       /// item that may or may not exist.
       /// </param>
       /// 
       /// <param name="root">
       /// The fully qualified path to the root of a drive. This parameter
       /// may be null or empty if a mounted drive is not in use for this
       /// operation.  If this parameter is not null or empty the result
       /// of the method should not be a path to a container that is a
       /// parent or in a different tree than the root.
       /// </param>
       /// 
       /// <returns></returns>

       protected override string GetParentPath(string path, string root)
       {
           // If root is specified then the path has to contain
           // the root. If not nothing should be returned
           if (!String.IsNullOrEmpty(root))
           {
               if (!path.Contains(root))
               {
                   return null;
               }
           }

           return path.Substring(0, path.LastIndexOf(pathSeparator, 
StringComparison.OrdinalIgnoreCase));



       }

       /// <summary>
       /// Joins two strings with a provider specific path separator.
       /// </summary>
       /// 
       /// <param name="parent">
       /// The parent segment of a path to be joined with the child.
       /// </param>
       /// 
       /// <param name="child">
       /// The child segment of a path to be joined with the parent.
       /// </param>
       /// 
       /// <returns>
       /// A string that represents the parent and child segments of the 
path
       /// joined by a path separator.
       /// </returns>

       protected override string MakePath(string parent, string child)
       {
           string result;

           string normalParent = NormalizePath(parent);
           normalParent = RemoveDriveFromPath(normalParent);
           string normalChild = NormalizePath(child);
           normalChild = RemoveDriveFromPath(normalChild);

           if (String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               result = String.Empty;
           }
           else if (String.IsNullOrEmpty(normalParent) && 
!String.IsNullOrEmpty(normalChild))
           {
               result = normalChild;
           }
           else if (!String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               if (normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent;
               }
               else
               {
                   result = normalParent + pathSeparator;
               }
           } // else if (!String...
           else
           {
               if (!normalParent.Equals(String.Empty) &&



                   !normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent + pathSeparator;
               }
               else
               {
                   result = normalParent;
               }

               if (normalChild.StartsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result += normalChild.Substring(1);
               }
               else
               {
                   result += normalChild;
               }
           } // else

           return result;
       } // MakePath

       /// <summary>
       /// Normalizes the path that was passed in and returns the normalized
       /// path as a relative path to the basePath that was passed.
       /// </summary>
       /// 
       /// <param name="path">
       /// A fully qualified provider specific path to an item.  The item
       /// should exist or the provider should write out an error.
       /// </param>
       /// 
       /// <param name="basepath">
       /// The path that the return value should be relative to.
       /// </param>
       /// 
       /// <returns>
       /// A normalized path that is relative to the basePath that was
       /// passed.  The provider should parse the path parameter, normalize
       /// the path, and then return the normalized path relative to the
       /// basePath.
       /// </returns>

       protected override string NormalizeRelativePath(string path,
                                                            string basepath)
       {
           // Normalize the paths first
           string normalPath = NormalizePath(path);
           normalPath = RemoveDriveFromPath(normalPath);
           string normalBasePath = NormalizePath(basepath);
           normalBasePath = RemoveDriveFromPath(normalBasePath);

           if (String.IsNullOrEmpty(normalBasePath))



           {
               return normalPath;
           }
           else
           {
               if (!normalPath.Contains(normalBasePath))
               {
                   return null;
               }

               return normalPath.Substring(normalBasePath.Length + 
pathSeparator.Length);
           }
       }

       /// <summary>
       /// Moves the item specified by the path to the specified destination
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to be moved
       /// </param>
       /// 
       /// <param name="destination">
       /// The path of the destination container
       /// </param>
       
       protected override void MoveItem(string path, string destination)
       {
           // Get type, table name and rowNumber from the path
           string tableName, destTableName;
           int rowNumber, destRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           PathType destType = GetNamesFromPath(destination, out 
destTableName,
                                    out destRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (destType == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(destination);
           }

           if (type == PathType.Table)
           {
               ArgumentException e = new ArgumentException("Move not 
supported for tables");



               WriteError(new ErrorRecord(e, "MoveNotSupported", 
                   ErrorCategory.InvalidArgument, path));

               throw e;
           }
           else
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               OdbcDataAdapter dda = GetAdapterForTable(destTableName);
               if (dda == null)
               {
                   return;
               }

               DataSet dds = GetDataSetForTable(dda, destTableName);
               DataTable destTable = GetDataTable(dds, destTableName);
               DataRow row = table.Rows[rowNumber];

               if (destType == PathType.Table)
               {
                   DataRow destRow = destTable.NewRow();

                   destRow.ItemArray = row.ItemArray;
               }
               else
               {
                   DataRow destRow = destTable.Rows[destRowNumber];

                   destRow.ItemArray = row.ItemArray;
               }

               // Update the changes
               if (ShouldProcess(path, "MoveItem"))
               {
                   WriteItemObject(row, path, false);
                   dda.Update(dds, destTableName);
               }
           }
       }

      #endregion Navigation

      #region Helper Methods

      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>



      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

             )
          {
              return true;
          }
          else
          {
              return false;
          }
      } // PathIsDrive

      /// <summary>
      /// Breaks up the path into individual elements.
      /// </summary>
      /// <param name="path">The path to split.</param>
      /// <returns>An array of path segments.</returns>
      private string[] ChunkPath(string path)
      {
          // Normalize the path before splitting
          string normalPath = NormalizePath(path);

          // Return the path with the drive name and first path 
          // separator character removed, split by the path separator.
          string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                         + pathSeparator, "");

          return pathNoDrive.Split(pathSeparator.ToCharArray());
      } // ChunkPath

      /// <summary>
      /// Adapts the path, making sure the correct path separator
      /// character is used.
      /// </summary>
      /// <param name="path"></param>
      /// <returns></returns>
      private string NormalizePath(string path)
      {
          string result = path;

          if (!String.IsNullOrEmpty(path))
          {



              result = path.Replace("/", pathSeparator);
          }

          return result;
      } // NormalizePath

      /// <summary>
      /// Ensures that the drive is removed from the specified path
      /// </summary>
      /// 
      /// <param name="path">Path from which drive needs to be 
removed</param>
      /// <returns>Path with drive information removed</returns>
      private string RemoveDriveFromPath(string path)
      {
          string result = path;
          string root;

          if (this.PSDriveInfo == null)
          {
              root = String.Empty;
          }
          else
          {
              root = this.PSDriveInfo.Root;
          }

          if (result == null)
          {
              result = String.Empty;
          }

          if (result.Contains(root))
          {
              result = result.Substring(result.IndexOf(root, 
StringComparison.OrdinalIgnoreCase) + root.Length);
          }

          return result;
      }

      /// <summary>
      /// Chunks the path and returns the table name and the row number 
      /// from the path
      /// </summary>
      /// <param name="path">Path to chunk and obtain information</param>
      /// <param name="tableName">Name of the table as represented in the 
      /// path</param>
      /// <param name="rowNumber">Row number obtained from the path</param>
      /// <returns>what the path represents</returns>
      private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
      {
          PathType retVal = PathType.Invalid;
          rowNumber = -1;



          tableName = null;

          // Check if the path specified is a drive
          if (PathIsDrive(path))
          {
              return PathType.Database;
          }

          // chunk the path into parts
          string[] pathChunks = ChunkPath(path);

          switch (pathChunks.Length)
          {
              case 1:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                          retVal = PathType.Table;
                      }
                  }
                  break;

              case 2:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                      }

                      int number = SafeConvertRowNumber(pathChunks[1]);

                      if (number >= 0)
                      {
                          rowNumber = number;
                          retVal = PathType.Row;
                      }
                      else
                      {
                          WriteError(new ErrorRecord(
                              new ArgumentException("Row number is not 
valid"),
                              "RowNumberNotValid",
                              ErrorCategory.InvalidArgument,
                              path));
                      }
                  }
                  break;

              default:
                  {



                      WriteError(new ErrorRecord(
                          new ArgumentException("The path supplied has too 
many segments"),
                          "PathNotValid",
                          ErrorCategory.InvalidArgument,
                          path));
                  }
                  break;
          } // switch(pathChunks...

          return retVal;
      } // GetNamesFromPath

      /// <summary>
      /// Throws an argument exception stating that the specified path does
      /// not represent either a table or a row
      /// </summary>
      /// <param name="path">path which is invalid</param>
      private void ThrowTerminatingInvalidPathException(string path)
      {
          StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
          message.Append(path);

          throw new ArgumentException(message.ToString());
      }

      /// <summary>
      /// Retrieve the list of tables from the database.
      /// </summary>
      /// <returns>
      /// Collection of DatabaseTableInfo objects, each object representing
      /// information about one database table
      /// </returns>
      private Collection<DatabaseTableInfo> GetTables()
      {
          Collection<DatabaseTableInfo> results =
                  new Collection<DatabaseTableInfo>();

          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null)
          {
              return null;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");
          int count;

          // iterate through all rows in the schema and create 
DatabaseTableInfo
          // objects which represents a table



          foreach (DataRow dr in dt.Rows)
          {
              String tableName = dr["TABLE_NAME"] as String;
              DataColumnCollection columns = null;

              // find the number of rows in the table
              try
              {
                  String cmd = "Select count(*) from \"" + tableName + "\"";
                  OdbcCommand command = new OdbcCommand(cmd, connection);

                  count = (Int32)command.ExecuteScalar();
              }
              catch 
              {
                  count = 0;
              }

              // create DatabaseTableInfo object representing the table
              DatabaseTableInfo table =
                      new DatabaseTableInfo(dr, tableName, count, columns);

              results.Add(table);
          } // foreach (DataRow...

          return results;
      } // GetTables

      /// <summary>
      /// Return row information from a specified table.
      /// </summary>
      /// <param name="tableName">The name of the database table from 
      /// which to retrieve rows.</param>
      /// <returns>Collection of row information objects.</returns>
      private Collection<DatabaseRowInfo> GetRows(string tableName)
      {             
          Collection<DatabaseRowInfo> results =
                      new Collection<DatabaseRowInfo>();

          // Obtain rows in the table and add it to the collection
          try
          {
              OdbcDataAdapter da = GetAdapterForTable(tableName);

              if (da == null)
              {
                  return null;
              }

              DataSet ds = GetDataSetForTable(da, tableName);
              DataTable table = GetDataTable(ds, tableName);

              int i = 0;
              foreach (DataRow row in table.Rows)
              {



                  results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                  i++;
              } // foreach (DataRow...
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                  ErrorCategory.InvalidOperation, tableName));
          }

          return results;

      } // GetRows

      /// <summary>
      /// Retrieve information about a single table.
      /// </summary>
      /// <param name="tableName">The table for which to retrieve 
      /// data.</param>
      /// <returns>Table information.</returns>
      private DatabaseTableInfo GetTable(string tableName)
      {
          foreach (DatabaseTableInfo table in GetTables())
          {
              if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
              {
                  return table;
              }
          }

          return null;
      } // GetTable

      /// <summary>
      /// Removes the specified table from the database
      /// </summary>
      /// <param name="tableName">Name of the table to remove</param>
      private void RemoveTable(string tableName)
      {
          // validate if tablename is valid and if table is present
          if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
          {
              return;
          }

          // Execute command using ODBC connection to remove a table
          try
          {
              // delete the table using an sql statement
              string sql = "drop table " + tableName;

              AccessDBPSDriveInfo di = this.PSDriveInfo as 



AccessDBPSDriveInfo;

              if (di == null)
              {
                  return;
              }
              OdbcConnection connection = di.Connection;

              OdbcCommand cmd = new OdbcCommand(sql, connection);
              cmd.ExecuteScalar();
          }
          catch (Exception ex)
          {
              WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                        ErrorCategory.InvalidOperation, null)
                        );
          }

      } // RemoveTable

      /// <summary>
      /// Obtain a data adapter for the specified Table
      /// </summary>
      /// <param name="tableName">Name of the table to obtain the 
      /// adapter for</param>
      /// <returns>Adapter object for the specified table</returns>
      /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
      /// representation of table) and the data source</remarks>
      private OdbcDataAdapter GetAdapterForTable(string tableName)
      {
          OdbcDataAdapter da = null;
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
          {
              return null;
          }

          OdbcConnection connection = di.Connection;

          try
          {
              // Create a odbc data adpater. This can be sued to update the
              // data source with the records that will be created here
              // using data sets
              string sql = "Select * from " + tableName;
              da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

              // Create a odbc command builder object. This will create sql
              // commands automatically for a single table, thus
              // eliminating the need to create new sql statements for 
              // every operation to be done.
              OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);



              // Set the delete cmd for the table here
              sql = "Delete from " + tableName + " where ID = ?";
              da.DeleteCommand = new OdbcCommand(sql, connection);

              // Specify a DeleteCommand parameter based on the "ID" 
              // column
              da.DeleteCommand.Parameters.Add(new OdbcParameter());
              da.DeleteCommand.Parameters[0].SourceColumn = "ID";

              // Create an InsertCommand based on the sql string
              // Insert into "tablename" values (?,?,?)" where
              // ? represents a column in the table. Note that 
              // the number of ? will be equal to the number of 
              // columnds
              DataSet ds = new DataSet();

              da.FillSchema(ds, SchemaType.Source);
              ds.Locale = CultureInfo.InvariantCulture;

              sql = "Insert into " + tableName + " values ( ";
              for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
              {
                  sql += "?, ";
              }
              sql = sql.Substring(0, sql.Length - 2);
              sql += ")";
              da.InsertCommand = new OdbcCommand(sql, connection);

              // Create parameters for the InsertCommand based on the
              // captions of each column
              for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
              {
                  da.InsertCommand.Parameters.Add(new OdbcParameter());
                  da.InsertCommand.Parameters[i].SourceColumn =
                                   ds.Tables["Table"].Columns[i].Caption;

              }

              // Open the connection if its not already open                 
              if (connection.State != ConnectionState.Open)
              {
                  connection.Open();
              }
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                ErrorCategory.InvalidOperation, tableName));
          }

          return da;
      } // GetAdapterForTable

      /// <summary>



      /// Gets the DataSet (in memory representation) for the table
      /// for the specified adapter
      /// </summary>
      /// <param name="adapter">Adapter to be used for obtaining 
      /// the table</param>
      /// <param name="tableName">Name of the table for which a 
      /// DataSet is required</param>
      /// <returns>The DataSet with the filled in schema</returns>
      private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
      {
          Debug.Assert(adapter != null);

          // Create a dataset object which will provide an in-memory
          // representation of the data being worked upon in the 
          // data source. 
          DataSet ds = new DataSet();

          // Create a table named "Table" which will contain the same
          // schema as in the data source.
          //adapter.FillSchema(ds, SchemaType.Source);
          adapter.Fill(ds, tableName);
          ds.Locale = CultureInfo.InvariantCulture;

          return ds;
      } //GetDataSetForTable

      /// <summary>
      /// Get the DataTable object which can be used to operate on
      /// for the specified table in the data source
      /// </summary>
      /// <param name="ds">DataSet object which contains the tables
      /// schema</param>
      /// <param name="tableName">Name of the table</param>
      /// <returns>Corresponding DataTable object representing 
      /// the table</returns>
      /// 
      private DataTable GetDataTable(DataSet ds, string tableName)
      {
          Debug.Assert(ds != null);
          Debug.Assert(tableName != null);

          DataTable table = ds.Tables[tableName];
          table.Locale = CultureInfo.InvariantCulture;

          return table;
      } // GetDataTable

      /// <summary>
      /// Retrieves a single row from the named table.
      /// </summary>
      /// <param name="tableName">The table that contains the 
      /// numbered row.</param>
      /// <param name="row">The index of the row to return.</param>
      /// <returns>The specified table row.</returns>



      private DatabaseRowInfo GetRow(string tableName, int row)
      {
          Collection<DatabaseRowInfo> di = GetRows(tableName);

          // if the row is invalid write an appropriate error else return 
the 
          // corresponding row information
          if (row < di.Count && row >= 0)
          {
              return di[row];
          }
          else
          {
              WriteError(new ErrorRecord(
                 new ItemNotFoundException(),
                 "RowNotFound",
                 ErrorCategory.ObjectNotFound,
                 row.ToString(CultureInfo.CurrentCulture))
              );
          }

          return null;
      } // GetRow

      /// <summary>
      /// Method to safely convert a string representation of a row number 
      /// into its Int32 equivalent
      /// </summary>
      /// <param name="rowNumberAsStr">String representation of the row 
      /// number</param>
      /// <remarks>If there is an exception, -1 is returned</remarks>
      private int SafeConvertRowNumber(string rowNumberAsStr)
      {
          int rowNumber = -1;
          try
          {
              rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
          }
          catch (FormatException fe)
          {
              WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }
          catch (OverflowException oe)
          {
              WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }

          return rowNumber;
      } // SafeConvertRowNumber

      /// <summary>



      /// Check if a table name is valid
      /// </summary>
      /// <param name="tableName">Table name to validate</param>
      /// <remarks>Helps to check for SQL injection attacks</remarks>
      private bool TableNameIsValid(string tableName)
      {
          Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

          if (exp.IsMatch(tableName))
          {
              return true;
          }
          WriteError(new ErrorRecord(
              new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
          return false;
      } // TableNameIsValid

      /// <summary>
      /// Checks to see if the specified table is present in the
      /// database
      /// </summary>
      /// <param name="tableName">Name of the table to check</param>
      /// <returns>true, if table is present, false otherwise</returns>
      private bool TableIsPresent(string tableName)
      {
          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
          if (di == null)
          {
              return false;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");

          // check if the specified tableName is available
          // in the list of tables present in the database
          foreach (DataRow dr in dt.Rows)
          {
              string name = dr["TABLE_NAME"] as string;
              if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
              {
                  return true;
              }
          }

          WriteError(new ErrorRecord(
              new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                   ErrorCategory.InvalidArgument, tableName));



          return false;
      }// TableIsPresent

      /// <summary>
      /// Gets the next available ID in the table
      /// </summary>
      /// <param name="table">DataTable object representing the table to 
      /// search for ID</param>
      /// <returns>next available id</returns>
      private int GetNextID(DataTable table)
      {
          int big = 0;

          for (int i = 0; i < table.Rows.Count; i++)
          {
              DataRow row = table.Rows[i];

              int id = (int)row["ID"];

              if (big < id)
              {
                  big = id;
              }
          }

          big++;
          return big;
      }

      #endregion Helper Methods

      #region Private Properties

      private string pathSeparator = "\\";
      private static string pattern = @"^[a-z]+[0-9]*_*$";

       private enum PathType { Database, Table, Row, Invalid };

      #endregion Private Properties

   } // AccessDBProvider

    #endregion AccessDBProvider

   #region Helper Classes

   #region AccessDBPSDriveInfo

   /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {



       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo

   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;



           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount
       {
           get
           {
               return rowCount;
           }
           set
           {
               rowCount = value;
           }
       }
       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo



   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {
       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo



System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

Designing Your Windows PowerShell Provider

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


AccessDBProviderSample06
Article • 03/24/2025

This sample shows how to overwrite content methods to support calls to the Clear-
Content , Get-Content , and Set-Content  cmdlets. These methods should be
implemented when the user needs to manage the content of the items in the data store.
The provider class in this sample derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class, and it
implements the System.Management.Automation.Provider.IContentCmdletProvider
interface.

This sample demonstrates the following:

Declaring the CmdletProvider  attribute.
Defining a provider class that derives from the
System.Management.Automation.Provider.NavigationCmdletProvider class and
that declares the
System.Management.Automation.Provider.IContentCmdletProvider interface.
Overwriting the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method to change the behavior of the Clear-Content  cmdlet, allowing the user to
remove the content from an item. (This sample does not show how to add
dynamic parameters to the Clear-Content  cmdlet.)

Demonstrates

） Important

Your provider class will most likely derive from one of the following classes and
possibly implement other provider interfaces:

System.Management.Automation.Provider.ItemCmdletProvider class. See

AccessDBProviderSample03.

System.Management.Automation.Provider.ContainerCmdletProvider class.

See AccessDBProviderSample04.
System.Management.Automation.Provider.NavigationCmdletProvider class.

For more information about choosing which provider class to derive from based on
provider features, see Designing Your Windows PowerShell Provider.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


Overwriting the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentRea
der* method to change the behavior of the Get-Content  cmdlet, allowing the user
to retrieve the content of an item. (This sample does not show how to add
dynamic parameters to the Get-Content  cmdlet.).
Overwriting the
Microsoft.PowerShell.Commands.FileSystemProvider.GetContentWriter* method to
change the behavior of the Set-Content  cmdlet, allowing the user to update the
content of an item. (This sample does not show how to add dynamic parameters to
the Set-Content  cmdlet.)

This sample shows how to overwrite the methods needed to clear, get, and set the
content of items in a Microsoft Access data base.

C#

Example

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Diagnostics;
using System.Collections;
using System.Collections.ObjectModel;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.Text;
using System.Text.RegularExpressions;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

   /// <summary>
   /// This example implements the content methods.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : NavigationCmdletProvider, 
IContentCmdletProvider
   {

       #region Drive Manipulation

        /// <summary>
        /// Create a new drive.  Create a connection to the database file 

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/Microsoft.PowerShell.Commands.FileSystemProvider.GetContentWriter


and set
        /// the Connection property in the PSDriveInfo.
        /// </summary>
        /// <param name="drive">
        /// Information describing the drive to add.
        /// </param>
        /// <returns>The added drive.</returns>
        protected override PSDriveInfo NewDrive(PSDriveInfo drive)
        {
            // check if drive object is null
            if (drive == null)
            {
                WriteError(new ErrorRecord(
                    new ArgumentNullException("drive"),
                    "NullDrive",
                    ErrorCategory.InvalidArgument,
                    null)
                );

                return null;
            }

            // check if drive root is not null or empty
            // and if its an existing file
            if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
            {
                WriteError(new ErrorRecord(
                    new ArgumentException("drive.Root"),
                    "NoRoot",
                    ErrorCategory.InvalidArgument,
                    drive)
                );

                return null;
            }

            // create a new drive and create an ODBC connection to the new 
drive
            AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

            OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

            builder.Driver = "Microsoft Access Driver (*.mdb)";
            builder.Add("DBQ", drive.Root);

            OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
            conn.Open();
            accessDBPSDriveInfo.Connection = conn;

            return accessDBPSDriveInfo;
        } // NewDrive



        /// <summary>
        /// Removes a drive from the provider.
        /// </summary>
        /// <param name="drive">The drive to remove.</param>
        /// <returns>The drive removed.</returns>
        protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
        {
            // check if drive object is null
            if (drive == null)
            {
                WriteError(new ErrorRecord(
                    new ArgumentNullException("drive"),
                    "NullDrive",
                    ErrorCategory.InvalidArgument,
                    drive)
                );

                return null;
            }

            // close ODBC connection to the drive
            AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

            if (accessDBPSDriveInfo == null)
            {
                return null;
            }
            accessDBPSDriveInfo.Connection.Close();

            return accessDBPSDriveInfo;
        } // RemoveDrive

        #endregion Drive Manipulation

       #region Item Methods

        /// <summary>
        /// Retrieves an item using the specified path.
        /// </summary>
        /// <param name="path">The path to the item to return.</param>
        protected override void GetItem(string path)
        {
            // check if the path represented is a drive
            if (PathIsDrive(path))
            {
                WriteItemObject(this.PSDriveInfo, path, true);
                return;
            }// if (PathIsDrive...

            // Get table name and row information from the path and do 
            // necessary actions
            string tableName;
            int rowNumber;



            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                DatabaseTableInfo table = GetTable(tableName);
                WriteItemObject(table, path, true);
            }
            else if (type == PathType.Row)
            {
                DatabaseRowInfo row = GetRow(tableName, rowNumber);
                WriteItemObject(row, path, false);
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }

        } // GetItem

        /// <summary>
        /// Set the content of a row of data specified by the supplied path
        /// parameter.
        /// </summary>
        /// <param name="path">Specifies the path to the row whose columns
        /// will be updated.</param>
        /// <param name="values">Comma separated string of values</param>
        protected override void SetItem(string path, object values)
        {
            // Get type, table name and row number from the path specified
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type != PathType.Row)
            {
                WriteError(new ErrorRecord(new NotSupportedException(
                      "SetNotSupported"), "",
                   ErrorCategory.InvalidOperation, path));

                return;
            }

            // Get in-memory representation of table
            OdbcDataAdapter da = GetAdapterForTable(tableName);

            if (da == null)
            {
                return;
            }
            DataSet ds = GetDataSetForTable(da, tableName);
            DataTable table = GetDataTable(ds, tableName);



            if (rowNumber >= table.Rows.Count)
            {
                // The specified row number has to be available. If not
                // NewItem has to be used to add a new row
                throw new ArgumentException("Row specified is not 
available");
            } // if (rowNum...

            string[] colValues = (values as string).Split(',');

            // set the specified row
            DataRow row = table.Rows[rowNumber];

            for (int i = 0; i < colValues.Length; i++)
            {
                row[i] = colValues[i];
            }

            // Update the table
            if (ShouldProcess(path, "SetItem"))
            {
                da.Update(ds, tableName);
            }

        } // SetItem

        /// <summary>
        /// Test to see if the specified item exists.
        /// </summary>
        /// <param name="path">The path to the item to verify.</param>
        /// <returns>True if the item is found.</returns>
        protected override bool ItemExists(string path)
        {
            // check if the path represented is a drive
            if (PathIsDrive(path))
            {
                return true;
            }

            // Obtain type, table name and row number from path
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            DatabaseTableInfo table = GetTable(tableName);

            if (type == PathType.Table)
            {
                // if specified path represents a table then 
DatabaseTableInfo
                // object for the same should exist
                if (table != null)



                {
                    return true;
                }
            }
            else if (type == PathType.Row)
            {
                // if specified path represents a row then DatabaseTableInfo 
should
                // exist for the table and then specified row number must be 
within
                // the maximum row count in the table
                if (table != null && rowNumber < table.RowCount)
                {
                    return true;
                }
            }

            return false;

        } // ItemExists

        /// <summary>
        /// Test to see if the specified path is syntactically valid.
        /// </summary>
        /// <param name="path">The path to validate.</param>
        /// <returns>True if the specified path is valid.</returns>
        protected override bool IsValidPath(string path)
        {
            bool result = true;

            // check if the path is null or empty
            if (String.IsNullOrEmpty(path))
            {
                result = false;
            }

            // convert all separators in the path to a uniform one
            path = NormalizePath(path);

            // split the path into individual chunks
            string[] pathChunks = path.Split(pathSeparator.ToCharArray());

            foreach (string pathChunk in pathChunks)
            {
                if (pathChunk.Length == 0)
                {
                    result = false;
                }
            }
            return result;
        } // IsValidPath

        #endregion Item Overloads

       #region Container Overloads



        /// <summary>
        /// Return either the tables in the database or the datarows
        /// </summary>
        /// <param name="path">The path to the parent</param>
        /// <param name="recurse">True to return all child items 
recursively.
        /// </param>
        protected override void GetChildItems(string path, bool recurse)
        {
            // If path represented is a drive then the children in the path 
are 
            // tables. Hence all tables in the drive represented will have 
to be
            // returned
            if (PathIsDrive(path))
            {
                foreach (DatabaseTableInfo table in GetTables())
                {
                    WriteItemObject(table, path, true);

                    // if the specified item exists and recurse has been set 
then 
                    // all child items within it have to be obtained as well
                    if (ItemExists(path) && recurse)
                    {
                        GetChildItems(path + pathSeparator + table.Name, 
recurse);
                    }
                } // foreach (DatabaseTableInfo...
            } // if (PathIsDrive...
            else
            {
                // Get the table name, row number and type of path from the
                // path specified
                string tableName;
                int rowNumber;

                PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

                if (type == PathType.Table)
                {
                    // Obtain all the rows within the table
                    foreach (DatabaseRowInfo row in GetRows(tableName))
                    {
                        WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                                false);
                    } // foreach (DatabaseRowInfo...
                }
                else if (type == PathType.Row)
                {
                    // In this case the user has directly specified a row, 
hence



                    // just give that particular row
                    DatabaseRowInfo row = GetRow(tableName, rowNumber);
                    WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                                false);
                }
                else
                {
                    // In this case, the path specified is not valid
                    ThrowTerminatingInvalidPathException(path);
                }
            } // else
        } // GetChildItems

        /// <summary>
        /// Return the names of all child items.
        /// </summary>
        /// <param name="path">The root path.</param>
        /// <param name="returnContainers">Not used.</param>
        protected override void GetChildNames(string path,
                                      ReturnContainers returnContainers)
        {
            // If the path represented is a drive, then the child items are
            // tables. get the names of all the tables in the drive.
            if (PathIsDrive(path))
            {
                foreach (DatabaseTableInfo table in GetTables())
                {
                    WriteItemObject(table.Name, path, true);
                } // foreach (DatabaseTableInfo...
            } // if (PathIsDrive...
            else
            {
                // Get type, table name and row number from path specified
                string tableName;
                int rowNumber;

                PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

                if (type == PathType.Table)
                {
                    // Get all the rows in the table and then write out the 
                    // row numbers.
                    foreach (DatabaseRowInfo row in GetRows(tableName))
                    {
                        WriteItemObject(row.RowNumber, path, false);
                    } // foreach (DatabaseRowInfo...
                }
                else if (type == PathType.Row)
                {
                    // In this case the user has directly specified a row, 
hence
                    // just give that particular row
                    DatabaseRowInfo row = GetRow(tableName, rowNumber);



                    WriteItemObject(row.RowNumber, path, false);
                }
                else
                {
                    ThrowTerminatingInvalidPathException(path);
                }
            } // else
        } // GetChildNames

        /// <summary>
        /// Determines if the specified path has child items.
        /// </summary>
        /// <param name="path">The path to examine.</param>
        /// <returns>
        /// True if the specified path has child items.
        /// </returns>
        protected override bool HasChildItems(string path)
        {
            if (PathIsDrive(path))
            {
                return true;
            }

            return (ChunkPath(path).Length == 1);
        } // HasChildItems

        /// <summary>
        /// Creates a new item at the specified path.
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the new item.
        /// </param>
        /// 
        /// <param name="type">
        /// Type for the object to create. "Table" for creating a new table 
and
        /// "Row" for creating a new row in a table.
        /// </param>
        /// 
        /// <param name="newItemValue">
        /// Object for creating new instance of a type at the specified 
path. For
        /// creating a "Table" the object parameter is ignored and for 
creating
        /// a "Row" the object must be of type string which will contain 
comma 
        /// separated values of the rows to insert.
        /// </param>
        protected override void NewItem(string path, string type,
                                    object newItemValue)
        {
            string tableName;
            int rowNumber;



            PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (pt == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            // Check if type is either "table" or "row", if not throw an 
            // exception
            if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
                && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
            {
                WriteError(new ErrorRecord
                                  (new ArgumentException("Type must be 
either a table or row"),
                                      "CannotCreateSpecifiedObject",
                                         ErrorCategory.InvalidArgument,
                                              path
                                   )
                          );

                throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
            }

            // Path type is the type of path of the container. So if a drive
            // is specified, then a table can be created under it and if a 
table
            // is specified, then a row can be created under it. For the 
sake of 
            // completeness, if a row is specified, then if the row 
specified by
            // the path does not exist, a new row is created. However, the 
row 
            // number may not match as the row numbers only get incremented 
based 
            // on the number of rows

            if (PathIsDrive(path))
            {
                if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
                {
                    // Execute command using ODBC connection to create a 
table
                    try
                    {
                        // create the table using an sql statement
                        string newTableName = newItemValue.ToString();
                        string sql = "create table " + newTableName
                                             + " (ID INT)";



                        // Create the table using the Odbc connection from 
the 
                        // drive.
                        AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                        if (di == null)
                        {
                            return;
                        }
                        OdbcConnection connection = di.Connection;

                        if (ShouldProcess(newTableName, "create"))
                        {
                            OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                            cmd.ExecuteScalar();
                        }
                    }
                    catch (Exception ex)
                    {
                        WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                  ErrorCategory.InvalidOperation, path)
                                  );
                    }
                } // if (String...
                else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
                {
                    throw new
                        ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
                }
            }// if (PathIsDrive...
            else
            {
                if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
                {
                    if (rowNumber < 0)
                    {
                        throw new
                            ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                    }
                    else
                    {
                        throw new
                            ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                    }
                } //if (String.Equals....
                // if path specified is a row, create a new row



                else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
                {
                    // The user is required to specify the values to be 
inserted 
                    // into the table in a single string separated by commas
                    string value = newItemValue as string;

                    if (String.IsNullOrEmpty(value))
                    {
                        throw new
                            ArgumentException("Value argument must have 
comma separated values of each column in a row");
                    }
                    string[] rowValues = value.Split(',');

                    OdbcDataAdapter da = GetAdapterForTable(tableName);

                    if (da == null)
                    {
                        return;
                    }

                    DataSet ds = GetDataSetForTable(da, tableName);
                    DataTable table = GetDataTable(ds, tableName);

                    if (rowValues.Length != table.Columns.Count)
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture,
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                        throw new ArgumentException(message);
                    }

                    if (!Force && (rowNumber >= 0 && rowNumber < 
table.Rows.Count))
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The row {0} already exists. To 
create a new row specify row number as {1}, or specify path to a table, or 
use the -Force parameter",
                                                rowNumber, 
table.Rows.Count);

                        throw new ArgumentException(message);
                    }

                    if (rowNumber > table.Rows.Count)
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture, 



                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                 table.Rows.Count);

                        throw new ArgumentException(message);
                    }

                    // Create a new row and update the row with the input
                    // provided by the user
                    DataRow row = table.NewRow();
                    for (int i = 0; i < rowValues.Length; i++)
                    {
                        row[i] = rowValues[i];
                    }
                    table.Rows.Add(row);

                    if (ShouldProcess(tableName, "update rows"))
                    {
                        // Update the table from memory back to the data 
source
                        da.Update(ds, tableName);
                    }

                }// else if (String...
            }// else ...

        } // NewItem

        /// <summary>
        /// Copies an item at the specified path to the location specified
        /// </summary>
        /// 
        /// <param name="path">
        /// Path of the item to copy
        /// </param>
        /// 
        /// <param name="copyPath">
        /// Path of the item to copy to
        /// </param>
        /// 
        /// <param name="recurse">
        /// Tells the provider to recurse subcontainers when copying
        /// </param>
        /// 
        protected override void CopyItem(string path, string copyPath, bool 
recurse)
        {
            string tableName, copyTableName;
            int rowNumber, copyRowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
            PathType copyType = GetNamesFromPath(copyPath, out 
copyTableName, out copyRowNumber);



            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(copyPath);
            }

            // Get the table and the table to copy to 
            OdbcDataAdapter da = GetAdapterForTable(tableName);
            if (da == null)
            {
                return;
            }

            DataSet ds = GetDataSetForTable(da, tableName);
            DataTable table = GetDataTable(ds, tableName);

            OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
            if (cda == null)
            {
                return;
            }

            DataSet cds = GetDataSetForTable(cda, copyTableName);
            DataTable copyTable = GetDataTable(cds, copyTableName);

            // if source represents a table
            if (type == PathType.Table)
            {
                // if copyPath does not represent a table
                if (copyType != PathType.Table)
                {
                    ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                    WriteError(new ErrorRecord(e, "PathNotValid",
                        ErrorCategory.InvalidArgument, copyPath));

                    throw e;
                }

                // if table already exists then force parameter should be 
set 
                // to force a copy
                if (!Force && GetTable(copyTableName) != null)
                {
                    throw new ArgumentException("Specified path already 
exists");
                }

                for (int i = 0; i < table.Rows.Count; i++)
                {



                    DataRow row = table.Rows[i];
                    DataRow copyRow = copyTable.NewRow();

                    copyRow.ItemArray = row.ItemArray;
                    copyTable.Rows.Add(copyRow);
                }
            } // if (type == ...
            // if source represents a row
            else
            {
                if (copyType == PathType.Row)
                {
                    if (!Force && (copyRowNumber < copyTable.Rows.Count))
                    {
                        throw new ArgumentException("Specified path already 
exists.");
                    }

                    DataRow row = table.Rows[rowNumber];
                    DataRow copyRow = null;

                    if (copyRowNumber < copyTable.Rows.Count)
                    {
                        // copy to an existing row
                        copyRow = copyTable.Rows[copyRowNumber];
                        copyRow.ItemArray = row.ItemArray;
                        copyRow[0] = GetNextID(copyTable);
                    }
                    else if (copyRowNumber == copyTable.Rows.Count)
                    {
                        // copy to the next row in the table that will 
                        // be created
                        copyRow = copyTable.NewRow();
                        copyRow.ItemArray = row.ItemArray;
                        copyRow[0] = GetNextID(copyTable);
                        copyTable.Rows.Add(copyRow);
                    }
                    else
                    {
                        // attempting to copy to a nonexistent row or a row
                        // that cannot be created now - throw an exception
                        string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The item cannot be specified to 
the copied row. Specify row number as {0}, or specify a path to the table.",
                                                table.Rows.Count);

                        throw new ArgumentException(message);
                    }
                }
                else
                {
                    // destination path specified represents a table, 
                    // create a new row and copy the item
                    DataRow copyRow = copyTable.NewRow();



                    copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                    copyRow[0] = GetNextID(copyTable);
                    copyTable.Rows.Add(copyRow);
                }
            }

            if (ShouldProcess(copyTableName, "CopyItems"))
            {
                cda.Update(cds, copyTableName);
            }

        } //CopyItem

        /// <summary>
        /// Removes (deletes) the item at the specified path
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the item to remove.
        /// </param>
        /// 
        /// <param name="recurse">
        /// True if all children in a subtree should be removed, false if 
only
        /// the item at the specified path should be removed. Is applicable
        /// only for container (table) items. Its ignored otherwise (even if
        /// specified).
        /// </param>
        /// 
        /// <remarks>
        /// There are no elements in this store which are hidden from the 
user.
        /// Hence this method will not check for the presence of the Force
        /// parameter
        /// </remarks>
        /// 
        protected override void RemoveItem(string path, bool recurse)
        {
            string tableName;
            int rowNumber = 0;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                // if recurse flag has been specified, delete all the rows 
as well
                if (recurse)
                {
                    OdbcDataAdapter da = GetAdapterForTable(tableName);
                    if (da == null)
                    {
                        return;
                    }



                    DataSet ds = GetDataSetForTable(da, tableName);
                    DataTable table = GetDataTable(ds, tableName);

                    for (int i = 0; i < table.Rows.Count; i++)
                    {
                        table.Rows[i].Delete();
                    }

                    if (ShouldProcess(path, "RemoveItem"))
                    {
                        da.Update(ds, tableName);
                        RemoveTable(tableName);
                    }
                }//if (recurse...
                else
                {
                    // Remove the table
                    if (ShouldProcess(path, "RemoveItem"))
                    {
                        RemoveTable(tableName);
                    }
                }
            }
            else if (type == PathType.Row)
            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);
                if (da == null)
                {
                    return;
                }

                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                table.Rows[rowNumber].Delete();

                if (ShouldProcess(path, "RemoveItem"))
                {
                    da.Update(ds, tableName);
                }
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }

        } // RemoveItem

        #endregion Container Overloads

       #region Navigation

        /// <summary>
        /// Determine if the path specified is that of a container.



        /// </summary>
        /// <param name="path">The path to check.</param>
        /// <returns>True if the path specifies a container.</returns>
        protected override bool IsItemContainer(string path)
        {
            if (PathIsDrive(path))
            {
                return true;
            }

            string[] pathChunks = ChunkPath(path);
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                foreach (DatabaseTableInfo ti in GetTables())
                {
                    if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
                    {
                        return true;
                    }
                } // foreach (DatabaseTableInfo...
            } // if (pathChunks...

            return false;
        } // IsItemContainer

        /// <summary>
        /// Get the name of the leaf element in the specified path        
        /// </summary>
        /// 
        /// <param name="path">
        /// The full or partial provider specific path
        /// </param>
        /// 
        /// <returns>
        /// The leaf element in the path
        /// </returns>
        protected override string GetChildName(string path)
        {
            if (PathIsDrive(path))
            {
                return path;
            }

            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);



            if (type == PathType.Table)
            {
                return tableName;
            }
            else if (type == PathType.Row)
            {
                return rowNumber.ToString(CultureInfo.CurrentCulture);
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }

            return null;
        }

        /// <summary>
        /// Removes the child segment of the path and returns the remaining
        /// parent portion
        /// </summary>
        /// 
        /// <param name="path">
        /// A full or partial provider specific path. The path may be to an
        /// item that may or may not exist.
        /// </param>
        /// 
        /// <param name="root">
        /// The fully qualified path to the root of a drive. This parameter
        /// may be null or empty if a mounted drive is not in use for this
        /// operation.  If this parameter is not null or empty the result
        /// of the method should not be a path to a container that is a
        /// parent or in a different tree than the root.
        /// </param>
        /// 
        /// <returns></returns>

        protected override string GetParentPath(string path, string root)
        {
            // If root is specified then the path has to contain
            // the root. If not nothing should be returned
            if (!String.IsNullOrEmpty(root))
            {
                if (!path.Contains(root))
                {
                    return null;
                }
            }

            return path.Substring(0, path.LastIndexOf(pathSeparator, 
StringComparison.OrdinalIgnoreCase));
        }

        /// <summary>
        /// Joins two strings with a provider specific path separator.



        /// </summary>
        /// 
        /// <param name="parent">
        /// The parent segment of a path to be joined with the child.
        /// </param>
        /// 
        /// <param name="child">
        /// The child segment of a path to be joined with the parent.
        /// </param>
        /// 
        /// <returns>
        /// A string that represents the parent and child segments of the 
path
        /// joined by a path separator.
        /// </returns>

        protected override string MakePath(string parent, string child)
        {
            string result;

            string normalParent = NormalizePath(parent);
            normalParent = RemoveDriveFromPath(normalParent);
            string normalChild = NormalizePath(child);
            normalChild = RemoveDriveFromPath(normalChild);

            if (String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
            {
                result = String.Empty;
            }
            else if (String.IsNullOrEmpty(normalParent) && 
!String.IsNullOrEmpty(normalChild))
            {
                result = normalChild;
            }
            else if (!String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
            {
                if (normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {
                    result = normalParent;
                }
                else
                {
                    result = normalParent + pathSeparator;
                }
            } // else if (!String...
            else
            {
                if (!normalParent.Equals(String.Empty, 
StringComparison.OrdinalIgnoreCase) && 
                    !normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {



                    result = normalParent + pathSeparator;
                }
                else
                {
                    result = normalParent;
                }

                if (normalChild.StartsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {
                    result += normalChild.Substring(1);
                }
                else
                {
                    result += normalChild;
                }
            } // else

            return result;
        } // MakePath

        /// <summary>
        /// Normalizes the path that was passed in and returns the 
normalized
        /// path as a relative path to the basePath that was passed.
        /// </summary>
        /// 
        /// <param name="path">
        /// A fully qualified provider specific path to an item.  The item
        /// should exist or the provider should write out an error.
        /// </param>
        /// 
        /// <param name="basepath">
        /// The path that the return value should be relative to.
        /// </param>
        /// 
        /// <returns>
        /// A normalized path that is relative to the basePath that was
        /// passed.  The provider should parse the path parameter, normalize
        /// the path, and then return the normalized path relative to the
        /// basePath.
        /// </returns>

        protected override string NormalizeRelativePath(string path,
                                                             string 
basepath)
        {
            // Normalize the paths first
            string normalPath = NormalizePath(path);
            normalPath = RemoveDriveFromPath(normalPath);
            string normalBasePath = NormalizePath(basepath);
            normalBasePath = RemoveDriveFromPath(normalBasePath);

            if (String.IsNullOrEmpty(normalBasePath))
            {



                return normalPath;
            }
            else
            {
                if (!normalPath.Contains(normalBasePath))
                {
                    return null;
                }

                return normalPath.Substring(normalBasePath.Length + 
pathSeparator.Length);
            }
        }

        /// <summary>
        /// Moves the item specified by the path to the specified 
destination
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the item to be moved
        /// </param>
        /// 
        /// <param name="destination">
        /// The path of the destination container
        /// </param>

        protected override void MoveItem(string path, string destination)
        {
            // Get type, table name and rowNumber from the path
            string tableName, destTableName;
            int rowNumber, destRowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            PathType destType = GetNamesFromPath(destination, out 
destTableName,
                                     out destRowNumber);

            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            if (destType == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(destination);
            }

            if (type == PathType.Table)
            {
                ArgumentException e = new ArgumentException("Move not 
supported for tables");



                WriteError(new ErrorRecord(e, "MoveNotSupported",
                    ErrorCategory.InvalidArgument, path));

                throw e;
            }
            else
            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);
                if (da == null)
                {
                    return;
                }

                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                OdbcDataAdapter dda = GetAdapterForTable(destTableName);
                if (dda == null)
                {
                    return;
                }

                DataSet dds = GetDataSetForTable(dda, destTableName);
                DataTable destTable = GetDataTable(dds, destTableName);
                DataRow row = table.Rows[rowNumber];

                if (destType == PathType.Table)
                {
                    DataRow destRow = destTable.NewRow();

                    destRow.ItemArray = row.ItemArray;
                }
                else
                {
                    DataRow destRow = destTable.Rows[destRowNumber];

                    destRow.ItemArray = row.ItemArray;
                }

                // Update the changes
                if (ShouldProcess(path, "MoveItem"))
                {
                    WriteItemObject(row, path, false);
                    dda.Update(dds, destTableName);
                }
            }
        }

        #endregion Navigation

       #region Helper Methods

        /// <summary>
        /// Checks if a given path is actually a drive name.
        /// </summary>



        /// <param name="path">The path to check.</param>
        /// <returns>
        /// True if the path given represents a drive, false otherwise.
        /// </returns>
        private bool PathIsDrive(string path)
        {
            // Remove the drive name and first path separator.  If the 
            // path is reduced to nothing, it is a drive. Also if its
            // just a drive then there wont be any path separators
            if (String.IsNullOrEmpty(
                        path.Replace(this.PSDriveInfo.Root, "")) ||
                String.IsNullOrEmpty(
                        path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

               )
            {
                return true;
            }
            else
            {
                return false;
            }
        } // PathIsDrive

        /// <summary>
        /// Breaks up the path into individual elements.
        /// </summary>
        /// <param name="path">The path to split.</param>
        /// <returns>An array of path segments.</returns>
        private string[] ChunkPath(string path)
        {
            // Normalize the path before splitting
            string normalPath = NormalizePath(path);

            // Return the path with the drive name and first path 
            // separator character removed, split by the path separator.
            string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                           + pathSeparator, "");

            return pathNoDrive.Split(pathSeparator.ToCharArray());
        } // ChunkPath

        /// <summary>
        /// Adapts the path, making sure the correct path separator
        /// character is used.
        /// </summary>
        /// <param name="path"></param>
        /// <returns></returns>
        private string NormalizePath(string path)
        {
            string result = path;

            if (!String.IsNullOrEmpty(path))
            {



                result = path.Replace("/", pathSeparator);
            }

            return result;
        } // NormalizePath

        /// <summary>
        /// Ensures that the drive is removed from the specified path
        /// </summary>
        /// 
        /// <param name="path">Path from which drive needs to be 
removed</param>
        /// <returns>Path with drive information removed</returns>
        private string RemoveDriveFromPath(string path)
        {
            string result = path;
            string root;

            if (this.PSDriveInfo == null)
            {
                root = String.Empty;
            }
            else
            {
                root = this.PSDriveInfo.Root;
            }

            if (result == null)
            {
                result = String.Empty;
            }

            if (result.Contains(root))
            {
                result = result.Substring(result.IndexOf(root, 
StringComparison.OrdinalIgnoreCase) + root.Length);
            }

            return result;
        }

        /// <summary>
        /// Chunks the path and returns the table name and the row number 
        /// from the path
        /// </summary>
        /// <param name="path">Path to chunk and obtain information</param>
        /// <param name="tableName">Name of the table as represented in the 
        /// path</param>
        /// <param name="rowNumber">Row number obtained from the 
path</param>
        /// <returns>what the path represents</returns>
        public PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
        {
            PathType retVal = PathType.Invalid;



            rowNumber = -1;
            tableName = null;

            // Check if the path specified is a drive
            if (PathIsDrive(path))
            {
                return PathType.Database;
            }

            // chunk the path into parts
            string[] pathChunks = ChunkPath(path);

            switch (pathChunks.Length)
            {
                case 1:
                    {
                        string name = pathChunks[0];

                        if (TableNameIsValid(name))
                        {
                            tableName = name;
                            retVal = PathType.Table;
                        }
                    }
                    break;

                case 2:
                    {
                        string name = pathChunks[0];

                        if (TableNameIsValid(name))
                        {
                            tableName = name;
                        }

                        int number = SafeConvertRowNumber(pathChunks[1]);

                        if (number >= 0)
                        {
                            rowNumber = number;
                            retVal = PathType.Row;
                        }
                        else
                        {
                            WriteError(new ErrorRecord(
                                new ArgumentException("Row number is not 
valid"),
                                "RowNumberNotValid",
                                ErrorCategory.InvalidArgument,
                                path));
                        }
                    }
                    break;

                default:



                    {
                        WriteError(new ErrorRecord(
                            new ArgumentException("The path supplied has too 
many segments"),
                            "PathNotValid",
                            ErrorCategory.InvalidArgument,
                            path));
                    }
                    break;
            } // switch(pathChunks...

            return retVal;
        } // GetNamesFromPath

        /// <summary>
        /// Throws an argument exception stating that the specified path 
does
        /// not represent either a table or a row
        /// </summary>
        /// <param name="path">path which is invalid</param>
        private void ThrowTerminatingInvalidPathException(string path)
        {
            StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
            message.Append(path);

            throw new ArgumentException(message.ToString());
        }

        /// <summary>
        /// Retrieve the list of tables from the database.
        /// </summary>
        /// <returns>
        /// Collection of DatabaseTableInfo objects, each object 
representing
        /// information about one database table
        /// </returns>
        internal Collection<DatabaseTableInfo> GetTables()
        {
            Collection<DatabaseTableInfo> results =
                    new Collection<DatabaseTableInfo>();

            // using ODBC connection to the database and get the schema of 
tables
            AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

            if (di == null)
            {
                return null;
            }

            OdbcConnection connection = di.Connection;
            DataTable dt = connection.GetSchema("Tables");
            int count;



            // iterate through all rows in the schema and create 
DatabaseTableInfo
            // objects which represents a table
            foreach (DataRow dr in dt.Rows)
            {
                String tableName = dr["TABLE_NAME"] as String;
                DataColumnCollection columns = null;

                // find the number of rows in the table
                try
                {
                    String cmd = "Select count(*) from \"" + tableName + 
"\"";
                    OdbcCommand command = new OdbcCommand(cmd, connection);

                    count = (Int32)command.ExecuteScalar();
                }
                catch
                {
                    count = 0;
                }

                // create DatabaseTableInfo object representing the table
                DatabaseTableInfo table =
                        new DatabaseTableInfo(dr, tableName, count, 
columns);

                results.Add(table);
            } // foreach (DataRow...

            return results;
        } // GetTables

        /// <summary>
        /// Return row information from a specified table.
        /// </summary>
        /// <param name="tableName">The name of the database table from 
        /// which to retrieve rows.</param>
        /// <returns>Collection of row information objects.</returns>
        public Collection<DatabaseRowInfo> GetRows(string tableName)
        {
            Collection<DatabaseRowInfo> results =
                        new Collection<DatabaseRowInfo>();

            // Obtain rows in the table and add it to the collection
            try
            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);

                if (da == null)
                {
                    return null;
                }



                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                int i = 0;
                foreach (DataRow row in table.Rows)
                {
                    results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                    i++;
                } // foreach (DataRow...
            }
            catch (Exception e)
            {
                WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                    ErrorCategory.InvalidOperation, tableName));
            }

            return results;

        } // GetRows

        /// <summary>
        /// Retrieve information about a single table.
        /// </summary>
        /// <param name="tableName">The table for which to retrieve 
        /// data.</param>
        /// <returns>Table information.</returns>
        private DatabaseTableInfo GetTable(string tableName)
        {
            foreach (DatabaseTableInfo table in GetTables())
            {
                if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
                {
                    return table;
                }
            }

            return null;
        } // GetTable

        /// <summary>
        /// Removes the specified table from the database
        /// </summary>
        /// <param name="tableName">Name of the table to remove</param>
        private void RemoveTable(string tableName)
        {
            // validate if tablename is valid and if table is present
            if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
            {
                return;
            }

            // Execute command using ODBC connection to remove a table



            try
            {
                // delete the table using an sql statement
                string sql = "drop table " + tableName;

                AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                if (di == null)
                {
                    return;
                }
                OdbcConnection connection = di.Connection;

                OdbcCommand cmd = new OdbcCommand(sql, connection);
                cmd.ExecuteScalar();
            }
            catch (Exception ex)
            {
                WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                          ErrorCategory.InvalidOperation, null)
                          );
            }

        } // RemoveTable

        /// <summary>
        /// Obtain a data adapter for the specified Table
        /// </summary>
        /// <param name="tableName">Name of the table to obtain the 
        /// adapter for</param>
        /// <returns>Adapter object for the specified table</returns>
        /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
        /// representation of table) and the data source</remarks>
        internal OdbcDataAdapter GetAdapterForTable(string tableName)
        {
            OdbcDataAdapter da = null;
            AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

            if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
            {
                return null;
            }

            OdbcConnection connection = di.Connection;

            try
            {
                // Create a odbc data adpater. This can be sued to update 
the
                // data source with the records that will be created here
                // using data sets



                string sql = "Select * from " + tableName;
                da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

                // Create a odbc command builder object. This will create 
sql
                // commands automatically for a single table, thus
                // eliminating the need to create new sql statements for 
                // every operation to be done.
                OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

                // Set the delete cmd for the table here
                sql = "Delete from " + tableName + " where ID = ?";
                da.DeleteCommand = new OdbcCommand(sql, connection);

                // Specify a DeleteCommand parameter based on the "ID" 
                // column
                da.DeleteCommand.Parameters.Add(new OdbcParameter());
                da.DeleteCommand.Parameters[0].SourceColumn = "ID";

                // Create an InsertCommand based on the sql string
                // Insert into "tablename" values (?,?,?)" where
                // ? represents a column in the table. Note that 
                // the number of ? will be equal to the number of 
                // columnds
                DataSet ds = new DataSet();
                ds.Locale = CultureInfo.InvariantCulture;

                da.FillSchema(ds, SchemaType.Source);

                sql = "Insert into " + tableName + " values ( ";
                for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
                {
                    sql += "?, ";
                }
                sql = sql.Substring(0, sql.Length - 2);
                sql += ")";
                da.InsertCommand = new OdbcCommand(sql, connection);

                // Create parameters for the InsertCommand based on the
                // captions of each column
                for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
                {
                    da.InsertCommand.Parameters.Add(new OdbcParameter());
                    da.InsertCommand.Parameters[i].SourceColumn =
                                     ds.Tables["Table"].Columns[i].Caption;

                }

                // Open the connection if its not already open                 
                if (connection.State != ConnectionState.Open)
                {
                    connection.Open();
                }
            }
            catch (Exception e)



            {
                WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                  ErrorCategory.InvalidOperation, tableName));
            }

            return da;
        } // GetAdapterForTable

        /// <summary>
        /// Gets the DataSet (in memory representation) for the table
        /// for the specified adapter
        /// </summary>
        /// <param name="adapter">Adapter to be used for obtaining 
        /// the table</param>
        /// <param name="tableName">Name of the table for which a 
        /// DataSet is required</param>
        /// <returns>The DataSet with the filled in schema</returns>
        internal DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
        {
            Debug.Assert(adapter != null);

            // Create a dataset object which will provide an in-memory
            // representation of the data being worked upon in the 
            // data source. 
            DataSet ds = new DataSet();

            // Create a table named "Table" which will contain the same
            // schema as in the data source.
            //adapter.FillSchema(ds, SchemaType.Source);
            adapter.Fill(ds, tableName);
            ds.Locale = CultureInfo.InvariantCulture;

            return ds;
        } //GetDataSetForTable

        /// <summary>
        /// Get the DataTable object which can be used to operate on
        /// for the specified table in the data source
        /// </summary>
        /// <param name="ds">DataSet object which contains the tables
        /// schema</param>
        /// <param name="tableName">Name of the table</param>
        /// <returns>Corresponding DataTable object representing 
        /// the table</returns>
        /// 
        internal DataTable GetDataTable(DataSet ds, string tableName)
        {
            Debug.Assert(ds != null);
            Debug.Assert(tableName != null);

            DataTable table = ds.Tables[tableName];
            table.Locale = CultureInfo.InvariantCulture;

            return table;



        } // GetDataTable

       /// <summary>
        /// Retrieves a single row from the named table.
        /// </summary>
        /// <param name="tableName">The table that contains the 
        /// numbered row.</param>
        /// <param name="row">The index of the row to return.</param>
        /// <returns>The specified table row.</returns>
        private DatabaseRowInfo GetRow(string tableName, int row)
        {
            Collection<DatabaseRowInfo> di = GetRows(tableName);

            // if the row is invalid write an appropriate error else return 
the 
            // corresponding row information
            if (row < di.Count && row >= 0)
            {
                return di[row];
            }
            else
            {
                WriteError(new ErrorRecord(
                   new ItemNotFoundException(),
                   "RowNotFound",
                   ErrorCategory.ObjectNotFound,
                   row.ToString(CultureInfo.CurrentCulture))
                );
            }

            return null;
        } // GetRow

       /// <summary>
        /// Method to safely convert a string representation of a row number 
        /// into its Int32 equivalent
        /// </summary>
        /// <param name="rowNumberAsStr">String representation of the row 
        /// number</param>
        /// <remarks>If there is an exception, -1 is returned</remarks>
       private int SafeConvertRowNumber(string rowNumberAsStr)
        {
            int rowNumber = -1;
            try
            {
                rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
            }
            catch (FormatException fe)
            {
                WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                    ErrorCategory.InvalidData, rowNumberAsStr));
            }
            catch (OverflowException oe)
            {



                WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                    ErrorCategory.InvalidData, rowNumberAsStr));
            }

            return rowNumber;
        } // 1

       /// <summary>
       /// Check if a table name is valid
       /// </summary>
       /// <param name="tableName">Table name to validate</param>
       /// <remarks>Helps to check for SQL injection attacks</remarks>
       private bool TableNameIsValid(string tableName)
       {
           Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

           if (exp.IsMatch(tableName))
           {
               return true;
           }
           WriteError(new ErrorRecord(
               new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
           return false;
       } // TableNameIsValid

       /// <summary>
       /// Checks to see if the specified table is present in the
       /// database
       /// </summary>
       /// <param name="tableName">Name of the table to check</param>
       /// <returns>true, if table is present, false otherwise</returns>
       private bool TableIsPresent(string tableName)
       {
           // using ODBC connection to the database and get the schema of 
tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
           if (di == null)
           {
               return false;
           }

           OdbcConnection connection = di.Connection;
           DataTable dt = connection.GetSchema("Tables");

           // check if the specified tableName is available
           // in the list of tables present in the database
           foreach (DataRow dr in dt.Rows)
           {
               string name = dr["TABLE_NAME"] as string;
               if (name.Equals(tableName, 



StringComparison.OrdinalIgnoreCase))
               {
                   return true;
               }
           }

           WriteError(new ErrorRecord(
               new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                    ErrorCategory.InvalidArgument, tableName));

           return false;
       }// TableIsPresent

       /// <summary>
       /// Gets the next available ID in the table
       /// </summary>
       /// <param name="table">DataTable object representing the table to 
       /// search for ID</param>
       /// <returns>next available id</returns>
       private int GetNextID(DataTable table)
       {
           int big = 0;

           for (int i = 0; i < table.Rows.Count; i++)
           {
               DataRow row = table.Rows[i];

               int id = (int)row["ID"];

               if (big < id)
               {
                   big = id;
               }
           }

           big++;
           return big;
       }
       #endregion Helper Methods

       #region Content Methods

       /// <summary>
       /// Clear the contents at the specified location. In this case, 
clearing
       /// the item amounts to clearing a row
       /// </summary>
       /// <param name="path">The path to the content to clear.</param>
       public void ClearContent(string path)
       {
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 



rowNumber);

           if (type != PathType.Table)
           {
               WriteError(new ErrorRecord(
                   new InvalidOperationException("Operation not supported. 
Content can be cleared only for table"),
                       "NotValidRow", ErrorCategory.InvalidArgument,
                           path));
               return;
           }

           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           // Clear contents at the specified location
           for (int i = 0; i < table.Rows.Count; i++)
           {
               table.Rows[i].Delete();
           }

           if (ShouldProcess(path, "ClearContent"))
           {
               da.Update(ds, tableName);
           }

       } // ClearContent

       /// <summary>
       /// Not implemented.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       public object ClearContentDynamicParameters(string path)
       {
           return null;
       }

       /// <summary>
       /// Get a reader at the path specified.
       /// </summary>
       /// <param name="path">The path from which to read.</param>
       /// <returns>A content reader used to read the data.</returns>
       public IContentReader GetContentReader(string path)
       {
           string tableName;
           int rowNumber;



           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }
           else if (type == PathType.Row)
           {
               throw new InvalidOperationException("contents can be obtained 
only for tables");
           }

           return new AccessDBContentReader(path, this);
       } // GetContentReader

       /// <summary>
       /// Not implemented.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       public object GetContentReaderDynamicParameters(string path)
       {
           return null;
       }

       /// <summary>
       /// Get an object used to write content.
       /// </summary>
       /// <param name="path">The root path at which to write.</param>
       /// <returns>A content writer for writing.</returns>
       public IContentWriter GetContentWriter(string path)
       {
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }
           else if (type == PathType.Row)
           {
               throw new InvalidOperationException("contents can be added 
only to tables");
           }

           return new AccessDBContentWriter(path, this);
       }

       /// <summary>
       /// Not implemented.
       /// </summary>



       /// <param name="path"></param>
       /// <returns></returns>
       public object GetContentWriterDynamicParameters(string path)
       {
           return null;
       }

       #endregion Content Methods

       #region Private Properties
      
       private string pathSeparator = "\\";
       private static string pattern = @"^[a-z]+[0-9]*_*$";

       #endregion Private Properties

   } // AccessDBProvider

   #endregion AccessDBProvider

    #region Helper Classes

   #region Public Enumerations

   /// <summary>
   /// Type of item represented by the path
   /// </summary>
   public enum PathType
   {
       /// <summary>
       /// Represents a database
       /// </summary>
       Database,
       /// <summary>
       /// Represents a table
       /// </summary>
       Table,
       /// <summary>
       /// Represents a row
       /// </summary>
       Row,
       /// <summary>
       /// Represents an invalid path
       /// </summary>
       Invalid
   };

   #endregion Public Enumerations

    #region AccessDBPSDriveInfo

    /// <summary>
    /// Any state associated with the drive should be held here.
    /// In this case, it's the connection to the database.
    /// </summary>



    internal class AccessDBPSDriveInfo : PSDriveInfo
    {
        private OdbcConnection connection;

        /// <summary>
        /// ODBC connection information.
        /// </summary>
        public OdbcConnection Connection
        {
            get { return connection; }
            set { connection = value; }
        }

        /// <summary>
        /// Constructor that takes one argument
        /// </summary>
        /// <param name="driveInfo">Drive provided by this provider</param>
        public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
            : base(driveInfo)
        { }

    } // class AccessDBPSDriveInfo

    #endregion AccessDBPSDriveInfo

    #region DatabaseTableInfo

    /// <summary>
    /// Contains information specific to the database table.
    /// Similar to the DirectoryInfo class.
    /// </summary>
    public class DatabaseTableInfo
    {
        /// <summary>
        /// Row from the "tables" schema
        /// </summary>
        public DataRow Data
        {
            get
            {
                return data;
            }
            set
            {
                data = value;
            }
        }
        private DataRow data;

        /// <summary>
        /// The table name.
        /// </summary>
        public string Name
        {
            get



            {
                return name;
            }
            set
            {
                name = value;
            }
        }
        private String name;

        /// <summary>
        /// The number of rows in the table.
        /// </summary>
        public int RowCount
        {
            get
            {
                return rowCount;
            }
            set
            {
                rowCount = value;
            }
        }
        private int rowCount;

        /// <summary>
        /// The column definitions for the table.
        /// </summary>
        public DataColumnCollection Columns
        {
            get
            {
                return columns;
            }
            set
            {
                columns = value;
            }
        }
        private DataColumnCollection columns;

        /// <summary>
        /// Constructor.
        /// </summary>
        /// <param name="row">The row definition.</param>
        /// <param name="name">The table name.</param>
        /// <param name="rowCount">The number of rows in the table.</param>
        /// <param name="columns">Information on the column tables.</param>
        public DatabaseTableInfo(DataRow row, string name, int rowCount,
                       DataColumnCollection columns)
        {
            Name = name;
            Data = row;
            RowCount = rowCount;



            Columns = columns;
        } // DatabaseTableInfo
    } // class DatabaseTableInfo

    #endregion DatabaseTableInfo

    #region DatabaseRowInfo

    /// <summary>
    /// Contains information specific to an individual table row.
    /// Analogous to the FileInfo class.
    /// </summary>
    public class DatabaseRowInfo
    {
        /// <summary>
        /// Row data information.
        /// </summary>
        public DataRow Data
        {
            get
            {
                return data;
            }
            set
            {
                data = value;
            }
        }
        private DataRow data;

        /// <summary>
        /// The row index.
        /// </summary>
        public string RowNumber
        {
            get
            {
                return rowNumber;
            }
            set
            {
                rowNumber = value;
            }
        }
        private string rowNumber;

        /// <summary>
        /// Constructor.
        /// </summary>
        /// <param name="row">The row information.</param>
        /// <param name="name">The row index.</param>
        public DatabaseRowInfo(DataRow row, string name)
        {
            RowNumber = name;
            Data = row;



        } // DatabaseRowInfo
    } // class DatabaseRowInfo

    #endregion DatabaseRowInfo

    #region AccessDBContentReader

    /// <summary>
    /// Content reader used to retrieve data from this provider.
    /// </summary>
    public class AccessDBContentReader : IContentReader
    {
        // A provider instance is required so as to get "content"
        private AccessDBProvider provider;
        private string path;
        private long currentOffset;

        internal AccessDBContentReader(string path, AccessDBProvider 
provider)
        {
            this.path = path;
            this.provider = provider;
        }

        /// <summary>
        /// Read the specified number of rows from the source.
        /// </summary>
        /// <param name="readCount">The number of items to 
        /// return.</param>
        /// <returns>An array of elements read.</returns>
        public IList Read(long readCount)
        {
            // Read the number of rows specified by readCount and increment
            // offset
            string tableName;
            int rowNumber;
            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            Collection<DatabaseRowInfo> rows =
                provider.GetRows(tableName);
            Collection<DataRow> results = new Collection<DataRow>();

            if (currentOffset < 0 || currentOffset >= rows.Count)
            {
                return null;
            }

            int rowsRead = 0;

            while (rowsRead < readCount && currentOffset < rows.Count)
            {
                results.Add(rows[(int)currentOffset].Data);
                rowsRead++;
                currentOffset++;



            }

            return results;
        } // Read

        /// <summary>
        /// Moves the content reader specified number of rows from the 
        /// origin
        /// </summary>
        /// <param name="offset">Number of rows to offset</param>
        /// <param name="origin">Starting row from which to offset</param>
        public void Seek(long offset, System.IO.SeekOrigin origin)
        {
            // get the number of rows in the table which will help in
            // calculating current position
            string tableName;
            int rowNumber;

            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Invalid)
            {
                throw new ArgumentException("Path specified must represent a 
table or a row :" + path);
            }

            if (type == PathType.Table)
            {
                Collection<DatabaseRowInfo> rows = 
provider.GetRows(tableName);

                int numRows = rows.Count;

                if (offset > rows.Count)
                {
                    throw new
                           ArgumentException(
                               "Offset cannot be greater than the number of 
rows available"
                                            );
                }

                if (origin == System.IO.SeekOrigin.Begin)
                {
                    // starting from Beginning with an index 0, the current 
offset
                    // has to be advanced to offset - 1
                    currentOffset = offset - 1;
                }
                else if (origin == System.IO.SeekOrigin.End)
                {
                    // starting from the end which is numRows - 1, the 
current
                    // offset is so much less than numRows - 1



                    currentOffset = numRows - 1 - offset;
                }
                else
                {
                    // calculate from the previous value of current offset
                    // advancing forward always
                    currentOffset += offset;
                }
            } // if (type...
            else
            {
                // for row, the offset will always be set to 0
                currentOffset = 0;
            }

        } // Seek

        /// <summary>
        /// Closes the content reader, so all members are reset
        /// </summary>
        public void Close()
        {
            Dispose();
        } // Close

        /// <summary>
        /// Dispose any resources being used
        /// </summary>
        public void Dispose()
        {
            Seek(0, System.IO.SeekOrigin.Begin);
            
            GC.SuppressFinalize(this);
        } // Dispose
    } // AccessDBContentReader

    #endregion AccessDBContentReader

    #region AccessDBContentWriter

    /// <summary>
    /// Content writer used to write data in this provider.
    /// </summary>
    public class AccessDBContentWriter : IContentWriter
    {
        // A provider instance is required so as to get "content"
        private AccessDBProvider provider;
        private string path;
        private long currentOffset;

        internal AccessDBContentWriter(string path, AccessDBProvider 
provider)
        {
            this.path = path;
            this.provider = provider;



        }

        /// <summary>
        /// Write the specified row contents in the source
        /// </summary>
        /// <param name="content"> The contents to be written to the source.
        /// </param>
        /// <returns>An array of elements which were successfully written to 
        /// the source</returns>
        /// 
        public IList Write(IList content)
        {
            if (content == null)
            {
                return null;
            }

            // Get the total number of rows currently available it will 
            // determine how much to overwrite and how much to append at
            // the end
            string tableName;
            int rowNumber;
            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Table)
            {
                OdbcDataAdapter da = provider.GetAdapterForTable(tableName);
                if (da == null)
                {
                    return null;
                }

                DataSet ds = provider.GetDataSetForTable(da, tableName);
                DataTable table = provider.GetDataTable(ds, tableName);

                string[] colValues = (content[0] as string).Split(',');

                // set the specified row
                DataRow row = table.NewRow();

                for (int i = 0; i < colValues.Length; i++)
                {
                    if (!String.IsNullOrEmpty(colValues[i]))
                    {
                        row[i] = colValues[i];
                    }
                }

                //table.Rows.InsertAt(row, rowNumber);
                // Update the table
                table.Rows.Add(row);
                da.Update(ds, tableName);
                
            }



            else 
            {
                throw new InvalidOperationException("Operation not 
supported. Content can be added only for tables");
            }

            return null;
        } // Write

        /// <summary>
        /// Moves the content reader specified number of rows from the 
        /// origin
        /// </summary>
        /// <param name="offset">Number of rows to offset</param>
        /// <param name="origin">Starting row from which to offset</param>
        public void Seek(long offset, System.IO.SeekOrigin origin)
        {
            // get the number of rows in the table which will help in
            // calculating current position
            string tableName;
            int rowNumber;

            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Invalid)
            {
                throw new ArgumentException("Path specified should represent 
either a table or a row : " + path);
            }

            Collection<DatabaseRowInfo> rows =
                   provider.GetRows(tableName);

            int numRows = rows.Count;

            if (offset > rows.Count)
            {
                throw new
                       ArgumentException(
                           "Offset cannot be greater than the number of rows 
available"
                                               );
            }

            if (origin == System.IO.SeekOrigin.Begin)
            {
                // starting from Beginning with an index 0, the current 
offset
                // has to be advanced to offset - 1
                currentOffset = offset - 1;
            }
            else if (origin == System.IO.SeekOrigin.End)
            {
                // starting from the end which is numRows - 1, the current



System.Management.Automation.Provider.ItemCmdletProvider

System.Management.Automation.Provider.ContainerCmdletProvider

System.Management.Automation.Provider.NavigationCmdletProvider

Designing Your Windows PowerShell Provider

                // offset is so much less than numRows - 1
                currentOffset = numRows - 1 - offset;
            }
            else
            {
                // calculate from the previous value of current offset
                // advancing forward always
                currentOffset += offset;
            }

        } // Seek

        /// <summary>
        /// Closes the content reader, so all members are reset
        /// </summary>
        public void Close()
        {
            Dispose();
        } // Close

        /// <summary>
        /// Dispose any resources being used
        /// </summary>
        public void Dispose()
        {
            Seek(0, System.IO.SeekOrigin.Begin);

            GC.SuppressFinalize(this);
        } // Dispose
    } // AccessDBContentWriter

    #endregion AccessDBContentWriter

    #endregion Helper Classes
} // namespace Microsoft.Samples.PowerShell.Providers

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


Windows PowerShell Host Quickstart
Article • 12/18/2023

To host Windows PowerShell in your application, you use the
System.Management.Automation.PowerShell class. This class provides methods that
create a pipeline of commands and then execute those commands in a runspace. The
simplest way to create a host application is to use the default runspace. The default
runspace contains all of the core Windows PowerShell commands. If you want your
application to expose only a subset of the Windows PowerShell commands, you must
create a custom runspace.

To start, we'll use the default runspace, and use the methods of the
System.Management.Automation.PowerShell class to add commands, parameters,
statements, and scripts to a pipeline.

You use the System.Management.Automation.PowerShell.AddCommand method to add
commands to the pipeline. For example, suppose you want to get the list of running
processes on the machine. The way to run this command is as follows.

1. Create a System.Management.Automation.PowerShell object.

C#

2. Add the command that you want to execute.

C#

3. Invoke the command.

C#

Using the default runspace

AddCommand

PowerShell ps = PowerShell.Create();

ps.AddCommand("Get-Process");

ps.Invoke();

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddCommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell


If you call the AddCommand method more than once before you call the
System.Management.Automation.PowerShell.Invoke method, the result of the first
command is piped to the second, and so on. If you do not want to pipe the result of a
previous command to a command, add it by calling the
System.Management.Automation.PowerShell.AddStatement instead.

The previous example executes a single command without any parameters. You can add
parameters to the command by using the
System.Management.Automation.PSCommand.AddParameter method. For example, the
following code gets a list of all of the processes that are named powershell  running on
the machine.

C#

You can add additional parameters by calling the AddParameter method repeatedly.

C#

You can also add a dictionary of parameter names and values by calling the
System.Management.Automation.PowerShell.AddParameters method.

C#

AddParameter

PowerShell.Create().AddCommand("Get-Process")
                   .AddParameter("Name", "powershell")
                   .Invoke();

PowerShell.Create().AddCommand("Get-ChildItem")
                   .AddParameter("Path", @"C:\Windows")
                   .AddParameter("Filter", "*.exe")
                   .Invoke();

IDictionary parameters = new Dictionary<String, String>();
parameters.Add("Path", @"C:\Windows");
parameters.Add("Filter", "*.exe");

PowerShell.Create().AddCommand("Get-Process")
   .AddParameters(parameters)
      .Invoke()

AddStatement

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddStatement
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCommand.AddParameter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddParameters


You can simulate batching by using the
System.Management.Automation.PowerShell.AddStatement method, which adds an
additional statement to the end of the pipeline. The following code gets a list of running
processes with the name powershell , and then gets the list of running services.

C#

You can run an existing script by calling the
System.Management.Automation.PowerShell.AddScript method. The following example
adds a script to the pipeline and runs it. This example assumes there is already a script
named MyScript.ps1  in a folder named D:\PSScripts .

C#

There is also a version of the AddScript method that takes a boolean parameter named
useLocalScope . If this parameter is set to true , then the script is run in the local scope.
The following code will run the script in the local scope.

C#

While the default runspace used in the previous examples loads all of the core Windows
PowerShell commands, you can create a custom runspace that loads only a specified
subset of all commands. You might want to do this to improve performance (loading a
larger number of commands is a performance hit), or to restrict the capability of the
user to perform operations. A runspace that exposes only a limited number of
commands is called a constrained runspace. To create a constrained runspace, you use

PowerShell ps = PowerShell.Create();
ps.AddCommand("Get-Process").AddParameter("Name", "powershell");
ps.AddStatement().AddCommand("Get-Service");
ps.Invoke();

AddScript

PowerShell ps = PowerShell.Create();
ps.AddScript("D:\PSScripts\MyScript.ps1").Invoke();

PowerShell ps = PowerShell.Create();
ps.AddScript(@"D:\PSScripts\MyScript.ps1", true).Invoke();

Creating a custom runspace

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddStatement
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddScript


the System.Management.Automation.Runspaces.Runspace and
System.Management.Automation.Runspaces.InitialSessionState classes.

To create a custom runspace, you must first create a
System.Management.Automation.Runspaces.InitialSessionState object. In the following
example, we use the System.Management.Automation.Runspaces.RunspaceFactory to
create a runspace after creating a default InitialSessionState object.

C#

In the previous example, we created a default
System.Management.Automation.Runspaces.InitialSessionState object that loads all of
the built-in core Windows PowerShell. We could also have called the
System.Management.Automation.Runspaces.InitialSessionState.CreateDefault2 method
to create an InitialSessionState object that would load only the commands in the
Microsoft.PowerShell.Core snapin. To create a more constrained runspace, you must
create an empty InitialSessionState object by calling the
System.Management.Automation.Runspaces.InitialSessionState.Create method, and then
add commands to the InitialSessionState.

Using a runspace that loads only the commands that you specify provides significantly
improved performance.

You use the methods of the
System.Management.Automation.Runspaces.SessionStateCmdletEntry class to define
cmdlets for the initial session state. The following example creates an empty initial
session state, then defines and adds the Get-Command  and Import-Module  commands to
the initial session state. We then create a runspace constrained by that initial session
state, and execute the commands in that runspace.

Creating an InitialSessionState object

InitialSessionState iss = InitialSessionState.CreateDefault();
Runspace rs = RunspaceFactory.CreateRunspace(iss);
rs.Open();
PowerShell ps = PowerShell.Create();
ps.Runspace = rs;
ps.AddCommand("Get-Command");
ps.Invoke();
rs.Close();

Constraining the runspace

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceFactory
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.CreateDefault2
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.Create
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.SessionStateCmdletEntry


Create the initial session state.

C#

Define and add commands to the initial session state.

C#

Create and open the runspace.

C#

Execute a command and show the result.

C#

Close the runspace.

C#

When run, the output of this code will look as follows.

InitialSessionState iss = InitialSessionState.Create();

SessionStateCmdletEntry getCommand = new SessionStateCmdletEntry(
    "Get-Command", typeof(Microsoft.PowerShell.Commands.GetCommandCommand), 
"");
SessionStateCmdletEntry importModule = new SessionStateCmdletEntry(
    "Import-Module", 
typeof(Microsoft.PowerShell.Commands.ImportModuleCommand), "");
iss.Commands.Add(getCommand);
iss.Commands.Add(importModule);

Runspace rs = RunspaceFactory.CreateRunspace(iss);
rs.Open();

PowerShell ps = PowerShell.Create();
ps.Runspace = rs;
ps.AddCommand("Get-Command");
Collection<CommandInfo> result = ps.Invoke<CommandInfo>();
foreach (var entry in result)
{
    Console.WriteLine(entry.Name);
}

rs.Close();



PowerShell

Get-Command
Import-Module



Creating Runspaces
Article • 03/24/2025

A runspace is the operating environment for the commands that are invoked by a host
application. This environment includes the commands and data that are currently
present, and any language restrictions that currently apply.

Host applications can use the default runspace that is provided by Windows PowerShell,
which includes all available core commands, or create a custom runspace that includes
only a subset of the available commands. To create a customized runspace, you create a
System.Management.Automation.Runspaces.InitialSessionState object and assign it to
your runspace.

1. Creating an InitialSessionState

2. Creating a constrained runspace

3. Creating multiple runspaces

Runspace tasks

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


Creating an InitialSessionState
Article • 12/18/2023

PowerShell commands run in a runspace. To host PowerShell in your application, you
must create a System.Management.Automation.Runspaces.Runspace object. Every
runspace has a System.Management.Automation.Runspaces.InitialSessionState object
associated with it. The InitialSessionState specifies characteristics of the runspace, such
as which commands, variables, and modules are available for that runspace.

The CreateDefault and CreateDefault2 methods of the InitialSessionState class can be
used to create an InitialSessionState object. The CreateDefault method creates an
InitialSessionState with all of the built-in commands loaded, while the CreateDefault2
method loads only the commands required to host PowerShell (the commands from the
Microsoft.PowerShell.Core module).

If you want to further limit the commands available in your host application you need to
create a constrained runspace. For information, see Creating a constrained runspace.

The following code shows how to create an InitialSessionState, assign it to a runspace,
add commands to the pipeline in that runspace, and invoke the commands. For more
information about adding and invoking commands, see Adding and invoking
commands.

C#

Create a default InitialSessionState

namespace SampleHost
{
  using System;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;

  class HostP4b
  {
    static void Main(string[] args)
    {
      // Call InitialSessionState.CreateDefault() to create an empty 
      // InitialSessionState object, then add the variables that will be 
      // available when the runspace is opened.
      InitialSessionState iss = InitialSessionState.CreateDefault();
      SessionStateVariableEntry var1 = 
        new SessionStateVariableEntry("test1",
                                      "MyVar1",
                                      "Initial session state MyVar1 test");

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.CreateDefault
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.CreateDefault2


Creating a constrained runspace

Adding and invoking commands

      iss.Variables.Add(var1);

      SessionStateVariableEntry var2 = 
        new SessionStateVariableEntry("test2",
                                      "MyVar2",
                                      "Initial session state MyVar2 test");
      iss.Variables.Add(var2);

      // Call RunspaceFactory.CreateRunspace(InitialSessionState) to 
      // create the runspace where the pipeline is run.
      Runspace rs = RunspaceFactory.CreateRunspace(iss);
      rs.Open();

      // Call PowerShell.Create() to create the PowerShell object, then 
      // specify the runspace and pipeline commands.
      PowerShell ps = PowerShell.Create();
      ps.Runspace = rs;
      ps.AddCommand("Get-Variable");
      ps.AddArgument("test*");

      Console.WriteLine("Variable             Value");
      Console.WriteLine("--------------------------");

      // Call ps.Invoke() to run the pipeline synchronously.
      foreach (PSObject result in ps.Invoke())
      {
        Console.WriteLine("{0,-20}{1}",
            result.Members["Name"].Value,
            result.Members["Value"].Value);
      } // End foreach.

      // Close the runspace to free resources.
      rs.Close();

    } // End Main.
  } // End SampleHost.
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:



can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhosting%2Fcreating-an-initialsessionstate%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhosting%2Fcreating-an-initialsessionstate.md&documentVersionIndependentId=3d7276f0-40e5-56c0-4b2d-fd72cb2ef82b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+528b689c-aa2e-173f-dc0a-4297d23e4b6e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating a constrained runspace
Article • 03/24/2025

For performance or security reasons, you might want to restrict the Windows PowerShell
commands available to your host application. To do this you create an empty
System.Management.Automation.Runspaces.InitialSessionState by calling the
System.Management.Automation.Runspaces.InitialSessionState.Create* method, and
then add only the commands you want available.

Using a runspace that loads only the commands that you specify provides significantly
improved performance.

You use the methods of the
System.Management.Automation.Runspaces.SessionStateCmdletEntry class to define
cmdlets for the initial session state.

You can also make commands private. Private commands can be used by the host
application, but not by users of the application.

The following example demonstrates how to create an empty InitialSessionState and
add commands to it.

C#

Adding commands to an empty runspace

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using Microsoft.PowerShell.Commands;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for the application.
  /// </summary>
  internal class Runspace10b
  {
    /// <summary>
    /// This sample shows how to create an empty initial session state,
    /// how to add commands to the session state, and then how to create a
    /// runspace that has only those two commands. A PowerShell object
    /// is used to run the Get-Command cmdlet to show that only two commands
    /// are available.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.Create
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.SessionStateCmdletEntry


    /// </summary>
    /// <param name="args">Parameter not used.</param>
    private static void Main(string[] args)
    {
      // Create an empty InitialSessionState and then add two commands.
      InitialSessionState iss = InitialSessionState.Create();

      // Add the Get-Process and Get-Command cmdlets to the session state.
      SessionStateCmdletEntry ssce1 = new SessionStateCmdletEntry(
                                                            "Get-Process",
                                                            
typeof(GetProcessCommand),
                                                            null);
      iss.Commands.Add(ssce1);

      SessionStateCmdletEntry ssce2 = new SessionStateCmdletEntry(
                                                            "Get-Command",
                                                            
typeof(GetCommandCommand),
                                                            null);
      iss.Commands.Add(ssce2);

      // Create a runspace.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();
        using (PowerShell powershell = PowerShell.Create())
        {
          powershell.Runspace = myRunSpace;

          // Create a pipeline with the Get-Command command.
          powershell.AddCommand("Get-Command");

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Verb                 Noun");
          Console.WriteLine("----------------------------");

          // Display each result object.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                             "{0,-20} {1}",
                             result.Members["verb"].Value,
                             result.Members["Noun"].Value);
          }
        }

        // Close the runspace and release any resources.
        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }



You can also make a command private, by setting it's
System.Management.Automation.CommandInfo.Visibility property to
System.Management.Automation.SessionStateEntryVisibility Private. The host
application and other commands can call that command, but the user of the application
cannot. In the following example, the Get-ChildItem command is private.

C#

Creating an InitialSessionState

  }
}

Making commands private

defaultSessionState = InitialSessionState.CreateDefault();
commandIndex = GetIndexOfEntry(defaultSessionState.Commands, "Get-
ChildItem");
defaultSessionState.Commands[commandIndex].Visibility = 
SessionStateEntryVisibility.Private;

this.runspace = RunspaceFactory.CreateRunspace(defaultSessionState);
this.runspace.Open();

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CommandInfo.Visibility
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.SessionStateEntryVisibility
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-ChildItem


Creating multiple runspaces
Article • 09/17/2021

If you create a large number of runspaces, you might consider creating a runspace pool.
Using a System.Management.Automation.Runspaces.RunspacePool object, rather than
creating a large number of individual runspaces with the same characteristics, can
improve performance.

The following example shows how to create a runspace pool and how to run a
command asynchronously in a runspace of the pool.

C#

Creating and using a runspace pool.

namespace HostRunspacePool
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;

  /// <summary>
  /// This class provides the Main entry point for the Host application.
  /// </summary>
  internal class HostRunspacePool
  {
    /// <summary>
    /// This sample demonstrates the following.
    /// 1. Creating and opening a runspace pool.
    /// 2. Creating a PowerShell object.
    /// 3. Adding commands and arguments to the PowerShell object.
    /// 4. Running the commands asynchronously using the runspace
    ///    of the runspace pool.
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    private static void Main(string[] args)
    {
      // Create a pool of runspaces.
      using (RunspacePool rsp = RunspaceFactory.CreateRunspacePool())
      {
        rsp.Open();

        // Create a PowerShell object to run the following command.
        //  Get-Process wmi*
        PowerShell gpc = PowerShell.Create();
        // Specify the runspace to use and add commands.
        gpc.RunspacePool = rsp;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspacePool


Creating an InitialSessionState

        gpc.AddCommand("Get-Process").AddArgument("wmi*");

        // Invoke the command asynchronously.
        IAsyncResult gpcAsyncResult = gpc.BeginInvoke();
        // Get the results of running the command.
        PSDataCollection<PSObject> gpcOutput = 
gpc.EndInvoke(gpcAsyncResult);

        // Process the output.
        Console.WriteLine("The output from running the command: Get-Process 
wmi*");
        for (int i= 0; i < gpcOutput.Count; i++)
        {
         Console.WriteLine(
                           "Process Name: {0} Process Id: {1}",
                           gpcOutput[i].Properties["ProcessName"].Value,
                           gpcOutput[i].Properties["Id"].Value);
        }
      } // End using.
    } // End Main entry point.
  } // End HostPs5 class.
}

See Also



Adding and invoking commands
Article • 03/24/2025

After creating a runspace, you can add Windows PowerShell commands and scripts to a
pipeline, and then invoke the pipeline synchronously or asynchronously.

The System.Management.Automation.PowerShell class provides several methods to add
commands, parameters, and scripts to the pipeline. You can invoke the pipeline
synchronously by calling an overload of the
System.Management.Automation.PowerShell.Invoke* method, or asynchronously by
calling an overload of the System.Management.Automation.PowerShell.BeginInvoke*
and then the System.Management.Automation.PowerShell.EndInvoke* method.

1. Create a System.Management.Automation.PowerShell object.

C#

2. Add the command that you want to execute.

C#

3. Invoke the command.

C#

If you call the System.Management.Automation.PowerShell.AddCommand* method
more than once before you call the
System.Management.Automation.PowerShell.Invoke* method, the result of the first
command is piped to the second, and so on. If you do not want to pipe the result of a

Creating a pipeline

AddCommand

PowerShell ps = PowerShell.Create();

ps.AddCommand("Get-Process");

ps.Invoke();

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.Invoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.BeginInvoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.EndInvoke
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddCommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.Invoke


previous command to a command, add it by calling the
System.Management.Automation.PowerShell.AddStatement* instead.

The previous example executes a single command without any parameters. You can add
parameters to the command by using the
System.Management.Automation.PSCommand.AddParameter* method For example, the
following code gets a list of all of the processes that are named powershell  running on
the machine.

C#

You can add additional parameters by calling
System.Management.Automation.PSCommand.AddParameter* repeatedly.

C#

You can also add a dictionary of parameter names and values by calling the
System.Management.Automation.PowerShell.AddParameters* method.

C#

AddParameter

PowerShell.Create().AddCommand("Get-Process")
                   .AddParameter("Name", "powershell")
                   .Invoke();

PowerShell.Create().AddCommand("Get-Command")
                   .AddParameter("Name", "Get-VM")
                   .AddParameter("Module", "Hyper-V")
                   .Invoke();

IDictionary parameters = new Dictionary<String, String>();
parameters.Add("Name", "Get-VM");

parameters.Add("Module", "Hyper-V");
PowerShell.Create().AddCommand("Get-Command")
   .AddParameters(parameters)
      .Invoke()

AddStatement

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddStatement
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCommand.AddParameter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSCommand.AddParameter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddParameters


You can simulate batching by using the
System.Management.Automation.PowerShell.AddStatement* method, which adds an
additional statement to the end of the pipeline The following code gets a list of running
processes with the name powershell , and then gets the list of running services.

C#

You can run an existing script by calling the
System.Management.Automation.PowerShell.AddScript* method. The following example
adds a script to the pipeline and runs it. This example assumes there is already a script
named MyScript.ps1  in a folder named D:\PSScripts .

C#

There is also a version of the System.Management.Automation.PowerShell.AddScript*
method that takes a boolean parameter named useLocalScope . If this parameter is set to
true , then the script is run in the local scope. The following code will run the script in
the local scope.

C#

After you add elements to the pipeline, you invoke it. To invoke the pipeline
synchronously, you call an overload of the
System.Management.Automation.PowerShell.Invoke* method. The following example
shows how to synchronously invoke a pipeline.

C#

PowerShell ps = PowerShell.Create();
ps.AddCommand("Get-Process").AddParameter("Name", "powershell");
ps.AddStatement().AddCommand("Get-Service");
ps.Invoke();

AddScript

PowerShell ps = PowerShell.Create();
ps.AddScript(File.ReadAllText(@"D:\PSScripts\MyScript.ps1")).Invoke();

PowerShell ps = PowerShell.Create();
ps.AddScript(File.ReadAllText(@"D:\PSScripts\MyScript.ps1"), true).Invoke();

Invoking a pipeline synchronously

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddStatement
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddScript
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.AddScript
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.Invoke


You invoke a pipeline asynchronously by calling an overload of the
System.Management.Automation.PowerShell.BeginInvoke* to create an IAsyncResult
object, and then calling the System.Management.Automation.PowerShell.EndInvoke*
method.

The following example shows how to invoke a pipeline asynchronously.

C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management.Automation;

namespace HostPS1e
{
  class HostPS1e
  {
    static void Main(string[] args)
    {
      // Using the PowerShell.Create and AddCommand
      // methods, create a command pipeline.
      PowerShell ps = PowerShell.Create().AddCommand ("Sort-Object");

      // Using the PowerShell.Invoke method, run the command
      // pipeline using the supplied input.
      foreach (PSObject result in ps.Invoke(new int[] { 3, 1, 6, 2, 5, 4 }))
      {
          Console.WriteLine("{0}", result);
      } // End foreach.
    } // End Main.
  } // End HostPS1e.
}

Invoking a pipeline asynchronously

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Management.Automation;

namespace HostPS3
{
  class HostPS3
  {
    static void Main(string[] args)
    {
      // Use the PowerShell.Create and PowerShell.AddCommand

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.BeginInvoke
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncresult
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.EndInvoke


Creating an InitialSessionState

Creating a constrained runspace

      // methods to create a command pipeline that includes
      // Get-Process cmdlet. Do not include spaces immediately
      // before or after the cmdlet name as that will cause
      // the command to fail.
      PowerShell ps = PowerShell.Create().AddCommand("Get-Process");

      // Create an IAsyncResult object and call the
      // BeginInvoke method to start running the
      // command pipeline asynchronously.
      IAsyncResult asyncpl = ps.BeginInvoke();

      // Using the PowerShell.Invoke method, run the command
      // pipeline using the default runspace.
      foreach (PSObject result in ps.EndInvoke(asyncpl))
      {
        Console.WriteLine("{0,-20}{1}",
                result.Members["ProcessName"].Value,
                result.Members["Id"].Value);
      } // End foreach.
      System.Console.WriteLine("Hit any key to exit.");
      System.Console.ReadKey();
    } // End Main.
  } // End HostPS3.
}

See Also



Creating remote runspaces
Article • 09/17/2021

PowerShell commands that take a ComputerName parameter can be run on any
computer that runs PowerShell. To run commands that don't take a ComputerName
parameter, you can use WS-Management to configure a runspace that connects to a
specified computer, and run commands on that computer.

To create a runspace that connects to a remote computer, you create a
System.Management.Automation.Runspaces.WSManConnectionInfo object. You specify
the target endpoint for the connection by setting the
System.Management.Automation.Runspaces.WSManConnectionInfo.ConnectionUri
property of the object. You then create a runspace by calling the
System.Management.Automation.Runspaces.RunspaceFactory.CreateRunspace method,
specifying the System.Management.Automation.Runspaces.WSManConnectionInfo
object as the connectionInfo  parameter.

The following example shows how to create a runspace that connects to a remote
computer. In the example, RemoteComputerUri  is used as a placeholder for the actual URI
of a remote computer.

C#

Using a WSManConnection to create a remote
runspace

namespace Samples
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;            // PowerShell namespace.
  using System.Management.Automation.Runspaces;  // PowerShell namespace.

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class RemoteRunspace02
  {
    /// <summary>
    /// This sample shows how to create a remote runspace that
    /// runs commands on the local computer.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    private static void Main(string[] args)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo.ConnectionUri
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceFactory.CreateRunspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo


    {
      // Create a WSManConnectionInfo object using the default constructor
      // to connect to the "localHost". The WSManConnectionInfo object can
      // also be used to specify connections to remote computers.
      Uri RemoteComputerUri = new Uri("http://Server01:5985/WSMAN");
      WSManConnectionInfo connectionInfo = new 
WSManConnectionInfo(RemoteComputerUri);

      // Set the OperationTimeout property and OpenTimeout properties.
      // The OperationTimeout property is used to tell PowerShell
      // how long to wait (in milliseconds) before timing out for an
      // operation. The OpenTimeout property is used to tell Windows
      // PowerShell how long to wait (in milliseconds) before timing out
      // while establishing a remote connection.
      connectionInfo.OperationTimeout = 4 * 60 * 1000; // 4 minutes.
      connectionInfo.OpenTimeout = 1 * 60 * 1000; // 1 minute.

      // Create a remote runspace using the connection information.
      //using (Runspace remoteRunspace = RunspaceFactory.CreateRunspace())
      using (Runspace remoteRunspace = 
RunspaceFactory.CreateRunspace(connectionInfo))
      {
        // Establish the connection by calling the Open() method to open the 
runspace.
        // The OpenTimeout value set previously will be applied while 
establishing
        // the connection. Establishing a remote connection involves sending 
and
        // receiving some data, so the OperationTimeout will also play a 
role in this process.
          remoteRunspace.Open();

        // Create a PowerShell object to run commands in the remote 
runspace.
        using (PowerShell powershell = PowerShell.Create())
        {
          powershell.Runspace = remoteRunspace;
          powershell.AddCommand("Get-Process");
          powershell.Invoke();

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");

          // Display the results.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                              "{0,-20} {1}",
                              result.Members["ProcessName"].Value,
                              result.Members["HandleCount"].Value);
          }
        }



        // Close the connection. Call the Close() method to close the remote
        // runspace. The Dispose() method (called by using primitive) will 
call
        // the Close() method if it is not already called.
        remoteRunspace.Close();
      }
    }
  }
}



Creating a custom user interface
Article • 03/24/2025

Windows PowerShell provides abstract classes and interfaces that allow you to create a
custom interactive UI that hosts the Windows PowerShell engine. To create a custom UI,
you must implement the System.Management.Automation.Host.PSHost class.
Optionally, you can also implement the
System.Management.Automation.Host.PSHostRawUserInterface and
System.Management.Automation.Host.PSHostUserInterface classes, and the
System.Management.Automation.Host.IHostSupportsInteractiveSession and
System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
interfaces.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostSupportsInteractiveSession
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection


Host Application Samples
Article • 09/17/2021

This section includes sample code that is provided in the Windows PowerShell 2.0 SDK.

PowerShell API Samples This section includes sample code that shows how to create
runspaces that restrict functionality, and how to asynchronously run commands using a
runspace pool to supply the runspaces.

Custom Host Samples Includes sample code for writing a custom host. The host is the
component of Windows PowerShell that provides communications between the user
and the Windows PowerShell engine. For more information about custom hosts, see
Custom Host.

Runspace Samples Includes sample code for creating runspaces. For more information
about how runspaces are used, see Host Application Runspaces.

Remote Runspace Samples This section includes sample code that shows how to create
runspaces that can be used to connect to a computer by using WS-Management-based
Windows PowerShell remoting.

In This Section

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhosting%2Fhost-application-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhosting%2Fhost-application-samples.md&documentVersionIndependentId=cb1e6bef-c731-4298-417b-58d4a89458f1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+08f5992e-775b-ec33-294b-4bef235c1ae0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Windows PowerShell API Samples
Article • 12/18/2023

This section includes sample code that shows how to create runspaces that restrict
functionality, and how to asynchronously run commands by using a runspace pool to
supply the runspaces. You can use Microsoft Visual Studio to create a console
application and then copy the code from the topics in this section into your host
application.

PowerShell01 Sample This sample shows how to use a
System.Management.Automation.Runspaces.InitialSessionState object to limit the
functionality of a runspace. The output of this sample demonstrates how to restrict the
language mode of the runspace, how to mark a cmdlet as private, how to add and
remove cmdlets and providers, how to add a proxy command, and more.

PowerShell02 Sample This sample shows how to run commands asynchronously by
using the runspaces of a runspace pool. The sample generates a list of commands, and
then runs those commands while the Windows PowerShell engine opens a runspace
from the pool when it is needed.

In This Section

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


Windows PowerShell01 Sample
Article • 03/24/2025

This sample shows how to use a
System.Management.Automation.Runspaces.InitialSessionState object to limit the
functionality of a runspace. The output of this sample demonstrates how to restrict the
language mode of the runspace, how to mark a cmdlet as private, how to add and
remove cmdlets and providers, how to add a proxy command, and more. This sample
concentrates on how to restrict the runspace programmatically. Scripting alternatives to
restricting the runspace include the $ExecutionContext.SessionState.LanguageMode and
PSSessionConfiguration commands.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following:

Restricting the language by setting the
System.Management.Automation.Runspaces.InitialSessionState.LanguageMode
property.

Adding aliases to the initial session state by using a
System.Management.Automation.Runspaces.SessionStateAliasEntry object.

Marking commands as private.

Removing providers from the initial session state by using the
System.Management.Automation.Runspaces.InitialSessionState.Providers property.

Removing commands from the initial session state by using the
System.Management.Automation.Runspaces.InitialSessionState.Commands
property.

Adding commands and providers to the
System.Management.Automation.Runspaces.InitialSessionState object.

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.LanguageMode
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.SessionStateAliasEntry
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.Providers
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState.Commands
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


This sample shows several ways to limit the functionality of a runspace.

C#

namespace Sample
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;

  /// <summary>
  /// This class contains the Main entry point for the application.
  /// </summary>
  internal class PowerShell01
  {
    /// <summary>
    /// The runspace used to run commands.
    /// </summary>
    private Runspace runspace;

    /// <summary>
    /// Return the first index of the entry in <paramref name="entries"/>
    /// with the name <paramref name="name"/>. Return -1 if it is not found.
    /// </summary>
    /// <typeparam name="T">Type of ConstrainedSessionStateEntry</typeparam>
    /// <param name="entries">Collection of entries to search for <paramref 
name="name"/> in.</param>
    /// <param name="name">Named of the entry we are looking for</param>
    /// <returns>
    /// The first index of the entry in <paramref name="entries"/> with the
    /// name <paramref name="name"/>, or return -1 if it is not found.
    /// </returns>
    private static int GetIndexOfEntry<T>(
            InitialSessionStateEntryCollection<T> entries,
            string name) where T : ConstrainedSessionStateEntry
    {
      int foundIndex = 0;
      foreach (T entry in entries)
      {
        if (entry.Name.Equals(name, StringComparison.OrdinalIgnoreCase))
        {
          return foundIndex;
        }

        foundIndex++;
      }

      return -1;
    }

    /// <summary>
    /// Run commands to demonstrate the ways to constrain the runspace.
    /// </summary>



    /// <param name="args">This parameter is unused.</param>
    private static void Main(string[] args)
    {
      new PowerShell01().RunCommands();
    }

    /// <summary>
    /// Run a script to display the results and errors.
    /// </summary>
    /// <param name="script">Script to be run.</param>
    /// <param name="scriptComment">Comment to be printed about
    /// the script.</param>
    private void RunScript(string script, string scriptComment)
    {
      Console.WriteLine("Running '{0}'\n{1}.\n\nPowerShell Output:", script, 
scriptComment);

      // Using a PowerShell object, create a pipeline, add the script to the
      //  pipeline, and specify the runspace where the pipeline is invoked.
      PowerShell powerShellCommand = PowerShell.Create();
      powerShellCommand.AddScript(script);
      powerShellCommand.Runspace = this.runspace;

      try
      {
        Collection<PSObject> results = powerShellCommand.Invoke();

        // Display the results.
        foreach (PSObject result in results)
        {
          Console.WriteLine(result);
        }

        // Display any non-terminating errors.
        foreach (ErrorRecord error in powerShellCommand.Streams.Error)
        {
          Console.WriteLine("PowerShell Error: {0}", error);
        }
      }
      catch (RuntimeException ex)
      {
        Console.WriteLine("PowerShell Error: {0}", ex.Message);
        Console.WriteLine();
      }

      Console.WriteLine("\n-----------------------------\n");
    }

    /// <summary>
    /// Run some commands to demonstrate the script capabilities.
    /// </summary>
    private void RunCommands()
    {
      this.runspace = 
RunspaceFactory.CreateRunspace(InitialSessionState.CreateDefault());



      this.runspace.Open();
      this.RunScript("$a=0;$a", "Assigning to a variable will work for a 
default InitialSessionState");
      this.runspace.Close();

      this.runspace = 
RunspaceFactory.CreateRunspace(InitialSessionState.CreateDefault());
      this.runspace.InitialSessionState.LanguageMode = 
PSLanguageMode.RestrictedLanguage;
      this.runspace.Open();
      this.RunScript("$a=0;$a", "Assigning to a variable will not work in 
RestrictedLanguage LanguageMode");
      this.runspace.Close();

      this.runspace = 
RunspaceFactory.CreateRunspace(InitialSessionState.CreateDefault());
      this.runspace.InitialSessionState.LanguageMode = 
PSLanguageMode.NoLanguage;
      this.runspace.Open();
      this.RunScript("10/2", "A script will not work in NoLanguage 
LanguageMode.");
      this.runspace.Close();

      this.runspace = 
RunspaceFactory.CreateRunspace(InitialSessionState.CreateDefault());
      this.runspace.Open();
      string scriptComment = "Get-ChildItem with a default 
InitialSessionState will work since the standard \n" +
           "PowerShell cmdlets are included in the default 
InitialSessionState";
      this.RunScript("Get-ChildItem", scriptComment);
      this.runspace.Close();

      InitialSessionState defaultSessionState = 
InitialSessionState.CreateDefault();
      defaultSessionState.Commands.Add(new SessionStateAliasEntry("dir2", 
"Get-ChildItem"));
      this.runspace = RunspaceFactory.CreateRunspace(defaultSessionState);
      this.runspace.Open();
      this.RunScript("dir2", "An alias, like dir2, can be added to 
InitialSessionState");
      this.runspace.Close();

      defaultSessionState = InitialSessionState.CreateDefault();
      int commandIndex = GetIndexOfEntry(defaultSessionState.Commands, "Get-
ChildItem");
      defaultSessionState.Commands.RemoveItem(commandIndex);
      this.runspace = RunspaceFactory.CreateRunspace(defaultSessionState);
      this.runspace.Open();
      scriptComment = "Get-ChildItem was removed from the list of commands 
so it\nwill no longer be found";
      this.RunScript("Get-ChildItem", scriptComment);
      this.runspace.Close();

      defaultSessionState = InitialSessionState.CreateDefault();



      defaultSessionState.Providers.Clear();
      this.runspace = RunspaceFactory.CreateRunspace(defaultSessionState);
      this.runspace.Open();
      this.RunScript("Get-ChildItem", "There are no providers so Get-
ChildItem will not work");
      this.runspace.Close();

      // Marks a command as private, and then defines a proxy command
      // that uses the private command.  One reason to define a proxy for
      // a command is to remove a parameter of the original command.
      // For a more complete sample of a proxy command, see the Runspace11
      // sample.
      defaultSessionState = InitialSessionState.CreateDefault();
      commandIndex = GetIndexOfEntry(defaultSessionState.Commands, "Get-
ChildItem");
      defaultSessionState.Commands[commandIndex].Visibility = 
SessionStateEntryVisibility.Private;
      CommandMetadata getChildItemMetadata = new CommandMetadata(
           typeof(Microsoft.PowerShell.Commands.GetChildItemCommand));
      getChildItemMetadata.Parameters.Remove("Recurse");
      string getChildItemBody = ProxyCommand.Create(getChildItemMetadata);
      defaultSessionState.Commands.Add(new SessionStateFunctionEntry("Get-
ChildItem2", getChildItemBody));
      this.runspace = RunspaceFactory.CreateRunspace(defaultSessionState);
      this.runspace.Open();
      this.RunScript("Get-ChildItem", "Get-ChildItem is private so it will 
not be available");
      scriptComment = "Get-ChildItem2 is a proxy to Get-ChildItem. \n" +
                    "It works even when Get-ChildItem is private.";
      this.RunScript("Get-ChildItem2", scriptComment);
      scriptComment = "This will fail. Unlike Get-ChildItem, Get-ChildItem2 
does not have -Recurse";
      this.RunScript("Get-ChildItem2 -Recurse", scriptComment);

      InitialSessionState cleanSessionState = InitialSessionState.Create();
      this.runspace = RunspaceFactory.CreateRunspace(cleanSessionState);
      this.runspace.Open();
      scriptComment = "A script will not work because \n" +
                   "InitialSessionState.Create() will have the default 
LanguageMode of NoLanguage";
      this.RunScript("10/2", scriptComment);
      this.runspace.Close();

      cleanSessionState = InitialSessionState.Create();
      cleanSessionState.LanguageMode = PSLanguageMode.FullLanguage;
      this.runspace = RunspaceFactory.CreateRunspace(cleanSessionState);
      this.runspace.Open();
      scriptComment = "Get-ChildItem, standard cmdlets and providers are not 
present \n" +
                   "in an InitialSessionState returned from 
InitialSessionState.Create()";
      this.RunScript("Get-ChildItem", scriptComment);
      this.runspace.Close();

      cleanSessionState = InitialSessionState.Create();



Writing a Windows PowerShell Host Application

      cleanSessionState.Commands.Add(
                new SessionStateCmdletEntry(
                    "Get-ChildItem",
                    
typeof(Microsoft.PowerShell.Commands.GetChildItemCommand),
                    null));
      cleanSessionState.Providers.Add(
                new SessionStateProviderEntry(
                    "FileSystem",
                    
typeof(Microsoft.PowerShell.Commands.FileSystemProvider),
                    null));
      cleanSessionState.LanguageMode = PSLanguageMode.FullLanguage;
      this.runspace = RunspaceFactory.CreateRunspace(cleanSessionState);
      this.runspace.Open();
      scriptComment = "Get-ChildItem and the FileSystem provider were 
explicitly added\n" +
                "so Get-ChildItem will work";
      this.RunScript("Get-ChildItem", scriptComment);
      this.runspace.Close();

      Console.Write("Done...");
      Console.ReadLine();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Windows PowerShell02 Sample
Article • 09/17/2021

This sample shows how to run commands asynchronously using the runspaces of a
runspace pool. The sample generates a list of commands, and then runs those
commands while the Windows PowerShell engine opens a runspace from the pool when
it is needed.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following:

Creating a RunspacePool object with a minimum and maximum number of
runspaces allowed to be open at the same time.
Creating a list of commands.
Running the commands asynchronously.
Calling the
System.Management.Automation.Runspaces.RunspacePool.GetAvailableRunspaces
* method to see how many runspaces are free.
Capturing the command output with the
System.Management.Automation.PowerShell.EndInvoke* method.

This sample shows how to open the runspaces of a runspace pool, and how to
asynchronously run commands in those runspaces.

C#

Requirements

Demonstrates

Example

namespace Sample
{
  using System;
  using System.Collections;
  using System.Collections.Generic;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  
  /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspacePool.GetAvailableRunspaces
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspacePool.GetAvailableRunspaces
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.EndInvoke


  /// This class contains the Main entry point for the application.
  /// </summary>
  internal class PowerShell02
  {
    /// <summary>
    /// Runs many commands with the help of a RunspacePool.
    /// </summary>
    /// <param name="args">This parameter is unused.</param>
    private static void Main(string[] args)
    {
      // Creating and opening runspace pool. Use a minimum of 1 runspace and 
a maximum of 
      // 5 runspaces can be opened at the same time.
      RunspacePool runspacePool = RunspaceFactory.CreateRunspacePool(1, 5);
      runspacePool.Open();
      
      using (runspacePool)
      {
        // Define the commands to be run.
        List<PowerShell> powerShellCommands = new List<PowerShell>();
        
        // The command results.
        List<IAsyncResult> powerShellCommandResults = new List<IAsyncResult>
();
        
        // The maximum number of runspaces that can be opened at one time is 
        // 5, but we can queue up many more commands that will use the 
        // runspace pool.
        for (int i = 0; i < 100; i++)
        {
          // Using a PowerShell object, run the commands.
          PowerShell powershell = PowerShell.Create();
                   
          // Instead of setting the Runspace property of powershell,
          // the RunspacePool property is used. That is the only difference
          // between running commands with a runspace and running commands 
          // with a runspace pool.
          powershell.RunspacePool = runspacePool;
          
          // The script to be run outputs a sequence number and the number 
of available runspaces 
          // in the pool.
          string script = String.Format(
                        "write-output ' Command: {0}, Available Runspaces: 
{1}'",
                        i,
                        runspacePool.GetAvailableRunspaces());

          // The three lines below look the same running with a runspace or 
          // with a runspace pool.
          powershell.AddScript(script);
          powerShellCommands.Add(powershell);
          powerShellCommandResults.Add(powershell.BeginInvoke());
        }
        



Writing a Windows PowerShell Host Application

        // Collect the results.
        for (int i = 0; i < 100; i++)
        {
          // EndInvoke will wait for each command to finish, so we will be 
getting the commands
          // in the same 0 to 99 order that they have been invoked withy 
BeginInvoke.
          PSDataCollection<PSObject> results = 
powerShellCommands[i].EndInvoke(powerShellCommandResults[i]);
          
          // Print all the results. One PSObject with a plain string is the 
expected result.
          PowerShell02.PrintCollection(results);
        }
      }
    }
    
    /// <summary>
    /// Iterates through a collection printing all items.
    /// </summary>
    /// <param name="collection">collection to be printed</param>
    private static void PrintCollection(IList collection)
    {
      foreach (object obj in collection)
      {
        Console.WriteLine("PowerShell Result: {0}", obj);
      }
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Custom Host Samples
Article • 09/17/2021

This section includes sample code for writing a custom host. You can use Microsoft
Visual Studio to create a console application and then copy the code from the topics in
this section into your host application.

Host01 Sample This sample shows how to implement a host application that uses a
basic custom host.

Host02 Sample This sample shows how to write a host application that uses the
Windows PowerShell runtime along with a custom host implementation. The host
application sets the host culture to German, runs the Get-Process cmdlet and displays
the results as you would see them using pwrsh.exe, and then prints out the current data
and time in German.

Host03 Sample This sample shows how to build an interactive console-based host
application that reads commands from the command line, executes the commands, and
then displays the results to the console.

Host04 Sample This sample shows how to build an interactive console-based host
application that reads commands from the command line, executes the commands, and
then displays the results to the console. This host application also supports displaying
prompts that allow the user to specify multiple choices.

Host05 Sample This sample shows how to build an interactive console-based host
application that reads commands from the command line, executes the commands, and
then displays the results to the console. This host application also supports calls to
remote computers by using the Enter-PSSession and Exit-PSSession cmdlets

Host06 Sample This sample shows how to build an interactive console-based host
application that reads commands from the command line, executes the commands, and
then displays the results to the console. In addition, this sample uses the Tokenizer APIs
to specify the color of the text that is entered by the user.

In This Section

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Enter-PSSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Exit-PSSession


Host01 Sample
Article • 04/10/2024

This sample shows how to implement a host application that uses a custom host. In this
sample a runspace is created that uses the custom host, and then the
System.Management.Automation.PowerShell API is used to run a script that calls "exit."
The host application then looks at the output of the script and prints out the results.

This sample uses the default UI features provided by Windows PowerShell. For more
information about implementing the UI features of a custom host, see Host02 Sample.

This sample requires Windows PowerShell 2.0.

Creating a custom host class that derives from the
System.Management.Automation.Host.PSHost class.

Creating a runspace that uses the custom host class.

Creating a System.Management.Automation.PowerShell object that runs a script
that calls exit.

Verifying that the correct exit code was used in the exit process.

The following code shows an implementation of a host application that uses a simple
custom host interface.

C#

Requirements

Demonstrates

Example 1

namespace Microsoft.Samples.PowerShell.Host
{

    using System;
    using System.Management.Automation;
    using System.Management.Automation.Runspaces;
    using PowerShell = System.Management.Automation.PowerShell;

    /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell


    /// This class contains the Main entry point for this host application.
    /// </summary>
    internal class Host01
    {

        /// <summary>
        /// Indicator to tell the host application that it should exit.
        /// </summary>
        private bool shouldExit;

        /// <summary>
        /// The exit code that the host application will use to exit.
        /// </summary>
        private int exitCode;

        /// <summary>
        /// Gets or sets a value indicating whether the
        /// host application should exit.
        /// </summary>
        public bool ShouldExit
        {
            get { return this.shouldExit; }
            set { this.shouldExit = value; }
        }

        /// <summary>
        /// Gets or sets the PSHost implementation that is
        /// used to tell the host application what code to use
        /// when exiting.
        /// </summary>
        public int ExitCode
        {
            get { return this.exitCode; }
            set { this.exitCode = value; }
        }

        /// <summary>
        /// This sample uses a PowerShell object to run
        /// a script that calls exit. The host application looks at
        /// this and prints out the result.
        /// </summary>
        /// <param name="args">Parameter not used.</param>
        private static void Main(string[] args)
        {
            // Create an instance of this host application class so that
            // the Windows PowerShell engine will have access to the
            // ShouldExit and ExitCode parameters.
            Host01 me = new Host01();

            // Create the host instance to use.
            MyHost myHost = new MyHost(me);

            // Create a runspace that uses the host object and run the
            // script using a PowerShell object.
            using (Runspace myRunSpace = 



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

RunspaceFactory.CreateRunspace(myHost))
            {
                // Open the runspace.
                myRunSpace.Open();

                // Create a PowerShell object to run the script.
                using (PowerShell powershell = PowerShell.Create())
                {
                    powershell.Runspace = myRunSpace;

                    // Create the pipeline and run the script
                    // "exit (2+2)".
                    string script = "exit (2+2)";
                    powershell.AddScript(script);
                    powershell.Invoke(script);
                }

                // Check the flags and see if they were set properly.
                Console.WriteLine(
                    "ShouldExit={0} (should be True); ExitCode={1} (should 
be 4)",
                    me.ShouldExit,
                    me.ExitCode);

                // close the runspace to free resources.
                myRunSpace.Close();
            }

            Console.WriteLine("Hit any key to exit...");
            Console.ReadKey();
        }
    }
}

Example 2

namespace Microsoft.Samples.PowerShell.Host
{
    using System;
    using System.Globalization;
    using System.Management.Automation.Host;

    /// <summary>
    /// This is a sample implementation of the PSHost abstract class for
    /// console applications. Not all members are implemented. Those that

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


    /// are not implemented throw a NotImplementedException exception or
    /// return nothing.
    /// </summary>
    internal class MyHost : PSHost
    {
        /// <summary>
        /// A reference to the PSHost implementation.
        /// </summary>
        private Host01 program;

        /// <summary>
        /// The culture information of the thread that created
        /// this object.
        /// </summary>
        private CultureInfo originalCultureInfo =
            System.Threading.Thread.CurrentThread.CurrentCulture;

        /// <summary>
        /// The UI culture information of the thread that created
        /// this object.
        /// </summary>
        private CultureInfo originalUICultureInfo =
            System.Threading.Thread.CurrentThread.CurrentUICulture;

        /// <summary>
        /// The identifier of this PSHost implementation.
        /// </summary>
        private Guid myId = Guid.NewGuid();

        /// <summary>
        /// Initializes a new instance of the MyHost class. Keep
        /// a reference to the host application object so that it
        /// can be informed of when to exit.
        /// </summary>
        /// <param name="program">
        /// A reference to the host application object.
        /// </param>
        public MyHost(Host01 program)
        {
            this.program = program;
        }

        /// <summary>
        /// Return the culture information to use. This implementation
        /// returns a snapshot of the culture information of the thread
        /// that created this object.
        /// </summary>
        public override System.Globalization.CultureInfo CurrentCulture
        {
            get { return this.originalCultureInfo; }
        }

        /// <summary>
        /// Return the UI culture information to use. This implementation
        /// returns a snapshot of the UI culture information of the thread



        /// that created this object.
        /// </summary>
        public override System.Globalization.CultureInfo CurrentUICulture
        {
            get { return this.originalUICultureInfo; }
        }

        /// <summary>
        /// This implementation always returns the GUID allocated at
        /// instantiation time.
        /// </summary>
        public override Guid InstanceId
        {
            get { return this.myId; }
        }

        /// <summary>
        /// Return a string that contains the name of the host 
implementation.
        /// Keep in mind that this string may be used by script writers to
        /// identify when your host is being used.
        /// </summary>
        public override string Name
        {
            get { return "MySampleConsoleHostImplementation"; }
        }

        /// <summary>
        /// This sample does not implement a PSHostUserInterface component 
so
        /// this property simply returns null.
        /// </summary>
        public override PSHostUserInterface UI
        {
            get { return null; }
        }

        /// <summary>
        /// Return the version object for this application. Typically this
        /// should match the version resource in the application.
        /// </summary>
        public override Version Version
        {
            get { return new Version(1, 0, 0, 0); }
        }

        /// <summary>
        /// Not implemented by this example class. The call fails with
        /// a NotImplementedException exception.
        /// </summary>
        public override void EnterNestedPrompt()
        {
            throw new NotImplementedException(
                "The method or operation is not implemented.");
        }



        /// <summary>
        /// Not implemented by this example class. The call fails
        /// with a NotImplementedException exception.
        /// </summary>
        public override void ExitNestedPrompt()
        {
            throw new NotImplementedException(
                "The method or operation is not implemented.");
        }

        /// <summary>
        /// This API is called before an external application process is
        /// started. Typically it is used to save state so the parent can
        /// restore state that has been modified by a child process (after
        /// the child exits). In this example, this functionality is not
        /// needed so the method returns nothing.
        /// </summary>
        public override void NotifyBeginApplication()
        {
            return;
        }

        /// <summary>
        /// This API is called after an external application process 
finishes.
        /// Typically it is used to restore state that a child process may
        /// have altered. In this example, this functionality is not
        /// needed so the method returns nothing.
        /// </summary>
        public override void NotifyEndApplication()
        {
           return;
        }

        /// <summary>
        /// Indicate to the host application that exit has
        /// been requested. Pass the exit code that the host
        /// application should use when exiting the process.
        /// </summary>
        /// <param name="exitCode">The exit code to use.</param>
        public override void SetShouldExit(int exitCode)
        {
            this.program.ShouldExit = true;
            this.program.ExitCode = exitCode;
        }
    }
}

See Also



Host02 Sample
Article • 03/24/2025

This sample shows how to write a host application that uses the Windows PowerShell
runtime along with a custom host implementation. The host application sets the host
culture to German, runs the Get-Process cmdlet and displays the results as you would
see them by using pwrsh.exe, and then prints out the current data and time in German.

This sample requires Windows PowerShell 2.0.

Creating a custom host whose classes derive from the
System.Management.Automation.Host.PSHost class, the
System.Management.Automation.Host.PSHostUserInterface class, and the
System.Management.Automation.Host.PSHostRawUserInterface class.

Creating a runspace that uses the custom host.

Setting the host culture to German.

Creating a System.Management.Automation.PowerShell object that runs a script to
retrieve and sort the processes, then retrieves the current date which is displayed
in German.

The following code shows an implementation of a host application that uses the custom
host.

C#

Requirements

Demonstrates

Example 1

// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
using System;

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell


using System.Collections.Generic;
using System.Text;
using System.Management.Automation;
using System.Management.Automation.Host;
using System.Management.Automation.Runspaces;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Host
{
  class Host02
  {
    /// <summary>
    /// Define the property that the PSHost implementation will
    /// use to tell the host application that it should exit.
    /// </summary>
    public bool ShouldExit
    {
      get { return shouldExit; }
      set { shouldExit = value; }
    }
    private bool shouldExit;

    /// <summary>
    /// Define the property that the PSHost implementation will
    /// use to tell the host application what exit code to use
    /// when exiting.
    /// </summary>
    public int ExitCode
    {
      get { return exitCode; }
      set { exitCode = value; }
    }
    private int exitCode;

    /// <summary>
    /// This sample uses the PowerShell runtime along with a host
    /// implementation to call Get-Process and display the results
    /// as you would see them in powershell.exe.
    /// </summary>
    /// <param name="args">Ignored</param>
    static void Main(string[] args)
    {
      // Set the current culture to German. We want this to be picked up 
when the MyHost
      // instance is created...
      System.Threading.Thread.CurrentThread.CurrentCulture = 
CultureInfo.GetCultureInfo("de-de");

      // Create the runspace so that you can access the pipeline.
      MyHost myHost = new MyHost(new Host02());

      Runspace myRunSpace = RunspaceFactory.CreateRunspace(myHost);
      myRunSpace.Open();

      // Create the pipeline.



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

      Pipeline pipe = myRunSpace.CreatePipeline();

      // Add the script we want to run. This script does two things.
      // First, it runs the Get-Process cmdlet with the cmdlet output
      // sorted by handle count. Second, the GetDate cmdlet is piped
      // to the Out-String cmdlet so that we can see the
      // date displayed in German.

      pipe.Commands.AddScript(@"
                    Get-Process | sort HandleCount
                    # This should display the date in German...
                    Get-Date | Out-String
                    ");

      // Add the default outputter to the end of the pipe and indicate
      // that it should handle both output and errors from the previous
      // commands. This will result in the output being written using the 
PSHost
      // and PSHostUserInterface classes instead of returning objects to the 
hosting
      // application.
      pipe.Commands.Add("Out-Default");
      
pipe.Commands[0].MergeMyResults(PipelineResultTypes.Error,PipelineResultType
s.Output);

      // Invoke the pipeline. There will not be any objects
      // returned. The Out-Default cmdlet consumes the objects.
      pipe.Invoke();

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

Example 2

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Globalization;
  using System.Management.Automation.Host;

  /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


  /// This is a sample implementation of the PSHost abstract class for
  /// console applications. Not all members are implemented. Those that
  /// are not implemented throw a NotImplementedException exception or
  /// return nothing.
  /// </summary>
  internal class MyHost : PSHost
  {
    /// <summary>
    /// A reference to the PSHost implementation.
    /// </summary>
    private Host02 program;

    /// <summary>
    /// The culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalCultureInfo =
        System.Threading.Thread.CurrentThread.CurrentCulture;

    /// <summary>
    /// The UI culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalUICultureInfo =
        System.Threading.Thread.CurrentThread.CurrentUICulture;

    /// <summary>
    /// The identifier of this PSHost implementation.
    /// </summary>
    private Guid myId = Guid.NewGuid();

    /// <summary>
    /// Initializes a new instance of the MyHost class. Keep
    /// a reference to the host application object so that it
    /// can be informed of when to exit.
    /// </summary>
    /// <param name="program">
    /// A reference to the host application object.
    /// </param>
    public MyHost(Host02 program)
    {
      this.program = program;
    }

    /// <summary>
    /// A reference to the implementation of the PSHostUserInterface
    /// class for this application.
    /// </summary>
    private MyHostUserInterface myHostUserInterface = new 
MyHostUserInterface();

    /// <summary>
    /// Gets the culture information to use. This implementation
    /// returns a snapshot of the culture information of the thread
    /// that created this object.



    /// </summary>
    public override System.Globalization.CultureInfo CurrentCulture
    {
      get { return this.originalCultureInfo; }
    }

    /// <summary>
    /// Gets the UI culture information to use. This implementation
    /// returns a snapshot of the UI culture information of the thread
    /// that created this object.
    /// </summary>
    public override System.Globalization.CultureInfo CurrentUICulture
    {
      get { return this.originalUICultureInfo; }
    }

    /// <summary>
    /// Gets an identifier for this host. This implementation always
    /// returns the GUID allocated at instantiation time.
    /// </summary>
    public override Guid InstanceId
    {
      get { return this.myId; }
    }

    /// <summary>
    /// Gets a string that contains the name of this host implementation.
    /// Keep in mind that this string may be used by script writers to
    /// identify when your host is being used.
    /// </summary>
    public override string Name
    {
      get { return "MySampleConsoleHostImplementation"; }
    }

    /// <summary>
    /// Gets an instance of the implementation of the PSHostUserInterface
    /// class for this application. This instance is allocated once at 
startup time
    /// and returned every time thereafter.
    /// </summary>
    public override PSHostUserInterface UI
    {
      get { return this.myHostUserInterface; }
    }

    /// <summary>
    /// Gets the version object for this application. Typically this
    /// should match the version resource in the application.
    /// </summary>
    public override Version Version
    {
      get { return new Version(1, 0, 0, 0); }
    }



    /// <summary>
    /// This API Instructs the host to interrupt the currently running
    /// pipeline and start a new nested input loop. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementedException exception.
    /// </summary>
    public override void EnterNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API instructs the host to exit the currently running input 
loop.
    /// In this example this functionality is not needed so the method
    /// throws a NotImplementedException exception.
    /// </summary>
    public override void ExitNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API is called before an external application process is
    /// started. Typically it is used to save state so that the parent
    /// can restore state that has been modified by a child process (after
    /// the child exits). In this example this functionality is not
    /// needed so the method returns nothing.
    /// </summary>
    public override void NotifyBeginApplication()
    {
      return;
    }

    /// <summary>
    /// This API is called after an external application process finishes.
    /// Typically it is used to restore state that a child process has
    /// altered. In this example, this functionality is not needed so
    /// the method returns nothing.
    /// </summary>
    public override void NotifyEndApplication()
    {
      return;
    }

    /// <summary>
    /// Indicate to the host application that exit has
    /// been requested. Pass the exit code that the host
    /// application should use when exiting the process.
    /// </summary>
    /// <param name="exitCode">The exit code that the
    /// host application should use.</param>
    public override void SetShouldExit(int exitCode)



The following code is the implementation of the
System.Management.Automation.Host.PSHostUserInterface class that is used by this
host application.

C#

    {
      this.program.ShouldExit = true;
      this.program.ExitCode = exitCode;
    }
  }
}

Example 3

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Globalization;
  using System.Management.Automation;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostUserInterface abstract class for
  /// console applications. Not all members are implemented. Those that are
  /// not implemented throw a NotImplementedException exception. Members 
that
  /// are implemented include those that map easily to Console APIs.
  /// </summary>
  internal class MyHostUserInterface : PSHostUserInterface
  {
    /// <summary>
    /// An instance of the PSRawUserInterface class.
    /// </summary>
    private MyRawUserInterface myRawUi = new MyRawUserInterface();

    /// <summary>
    /// Gets an instance of the PSRawUserInterface class for this host
    /// application.
    /// </summary>
    public override PSHostRawUserInterface RawUI
    {
      get { return this.myRawUi; }
    }

    /// <summary>
    /// Prompts the user for input. In this example this functionality is 
not
    /// needed so the method throws a NotImplementException exception.
    /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface


    /// <param name="caption">The caption or title of the prompt.</param>
    /// <param name="message">The text of the prompt.</param>
    /// <param name="descriptions">A collection of FieldDescription objects 
that
    /// describe each field of the prompt.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override Dictionary<string, PSObject> Prompt(
                                                        string caption,
                                                        string message,
                                                        
System.Collections.ObjectModel.Collection<FieldDescription> descriptions)
    {
       throw new NotImplementedException(
           "The method or operation is not implemented.");
    }

    /// <summary>
    /// Provides a set of choices that enable the user to choose a
    /// single option from a set of options. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that 
describes
    /// each choice.</param>
    /// <param name="defaultChoice">The index of the label in the Choices 
parameter
    /// collection. To indicate no default choice, set to -1.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override int PromptForChoice(string caption, string message, 
System.Collections.ObjectModel.Collection<ChoiceDescription> choices, int 
defaultChoice)
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials with a specified prompt window 
caption,
    /// prompt message, user name, and target name. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be 
prompted for.</param>
    /// <param name="targetName">The name of the target for which the 
credential is collected.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(



                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName)
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials by using a specified prompt window 
caption,
    /// prompt message, user name and target name, credential types allowed 
to be
    /// returned, and UI behavior options. In this example this 
functionality
    /// is not needed so the method throws a NotImplementException 
exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be 
prompted for.</param>
    /// <param name="targetName">The name of the target for which the 
credential is collected.</param>
    /// <param name="allowedCredentialTypes">A PSCredentialTypes constant 
that
    /// identifies the type of credentials that can be returned.</param>
    /// <param name="options">A PSCredentialUIOptions constant that 
identifies the UI
    /// behavior when it gathers the credentials.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName,
                                                     PSCredentialTypes 
allowedCredentialTypes,
                                                     PSCredentialUIOptions 
options)
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Reads characters that are entered by the user until a newline
    /// (carriage return) is encountered.
    /// </summary>
    /// <returns>The characters that are entered by the user.</returns>
    public override string ReadLine()
    {
      return Console.ReadLine();
    }



    /// <summary>
    /// Reads characters entered by the user until a newline (carriage 
return)
    /// is encountered and returns the characters as a secure string. In 
this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <returns>Throws a NotImplemented exception.</returns>
    public override System.Security.SecureString ReadLineAsSecureString()
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Writes characters to the output display of the host.
    /// </summary>
    /// <param name="value">The characters to be written.</param>
    public override void Write(string value)
    {
      System.Console.Write(value);
    }

    /// <summary>
    /// Writes characters to the output display of the host and specifies 
the
    /// foreground and background colors of the characters. This 
implementation
    /// ignores the colors.
    /// </summary>
    /// <param name="foregroundColor">The color of the characters.</param>
    /// <param name="backgroundColor">The background color to use.</param>
    /// <param name="value">The characters to be written.</param>
    public override void Write(
                               ConsoleColor foregroundColor,
                               ConsoleColor backgroundColor,
                               string value)
    {
       // Colors are ignored.
       System.Console.Write(value);
    }

    /// <summary>
    /// Writes a debug message to the output display of the host.
    /// </summary>
    /// <param name="message">The debug message that is displayed.</param>
    public override void WriteDebugLine(string message)
    {
      Console.WriteLine(String.Format(
                                      CultureInfo.CurrentCulture,
                                      "DEBUG: {0}",
                                      message));
    }



    /// <summary>
    /// Writes an error message to the output display of the host.
    /// </summary>
    /// <param name="value">The error message that is displayed.</param>
    public override void WriteErrorLine(string value)
    {
      Console.WriteLine(String.Format(
                                      CultureInfo.CurrentCulture,
                                      "ERROR: {0}",
                                      value));
    }

    /// <summary>
    /// Writes a newline character (carriage return)
    /// to the output display of the host.
    /// </summary>
    public override void WriteLine()
    {
      System.Console.WriteLine();
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// and appends a newline character(carriage return).
    /// </summary>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(string value)
    {
      System.Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// with foreground and background colors and appends a newline 
(carriage return).
    /// </summary>
    /// <param name="foregroundColor">The foreground color of the display. 
</param>
    /// <param name="backgroundColor">The background color of the display. 
</param>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(ConsoleColor foregroundColor, 
ConsoleColor backgroundColor, string value)
    {
      // Write to the output stream, ignore the colors
      System.Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a progress report to the output display of the host.
    /// </summary>
    /// <param name="sourceId">Unique identifier of the source of the 
record. </param>
    /// <param name="record">A ProgressReport object.</param>



The following code is the implementation of the
System.Management.Automation.Host.PSHostRawUserInterface class that is used by this
host application. Those elements that are not implemented throw an exception or return
nothing.

C#

    public override void WriteProgress(long sourceId, ProgressRecord record)
    {
    }

    /// <summary>
    /// Writes a verbose message to the output display of the host.
    /// </summary>
    /// <param name="message">The verbose message that is displayed.</param>
    public override void WriteVerboseLine(string message)
    {
      Console.WriteLine(String.Format(CultureInfo.CurrentCulture, "VERBOSE: 
{0}", message));
    }

    /// <summary>
    /// Writes a warning message to the output display of the host.
    /// </summary>
    /// <param name="message">The warning message that is displayed.</param>
    public override void WriteWarningLine(string message)
    {
      Console.WriteLine(String.Format(CultureInfo.CurrentCulture, "WARNING: 
{0}", message));
    }
  }
}

Example 4

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostRawUserInterface for console
  /// applications. Members of this class that easily map to the .NET
  /// console class are implemented. More complex methods are not
  /// implemented and throw a NotImplementedException exception.
  /// </summary>
  internal class MyRawUserInterface : PSHostRawUserInterface
  {
    /// <summary>
    /// Gets or sets the background color of the displayed text.
    /// This maps to the corresponding Console.Background property.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


    /// </summary>
    public override ConsoleColor BackgroundColor
    {
      get { return Console.BackgroundColor; }
      set { Console.BackgroundColor = value; }
    }

    /// <summary>
    /// Gets or sets the size of the host buffer. In this example the
    /// buffer size is adapted from the Console buffer size members.
    /// </summary>
    public override Size BufferSize
    {
      get { return new Size(Console.BufferWidth, Console.BufferHeight); }
      set { Console.SetBufferSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the cursor position. In this example this
    /// functionality is not needed so the property throws a
    /// NotImplementException exception.
    /// </summary>
    public override Coordinates CursorPosition
    {
      get { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
      set { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
    }

    /// <summary>
    /// Gets or sets the size of the displayed cursor. In this example
    /// the cursor size is taken directly from the Console.CursorSize
    /// property.
    /// </summary>
    public override int CursorSize
    {
      get { return Console.CursorSize; }
      set { Console.CursorSize = value; }
    }

    /// <summary>
    /// Gets or sets the foreground color of the displayed text.
    /// This maps to the corresponding Console.ForegroundColor property.
    /// </summary>
    public override ConsoleColor ForegroundColor
    {
      get { return Console.ForegroundColor; }
      set { Console.ForegroundColor = value; }
    }

    /// <summary>
    /// Gets a value indicating whether the user has pressed a key. This 
maps
    /// to the corresponding Console.KeyAvailable property.



    /// </summary>
    public override bool KeyAvailable
    {
      get { return Console.KeyAvailable; }
    }

    /// <summary>
    /// Gets the dimensions of the largest window that could be
    /// rendered in the current display, if the buffer was at the least
    /// that large. This example uses the Console.LargestWindowWidth and
    /// Console.LargestWindowHeight properties to determine the returned
    /// value of this property.
    /// </summary>
    public override Size MaxPhysicalWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets the dimensions of the largest window size that can be
    /// displayed. This example uses the Console.LargestWindowWidth and
    /// console.LargestWindowHeight properties to determine the returned
    /// value of this property.
    /// </summary>
    public override Size MaxWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets or sets the position of the displayed window. This example
    /// uses the Console window position APIs to determine the returned
    /// value of this property.
    /// </summary>
    public override Coordinates WindowPosition
    {
      get { return new Coordinates(Console.WindowLeft, Console.WindowTop); }
      set { Console.SetWindowPosition(value.X, value.Y); }
    }

    /// <summary>
    /// Gets or sets the size of the displayed window. This example
    /// uses the corresponding Console window size APIs to determine the
    /// returned value of this property.
    /// </summary>
    public override Size WindowSize
    {
      get { return new Size(Console.WindowWidth, Console.WindowHeight); }
      set { Console.SetWindowSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the title of the displayed window. The example



    /// maps the Console.Title property to the value of this property.
    /// </summary>
    public override string WindowTitle
    {
      get { return Console.Title; }
      set { Console.Title = value; }
    }

    /// <summary>
    /// This API resets the input buffer. In this example this
    /// functionality is not needed so the method returns nothing.
    /// </summary>
    public override void FlushInputBuffer()
    {
    }

    /// <summary>
    /// This API returns a rectangular region of the screen buffer. In
    /// this example this functionality is not needed so the method throws
    /// a NotImplementException exception.
    /// </summary>
    /// <param name="rectangle">Defines the size of the rectangle.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override BufferCell[,] GetBufferContents(Rectangle rectangle)
    {
      throw new NotImplementedException(
               "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API reads a pressed, released, or pressed and released 
keystroke
    /// from the keyboard device, blocking processing until a keystroke is
    /// typed that matches the specified keystroke options. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="options">Options, such as IncludeKeyDown,  used when
    /// reading the keyboard.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override KeyInfo ReadKey(ReadKeyOptions options)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API crops a region of the screen buffer. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="source">The region of the screen to be scrolled.
</param>
    /// <param name="destination">The region of the screen to receive the
    /// source region contents.</param>



System.Management.Automation.PowerShell

System.Management.Automation.Host.PSHost

System.Management.Automation.Host.PSHostUserInterface

System.Management.Automation.Host.PSHostRawUserInterface

    /// <param name="clip">The region of the screen to include in the 
operation.</param>
    /// <param name="fill">The character and attributes to be used to fill 
all cell.</param>
    public override void ScrollBufferContents(Rectangle source, Coordinates 
destination, Rectangle clip, BufferCell fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This method copies an array of buffer cells into the screen buffer
    /// at a specified location. In this example this functionality is
    /// not needed so the method throws a NotImplementedException exception.
    /// </summary>
    /// <param name="origin">The parameter is not used.</param>
    /// <param name="contents">The parameter is not used.</param>
    public override void SetBufferContents(Coordinates origin,
                                           BufferCell[,] contents)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This method copies a given character, foreground color, and 
background
    /// color to a region of the screen buffer. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception./// </summary>
    /// <param name="rectangle">Defines the area to be filled. </param>
    /// <param name="fill">Defines the fill character.</param>
    public override void SetBufferContents(Rectangle rectangle, BufferCell 
fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


Host03 Sample
Article • 09/17/2021

This sample shows how to build an interactive console-based host application that reads
commands from the command line, executes the commands, and then displays the
results to the console.

This sample requires Windows PowerShell 2.0.

Creating a custom host whose classes derive from the
System.Management.Automation.Host.PSHost class, the
System.Management.Automation.Host.PSHostUserInterface class, and the
System.Management.Automation.Host.PSHostRawUserInterface class.

Building a console application that uses these host classes to build an interactive
Windows PowerShell shell.

This example allows the user to enter commands at a command line, processes those
commands, and then prints out the results.

C#

Requirements

Demonstrates

Example 1

// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


  /// This class contains the Main entry point for this host application.
  internal class PSListenerConsoleSample
  {
    /// Indicator to tell the host application that it should exit.
    private bool shouldExit;

    /// The exit code that the host application will use to exit.
    private int exitCode;

    /// Holds the instance of the PSHost implementation for this 
interpreter.
    private MyHost myHost;

    /// Holds the runspace for this interpreter.
    private Runspace myRunSpace;

    /// Holds a reference to the currently executing pipeline so it can be
    /// stopped by the control-C handler.
    private PowerShell currentPowerShell;

    /// Used to serialize access to instance data.
    private object instanceLock = new object();

    /// Create this instance of the console listener.
    private PSListenerConsoleSample()
    {
      // Create the host and runspace instances for this interpreter.
      // Note that this application does not support console files so
      // only the default snapins will be available.
      this.myHost = new MyHost(this);
      this.myRunSpace = RunspaceFactory.CreateRunspace(this.myHost);
      this.myRunSpace.Open();
    }

    /// Gets or sets a value indicating whether the host application
    /// should exit.
    public bool ShouldExit
    {
      get { return this.shouldExit; }
      set { this.shouldExit = value; }
    }

    /// Gets or sets the exit code that the host application will use
    /// when exiting.
    public int ExitCode
    {
      get { return this.exitCode; }
      set { this.exitCode = value; }
    }

    /// Creates and initiates the listener instance.
    /// param name="args";This parameter is not used.
    private static void Main(string[] args)
    {



      // Display the welcome message...
      Console.Title = "PowerShell Console Host Sample Application";
      ConsoleColor oldFg = Console.ForegroundColor;
      Console.ForegroundColor = ConsoleColor.Cyan;
      Console.WriteLine("    PowerShell Console Host Interactive Sample");
      Console.WriteLine("    =====================================");
      Console.WriteLine(string.Empty);
      Console.WriteLine("This is an example of a simple interactive console 
host that uses the ");
      Console.WriteLine("Windows PowerShell engine to interpret commands. 
Type 'exit' to exit.");
      Console.WriteLine(string.Empty);
      Console.ForegroundColor = oldFg;

      // Create the listener and run it - this never returns...
      PSListenerConsoleSample listener = new PSListenerConsoleSample();
      listener.Run();
    }

    /// A helper class that builds and executes a pipeline that writes to 
the
    /// default output path. Any exceptions that are thrown are just passed 
to
    /// the caller. Since all output goes to the default outputter, this 
method()
    /// won't return anything.
    /// param name="cmd"; The script to run.
    /// param name="input";Any input arguments to pass to the script. If 
null
    /// then nothing is passed in.
    private void executeHelper(string cmd, object input)
    {
      // Ignore empty command lines.
      if (String.IsNullOrEmpty(cmd))
      {
        return;
      }

      // Create the pipeline object and make it available
      // to the ctrl-C handle through the currentPowerShell instance
      // variable
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();
      }

      this.currentPowerShell.Runspace = this.myRunSpace;

      // Create a pipeline for this execution. Place the result in the
      // currentPowerShell instance variable so that it is available
      // to be stopped.
      try
      {
        this.currentPowerShell.AddScript(cmd);



        // Now add the default outputter to the end of the pipe and indicate
        // that it should handle both output and errors from the previous
        // commands. This will result in the output being written using the 
PSHost
        // and PSHostUserInterface classes instead of returning objects to 
the hosting
        // application.
        this.currentPowerShell.AddCommand("Out-Default");
        
this.currentPowerShell.Commands.Commands[0].MergeMyResults(PipelineResultTyp
es.Error, PipelineResultTypes.Output);

        // If there was any input specified, pass it in, otherwise just
        // execute the pipeline.
        if (input != null)
        {
          this.currentPowerShell.Invoke(new object[] { input });
        }
        else
        {
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose of the pipeline line and set it to null, locked because
        // currentPowerShell may be accessed by the ctrl-C handler.
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// An exception occurred that we want to display
    /// using the display formatter. To do this we run
    /// a second pipeline passing in the error record.
    /// The runtime will bind this to the $input variable
    /// which is why $input is being piped to Out-String.
    /// We then call WriteErrorLine to make sure the error
    /// gets displayed in the correct error color.

    /// param name="e"; The exception to display.
    private void ReportException(Exception e)
    {
      if (e != null)
      {
        object error;
        IContainsErrorRecord icer = e as IContainsErrorRecord;
        if (icer != null)
        {
          error = icer.ErrorRecord;
        }
        else



        {
          error = (object)new ErrorRecord(e, "Host.ReportException", 
ErrorCategory.NotSpecified, null);
        }

        lock (this.instanceLock)
        {
          this.currentPowerShell = PowerShell.Create();
        }

        this.currentPowerShell.Runspace = this.myRunSpace;

        try
        {
          this.currentPowerShell.AddScript("$input").AddCommand("Out-
String");

          // Do not merge errors, this function will swallow errors.
          Collection<PSObject> result;
          PSDataCollection<object> inputCollection = new 
PSDataCollection<object>();
          inputCollection.Add(error);
          inputCollection.Complete();
          result = this.currentPowerShell.Invoke(inputCollection);

          if (result.Count > 0)
          {
            string str = result[0].BaseObject as string;
            if (!string.IsNullOrEmpty(str))
            {
              // Remove \r\n that is added by Out-String.
              this.myHost.UI.WriteErrorLine(str.Substring(0, str.Length - 
2));
            }
          }
        }
        finally
        {
          // Dispose of the pipeline line and set it to null, locked because 
currentPowerShell
          // may be accessed by the ctrl-C handler.
          lock (this.instanceLock)
          {
            this.currentPowerShell.Dispose();
            this.currentPowerShell = null;
          }
        }
      }
    }

    /// Basic script execution routine - any runtime exceptions are
    /// caught and passed back into the engine to display.

    /// param name="cmd"; The parameter is not used.
    private void Execute(string cmd)



    {
      try
      {
        // Execute the command with no input.
        this.executeHelper(cmd, null);
      }
      catch (RuntimeException rte)
      {
        this.ReportException(rte);
      }
    }

    /// Method used to handle control-C's from the user. It calls the
    /// pipeline Stop() method to stop execution. If any exceptions occur
    /// they are printed to the console but otherwise ignored.

    /// param name="sender"; See sender property of 
ConsoleCancelEventHandler documentation.
    /// param name="e"; See e property of ConsoleCancelEventHandler 
documentation.
    private void HandleControlC(object sender, ConsoleCancelEventArgs e)
    {
      try
      {
        lock (this.instanceLock)
        {
          if (this.currentPowerShell != null && 
this.currentPowerShell.InvocationStateInfo.State == 
PSInvocationState.Running)
          {
            this.currentPowerShell.Stop();
          }
        }

        e.Cancel = true;
      }
      catch (Exception exception)
      {
        this.myHost.UI.WriteErrorLine(exception.ToString());
      }
    }

    /// Implements the basic listener loop. It sets up the ctrl-C handler, 
then
    /// reads a command from the user, executes it and repeats until the 
ShouldExit
    /// flag is set.
    private void Run()
    {
      // Set up the control-C handler.
      Console.CancelKeyPress += new 
ConsoleCancelEventHandler(this.HandleControlC);
      Console.TreatControlCAsInput = false;

      // Read commands to execute until ShouldExit is set by



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

      // the user calling "exit".
      while (!this.ShouldExit)
      {
        this.myHost.UI.Write(ConsoleColor.Cyan, ConsoleColor.Black, 
"\nPSConsoleSample: ");
        string cmd = Console.ReadLine();
        this.Execute(cmd);
      }

      // Exit with the desired exit code that was set by exit command.
      // This is set in the host by the MyHost.SetShouldExit() 
implementation.
      Environment.Exit(this.ExitCode);
    }
  }
}

Example 2

// Copyright (c) 2006 Microsoft Corporation. All rights reserved.
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
using System;
using System.Collections.Generic;
using System.Text;
using System.Management.Automation;
using System.Management.Automation.Host;
using System.Management.Automation.Runspaces;

namespace Microsoft.Samples.PowerShell.Host
{
  /// <summary>
  /// Simple PowerShell interactive console host listener implementation. 
This class
  /// implements a basic read-evaluate-print loop or 'listener' allowing you 
to
  /// interactively work with the PowerShell runtime.
  /// </summary>
  class PSListenerConsoleSample
  {
    /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


    /// Define the property that the PSHost implementation will use to tell 
the host
    /// application that it should exit.
    /// </summary>
    public bool ShouldExit
    {
      get { return shouldExit; }
      set { shouldExit = value; }
    }
    private bool shouldExit;

    /// <summary>
    /// Define the property that the PSHost implementation will use to tell 
the host
    /// application what code to use when exiting.
    /// </summary>
    public int ExitCode
    {
      get { return exitCode; }
      set { exitCode = value; }
    }
    private int exitCode;
    /// <summary>
    /// Holds the instance of the PSHost implementation for this 
interpreter.
    /// </summary>
    private MyHost myHost;

    /// <summary>
    /// Holds the runspace for this interpreter.
    /// </summary>
    private Runspace myRunSpace;

    /// <summary>
    /// Holds a reference to the currently executing pipeline so it can be
    /// stopped by the control-C handler.
    /// </summary>
    private Pipeline currentPipeline;

    /// <summary>
    /// Used to serialize access to instance data...
    /// </summary>
    private object instanceLock = new object();

    /// <summary>
    /// Create this instance of the console listener.
    /// </summary>
    PSListenerConsoleSample()
    {
      // Create the host and runspace instances for this interpreter. Note 
that
      // this application doesn't support console files so only the default 
snapins
      // will be available.
      myHost = new MyHost(this);



      myRunSpace = RunspaceFactory.CreateRunspace(myHost);
      myRunSpace.Open();
    }

    /// <summary>
    /// A helper class that builds and executes a pipeline that writes to 
the
    /// default output path. Any exceptions that are thrown are just passed 
to
    /// the caller. Since all output goes to the default outputter, this 
method()
    /// won't return anything.
    /// </summary>
    /// <param name="cmd">The script to run</param>
    /// <param name="input">Any input arguments to pass to the script. If 
null
    /// then nothing is passed in.</param>
    void executeHelper(string cmd, object input)
    {
      // Ignore empty command lines.
      if (String.IsNullOrEmpty(cmd))
        return;

      // Create the pipeline object and make it available
      // to the ctrl-C handle through the currentPipeline instance
      // variable.
      lock (instanceLock)
      {
        currentPipeline = myRunSpace.CreatePipeline();
      }

      // Create a pipeline for this execution. Place the result in the 
currentPipeline
      // instance variable so that it is available to be stopped.
      try
      {
        currentPipeline.Commands.AddScript(cmd);

        // Now add the default outputter to the end of the pipe and indicate
        // that it should handle both output and errors from the previous
        // commands. This will result in the output being written using the 
PSHost
        // and PSHostUserInterface classes instead of returning objects to 
the hosting
        // application.
        currentPipeline.Commands.Add("Out-Default");
        
currentPipeline.Commands[0].MergeMyResults(PipelineResultTypes.Error, 
PipelineResultTypes.Output);

        // If there was any input specified, pass it in, otherwise just
        // execute the pipeline.
        if (input != null)
        {
          currentPipeline.Invoke(new object[] { input });



        }
        else
        {
          currentPipeline.Invoke();
        }
      }
      finally
      {
        // Dispose of the pipeline line and set it to null, locked because 
currentPipeline
        // may be accessed by the ctrl-C handler.
        lock (instanceLock)
        {
          currentPipeline.Dispose();
          currentPipeline = null;
        }
      }
    }

    /// <summary>
    /// Basic script execution routine - any runtime exceptions are
    /// caught and passed back into the runtime to display.
    /// </summary>
    /// <param name="cmd"></param>
    void Execute(string cmd)
    {
      try
      {
        // execute the command with no input...
        executeHelper(cmd, null);
      }
      catch (RuntimeException rte)
      {
        // An exception occurred that we want to display
        // using the display formatter. To do this we run
        // a second pipeline passing in the error record.
        // The runtime will bind this to the $input variable
        // which is why $input is being piped to Out-Default
        executeHelper("$input | Out-Default", rte.ErrorRecord);
      }
    }

    /// <summary>
    /// Method used to handle control-C's from the user. It calls the
    /// pipeline Stop() method to stop execution. If any exceptions occur,
    /// they are printed to the console; otherwise they are ignored.
    /// </summary>
    /// <param name="sender">See ConsoleCancelEventHandler 
documentation</param>
    /// <param name="e">See ConsoleCancelEventHandler documentation</param>
    void HandleControlC(object sender, ConsoleCancelEventArgs e)
    {
      try
      {
        lock (instanceLock)



        {
          if (currentPipeline != null && 
currentPipeline.PipelineStateInfo.State == PipelineState.Running)
                    currentPipeline.Stop();
        }
        e.Cancel = true;
      }
      catch (Exception exception)
      {
        this.myHost.UI.WriteErrorLine(exception.ToString());
      }
    }

    /// <summary>
    /// Implements the basic listener loop. It sets up the ctrl-C handler, 
then
    /// reads a command from the user, executes it and repeats until the 
ShouldExit
    /// flag is set.
    /// </summary>
    private void Run()
    {
      // Set up the control-C handler.
      Console.CancelKeyPress += new 
ConsoleCancelEventHandler(HandleControlC);
      Console.TreatControlCAsInput = false;

      // Loop reading commands to execute until ShouldExit is set by
      // the user calling "exit".
      while (!ShouldExit)
      {
        myHost.UI.Write(ConsoleColor.Cyan, ConsoleColor.Black, 
"\nPSConsoleSample: ");
        string cmd = Console.ReadLine();
        Execute(cmd);
      }

      // Exit with the desired exit code that was set by exit command.
      // This is set in the host by the MyHost.SetShouldExit() 
implementation.
      Environment.Exit(ExitCode);
    }

    /// <summary>
    /// Creates and initiates the listener instance.
    /// </summary>
    /// <param name="args">Ignored for now.</param>
    static void Main(string[] args)
    {
      // Display the welcome message.
      Console.Title = "PowerShell Console Host Sample Application";
      ConsoleColor oldFg = Console.ForegroundColor;
      Console.ForegroundColor = ConsoleColor.Cyan;
      Console.WriteLine("    PowerShell Console Host Interactive Sample");
      Console.WriteLine("    =====================================");



The following code is the implementation of the
System.Management.Automation.Host.PSHostUserInterface class that is used by this
host application.

C#

      Console.WriteLine("");
      Console.WriteLine("This is an example of a simple interactive console 
host using the PowerShell");
      Console.WriteLine("engine to interpret commands. Type 'exit' to 
exit.");
      Console.WriteLine("");
      Console.ForegroundColor = oldFg;

      // Create the listener and run it - this never returns.
      PSListenerConsoleSample listener = new PSListenerConsoleSample();
      listener.Run();
    }
  }
}

Example 3

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Globalization;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Text;

  /// <summary>
  /// A sample implementation of the PSHostUserInterface abstract class for
  /// console applications. Not all members are implemented. Those that are
  /// not implemented throw a NotImplementedException exception or return
  /// nothing. Members that are implemented include those that map easily to
  /// Console APIs and a basic implementation of the prompt API provided.
  /// </summary>
  internal class MyHostUserInterface : PSHostUserInterface
  {
    /// <summary>
    /// An instance of the PSRawUserInterface object.
    /// </summary>
    private MyRawUserInterface myRawUi = new MyRawUserInterface();

    /// <summary>
    /// Gets an instance of the PSRawUserInterface object for this host
    /// application.
    /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface


    public override PSHostRawUserInterface RawUI
    {
      get { return this.myRawUi; }
    }

    /// <summary>
    /// Prompts the user for input.
    /// <param name="caption">The caption or title of the prompt.</param>
    /// <param name="message">The text of the prompt.</param>
    /// <param name="descriptions">A collection of FieldDescription objects 
that
    /// describe each field of the prompt.</param>
    /// <returns>A dictionary object that contains the results of the user
    /// prompts.</returns>
    public override Dictionary<string, PSObject> Prompt(
                                       string caption,
                                       string message,
                                       Collection<FieldDescription> 
descriptions)
    {
      this.Write(
                 ConsoleColor.Blue,
                 ConsoleColor.Black,
                 caption + "\n" + message + " ");
      Dictionary<string, PSObject> results =
               new Dictionary<string, PSObject>();
      foreach (FieldDescription fd in descriptions)
      {
        string[] label = GetHotkeyAndLabel(fd.Label);
        this.WriteLine(label[1]);
        string userData = Console.ReadLine();
        if (userData == null)
        {
          return null;
        }

        results[fd.Name] = PSObject.AsPSObject(userData);
      }

      return results;
    }

    /// <summary>

/// Provides a set of choices that enable the user to choose a
    /// single option from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that 
describe
    /// each choice.</param>
    /// <param name="defaultChoice">The index of the label in the Choices 
parameter



    /// collection. To indicate no default choice, set to -1.</param>
    /// <returns>The index of the Choices parameter collection element that 
corresponds
    /// to the option that is selected by the user.</returns>
    public override int PromptForChoice(
                                        string caption,
                                        string message,
                                        Collection<ChoiceDescription> 
choices,
                                        int defaultChoice)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is easier to
      // work with. See the BuildHotkeysAndPlainLabels method for details.
      Dictionary<string, PSObject> results =
          new Dictionary<string, PSObject>();
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display...
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));
      }

      sb.Append(String.Format(
                              CultureInfo.CurrentCulture,
                              "[Default is ({0}]",
                              promptData[0, defaultChoice]));

      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      while (true)
      {
        this.WriteLine(ConsoleColor.Cyan, ConsoleColor.Black, 
sb.ToString());
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, use the default selection.
        if (data.Length == 0)
        {
          return defaultChoice;
        }

        // See if the selection matched and return the



        // corresponding index if it did.
        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            return i;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    /// <summary>
    /// Prompts the user for credentials with a specified prompt window 
caption,
    /// prompt message, user name, and target name. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be 
prompted for.</param>
    /// <param name="targetName">The name of the target for which the 
credential is collected.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName)
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials by using a specified prompt window 
caption,
    /// prompt message, user name and target name, credential types allowed 
to be
    /// returned, and UI behavior options. In this example this 
functionality
    /// is not needed so the method throws a NotImplementException 
exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be 
prompted for.</param>
    /// <param name="targetName">The name of the target for which the 
credential is collected.</param>
    /// <param name="allowedCredentialTypes">A PSCredentialTypes constant 
that



    /// identifies the type of credentials that can be returned.</param>
    /// <param name="options">A PSCredentialUIOptions constant that 
identifies the UI
    /// behavior when it gathers the credentials.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName,
                                                     PSCredentialTypes 
allowedCredentialTypes,
                                                     PSCredentialUIOptions 
options)
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Reads characters that are entered by the user until a newline
    /// (carriage return) is encountered.
    /// </summary>
    /// <returns>The characters that are entered by the user.</returns>
    public override string ReadLine()
    {
      return Console.ReadLine();
    }

    /// <summary>
    /// Reads characters entered by the user until a newline (carriage 
return)
    /// is encountered and returns the characters as a secure string. In 
this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <returns>Throws a NotImplemented exception.</returns>
    public override System.Security.SecureString ReadLineAsSecureString()
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Writes characters to the output display of the host.
    /// </summary>
    /// <param name="value">The characters to be written.</param>
    public override void Write(string value)
    {
      Console.Write(value);
    }

    /// <summary>
    /// Writes characters to the output display of the host with possible



    /// foreground and background colors.
    /// </summary>
    /// <param name="foregroundColor">The color of the characters.</param>
    /// <param name="backgroundColor">The background color to use.</param>
    /// <param name="value">The characters to be written.</param>
    public override void Write(
                               ConsoleColor foregroundColor,
                               ConsoleColor backgroundColor,
                               string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.Write(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// with foreground and background colors and appends a newline 
(carriage return).
    /// </summary>
    /// <param name="foregroundColor">The foreground color of the display. 
</param>
    /// <param name="backgroundColor">The background color of the display. 
</param>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(
                                   ConsoleColor foregroundColor,
                                   ConsoleColor backgroundColor,
                                   string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.WriteLine(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a debug message to the output display of the host.
    /// </summary>
    /// <param name="message">The debug message that is displayed.</param>
    public override void WriteDebugLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.DarkYellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "DEBUG: {0}", 
message));
    }



    /// <summary>
    /// Writes an error message to the output display of the host.
    /// </summary>
    /// <param name="value">The error message that is displayed.</param>
    public override void WriteErrorLine(string value)
    {
      this.WriteLine(
                     ConsoleColor.Red,
                     ConsoleColor.Black,
                     value);
    }

    /// <summary>
    /// Writes a newline character (carriage return)
    /// to the output display of the host.
    /// </summary>
    public override void WriteLine()
    {
      Console.WriteLine();
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// and appends a newline character(carriage return).
    /// </summary>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(string value)
    {
      Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a progress report to the output display of the host.
    /// </summary>
    /// <param name="sourceId">Unique identifier of the source of the 
record. </param>
    /// <param name="record">A ProgressReport object.</param>
    public override void WriteProgress(long sourceId, ProgressRecord record)
    {

    }

    /// <summary>
    /// Writes a verbose message to the output display of the host.
    /// </summary>
    /// <param name="message">The verbose message that is displayed.</param>
    public override void WriteVerboseLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Green,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "VERBOSE: 
{0}", message));
    }



    /// <summary>
    /// Writes a warning message to the output display of the host.
    /// </summary>
    /// <param name="message">The warning message that is displayed.</param>
    public override void WriteWarningLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Yellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "WARNING: 
{0}", message));
    }

    /// <summary>
    /// This is a private worker function splits out the
    /// accelerator keys from the menu and builds a two
    /// dimensional array with the first access containing the
    /// accelerator and the second containing the label string
    /// with the & removed.
    /// </summary>
    /// <param name="choices">The choice collection to process</param>
    /// <returns>
    /// A two dimensional array containing the accelerator characters
    /// and the cleaned-up labels</returns>
    private static string[,] BuildHotkeysAndPlainLabels(
        Collection<ChoiceDescription> choices)
    {
      // Allocate the result array.
      string[,] hotkeysAndPlainLabels = new string[2, choices.Count];
      for (int i = 0; i < choices.Count; ++i)
      {
        string[] hotkeyAndLabel = GetHotkeyAndLabel(choices[i].Label);
        hotkeysAndPlainLabels[0, i] = hotkeyAndLabel[0];
        hotkeysAndPlainLabels[1, i] = hotkeyAndLabel[1];
      }

      return hotkeysAndPlainLabels;
    }

    /// <summary>
    /// Parse a string containing a hotkey character.
    /// Take a string of the form
    ///    Yes to &all
    /// and returns a two-dimensional array split out as
    ///    "A", "Yes to all".
    /// </summary>
    /// <param name="input">The string to process</param>
    /// <returns>
    /// A two dimensional array containing the parsed components.
    /// </returns>
    private static string[] GetHotkeyAndLabel(string input)
    {
      string[] result = new string[] { String.Empty, String.Empty };
      string[] fragments = input.Split('&');



The following code is the implementation of the
System.Management.Automation.Host.PSHostRawUserInterface class that is used by this
host application. Those elements that are not implemented throw an exception or return
nothing.

C#

      if (fragments.Length == 2)
      {
        if (fragments[1].Length > 0)
        {
          result[0] = fragments[1][0].ToString().
          ToUpper(CultureInfo.CurrentCulture);
        }

        result[1] = (fragments[0] + fragments[1]).Trim();
      }
      else
      {
        result[1] = input;
      }

      return result;
    }
  }
}

Example 4

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostRawUserInterface for console
  /// applications. Members of this class that easily map to the .NET
  /// console class are implemented. More complex methods are not
  /// implemented and throw a NotImplementedException exception.
  /// </summary>
  internal class MyRawUserInterface : PSHostRawUserInterface
  {
    /// <summary>
    /// Gets or sets the background color of text to be written.
    /// This maps to the corresponding Console.Background property.
    /// </summary>
    public override ConsoleColor BackgroundColor
    {
      get { return Console.BackgroundColor; }
      set { Console.BackgroundColor = value; }
    }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


    /// <summary>
    /// Gets or sets the host buffer size adapted from the Console buffer
    /// size members.
    /// </summary>
    public override Size BufferSize
    {
      get { return new Size(Console.BufferWidth, Console.BufferHeight); }
      set { Console.SetBufferSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the cursor position. In this example this
    /// functionality is not needed so the property throws a
    /// NotImplementException exception.
    /// </summary>
    public override Coordinates CursorPosition
    {
      get { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
      set { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
    }

    /// <summary>
    /// Gets or sets the cursor size taken directly from the
    /// Console.CursorSize property.
    /// </summary>
    public override int CursorSize
    {
      get { return Console.CursorSize; }
      set { Console.CursorSize = value; }
    }

    /// <summary>
    /// Gets or sets the foreground color of the text to be written.
    /// This maps to the corresponding Console.ForegroundColor property.
    /// </summary>
    public override ConsoleColor ForegroundColor
    {
      get { return Console.ForegroundColor; }
      set { Console.ForegroundColor = value; }
    }

    /// <summary>
    /// Gets a value indicating whether a key is available. This maps to
    /// the corresponding Console.KeyAvailable property.
    /// </summary>
    public override bool KeyAvailable
    {
      get { return Console.KeyAvailable; }
    }

    /// <summary>
    /// Gets the maximum physical size of the window adapted from the



    ///  Console.LargestWindowWidth and Console.LargestWindowHeight
    ///  properties.
    /// </summary>
    public override Size MaxPhysicalWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets the maximum window size adapted from the
    /// Console.LargestWindowWidth and console.LargestWindowHeight
    /// properties.
    /// </summary>
    public override Size MaxWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets or sets the window position adapted from the Console window 
position
    /// members.
    /// </summary>
    public override Coordinates WindowPosition
    {
      get { return new Coordinates(Console.WindowLeft, Console.WindowTop); }
      set { Console.SetWindowPosition(value.X, value.Y); }
    }

    /// <summary>
    /// Gets or sets the window size adapted from the corresponding Console
    /// calls.
    /// </summary>
    public override Size WindowSize
    {
      get { return new Size(Console.WindowWidth, Console.WindowHeight); }
      set { Console.SetWindowSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the title of the window mapped to the Console.Title
    /// property.
    /// </summary>
    public override string WindowTitle
    {
      get { return Console.Title; }
      set { Console.Title = value; }
    }

    /// <summary>
    /// This API resets the input buffer. In this example this
    /// functionality is not needed so the method returns nothing.
    /// </summary>



    public override void FlushInputBuffer()
    {
    }

    /// <summary>
    /// This API returns a rectangular region of the screen buffer. In
    /// this example this functionality is not needed so the method throws
    /// a NotImplementException exception.
    /// </summary>
    /// <param name="rectangle">Defines the size of the rectangle.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override BufferCell[,] GetBufferContents(Rectangle rectangle)
    {
      throw new NotImplementedException(
               "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Reads a pressed, released, or pressed and released 
keystroke
    /// from the keyboard device, blocking processing until a keystroke is
    /// typed that matches the specified keystroke options. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="options">Options, such as IncludeKeyDown,  used when
    /// reading the keyboard.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override KeyInfo ReadKey(ReadKeyOptions options)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API crops a region of the screen buffer. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="source">The region of the screen to be scrolled.
</param>
    /// <param name="destination">The region of the screen to receive the
    /// source region contents.</param>
    /// <param name="clip">The region of the screen to include in the 
operation.</param>
    /// <param name="fill">The character and attributes to be used to fill 
all cell.</param>
    public override void ScrollBufferContents(Rectangle source, Coordinates 
destination, Rectangle clip, BufferCell fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

     /// <summary>



System.Management.Automation.Host.PSHost

System.Management.Automation.Host.PSHostUserInterface

System.Management.Automation.Host.PSHostRawUserInterface

    /// This API copies an array of buffer cells into the screen buffer
    /// at a specified location. In this example this  functionality is
    /// not needed si the method  throws a NotImplementedException 
exception.
    /// </summary>
    /// <param name="origin">The parameter is not used.</param>
    /// <param name="contents">The parameter is not used.</param>
    public override void SetBufferContents(Coordinates origin, BufferCell[,] 
contents)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Copies a given character, foreground color, and background
    /// color to a region of the screen buffer. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception./// </summary>
    /// <param name="rectangle">Defines the area to be filled. </param>
    /// <param name="fill">Defines the fill character.</param>
    public override void SetBufferContents(Rectangle rectangle, BufferCell 
fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


Host04 Sample
Article • 03/24/2025

This sample shows how to build an interactive console-based host application that reads
commands from the command line, executes the commands, and then displays the
results to the console. This host application also supports displaying prompts that allow
the user to specify multiple choices.

This sample requires Windows PowerShell 2.0.

Creating a custom host whose classes derive from the
System.Management.Automation.Host.PSHost class, the
System.Management.Automation.Host.PSHostUserInterface class, and the
System.Management.Automation.Host.PSHostRawUserInterface class.

Building a console application that uses these host classes to build an interactive
Windows PowerShell shell.

Creating a $PROFILE  variable and loading the following profiles.
current user, current host
current user, all hosts
all users, current host
all users, all hosts

Implement the
System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
interface.

This example allows the user to enter commands at a command line, processes those
commands, and then prints out the results.

C#

Requirements

Demonstrates

Example 1

namespace Microsoft.Samples.PowerShell.Host
{

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection


  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class PSListenerConsoleSample
  {
    /// <summary>
    /// Indicator to tell the host application that it should exit.
    /// </summary>
    private bool shouldExit;

    /// <summary>
    /// The exit code that the host application will use to exit.
    /// </summary>
    private int exitCode;

    /// <summary>
    /// Holds a reference to  the PSHost object for this interpreter.
    /// </summary>
    private MyHost myHost;

    /// <summary>
    /// Holds a reference to the runspace for this interpreter.
    /// </summary>
    private Runspace myRunSpace;

    /// <summary>
    /// Holds a reference to the currently executing pipeline so that
    /// it can be stopped by the control-C handler.
    /// </summary>
    private PowerShell currentPowerShell;

    /// <summary>
    /// Used to serialize access to instance data.
    /// </summary>
    private object instanceLock = new object();

    /// <summary>
    /// Gets or sets a value indicating whether the host application
    /// should exit.
    /// </summary>
    public bool ShouldExit
    {
      get { return this.shouldExit; }
      set { this.shouldExit = value; }
    }

    /// <summary>
    /// Gets or sets the exit code that the host application will use
    /// when exiting.



    /// </summary>
    public int ExitCode
    {
      get { return this.exitCode; }
      set { this.exitCode = value; }
    }

    /// <summary>
    /// Creates and initiates the listener.
    /// </summary>
    /// <param name="args">The parameter is not used</param>
    private static void Main(string[] args)
    {
      // Display the welcome message.
      Console.Title = "Windows PowerShell Console Host Application Sample";
      ConsoleColor oldFg = Console.ForegroundColor;
      Console.ForegroundColor = ConsoleColor.Cyan;
      Console.WriteLine("    Windows PowerShell Console Host Interactive 
Sample");
      Console.WriteLine("    
==================================================");
      Console.WriteLine(string.Empty);
      Console.WriteLine("This is an example of a simple interactive console 
host that uses ");
      Console.WriteLine("the Windows PowerShell engine to interpret 
commands.");
      Console.WriteLine("Type 'exit' to exit.");
      Console.WriteLine(string.Empty);
      Console.ForegroundColor = oldFg;

      // Create the listener and run it. This never returns.
      PSListenerConsoleSample listener = new PSListenerConsoleSample();
      listener.Run();
    }

    /// <summary>
    /// Create this instance of the console listener.
    /// </summary>
    private PSListenerConsoleSample()
    {
      // Create the host and runspace instances for this interpreter. Note 
that
      // this application doesn't support console files so only the default 
snapins
      // will be available.
      this.myHost = new MyHost(this);
      this.myRunSpace = RunspaceFactory.CreateRunspace(this.myHost);
      this.myRunSpace.Open();

      // Create a PowerShell object that will be used to execute the 
commands
      // to create $PROFILE and load the profiles.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();



      }

      try
      {
        this.currentPowerShell.Runspace = this.myRunSpace;

        PSCommand[] profileCommands = 
Microsoft.Samples.PowerShell.Host.HostUtilities.GetProfileCommands("SampleHo
st04");
        foreach (PSCommand command in profileCommands)
        {
          this.currentPowerShell.Commands = command;
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose of the pipeline line and set it to null, locked because 
currentPowerShell
        // may be accessed by the ctrl-C handler...
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>
    /// A helper class that builds and executes a pipeline that writes to 
the
    /// default output path. Any exceptions that are thrown are just passed 
to
    /// the caller. Since all output goes to the default outputter, this 
method
    /// returns nothing.
    /// </summary>
    /// <param name="cmd">The script to run</param>
    /// <param name="input">Any input arguments to pass to the script. If 
null
    /// then nothing is passed in.</param>
    private void executeHelper(string cmd, object input)
    {
      // Ignore empty command lines.
      if (String.IsNullOrEmpty(cmd))
      {
        return;
      }

      // Create the pipeline object and make it available
      // to the ctrl-C handle through the currentPowerShell instance
      // variable.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();



      }

      this.currentPowerShell.Runspace = this.myRunSpace;

      // Create a pipeline for this execution. Place the result in the
      // currentPowerShell instance variable so that it is available to
      // be stopped.
      try
      {
        this.currentPowerShell.AddScript(cmd);

        // Now add the default outputter to the end of the pipe and indicate
        // that it should handle both output and errors from the previous
        // commands. This will result in the output being written using the 
PSHost
        // and PSHostUserInterface classes instead of returning objects to 
the hosting
        // application.
        this.currentPowerShell.AddCommand("Out-Default");
        
this.currentPowerShell.Commands.Commands[0].MergeMyResults(PipelineResultTyp
es.Error, PipelineResultTypes.Output);

        // If there was any input specified, pass it in, otherwise just
        // execute the pipeline.
        if (input != null)
        {
          this.currentPowerShell.Invoke(new object[] { input });
        }
        else
        {
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose of the pipeline line and set it to null, locked because 
currentPowerShell
        // may be accessed by the ctrl-C handler.
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>
    /// An exception occurred that we want to display
    /// using the display formatter. To do this we run
    /// a second pipeline passing in the error record.
    /// The runtime will bind this to the $input variable
    /// which is why $input is being piped to Out-String.
    /// We then call WriteErrorLine to make sure the error
    /// gets displayed in the correct error color.



    /// </summary>
    /// <param name="e">The exception to display</param>
    private void ReportException(Exception e)
    {
      if (e != null)
      {
        object error;
        IContainsErrorRecord icer = e as IContainsErrorRecord;
        if (icer != null)
        {
          error = icer.ErrorRecord;
        }
        else
        {
          error = (object)new ErrorRecord(e, "Host.ReportException", 
ErrorCategory.NotSpecified, null);
        }

        lock (this.instanceLock)
        {
          this.currentPowerShell = PowerShell.Create();
        }

        this.currentPowerShell.Runspace = this.myRunSpace;

        try
        {
          this.currentPowerShell.AddScript("$input").AddCommand("Out-
String");

          // Do not merge errors, this function will swallow errors.
          Collection<PSObject> result;
          PSDataCollection<object> inputCollection = new 
PSDataCollection<object>();
          inputCollection.Add(error);
          inputCollection.Complete();
          result = this.currentPowerShell.Invoke(inputCollection);

          if (result.Count > 0)
          {
            string str = result[0].BaseObject as string;
            if (!string.IsNullOrEmpty(str))
            {
              // Remove \r\n that is added by Out-String.
              this.myHost.UI.WriteErrorLine(str.Substring(0, str.Length - 
2));
            }
          }
        }
        finally
        {
          // Dispose of the pipeline line and set it to null, locked because 
currentPowerShell
          // may be accessed by the ctrl-C handler.
          lock (this.instanceLock)



          {
            this.currentPowerShell.Dispose();
            this.currentPowerShell = null;
          }
        }
      }
    }

    /// <summary>
    /// Basic script execution routine - any runtime exceptions are
    /// caught and passed back into the engine to display.
    /// </summary>
    /// <param name="cmd">The parameter is not used.</param>
    private void Execute(string cmd)
    {
      try
      {
        // Execute the command with no input.
        this.executeHelper(cmd, null);
      }
      catch (RuntimeException rte)
      {
        this.ReportException(rte);
      }
    }

    /// <summary>
    /// Method used to handle control-C's from the user. It calls the
    /// pipeline Stop() method to stop execution. If any exceptions occur
    /// they are printed to the console but otherwise ignored.
    /// </summary>
    /// <param name="sender">See sender property of 
ConsoleCancelEventHandler documentation.</param>
    /// <param name="e">See e property of ConsoleCancelEventHandler 
documentation</param>
    private void HandleControlC(object sender, ConsoleCancelEventArgs e)
    {
      try
      {
        lock (this.instanceLock)
        {
          if (this.currentPowerShell != null && 
this.currentPowerShell.InvocationStateInfo.State == 
PSInvocationState.Running)
          {
            this.currentPowerShell.Stop();
          }
        }

        e.Cancel = true;
      }
      catch (Exception exception)
      {
        this.myHost.UI.WriteErrorLine(exception.ToString());
      }



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

    }

    /// <summary>
    /// Implements the basic listener loop. It sets up the ctrl-C handler, 
then
    /// reads a command from the user, executes it and repeats until the 
ShouldExit
    /// flag is set.
    /// </summary>
    private void Run()
    {
      // Set up the control-C handler.
      Console.CancelKeyPress += new 
ConsoleCancelEventHandler(this.HandleControlC);
      Console.TreatControlCAsInput = false;

      // Read commands to execute until ShouldExit is set by
      // the user calling "exit".
      while (!this.ShouldExit)
      {
        this.myHost.UI.Write(ConsoleColor.Cyan, ConsoleColor.Black, 
"\nPSConsoleSample: ");
        string cmd = Console.ReadLine();
        this.Execute(cmd);
      }

      // Exit with the desired exit code that was set by exit command.
      // This is set in the host by the MyHost.SetShouldExit() 
implementation.
      Environment.Exit(this.ExitCode);
    }
  }
}

Example 2

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Globalization;
  using System.Management.Automation.Host;

  /// <summary>
  /// This is a sample implementation of the PSHost abstract class for
  /// console applications. Not all members are implemented. Those that

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


  /// are not implemented throw a NotImplementedException exception or
  /// return nothing.
  /// </summary>
  internal class MyHost : PSHost
  {
    /// <summary>
    /// A reference to the PSHost implementation.
    /// </summary>
    private PSListenerConsoleSample program;

    /// <summary>
    /// The culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalCultureInfo =
        System.Threading.Thread.CurrentThread.CurrentCulture;

    /// <summary>
    /// The UI culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalUICultureInfo =
        System.Threading.Thread.CurrentThread.CurrentUICulture;

    /// <summary>
    /// The identifier of this PSHost implementation.
    /// </summary>
    private static Guid instanceId = Guid.NewGuid();

    /// <summary>
    /// Initializes a new instance of the MyHost class. Keep
    /// a reference to the host application object so that it
    /// can be informed of when to exit.
    /// </summary>
    /// <param name="program">
    /// A reference to the host application object.
    /// </param>
    public MyHost(PSListenerConsoleSample program)
    {
      this.program = program;
    }

    /// <summary>
    /// A reference to the implementation of the PSHostUserInterface
    /// class for this application.
    /// </summary>
    private MyHostUserInterface myHostUserInterface = new 
MyHostUserInterface();

    /// <summary>
    /// Gets the culture information to use. This implementation
    /// returns a snapshot of the culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentCulture



    {
      get { return this.originalCultureInfo; }
    }

    /// <summary>
    /// Gets the UI culture information to use. This implementation
    /// returns a snapshot of the UI culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentUICulture
    {
      get { return this.originalUICultureInfo; }
    }

    /// <summary>
    /// Gets an identifier for this host. This implementation always
    /// returns the GUID allocated at instantiation time.
    /// </summary>
    public override Guid InstanceId
    {
      get { return instanceId; }
    }

    /// <summary>
    /// Gets a string that contains the name of this host implementation.
    /// Keep in mind that this string may be used by script writers to
    /// identify when your host is being used.
    /// </summary>
    public override string Name
    {
      get { return "MySampleConsoleHostImplementation"; }
    }

    /// <summary>
    /// Gets an instance of the implementation of the PSHostUserInterface
    /// class for this application. This instance is allocated once at 
startup time
    /// and returned every time thereafter.
    /// </summary>
    public override PSHostUserInterface UI
    {
      get { return this.myHostUserInterface; }
    }

    /// <summary>
    /// Gets the version object for this application. Typically this
    /// should match the version resource in the application.
    /// </summary>
    public override Version Version
    {
      get { return new Version(1, 0, 0, 0); }
    }

    /// <summary>
    /// This API Instructs the host to interrupt the currently running



    /// pipeline and start a new nested input loop. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementedException exception.
    /// </summary>
    public override void EnterNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API instructs the host to exit the currently running input 
loop.
    /// In this example this functionality is not needed so the method
    /// throws a NotImplementedException exception.
    /// </summary>
    public override void ExitNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API is called before an external application process is
    /// started. Typically it is used to save state so that the parent
    /// can restore state that has been modified by a child process (after
    /// the child exits). In this example this functionality is not
    /// needed so the method returns nothing.
    /// </summary>
    public override void NotifyBeginApplication()
    {
      return;
    }

    /// <summary>
    /// This API is called after an external application process finishes.
    /// Typically it is used to restore state that a child process has
    /// altered. In this example, this functionality is not needed so
    /// the method returns nothing.
    /// </summary>
    public override void NotifyEndApplication()
    {
      return;
    }

    /// <summary>
    /// Indicate to the host application that exit has
    /// been requested. Pass the exit code that the host
    /// application should use when exiting the process.
    /// </summary>
    /// <param name="exitCode">The exit code that the
    /// host application should use.</param>
    public override void SetShouldExit(int exitCode)
    {
      this.program.ShouldExit = true;



The following code is the implementation of the
System.Management.Automation.Host.PSHostUserInterface class that is used by this
host application.

C#

      this.program.ExitCode = exitCode;
    }
  }
}

Example 3

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Globalization;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Text;

  /// <summary>
  /// A sample implementation of the PSHostUserInterface abstract class for
  /// console applications. Not all members are implemented. Those that are
  /// not implemented throw a NotImplementedException exception or return
  /// nothing. Members that are implemented include those that map easily to
  /// Console APIs and a basic implementation of the prompt API provided.
  /// </summary>
  internal class MyHostUserInterface : PSHostUserInterface, 
IHostUISupportsMultipleChoiceSelection
  {
    /// <summary>
    /// A reference to the PSRawUserInterface implementation.
    /// </summary>
    private MyRawUserInterface myRawUi = new MyRawUserInterface();

    /// <summary>
    /// Gets an instance of the PSRawUserInterface object for this host
    /// application.
    /// </summary>
    public override PSHostRawUserInterface RawUI
    {
      get { return this.myRawUi; }
    }

    /// <summary>
    /// Prompts the user for input.
    /// <param name="caption">The caption or title of the prompt.</param>
    /// <param name="message">The text of the prompt.</param>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface


    /// <param name="descriptions">A collection of FieldDescription objects
    /// that describe each field of the prompt.</param>
    /// <returns>A dictionary object that contains the results of the user
    /// prompts.</returns>
    public override Dictionary<string, PSObject> Prompt(
                              string caption,
                              string message,
                              Collection<FieldDescription> descriptions)
    {
      this.Write(
                 ConsoleColor.Blue,
                 ConsoleColor.Black,
                 caption + "\n" + message + " ");
      Dictionary<string, PSObject> results =
               new Dictionary<string, PSObject>();
      foreach (FieldDescription fd in descriptions)
      {
        string[] label = GetHotkeyAndLabel(fd.Label);
        this.WriteLine(label[1]);
        string userData = Console.ReadLine();
        if (userData == null)
        {
          return null;
        }

        results[fd.Name] = PSObject.AsPSObject(userData);
      }

      return results;
    }

    /// <summary>

/// Provides a set of choices that enable the user to choose a
    /// single option from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that
    /// describe each choice.</param>
    /// <param name="defaultChoice">The index of the label in the Choices
    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public override int PromptForChoice(
                                        string caption,
                                        string message,
                                        Collection<ChoiceDescription> 
choices,
                                        int defaultChoice)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(



                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));
      }

      sb.Append(String.Format(
                              CultureInfo.CurrentCulture,
                              "[Default is ({0}]",
                              promptData[0, defaultChoice]));

      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      while (true)
      {
        this.WriteLine(ConsoleColor.Cyan, ConsoleColor.Black, 
sb.ToString());
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, use the default selection.
        if (data.Length == 0)
        {
          return defaultChoice;
        }

        // See if the selection matched and return the
        // corresponding index if it did.
        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            return i;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #region IHostUISupportsMultipleChoiceSelection Members



    /// <summary>
    /// Provides a set of choices that enable the user to choose a one or
    /// more options from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that
    /// describe each choice.</param>
    /// <param name="defaultChoices">The index of the label in the Choices
    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public Collection<int> PromptForChoice(
                                           string caption,
                                           string message,
                                           Collection<ChoiceDescription> 
choices,
                                           IEnumerable<int> defaultChoices)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));
      }

      Collection<int> defaultResults = new Collection<int>();
      if (defaultChoices != null)
      {
        int countDefaults = 0;
        foreach (int defaultChoice in defaultChoices)
        {
          ++countDefaults;
          defaultResults.Add(defaultChoice);
        }

        if (countDefaults != 0)



        {
          sb.Append(countDefaults == 1 ? "[Default choice is " : "[Default 
choices are ");
          foreach (int defaultChoice in defaultChoices)
          {
            sb.AppendFormat(
                            CultureInfo.CurrentCulture,
                            "\"{0}\",",
                            promptData[0, defaultChoice]);
          }

          sb.Remove(sb.Length - 1, 1);
          sb.Append("]");
        }
      }

      this.WriteLine(
                     ConsoleColor.Cyan,
                     ConsoleColor.Black,
                     sb.ToString());
      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      Collection<int> results = new Collection<int>();
      while (true)
      {
        ReadNext:
        string prompt = string.Format(CultureInfo.CurrentCulture, 
"Choice[{0}]:", results.Count);
        this.Write(ConsoleColor.Cyan, ConsoleColor.Black, prompt);
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, no more choices have been made.
        // If there were no choices made, return the defaults
        if (data.Length == 0)
        {
          return (results.Count == 0) ? defaultResults : results;
        }

        // See if the selection matched and return the
        // corresponding index if it did.
        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            results.Add(i);
            goto ReadNext;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #endregion



    /// <summary>
    /// Prompts the user for credentials with a specified prompt window
    /// caption, prompt message, user name, and target name. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName)
    {
      throw new NotImplementedException(
                           "The method or operation is not implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials by using a specified prompt window
    /// caption, prompt message, user name and target name, credential
    /// types allowed to be returned, and UI behavior options. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <param name="allowedCredentialTypes">A PSCredentialTypes constant
    /// that identifies the type of credentials that can be returned.
</param>
    /// <param name="options">A PSCredentialUIOptions constant that
    /// identifies the UI behavior when it gathers the credentials.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                       string caption,
                                       string message,
                                       string userName,
                                       string targetName,
                                       PSCredentialTypes 
allowedCredentialTypes,
                                       PSCredentialUIOptions options)
    {
      throw new NotImplementedException(
                              "The method or operation is not 
implemented.");



    }

    /// <summary>
    /// Reads characters that are entered by the user until a newline
    /// (carriage return) is encountered.
    /// </summary>
    /// <returns>The characters that are entered by the user.</returns>
    public override string ReadLine()
    {
      return Console.ReadLine();
    }

    /// <summary>
    /// Reads characters entered by the user until a newline (carriage 
return)
    /// is encountered and returns the characters as a secure string. In 
this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <returns>Throws a NotImplemented exception.</returns>
    public override System.Security.SecureString ReadLineAsSecureString()
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Writes characters to the output display of the host.
    /// </summary>
    /// <param name="value">The characters to be written.</param>
    public override void Write(string value)
    {
      Console.Write(value);
    }

    /// <summary>
    /// Writes characters to the output display of the host with possible
    /// foreground and background colors.
    /// </summary>
    /// <param name="foregroundColor">The color of the characters.</param>
    /// <param name="backgroundColor">The background color to use.</param>
    /// <param name="value">The characters to be written.</param>
    public override void Write(
                               ConsoleColor foregroundColor,
                               ConsoleColor backgroundColor,
                               string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.Write(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;



    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// with foreground and background colors and appends a newline 
(carriage return).
    /// </summary>
    /// <param name="foregroundColor">The foreground color of the display. 
</param>
    /// <param name="backgroundColor">The background color of the display. 
</param>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(
                                   ConsoleColor foregroundColor,
                                   ConsoleColor backgroundColor,
                                   string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.WriteLine(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a debug message to the output display of the host.
    /// </summary>
    /// <param name="message">The debug message that is displayed.</param>
    public override void WriteDebugLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.DarkYellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "DEBUG: {0}", 
message));
    }

    /// <summary>
    /// Writes an error message to the output display of the host.
    /// </summary>
    /// <param name="value">The error message that is displayed.</param>
    public override void WriteErrorLine(string value)
    {
      this.WriteLine(
                     ConsoleColor.Red,
                     ConsoleColor.Black,
                     value);
    }

    /// <summary>
    /// Writes a newline character (carriage return)
    /// to the output display of the host.
    /// </summary>



    public override void WriteLine()
    {
      Console.WriteLine();
    }

       /// <summary>
    /// Writes a line of characters to the output display of the host
    /// and appends a newline character(carriage return).
    /// </summary>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(string value)
    {
      Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a progress report to the output display of the host.
    /// </summary>
    /// <param name="sourceId">Unique identifier of the source of the 
record. </param>
    /// <param name="record">A ProgressReport object.</param>
    public override void WriteProgress(long sourceId, ProgressRecord record)
    {

    }

    /// <summary>
    /// Writes a verbose message to the output display of the host.
    /// </summary>
    /// <param name="message">The verbose message that is displayed.</param>
    public override void WriteVerboseLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Green,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "VERBOSE: 
{0}", message));
    }

    /// <summary>
    /// Writes a warning message to the output display of the host.
    /// </summary>
    /// <param name="message">The warning message that is displayed.</param>
    public override void WriteWarningLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Yellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "WARNING: 
{0}", message));
    }

    /// <summary>
    /// Parse a string containing a hotkey character.
    /// Take a string of the form



    ///    Yes to &all
    /// and returns a two-dimensional array split out as
    ///    "A", "Yes to all".
    /// </summary>
    /// <param name="input">The string to process</param>
    /// <returns>
    /// A two dimensional array containing the parsed components.
    /// </returns>
    private static string[] GetHotkeyAndLabel(string input)
    {
      string[] result = new string[] { String.Empty, String.Empty };
      string[] fragments = input.Split('&');
      if (fragments.Length == 2)
      {
        if (fragments[1].Length > 0)
        {
          result[0] = fragments[1][0].ToString().
          ToUpper(CultureInfo.CurrentCulture);
        }

        result[1] = (fragments[0] + fragments[1]).Trim();
      }
      else
      {
        result[1] = input;
      }

      return result;
    }

    /// <summary>
    /// This is a private worker function splits out the
    /// accelerator keys from the menu and builds a two
    /// dimensional array with the first access containing the
    /// accelerator and the second containing the label string
    /// with the & removed.
    /// </summary>
    /// <param name="choices">The choice collection to process</param>
    /// <returns>
    /// A two dimensional array containing the accelerator characters
    /// and the cleaned-up labels</returns>
    private static string[,] BuildHotkeysAndPlainLabels(
         Collection<ChoiceDescription> choices)
    {
      // Allocate the result array
      string[,] hotkeysAndPlainLabels = new string[2, choices.Count];

      for (int i = 0; i < choices.Count; ++i)
      {
        string[] hotkeyAndLabel = GetHotkeyAndLabel(choices[i].Label);
        hotkeysAndPlainLabels[0, i] = hotkeyAndLabel[0];
        hotkeysAndPlainLabels[1, i] = hotkeyAndLabel[1];
      }

      return hotkeysAndPlainLabels;



The following code is the implementation of the
System.Management.Automation.Host.PSHostRawUserInterface class that is used by this
host application. Those elements that are not implemented throw an exception or return
nothing.

C#

    }
  }
}

Example 4

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostRawUserInterface for console
  /// applications. Members of this class that easily map to the .NET
  /// console class are implemented. More complex methods are not
  /// implemented and throw a NotImplementedException exception.
  /// </summary>
  internal class MyRawUserInterface : PSHostRawUserInterface
  {
    /// <summary>
    /// Gets or sets the background color of text to be written.
    /// This maps to the corresponding Console.Background property.
    /// </summary>
    public override ConsoleColor BackgroundColor
    {
      get { return Console.BackgroundColor; }
      set { Console.BackgroundColor = value; }
    }

    /// <summary>
    /// Gets or sets the host buffer size adapted from the Console buffer
    /// size members.
    /// </summary>
    public override Size BufferSize
    {
      get { return new Size(Console.BufferWidth, Console.BufferHeight); }
      set { Console.SetBufferSize(value.Width, value.Height); }
    }

     /// <summary>
    /// Gets or sets the cursor position. In this example this
    /// functionality is not needed so the property throws a
    /// NotImplementException exception.
    /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


    public override Coordinates CursorPosition
    {
      get { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
      set { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
    }

    /// <summary>
    /// Gets or sets the cursor size taken directly from the
    /// Console.CursorSize property.
    /// </summary>
    public override int CursorSize
    {
      get { return Console.CursorSize; }
      set { Console.CursorSize = value; }
    }

    /// <summary>
    /// Gets or sets the foreground color of the text to be written.
    /// This maps to the corresponding Console.ForegroundColor property.
    /// </summary>
    public override ConsoleColor ForegroundColor
    {
      get { return Console.ForegroundColor; }
      set { Console.ForegroundColor = value; }
    }

    /// <summary>
    /// Gets a value indicating whether a key is available. This maps to
    /// the corresponding Console.KeyAvailable property.
    /// </summary>
    public override bool KeyAvailable
    {
      get { return Console.KeyAvailable; }
    }

    /// <summary>
    /// Gets the maximum physical size of the window adapted from the
    /// Console.LargestWindowWidth and Console.LargestWindowHeight
    /// properties.
    /// </summary>
    public override Size MaxPhysicalWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets the maximum window size adapted from the
    /// Console.LargestWindowWidth and console.LargestWindowHeight
    /// properties.
    /// </summary>
    public override Size MaxWindowSize
    {



      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets or sets the window position adapted from the Console window 
position
    /// members.
    /// </summary>
    public override Coordinates WindowPosition
    {
      get { return new Coordinates(Console.WindowLeft, Console.WindowTop); }
      set { Console.SetWindowPosition(value.X, value.Y); }
    }

    /// <summary>
    /// Gets or sets the window size adapted from the corresponding Console
    /// calls.
    /// </summary>
    public override Size WindowSize
    {
      get { return new Size(Console.WindowWidth, Console.WindowHeight); }
      set { Console.SetWindowSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the title of the window mapped to the Console.Title
    /// property.
    /// </summary>
    public override string WindowTitle
    {
      get { return Console.Title; }
      set { Console.Title = value; }
    }

    /// <summary>
    /// This API resets the input buffer. In this example this
    /// functionality is not needed so the method returns nothing.
    /// </summary>
    public override void FlushInputBuffer()
    {
    }

    /// <summary>
    /// This API returns a rectangular region of the screen buffer. In
    /// this example this functionality is not needed so the method throws
    /// a NotImplementException exception.
    /// </summary>
    /// <param name="rectangle">Defines the size of the rectangle.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override BufferCell[,] GetBufferContents(Rectangle rectangle)
    {
      throw new NotImplementedException(
               "The method or operation is not implemented.");
    }



    /// <summary>
    /// This API Reads a pressed, released, or pressed and released 
keystroke
    /// from the keyboard device, blocking processing until a keystroke is
    /// typed that matches the specified keystroke options. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="options">Options, such as IncludeKeyDown,  used when
    /// reading the keyboard.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override KeyInfo ReadKey(ReadKeyOptions options)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API crops a region of the screen buffer. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="source">The region of the screen to be scrolled.
</param>
    /// <param name="destination">The region of the screen to receive the
    /// source region contents.</param>
    /// <param name="clip">The region of the screen to include in the 
operation.</param>
    /// <param name="fill">The character and attributes to be used to fill 
all cell.</param>
    public override void ScrollBufferContents(Rectangle source, Coordinates 
destination, Rectangle clip, BufferCell fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API copies an array of buffer cells into the screen buffer
    /// at a specified location. In this example this  functionality is
    /// not needed si the method  throws a NotImplementedException 
exception.
    /// </summary>
    /// <param name="origin">The parameter is not used.</param>
    /// <param name="contents">The parameter is not used.</param>
    public override void SetBufferContents(Coordinates origin, BufferCell[,] 
contents)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Copies a given character, foreground color, and background



System.Management.Automation.Host.PSHost

System.Management.Automation.Host.PSHostUserInterface

System.Management.Automation.Host.PSHostRawUserInterface

    /// color to a region of the screen buffer. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception./// </summary>
    /// <param name="rectangle">Defines the area to be filled. </param>
    /// <param name="fill">Defines the fill character.</param>
    public override void SetBufferContents(Rectangle rectangle, BufferCell 
fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


Host05 Sample
Article • 03/24/2025

This sample shows how to build an interactive console-based host application that reads
commands from the command line, executes the commands, and then displays the
results to the console. This host application also supports calls to remote computers by
using the Enter-PSSession and Exit-PSSession cmdlets.

This sample requires Windows PowerShell 2.0.

This application must be run in elevated mode (Run as administrator).

Creating a custom host whose classes derive from the
System.Management.Automation.Host.PSHost class, the
System.Management.Automation.Host.PSHostUserInterface class, and the
System.Management.Automation.Host.PSHostRawUserInterface class.

Building a console application that uses these host classes to build an interactive
Windows PowerShell shell.

Creating a $PROFILE  variable and loading the following profiles.
current user, current host
current user, all hosts
all users, current host
all users, all hosts

Implement the
System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
interface.

Implement the
System.Management.Automation.Host.IHostSupportsInteractiveSession interface
to support interactive remoting by using the Enter-PSSession and Exit-PSSession
cmdlets.

Requirements

Demonstrates

Example 1

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Enter-PSSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Exit-PSSession
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostSupportsInteractiveSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Enter-PSSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Exit-PSSession


This example allows the user to enter commands at a command line, processes those
commands, and then prints out the results.

C#

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Management.Automation.Runspaces;
  using System.Text;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// Simple PowerShell interactive console host listener implementation. 
This class
  /// implements a basic read-evaluate-print loop or 'listener' allowing you 
to
  /// interactively work with the PowerShell engine.
  /// </summary>
  internal class PSListenerConsoleSample
  {
    /// <summary>
    /// Holds a reference to the runspace for this interpreter.
    /// </summary>
    internal Runspace myRunSpace;

    /// <summary>
    /// Indicator to tell the host application that it should exit.
    /// </summary>
    private bool shouldExit;

    /// <summary>
    /// The exit code that the host application will use to exit.
    /// </summary>
    private int exitCode;

    /// <summary>
    /// Holds a reference to  the PSHost object for this interpreter.
    /// </summary>
    private MyHost myHost;

    /// <summary>
    /// Holds a reference to the currently executing pipeline so that
    /// it can be stopped by the control-C handler.
    /// </summary>
    private PowerShell currentPowerShell;

    /// <summary>
    /// Used to serialize access to instance data.
    /// </summary>



    private object instanceLock = new object();

    /// <summary>
    /// Gets or sets a value indicating whether the host application
    /// should exit.
    /// </summary>
    public bool ShouldExit
    {
      get { return this.shouldExit; }
      set { this.shouldExit = value; }
    }

    /// <summary>
    /// Gets or sets the exit code that the host application will use
    /// when exiting.
    /// </summary>
    public int ExitCode
    {
      get { return this.exitCode; }
      set { this.exitCode = value; }
    }

    /// <summary>
    /// Creates and initiates the listener.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    private static void Main(string[] args)
    {
      // Display the welcome message.
      Console.Title = "Windows PowerShell Console Host Application Sample";
      ConsoleColor oldFg = Console.ForegroundColor;
      Console.ForegroundColor = ConsoleColor.Cyan;
      Console.WriteLine("    Windows PowerShell Console Host Interactive 
Sample");
      Console.WriteLine("    
==================================================");
      Console.WriteLine(string.Empty);
      Console.WriteLine("This is an example of a simple interactive console 
host that uses ");
      Console.WriteLine("the Windows PowerShell engine to interpret 
commands.");
      Console.WriteLine("Type 'exit' to exit.");
      Console.WriteLine(string.Empty);
      Console.ForegroundColor = oldFg;

      // Create the listener and runs it. This method never returns.
      PSListenerConsoleSample listener = new PSListenerConsoleSample();
      listener.Run();
    }

    /// <summary>
    /// Create an instance of the console listener.
    /// </summary>
    private PSListenerConsoleSample()
    {



      // Create the host and runspace instances for this interpreter. Note
      // that this application doesn't support console files so only the
      // default snap-ins will be available.
      this.myHost = new MyHost(this);
      this.myRunSpace = RunspaceFactory.CreateRunspace(this.myHost);
      this.myRunSpace.Open();

      // Create a PowerShell object to run the commands used to create
      // $PROFILE and load the profiles.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();
      }

      try
      {
        this.currentPowerShell.Runspace = this.myRunSpace;

        PSCommand[] profileCommands = 
Microsoft.Samples.PowerShell.Host.HostUtilities.GetProfileCommands("SampleHo
st05");
        foreach (PSCommand command in profileCommands)
        {
          this.currentPowerShell.Commands = command;
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose of the pipeline line and set it to null, locked because 
currentPowerShell
        // may be accessed by the ctrl-C handler...
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>
    /// A helper class that builds and executes a pipeline that writes to 
the
    /// default output path. Any exceptions that are thrown are just passed 
to
    /// the caller. Since all output goes to the default
    /// outputter, this method does not return anything.
    /// </summary>
    /// <param name="cmd">The script to run.</param>
    /// <param name="input">Any input arguments to pass to the script.
    /// If null then nothing is passed in.</param>
    private void executeHelper(string cmd, object input)
    {
      // Ignore empty command lines.
      if (String.IsNullOrEmpty(cmd))



      {
        return;
      }

      // Create the pipeline object and make it available to the
      // ctrl-C handle through the currentPowerShell instance
      // variable.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();
      }

      // Create a pipeline for this execution, and then place the
      // result in the currentPowerShell variable so it is available
      // to be stopped.
      try
      {
        this.currentPowerShell.Runspace = this.myRunSpace;
        this.currentPowerShell.AddScript(cmd);

        // Add the default outputter to the end of the pipe and then
        // call the MergeMyResults method to merge the output and
        // error streams from the pipeline. This will result in the
        // output being written using the PSHost and PSHostUserInterface
        // classes instead of returning objects to the host application.
        this.currentPowerShell.AddCommand("Out-Default");
        
this.currentPowerShell.Commands.Commands[0].MergeMyResults(PipelineResultTyp
es.Error, PipelineResultTypes.Output);

        // If there is any input pass it in, otherwise just invoke the
        // the pipeline.
        if (input != null)
        {
          this.currentPowerShell.Invoke(new object[] { input });
        }
        else
        {
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose the PowerShell object and set currentPowerShell to null.
        // It is locked because currentPowerShell may be accessed by the
        // ctrl-C handler.
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>



    /// To display an exception using the display formatter,
    /// run a second pipeline passing in the error record.
    /// The runtime will bind this to the $input variable,
    /// which is why $input is being piped to the Out-String
    /// cmdlet. The WriteErrorLine method is called to make sure
    /// the error gets displayed in the correct error color.
    /// </summary>
    /// <param name="e">The exception to display.</param>
    private void ReportException(Exception e)
    {
      if (e != null)
      {
        object error;
        IContainsErrorRecord icer = e as IContainsErrorRecord;
        if (icer != null)
        {
          error = icer.ErrorRecord;
        }
        else
        {
          error = (object)new ErrorRecord(e, "Host.ReportException", 
ErrorCategory.NotSpecified, null);
        }

        lock (this.instanceLock)
        {
          this.currentPowerShell = PowerShell.Create();
        }

        this.currentPowerShell.Runspace = this.myRunSpace;

        try
        {
          this.currentPowerShell.AddScript("$input").AddCommand("Out-
String");

          // Do not merge errors, this function will swallow errors.
          Collection<PSObject> result;
          PSDataCollection<object> inputCollection = new 
PSDataCollection<object>();
          inputCollection.Add(error);
          inputCollection.Complete();
          result = this.currentPowerShell.Invoke(inputCollection);

          if (result.Count > 0)
          {
            string str = result[0].BaseObject as string;
            if (!string.IsNullOrEmpty(str))
            {
              // Remove \r\n, which is added by the Out-String cmdlet.
              this.myHost.UI.WriteErrorLine(str.Substring(0, str.Length - 
2));
            }
          }
        }



        finally
        {
          // Dispose of the pipeline and set it to null, locking it  because
          // currentPowerShell may be accessed by the ctrl-C handler.
          lock (this.instanceLock)
          {
            this.currentPowerShell.Dispose();
            this.currentPowerShell = null;
          }
        }
      }
    }

    /// <summary>
    /// Basic script execution routine. Any runtime exceptions are
    /// caught and passed back to the Windows PowerShell engine to
    /// display.
    /// </summary>
    /// <param name="cmd">Script to run.</param>
    private void Execute(string cmd)
    {
      try
      {
        // Execute the command with no input.
        this.executeHelper(cmd, null);
      }
      catch (RuntimeException rte)
      {
        this.ReportException(rte);
      }
    }

    /// <summary>
    /// Method used to handle control-C's from the user. It calls the
    /// pipeline Stop() method to stop execution. If any exceptions occur
    /// they are printed to the console but otherwise ignored.
    /// </summary>
    /// <param name="sender">See sender property documentation of
    /// ConsoleCancelEventHandler.</param>
    /// <param name="e">See e property documentation of
    /// ConsoleCancelEventHandler.</param>
    private void HandleControlC(object sender, ConsoleCancelEventArgs e)
    {
      try
      {
        lock (this.instanceLock)
        {
          if (this.currentPowerShell != null && 
this.currentPowerShell.InvocationStateInfo.State == 
PSInvocationState.Running)
          {
            this.currentPowerShell.Stop();
          }
        }



        e.Cancel = true;
      }
      catch (Exception exception)
      {
        this.myHost.UI.WriteErrorLine(exception.ToString());
      }
    }

    /// <summary>
    /// Implements the basic listener loop. It sets up the ctrl-C handler, 
then
    /// reads a command from the user, executes it and repeats until the 
ShouldExit
    /// flag is set.
    /// </summary>
    private void Run()
    {
      // Set up the control-C handler.
      Console.CancelKeyPress += new 
ConsoleCancelEventHandler(this.HandleControlC);
      Console.TreatControlCAsInput = false;

      // Read commands to execute until ShouldExit is set by
      // the user calling "exit".
      while (!this.ShouldExit)
      {
        string prompt;
        if (this.myHost.IsRunspacePushed)
        {
          prompt = string.Format("\n[{0}] PSConsoleSample: ", 
this.myRunSpace.ConnectionInfo.ComputerName);
        }
        else
        {
          prompt = "\nPSConsoleSample: ";
        }

        this.myHost.UI.Write(ConsoleColor.Cyan, ConsoleColor.Black, prompt);
        string cmd = Console.ReadLine();
        this.Execute(cmd);
      }

      // Exit with the desired exit code that was set by exit command.
      // This is set in the host by the MyHost.SetShouldExit() 
implementation.
      Environment.Exit(this.ExitCode);
    }
  }
}

Example 2



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Globalization;
  using System.Management.Automation.Host;
  using System.Management.Automation.Runspaces;

  /// <summary>
  /// This is a sample implementation of the PSHost abstract class for
  /// console applications. Not all members are implemented. Those that
  /// are not implemented throw a NotImplementedException exception or
  /// return nothing.
  /// </summary>
  internal class MyHost : PSHost, IHostSupportsInteractiveSession
  {

    /// <summary>
    /// A reference to the PSHost implementation.
    /// </summary>
    private PSListenerConsoleSample program;

    /// <summary>
    /// The culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalCultureInfo =
        System.Threading.Thread.CurrentThread.CurrentCulture;

    /// <summary>
    /// The UI culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalUICultureInfo =
        System.Threading.Thread.CurrentThread.CurrentUICulture;

    /// <summary>
    /// The identifier of this PSHost implementation.
    /// </summary>
    private static Guid instanceId = Guid.NewGuid();

    /// <summary>
    /// Initializes a new instance of the MyHost class. Keep
    /// a reference to the host application object so that it
    /// can be informed of when to exit.
    /// </summary>
    /// <param name="program">
    /// A reference to the host application object.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


    /// </param>
    public MyHost(PSListenerConsoleSample program)
    {
      this.program = program;
    }

    /// <summary>
    /// A reference to the implementation of the PSHostUserInterface
    /// class for this application.
    /// </summary>
    private MyHostUserInterface myHostUserInterface = new 
MyHostUserInterface();

    /// <summary>
    /// A reference to the runspace used to start an interactive session.
    /// </summary>
    public Runspace pushedRunspace = null;

    /// <summary>
    /// Gets the culture information to use. This implementation
    /// returns a snapshot of the culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentCulture
    {
      get { return this.originalCultureInfo; }
    }

    /// <summary>
    /// Gets the UI culture information to use. This implementation
    /// returns a snapshot of the UI culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentUICulture
    {
      get { return this.originalUICultureInfo; }
    }

    /// <summary>
    /// Gets an identifier for this host. This implementation always
    /// returns the GUID allocated at instantiation time.
    /// </summary>
    public override Guid InstanceId
    {
      get { return instanceId; }
    }

    /// <summary>
    /// Gets a string that contains the name of this host implementation.
    /// Keep in mind that this string may be used by script writers to
    /// identify when your host is being used.
    /// </summary>
    public override string Name
    {
      get { return "MySampleConsoleHostImplementation"; }



    }

    /// <summary>
    /// Gets an instance of the implementation of the PSHostUserInterface
    /// class for this application. This instance is allocated once at 
startup time
    /// and returned every time thereafter.
    /// </summary>
    public override PSHostUserInterface UI
    {
      get { return this.myHostUserInterface; }
    }

    /// <summary>
    /// Gets the version object for this application. Typically this
    /// should match the version resource in the application.
    /// </summary>
    public override Version Version
    {
      get { return new Version(1, 0, 0, 0); }
    }

    #region IHostSupportsInteractiveSession Properties

    /// <summary>
    /// Gets a value indicating whether a request
    /// to open a PSSession has been made.
    /// </summary>
    public bool IsRunspacePushed
    {
      get { return this.pushedRunspace != null; }
    }

    /// <summary>
    /// Gets or sets the runspace used by the PSSession.
    /// </summary>
    public Runspace Runspace
    {
      get { return this.program.myRunSpace; }
      internal set { this.program.myRunSpace = value; }
    }
    #endregion IHostSupportsInteractiveSession Properties

    /// <summary>
    /// This API Instructs the host to interrupt the currently running
    /// pipeline and start a new nested input loop. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementedException exception.
    /// </summary>
    public override void EnterNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }



    /// <summary>
    /// This API instructs the host to exit the currently running input 
loop.
    /// In this example this functionality is not needed so the method
    /// throws a NotImplementedException exception.
    /// </summary>
    public override void ExitNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API is called before an external application process is
    /// started. Typically it is used to save state so that the parent
    /// can restore state that has been modified by a child process (after
    /// the child exits). In this example this functionality is not
    /// needed so the method returns nothing.
    /// </summary>
    public override void NotifyBeginApplication()
    {
      return;
    }

    /// <summary>
    /// This API is called after an external application process finishes.
    /// Typically it is used to restore state that a child process has
    /// altered. In this example, this functionality is not needed so
    /// the method returns nothing.
    /// </summary>
    public override void NotifyEndApplication()
    {
      return;
    }

    /// <summary>
    /// Indicate to the host application that exit has
    /// been requested. Pass the exit code that the host
    /// application should use when exiting the process.
    /// </summary>
    /// <param name="exitCode">The exit code that the
    /// host application should use.</param>
    public override void SetShouldExit(int exitCode)
    {
      this.program.ShouldExit = true;
      this.program.ExitCode = exitCode;
    }

    #region IHostSupportsInteractiveSession Methods

    /// <summary>
    /// Requests to close a PSSession.
    /// </summary>
    public void PopRunspace()
    {



The following code is the implementation of the
System.Management.Automation.Host.PSHostUserInterface class that is used by this
host application.

C#

      Runspace = this.pushedRunspace;
      this.pushedRunspace = null;
    }

    /// <summary>
    /// Requests to open a PSSession.
    /// </summary>
    /// <param name="runspace">Runspace to use.</param>
    public void PushRunspace(Runspace runspace)
    {
      this.pushedRunspace = Runspace;
      Runspace = runspace;
    }

    #endregion IHostSupportsInteractiveSession Methods
  }
}

Example 3

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Globalization;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Text;

  /// <summary>
  /// A sample implementation of the PSHostUserInterface abstract class for
  /// console applications. Not all members are implemented. Those that are
  /// not implemented throw a NotImplementedException exception or return
  /// nothing. Members that are implemented include those that map easily to
  /// Console APIs and a basic implementation of the prompt API provided.
  /// </summary>
  internal class MyHostUserInterface : PSHostUserInterface, 
IHostUISupportsMultipleChoiceSelection
  {
    /// <summary>
    /// A reference to the PSRawUserInterface implementation.
    /// </summary>
    private MyRawUserInterface myRawUi = new MyRawUserInterface();

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface


    /// <summary>
    /// Gets an instance of the PSRawUserInterface object for this host
    /// application.
    /// </summary>
    public override PSHostRawUserInterface RawUI
    {
      get { return this.myRawUi; }
    }

    /// <summary>
    /// Prompts the user for input.
    /// <param name="caption">The caption or title of the prompt.</param>
    /// <param name="message">The text of the prompt.</param>
    /// <param name="descriptions">A collection of FieldDescription objects
    /// that describe each field of the prompt.</param>
    /// <returns>A dictionary object that contains the results of the user
    /// prompts.</returns>
    public override Dictionary<string, PSObject> Prompt(
                              string caption,
                              string message,
                              Collection<FieldDescription> descriptions)
    {
      this.Write(
                 ConsoleColor.Blue,
                 ConsoleColor.Black,
                 caption + "\n" + message + " ");
      Dictionary<string, PSObject> results =
                 new Dictionary<string, PSObject>();
      foreach (FieldDescription fd in descriptions)
      {
        string[] label = GetHotkeyAndLabel(fd.Label);
        this.WriteLine(label[1]);
        string userData = Console.ReadLine();
        if (userData == null)
        {
          return null;
        }

        results[fd.Name] = PSObject.AsPSObject(userData);
      }

      return results;
    }

    /// <summary>

    /// Provides a set of choices that enable the user to choose a
    /// single option from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that
    /// describe each choice.</param>
    /// <param name="defaultChoice">The index of the label in the Choices



    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public override int PromptForChoice(
                                        string caption,
                                        string message,
                                        Collection<ChoiceDescription> 
choices,
                                        int defaultChoice)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));
      }

      sb.Append(String.Format(
                              CultureInfo.CurrentCulture,
                              "[Default is ({0}]",
                              promptData[0, defaultChoice]));

      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      while (true)
      {
        this.WriteLine(ConsoleColor.Cyan, ConsoleColor.Black, 
sb.ToString());
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, use the default selection.
        if (data.Length == 0)
        {
          return defaultChoice;
        }

        // See if the selection matched and return the
        // corresponding index if it did.



        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            return i;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #region IHostUISupportsMultipleChoiceSelection Members

    /// <summary>
    /// Provides a set of choices that enable the user to choose a one or
    /// more options from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that
    /// describe each choice.</param>
    /// <param name="defaultChoices">The index of the label in the Choices
    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public Collection<int> PromptForChoice(
                                           string caption,
                                           string message,
                                           Collection<ChoiceDescription> 
choices,
                                           IEnumerable<int> defaultChoices)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));



      }

      Collection<int> defaultResults = new Collection<int>();
      if (defaultChoices != null)
      {
        int countDefaults = 0;
        foreach (int defaultChoice in defaultChoices)
        {
          ++countDefaults;
          defaultResults.Add(defaultChoice);
        }

        if (countDefaults != 0)
        {
          sb.Append(countDefaults == 1 ? "[Default choice is " : "[Default 
choices are ");
          foreach (int defaultChoice in defaultChoices)
          {
            sb.AppendFormat(
                             CultureInfo.CurrentCulture,
                             "\"{0}\",",
                             promptData[0, defaultChoice]);
          }

          sb.Remove(sb.Length - 1, 1);
          sb.Append("]");
        }
      }

      this.WriteLine(
                     ConsoleColor.Cyan,
                     ConsoleColor.Black,
                     sb.ToString());

      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      Collection<int> results = new Collection<int>();
      while (true)
      {
        ReadNext:
        string prompt = string.Format(CultureInfo.CurrentCulture, 
"Choice[{0}]:", results.Count);
        this.Write(ConsoleColor.Cyan, ConsoleColor.Black, prompt);
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, no more choices have been made.
        // If there were no choices made, return the defaults
        if (data.Length == 0)
        {
          return (results.Count == 0) ? defaultResults : results;
        }

        // See if the selection matched and return the
        // corresponding index if it did.



        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            results.Add(i);
            goto ReadNext;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #endregion

    /// <summary>
    /// Prompts the user for credentials with a specified prompt window
    /// caption, prompt message, user name, and target name. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName)
    {
      throw new NotImplementedException(
                           "The method or operation is not implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials by using a specified prompt window
    /// caption, prompt message, user name and target name, credential
    /// types allowed to be returned, and UI behavior options. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <param name="allowedCredentialTypes">A PSCredentialTypes constant
    /// that identifies the type of credentials that can be returned.
</param>
    /// <param name="options">A PSCredentialUIOptions constant that



    /// identifies the UI behavior when it gathers the credentials.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                       string caption,
                                       string message,
                                       string userName,
                                       string targetName,
                                       PSCredentialTypes 
allowedCredentialTypes,
                                       PSCredentialUIOptions options)
    {
      throw new NotImplementedException(
                              "The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Reads characters that are entered by the user until a newline
    /// (carriage return) is encountered.
    /// </summary>
    /// <returns>The characters that are entered by the user.</returns>
    public override string ReadLine()
    {
      return Console.ReadLine();
    }

    /// <summary>
    /// Reads characters entered by the user until a newline (carriage 
return)
    /// is encountered and returns the characters as a secure string. In 
this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <returns>Throws a NotImplemented exception.</returns>
    public override System.Security.SecureString ReadLineAsSecureString()
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Writes characters to the output display of the host.
    /// </summary>
    /// <param name="value">The characters to be written.</param>
    public override void Write(string value)
    {
      Console.Write(value);
    }

    /// <summary>
    /// Writes characters to the output display of the host with possible
    /// foreground and background colors.
    /// </summary>
    /// <param name="foregroundColor">The color of the characters.</param>



    /// <param name="backgroundColor">The background color to use.</param>
    /// <param name="value">The characters to be written.</param>
    public override void Write(
                               ConsoleColor foregroundColor,
                               ConsoleColor backgroundColor,
                               string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.Write(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// with foreground and background colors and appends a newline 
(carriage return).
    /// </summary>
    /// <param name="foregroundColor">The foreground color of the display. 
</param>
    /// <param name="backgroundColor">The background color of the display. 
</param>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(
                                   ConsoleColor foregroundColor,
                                   ConsoleColor backgroundColor,
                                   string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.WriteLine(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a debug message to the output display of the host.
    /// </summary>
    /// <param name="message">The debug message that is displayed.</param>
    public override void WriteDebugLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.DarkYellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "DEBUG: {0}", 
message));
    }

    /// <summary>
    /// Writes an error message to the output display of the host.



    /// </summary>
    /// <param name="value">The error message that is displayed.</param>
    public override void WriteErrorLine(string value)
    {
      this.WriteLine(
                     ConsoleColor.Red,
                     ConsoleColor.Black,
                     value);
    }

    /// <summary>
    /// Writes a newline character (carriage return)
    /// to the output display of the host.
    /// </summary>
    public override void WriteLine()
    {
      Console.WriteLine();
    }

       /// <summary>
    /// Writes a line of characters to the output display of the host
    /// and appends a newline character(carriage return).
    /// </summary>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(string value)
    {
      Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a progress report to the output display of the host.
    /// </summary>
    /// <param name="sourceId">Unique identifier of the source of the 
record. </param>
    /// <param name="record">A ProgressReport object.</param>
    public override void WriteProgress(long sourceId, ProgressRecord record)
    {

    }

    /// <summary>
    /// Writes a verbose message to the output display of the host.
    /// </summary>
    /// <param name="message">The verbose message that is displayed.</param>
    public override void WriteVerboseLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Green,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "VERBOSE: 
{0}", message));
    }

    /// <summary>
    /// Writes a warning message to the output display of the host.



    /// </summary>
    /// <param name="message">The warning message that is displayed.</param>
    public override void WriteWarningLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Yellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "WARNING: 
{0}", message));
    }

    /// <summary>
    /// Parse a string containing a hotkey character.
    /// Take a string of the form
    ///    Yes to &all
    /// and returns a two-dimensional array split out as
    ///    "A", "Yes to all".
    /// </summary>
    /// <param name="input">The string to process</param>
    /// <returns>
    /// A two dimensional array containing the parsed components.
    /// </returns>
    private static string[] GetHotkeyAndLabel(string input)
    {
      string[] result = new string[] { String.Empty, String.Empty };
      string[] fragments = input.Split('&');
      if (fragments.Length == 2)
      {
        if (fragments[1].Length > 0)
        {
          result[0] = fragments[1][0].ToString().
          ToUpper(CultureInfo.CurrentCulture);
        }

        result[1] = (fragments[0] + fragments[1]).Trim();
      }
      else
      {
        result[1] = input;
      }

      return result;
    }

    /// <summary>
    /// This is a private worker function splits out the
    /// accelerator keys from the menu and builds a two
    /// dimensional array with the first access containing the
    /// accelerator and the second containing the label string
    /// with the & removed.
    /// </summary>
    /// <param name="choices">The choice collection to process</param>
    /// <returns>
    /// A two dimensional array containing the accelerator characters
    /// and the cleaned-up labels</returns>



The following code is the implementation of the
System.Management.Automation.Host.PSHostRawUserInterface class that is used by this
host application. Those elements that are not implemented throw an exception or return
nothing.

C#

    private static string[,] BuildHotkeysAndPlainLabels(
         Collection<ChoiceDescription> choices)
    {
      // Allocate the result array
      string[,] hotkeysAndPlainLabels = new string[2, choices.Count];

      for (int i = 0; i < choices.Count; ++i)
      {
        string[] hotkeyAndLabel = GetHotkeyAndLabel(choices[i].Label);
        hotkeysAndPlainLabels[0, i] = hotkeyAndLabel[0];
        hotkeysAndPlainLabels[1, i] = hotkeyAndLabel[1];
      }

      return hotkeysAndPlainLabels;
    }
  }
}

Example 4

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostRawUserInterface for console
  /// applications. Members of this class that easily map to the .NET
  /// console class are implemented. More complex methods are not
  /// implemented and throw a NotImplementedException exception.
  /// </summary>
  internal class MyRawUserInterface : PSHostRawUserInterface
  {
    /// <summary>
    /// Gets or sets the background color of text to be written.
    /// This maps to the corresponding Console.Background property.
    /// </summary>
    public override ConsoleColor BackgroundColor
    {
      get { return Console.BackgroundColor; }
      set { Console.BackgroundColor = value; }
    }

    /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


    /// Gets or sets the host buffer size adapted from the Console buffer
    /// size members.
    /// </summary>
    public override Size BufferSize
    {
      get { return new Size(Console.BufferWidth, Console.BufferHeight); }
      set { Console.SetBufferSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the cursor position. In this example this
    /// functionality is not needed so the property throws a
    /// NotImplementException exception.
    /// </summary>
    public override Coordinates CursorPosition
    {
      get { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
      set { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
    }

    /// <summary>
    /// Gets or sets the cursor size taken directly from the
    /// Console.CursorSize property.
    /// </summary>
    public override int CursorSize
    {
      get { return Console.CursorSize; }
      set { Console.CursorSize = value; }
    }

    /// <summary>
    /// Gets or sets the foreground color of the text to be written.
    /// This maps to the corresponding Console.ForegroundColor property.
    /// </summary>
    public override ConsoleColor ForegroundColor
    {
      get { return Console.ForegroundColor; }
      set { Console.ForegroundColor = value; }
    }

    /// <summary>
    /// Gets a value indicating whether a key is available. This maps to
    /// the corresponding Console.KeyAvailable property.
    /// </summary>
    public override bool KeyAvailable
    {
      get { return Console.KeyAvailable; }
    }

    /// <summary>
    /// Gets the maximum physical size of the window adapted from the
    /// Console.LargestWindowWidth and Console.LargestWindowHeight
    /// properties.



    /// </summary>
    public override Size MaxPhysicalWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets the maximum window size adapted from the
    /// Console.LargestWindowWidth and console.LargestWindowHeight
    /// properties.
    /// </summary>
    public override Size MaxWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets or sets the window position adapted from the Console window 
position
    /// members.
    /// </summary>
    public override Coordinates WindowPosition
    {
      get { return new Coordinates(Console.WindowLeft, Console.WindowTop); }
      set { Console.SetWindowPosition(value.X, value.Y); }
    }

    /// <summary>
    /// Gets or sets the window size adapted from the corresponding Console
    /// calls.
    /// </summary>
    public override Size WindowSize
    {
      get { return new Size(Console.WindowWidth, Console.WindowHeight); }
      set { Console.SetWindowSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the title of the window mapped to the Console.Title
    /// property.
    /// </summary>
    public override string WindowTitle
    {
      get { return Console.Title; }
      set { Console.Title = value; }
    }

    /// <summary>
    /// This API resets the input buffer. In this example this
    /// functionality is not needed so the method returns nothing.
    /// </summary>
    public override void FlushInputBuffer()
    {



    }

    /// <summary>
    /// This API returns a rectangular region of the screen buffer. In
    /// this example this functionality is not needed so the method throws
    /// a NotImplementException exception.
    /// </summary>
    /// <param name="rectangle">Defines the size of the rectangle.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override BufferCell[,] GetBufferContents(Rectangle rectangle)
    {
      throw new NotImplementedException(
               "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Reads a pressed, released, or pressed and released 
keystroke
    /// from the keyboard device, blocking processing until a keystroke is
    /// typed that matches the specified keystroke options. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="options">Options, such as IncludeKeyDown,  used when
    /// reading the keyboard.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override KeyInfo ReadKey(ReadKeyOptions options)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API crops a region of the screen buffer. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="source">The region of the screen to be scrolled.
</param>
    /// <param name="destination">The region of the screen to receive the
    /// source region contents.</param>
    /// <param name="clip">The region of the screen to include in the 
operation.</param>
    /// <param name="fill">The character and attributes to be used to fill 
all cell.</param>
    public override void ScrollBufferContents(Rectangle source, Coordinates 
destination, Rectangle clip, BufferCell fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API copies an array of buffer cells into the screen buffer
    /// at a specified location. In this example this  functionality is



System.Management.Automation.Host.PSHost

System.Management.Automation.Host.PSHostUserInterface

System.Management.Automation.Host.PSHostRawUserInterface

    /// not needed si the method  throws a NotImplementedException 
exception.
    /// </summary>
    /// <param name="origin">The parameter is not used.</param>
    /// <param name="contents">The parameter is not used.</param>
    public override void SetBufferContents(Coordinates origin, BufferCell[,] 
contents)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Copies a given character, foreground color, and background
    /// color to a region of the screen buffer. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception./// </summary>
    /// <param name="rectangle">Defines the area to be filled. </param>
    /// <param name="fill">Defines the fill character.</param>
    public override void SetBufferContents(Rectangle rectangle, BufferCell 
fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


Host06 Sample
Article • 03/24/2025

This sample shows how to build an interactive console-based host application that reads
commands from the command line, executes the commands, and then displays the
results to the console. In addition, this sample uses the Tokenizer APIs to specify the
color of the text that is entered by the user.

This sample requires Windows PowerShell 2.0.
This application must be run in elevated mode (Run as administrator).

Creating a custom host whose classes derive from the
System.Management.Automation.Host.PSHost class, the
System.Management.Automation.Host.PSHostUserInterface class, and the
System.Management.Automation.Host.PSHostRawUserInterface class.

Building a console application that uses these host classes to build an interactive
Windows PowerShell shell.

Creating a $PROFILE  variable and loading the following profiles.
current user, current host
current user, all hosts
all users, current host
all users, all hosts

Implement the
System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
interface.

Implement the
System.Management.Automation.Host.IHostSupportsInteractiveSession interface
to support interactive remoting by using the Enter-PSSession and Exit-PSSession
cmdlets.

Use the Tokenize API to colorize the command line as it is typed.

Requirements

Demonstrates

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostUISupportsMultipleChoiceSelection
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.IHostSupportsInteractiveSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Enter-PSSession
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Exit-PSSession


This example allows the user to enter commands at a command line, processes those
commands, and then prints out the results.

C#

Example 1

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Management.Automation.Runspaces;
  using System.Text;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This sample shows how to implement a basic read-evaluate-print
  /// loop (or 'listener') that allowing you to interactively work
  /// with the Windows PowerShell engine.
  /// </summary>
  internal class PSListenerConsoleSample
  {
    /// <summary>
    /// Used to read user input.
    /// </summary>
        internal ConsoleReadLine consoleReadLine = new ConsoleReadLine();

    /// <summary>
    /// Holds a reference to the runspace for this interpreter.
    /// </summary>
    internal Runspace myRunSpace;

    /// <summary>
    /// Indicator to tell the host application that it should exit.
    /// </summary>
    private bool shouldExit;

    /// <summary>
    /// The exit code that the host application will use to exit.
    /// </summary>
    private int exitCode;

    /// <summary>
    /// Holds a reference to the PSHost implementation for this interpreter.
    /// </summary>
    private MyHost myHost;

    /// <summary>
    /// Holds a reference to the currently executing pipeline so that it can 
be



    /// stopped by the control-C handler.
    /// </summary>
    private PowerShell currentPowerShell;

    /// <summary>
    /// Used to serialize access to instance data.
    /// </summary>
    private object instanceLock = new object();

    /// <summary>
    /// Gets or sets a value indicating whether the host application
    /// should exit.
    /// </summary>
    public bool ShouldExit
    {
      get { return this.shouldExit; }
      set { this.shouldExit = value; }
    }

    /// <summary>
    /// Gets or sets a value indicating whether the host application
    /// should exit.
    /// </summary>
    public int ExitCode
    {
      get { return this.exitCode; }
      set { this.exitCode = value; }
    }

    /// <summary>
    /// Creates and initiates the listener instance.
    /// </summary>
    /// <param name="args">This parameter is not used.</param>
    private static void Main(string[] args)
    {
      // Display the welcome message.
      Console.Title = "PowerShell Console Host Sample Application";
      ConsoleColor oldFg = Console.ForegroundColor;
      Console.ForegroundColor = ConsoleColor.Cyan;
      Console.WriteLine("    Windows PowerShell Console Host Application 
Sample");
      Console.WriteLine("    
==================================================");
      Console.WriteLine(string.Empty);
      Console.WriteLine("This is an example of a simple interactive console 
host uses ");
      Console.WriteLine("the Windows PowerShell engine to interpret 
commands.");
      Console.WriteLine("Type 'exit' to exit.");
      Console.WriteLine(string.Empty);
      Console.ForegroundColor = oldFg;

      // Create the listener and run it. This method never returns.
      PSListenerConsoleSample listener = new PSListenerConsoleSample();
      listener.Run();



    }

    /// <summary>
    /// Initializes a new instance of the PSListenerConsoleSample class.
    /// </summary>
    public PSListenerConsoleSample()
    {
      // Create the host and runspace instances for this interpreter.
      // Note that this application does not support console files so
      // only the default snap-ins will be available.
      this.myHost = new MyHost(this);
      this.myRunSpace = RunspaceFactory.CreateRunspace(this.myHost);
      this.myRunSpace.Open();

      // Create a PowerShell object to run the commands used to create
      // $PROFILE and load the profiles.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();
      }

      try
      {
        this.currentPowerShell.Runspace = this.myRunSpace;

        PSCommand[] profileCommands = 
Microsoft.Samples.PowerShell.Host.HostUtilities.GetProfileCommands("SampleHo
st06");
        foreach (PSCommand command in profileCommands)
        {
          this.currentPowerShell.Commands = command;
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {
        // Dispose the PowerShell object and set currentPowerShell
        // to null. It is locked because currentPowerShell may be
        // accessed by the ctrl-C handler.
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>
    /// A helper class that builds and executes a pipeline that writes
    /// to the default output path. Any exceptions that are thrown are
    /// just passed to the caller. Since all output goes to the default
    /// outputter, this method does not return anything.
    /// </summary>
    /// <param name="cmd">The script to run.</param>
    /// <param name="input">Any input arguments to pass to the script.



    /// If null then nothing is passed in.</param>
    private void executeHelper(string cmd, object input)
    {
      // Ignore empty command lines.
      if (String.IsNullOrEmpty(cmd))
      {
        return;
      }

      // Create the pipeline object and make it available to the
      // ctrl-C handle through the currentPowerShell instance
      // variable.
      lock (this.instanceLock)
      {
        this.currentPowerShell = PowerShell.Create();
      }

      // Add a script and command to the pipeline and then run the pipeline. 
Place
      // the results in the currentPowerShell variable so that the pipeline 
can be
      // stopped.
      try
      {
        this.currentPowerShell.Runspace = this.myRunSpace;

        this.currentPowerShell.AddScript(cmd);

        // Add the default outputter to the end of the pipe and then call 
the
        // MergeMyResults method to merge the output and error streams from 
the
        // pipeline. This will result in the output being written using the 
PSHost
        // and PSHostUserInterface classes instead of returning objects to 
the host
        // application.
        this.currentPowerShell.AddCommand("Out-Default");
        
this.currentPowerShell.Commands.Commands[0].MergeMyResults(PipelineResultTyp
es.Error, PipelineResultTypes.Output);

        // If there is any input pass it in, otherwise just invoke the
        // the pipeline.
        if (input != null)
        {
          this.currentPowerShell.Invoke(new object[] { input });
        }
        else
        {
          this.currentPowerShell.Invoke();
        }
      }
      finally
      {



        // Dispose the PowerShell object and set currentPowerShell to null.
        // It is locked because currentPowerShell may be accessed by the
        // ctrl-C handler.
        lock (this.instanceLock)
        {
          this.currentPowerShell.Dispose();
          this.currentPowerShell = null;
        }
      }
    }

    /// <summary>
    /// To display an exception using the display formatter,
    /// run a second pipeline passing in the error record.
    /// The runtime will bind this to the $input variable,
    /// which is why $input is being piped to the Out-String
    /// cmdlet. The WriteErrorLine method is called to make sure
    /// the error gets displayed in the correct error color.
    /// </summary>
    /// <param name="e">The exception to display.</param>
    private void ReportException(Exception e)
    {
      if (e != null)
      {
        object error;
        IContainsErrorRecord icer = e as IContainsErrorRecord;
        if (icer != null)
        {
          error = icer.ErrorRecord;
        }
        else
        {
          error = (object)new ErrorRecord(e, "Host.ReportException", 
ErrorCategory.NotSpecified, null);
        }

        lock (this.instanceLock)
        {
          this.currentPowerShell = PowerShell.Create();
        }

        this.currentPowerShell.Runspace = this.myRunSpace;

        try
        {
          this.currentPowerShell.AddScript("$input").AddCommand("Out-
String");

          // Do not merge errors, this function will swallow errors.
          Collection<PSObject> result;
          PSDataCollection<object> inputCollection = new 
PSDataCollection<object>();
          inputCollection.Add(error);
          inputCollection.Complete();
          result = this.currentPowerShell.Invoke(inputCollection);



          if (result.Count > 0)
          {
            string str = result[0].BaseObject as string;
            if (!string.IsNullOrEmpty(str))
            {
              // Remove \r\n, which is added by the Out-String cmdlet.
              this.myHost.UI.WriteErrorLine(str.Substring(0, str.Length - 
2));
            }
          }
        }
        finally
        {
          // Dispose of the pipeline and set it to null, locking it  because
          // currentPowerShell may be accessed by the ctrl-C handler.
          lock (this.instanceLock)
          {
            this.currentPowerShell.Dispose();
            this.currentPowerShell = null;
          }
        }
      }
    }

    /// <summary>
    /// Basic script execution routine. Any runtime exceptions are
    /// caught and passed back to the Windows PowerShell engine to
    /// display.
    /// </summary>
    /// <param name="cmd">Script to run.</param>
    private void Execute(string cmd)
    {
      try
      {
        // Run the command with no input.
        this.executeHelper(cmd, null);
      }
      catch (RuntimeException rte)
      {
        this.ReportException(rte);
      }
    }

    /// <summary>
    /// Method used to handle control-C's from the user. It calls the
    /// pipeline Stop() method to stop execution. If any exceptions occur
    /// they are printed to the console but otherwise ignored.
    /// </summary>
    /// <param name="sender">See sender property documentation of
    /// ConsoleCancelEventHandler.</param>
    /// <param name="e">See e property documentation of
    /// ConsoleCancelEventHandler.</param>
    private void HandleControlC(object sender, ConsoleCancelEventArgs e)
    {



      try
      {
        lock (this.instanceLock)
        {
          if (this.currentPowerShell != null && 
this.currentPowerShell.InvocationStateInfo.State == 
PSInvocationState.Running)
          {
            this.currentPowerShell.Stop();
          }
        }

        e.Cancel = true;
      }
      catch (Exception exception)
      {
        this.myHost.UI.WriteErrorLine(exception.ToString());
      }
    }

    /// <summary>
    /// Implements the basic listener loop. It sets up the ctrl-C handler, 
then
    /// reads a command from the user, executes it and repeats until the 
ShouldExit
    /// flag is set.
    /// </summary>
    private void Run()
    {
      // Set up the control-C handler.
      Console.CancelKeyPress += new 
ConsoleCancelEventHandler(this.HandleControlC);
      Console.TreatControlCAsInput = false;

      // Read commands and run them until the ShouldExit flag is set by
      // the user calling "exit".
      while (!this.ShouldExit)
      {
        string prompt;
        if (this.myHost.IsRunspacePushed)
        {
          prompt = string.Format("\n[{0}] PSConsoleSample: ", 
this.myRunSpace.ConnectionInfo.ComputerName);
        }
        else
        {
          prompt = "\nPSConsoleSample: ";
        }

        this.myHost.UI.Write(ConsoleColor.Cyan, ConsoleColor.Black, prompt);
        string cmd = this.consoleReadLine.Read();
        this.Execute(cmd);
      }

      // Exit with the desired exit code that was set by the exit command.



The following code is the implementation of the
System.Management.Automation.Host.PSHost class that is used by this host application.
Those elements that are not implemented throw an exception or return nothing.

C#

      // The exit code is set in the host by the MyHost.SetShouldExit() 
method.
      Environment.Exit(this.ExitCode);
    }
  }
}

Example 2

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Globalization;
  using System.Management.Automation.Host;
  using System.Management.Automation.Runspaces;

  /// <summary>
  /// This is a sample implementation of the PSHost abstract class for
  /// console applications. Not all members are implemented. Those that
  /// are not implemented throw a NotImplementedException exception or
  /// return nothing.
  /// </summary>
  internal class MyHost : PSHost, IHostSupportsInteractiveSession
  {
        public MyHost(PSListenerConsoleSample program)
        {
            this.program = program;
        }

    /// <summary>
    /// A reference to the PSHost implementation.
    /// </summary>
    private PSListenerConsoleSample program;

    /// <summary>
    /// The culture information of the thread that created
    /// this object.
    /// </summary>
    private CultureInfo originalCultureInfo =
        System.Threading.Thread.CurrentThread.CurrentCulture;

    /// <summary>
    /// The UI culture information of the thread that created
    /// this object.
    /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost


    private CultureInfo originalUICultureInfo =
        System.Threading.Thread.CurrentThread.CurrentUICulture;

    /// <summary>
    /// The identifier of this PSHost implementation.
    /// </summary>
    private static Guid instanceId = Guid.NewGuid();

    /// <summary>
    /// A reference to the implementation of the PSHostUserInterface
    /// class for this application.
    /// </summary>
    private MyHostUserInterface myHostUserInterface = new 
MyHostUserInterface();

    /// <summary>
    /// A reference to the runspace used to start an interactive session.
    /// </summary>
    public Runspace pushedRunspace = null;

    /// <summary>
    /// Gets the culture information to use. This implementation
    /// returns a snapshot of the culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentCulture
    {
      get { return this.originalCultureInfo; }
    }

    /// <summary>
    /// Gets the UI culture information to use. This implementation
    /// returns a snapshot of the UI culture information of the thread
    /// that created this object.
    /// </summary>
    public override CultureInfo CurrentUICulture
    {
      get { return this.originalUICultureInfo; }
    }

    /// <summary>
    /// Gets an identifier for this host. This implementation always
    /// returns the GUID allocated at instantiation time.
    /// </summary>
    public override Guid InstanceId
    {
      get { return instanceId; }
    }

    /// <summary>
    /// Gets a string that contains the name of this host implementation.
    /// Keep in mind that this string may be used by script writers to
    /// identify when your host is being used.
    /// </summary>
    public override string Name



    {
      get { return "MySampleConsoleHostImplementation"; }
    }

    /// <summary>
    /// Gets an instance of the implementation of the PSHostUserInterface
    /// class for this application. This instance is allocated once at 
startup time
    /// and returned every time thereafter.
    /// </summary>
    public override PSHostUserInterface UI
    {
      get { return this.myHostUserInterface; }
    }

    /// <summary>
    /// Gets the version object for this application. Typically this
    /// should match the version resource in the application.
    /// </summary>
    public override Version Version
    {
      get { return new Version(1, 0, 0, 0); }
    }

    #region IHostSupportsInteractiveSession Properties

    /// <summary>
    /// Gets a value indicating whether a request
    /// to open a PSSession has been made.
    /// </summary>
    public bool IsRunspacePushed
    {
      get { return this.pushedRunspace != null; }
    }

    /// <summary>
    /// Gets or sets the runspace used by the PSSession.
    /// </summary>
    public Runspace Runspace
    {
      get { return this.program.myRunSpace; }
      internal set { this.program.myRunSpace = value; }
    }
    #endregion IHostSupportsInteractiveSession Properties

    /// <summary>
    /// This API Instructs the host to interrupt the currently running
    /// pipeline and start a new nested input loop. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementedException exception.
    /// </summary>
    public override void EnterNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");



    }

    /// <summary>
    /// This API instructs the host to exit the currently running input 
loop.
    /// In this example this functionality is not needed so the method
    /// throws a NotImplementedException exception.
    /// </summary>
    public override void ExitNestedPrompt()
    {
      throw new NotImplementedException(
            "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API is called before an external application process is
    /// started. Typically it is used to save state so that the parent
    /// can restore state that has been modified by a child process (after
    /// the child exits). In this example this functionality is not
    /// needed so the method returns nothing.
    /// </summary>
    public override void NotifyBeginApplication()
    {
      return;
    }

    /// <summary>
    /// This API is called after an external application process finishes.
    /// Typically it is used to restore state that a child process has
    /// altered. In this example, this functionality is not needed so
    /// the method returns nothing.
    /// </summary>
    public override void NotifyEndApplication()
    {
      return;
    }

    /// <summary>
    /// Indicate to the host application that exit has
    /// been requested. Pass the exit code that the host
    /// application should use when exiting the process.
    /// </summary>
    /// <param name="exitCode">The exit code that the
    /// host application should use.</param>
    public override void SetShouldExit(int exitCode)
    {
      this.program.ShouldExit = true;
      this.program.ExitCode = exitCode;
    }

    #region IHostSupportsInteractiveSession Methods

    /// <summary>
    /// Requests to close a PSSession.
    /// </summary>



The following code is the implementation of the
System.Management.Automation.Host.PSHostUserInterface class that is used by this
host application.

C#

    public void PopRunspace()
    {
      Runspace = this.pushedRunspace;
      this.pushedRunspace = null;
    }

    /// <summary>
    /// Requests to open a PSSession.
    /// </summary>
    /// <param name="runspace">Runspace to use.</param>
    public void PushRunspace(Runspace runspace)
    {
      this.pushedRunspace = Runspace;
      Runspace = runspace;
    }

    #endregion IHostSupportsInteractiveSession Methods
  }
}

Example 3

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Globalization;
  using System.Management.Automation;
  using System.Management.Automation.Host;
  using System.Text;

  /// <summary>
  /// A sample implementation of the PSHostUserInterface abstract class for
  /// console applications. Not all members are implemented. Those that are
  /// not implemented throw a NotImplementedException exception or return
  /// nothing. Members that are implemented include those that map easily to
  /// Console APIs and a basic implementation of the prompt API provided.
  /// </summary>
  internal class MyHostUserInterface : PSHostUserInterface, 
IHostUISupportsMultipleChoiceSelection
  {
    /// <summary>
    /// A reference to the PSRawUserInterface implementation.
    /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface


    private MyRawUserInterface myRawUi = new MyRawUserInterface();

    /// <summary>
    /// Gets an instance of the PSRawUserInterface class for this host
    /// application.
    /// </summary>
    public override PSHostRawUserInterface RawUI
    {
      get { return this.myRawUi; }
    }

    /// <summary>
    /// Prompts the user for input.
    /// <param name="caption">The caption or title of the prompt.</param>
    /// <param name="message">The text of the prompt.</param>
    /// <param name="descriptions">A collection of FieldDescription objects
    /// that describe each field of the prompt.</param>
    /// <returns>A dictionary object that contains the results of the user
    /// prompts.</returns>
    public override Dictionary<string, PSObject> Prompt(
                              string caption,
                              string message,
                              Collection<FieldDescription> descriptions)
    {
      this.Write(
                 ConsoleColor.DarkCyan,
                 ConsoleColor.Black,
                 caption + "\n" + message + " ");
      Dictionary<string, PSObject> results =
               new Dictionary<string, PSObject>();
      foreach (FieldDescription fd in descriptions)
      {
        string[] label = GetHotkeyAndLabel(fd.Label);
        this.WriteLine(label[1]);
        string userData = Console.ReadLine();
        if (userData == null)
        {
          return null;
        }

        results[fd.Name] = PSObject.AsPSObject(userData);
      }

      return results;
    }

    /// <summary>

/// Provides a set of choices that enable the user to choose a
    /// single option from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that



    /// describe each choice.</param>
    /// <param name="defaultChoice">The index of the label in the Choices
    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public override int PromptForChoice(
                                        string caption,
                                        string message,
                                        Collection<ChoiceDescription> 
choices,
                                        int defaultChoice)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",
                                promptData[0, element],
                                promptData[1, element]));
      }

      sb.Append(String.Format(
                              CultureInfo.CurrentCulture,
                              "[Default is ({0}]",
                              promptData[0, defaultChoice]));

      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      while (true)
      {
        this.WriteLine(ConsoleColor.Cyan, ConsoleColor.Black, 
sb.ToString());
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, use the default selection.
        if (data.Length == 0)
        {
          return defaultChoice;
        }



        // See if the selection matched and return the
        // corresponding index if it did.
        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            return i;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #region IHostUISupportsMultipleChoiceSelection Members

        /// <summary>
    /// Provides a set of choices that enable the user to choose a one or
    /// more options from a set of options.
    /// </summary>
    /// <param name="caption">Text that proceeds (a title) the choices.
</param>
    /// <param name="message">A message that describes the choice.</param>
    /// <param name="choices">A collection of ChoiceDescription objects that
    /// describe each choice.</param>
    /// <param name="defaultChoices">The index of the label in the Choices
    /// parameter collection. To indicate no default choice, set to -1.
</param>
    /// <returns>The index of the Choices parameter collection element that
    /// corresponds to the option that is selected by the user.</returns>
    public Collection<int> PromptForChoice(
                                           string caption,
                                           string message,
                                           Collection<ChoiceDescription> 
choices,
                                           IEnumerable<int> defaultChoices)
    {
      // Write the caption and message strings in Blue.
      this.WriteLine(
                     ConsoleColor.Blue,
                     ConsoleColor.Black,
                     caption + "\n" + message + "\n");

      // Convert the choice collection into something that is
      // easier to work with. See the BuildHotkeysAndPlainLabels
      // method for details.
      string[,] promptData = BuildHotkeysAndPlainLabels(choices);

      // Format the overall choice prompt string to display.
      StringBuilder sb = new StringBuilder();
      for (int element = 0; element < choices.Count; element++)
      {
        sb.Append(String.Format(
                                CultureInfo.CurrentCulture,
                                "|{0}> {1} ",



                                promptData[0, element],
                                promptData[1, element]));
      }

      Collection<int> defaultResults = new Collection<int>();
      if (defaultChoices != null)
      {
        int countDefaults = 0;
        foreach (int defaultChoice in defaultChoices)
        {
          ++countDefaults;
          defaultResults.Add(defaultChoice);
        }

        if (countDefaults != 0)
        {
          sb.Append(countDefaults == 1 ? "[Default choice is " : "[Default 
choices are ");
          foreach (int defaultChoice in defaultChoices)
          {
            sb.AppendFormat(
                            CultureInfo.CurrentCulture,
                            "\"{0}\",",
                            promptData[0, defaultChoice]);
          }

          sb.Remove(sb.Length - 1, 1);
          sb.Append("]");
        }
      }

      this.WriteLine(
                     ConsoleColor.Cyan,
                     ConsoleColor.Black,
                     sb.ToString());
      // Read prompts until a match is made, the default is
      // chosen, or the loop is interrupted with ctrl-C.
      Collection<int> results = new Collection<int>();
      while (true)
      {
        ReadNext:
        string prompt = string.Format(CultureInfo.CurrentCulture, 
"Choice[{0}]:", results.Count);
        this.Write(ConsoleColor.Cyan, ConsoleColor.Black, prompt);
        string data = 
Console.ReadLine().Trim().ToUpper(CultureInfo.CurrentCulture);

        // If the choice string was empty, no more choices have been made.
        // If there were no choices made, return the defaults
        if (data.Length == 0)
        {
          return (results.Count == 0) ? defaultResults : results;
        }

        // See if the selection matched and return the



        // corresponding index if it did.
        for (int i = 0; i < choices.Count; i++)
        {
          if (promptData[0, i] == data)
          {
            results.Add(i);
            goto ReadNext;
          }
        }

        this.WriteErrorLine("Invalid choice: " + data);
      }
    }

    #endregion

    /// <summary>
    /// Prompts the user for credentials with a specified prompt window
    /// caption, prompt message, user name, and target name. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                                     string caption,
                                                     string message,
                                                     string userName,
                                                     string targetName)
    {
      throw new NotImplementedException(
                           "The method or operation is not implemented.");
    }

    /// <summary>
    /// Prompts the user for credentials by using a specified prompt window
    /// caption, prompt message, user name and target name, credential
    /// types allowed to be returned, and UI behavior options. In this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="caption">The caption for the message window.</param>
    /// <param name="message">The text of the message.</param>
    /// <param name="userName">The user name whose credential is to be
    /// prompted for.</param>
    /// <param name="targetName">The name of the target for which the
    /// credential is collected.</param>
    /// <param name="allowedCredentialTypes">A PSCredentialTypes constant
    /// that identifies the type of credentials that can be returned.
</param>



    /// <param name="options">A PSCredentialUIOptions constant that
    /// identifies the UI behavior when it gathers the credentials.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override PSCredential PromptForCredential(
                                       string caption,
                                       string message,
                                       string userName,
                                       string targetName,
                                       PSCredentialTypes 
allowedCredentialTypes,
                                       PSCredentialUIOptions options)
    {
      throw new NotImplementedException(
                              "The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Reads characters that are entered by the user until a newline
    /// (carriage return) is encountered.
    /// </summary>
    /// <returns>The characters that are entered by the user.</returns>
    public override string ReadLine()
    {
      return Console.ReadLine();
    }

    /// <summary>
    /// Reads characters entered by the user until a newline (carriage 
return)
    /// is encountered and returns the characters as a secure string. In 
this
    /// example this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <returns>Throws a NotImplemented exception.</returns>
    public override System.Security.SecureString ReadLineAsSecureString()
    {
      throw new NotImplementedException("The method or operation is not 
implemented.");
    }

    /// <summary>
    /// Writes characters to the output display of the host.
    /// </summary>
    /// <param name="value">The characters to be written.</param>
    public override void Write(string value)
    {
      Console.Write(value);
    }

    /// <summary>
    /// Writes characters to the output display of the host with possible
    /// foreground and background colors.
    /// </summary>



    /// <param name="foregroundColor">The color of the characters.</param>
    /// <param name="backgroundColor">The background color to use.</param>
    /// <param name="value">The characters to be written.</param>
    public override void Write(
                               ConsoleColor foregroundColor,
                               ConsoleColor backgroundColor,
                               string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.Write(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a line of characters to the output display of the host
    /// with foreground and background colors and appends a newline 
(carriage return).
    /// </summary>
    /// <param name="foregroundColor">The foreground color of the display. 
</param>
    /// <param name="backgroundColor">The background color of the display. 
</param>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(
                                   ConsoleColor foregroundColor,
                                   ConsoleColor backgroundColor,
                                   string value)
    {
      ConsoleColor oldFg = Console.ForegroundColor;
      ConsoleColor oldBg = Console.BackgroundColor;
      Console.ForegroundColor = foregroundColor;
      Console.BackgroundColor = backgroundColor;
      Console.WriteLine(value);
      Console.ForegroundColor = oldFg;
      Console.BackgroundColor = oldBg;
    }

    /// <summary>
    /// Writes a debug message to the output display of the host.
    /// </summary>
    /// <param name="message">The debug message that is displayed.</param>
    public override void WriteDebugLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.DarkYellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "DEBUG: {0}", 
message));
    }

    /// <summary>



    /// Writes an error message to the output display of the host.
    /// </summary>
    /// <param name="value">The error message that is displayed.</param>
    public override void WriteErrorLine(string value)
    {
      this.WriteLine(
                     ConsoleColor.Red,
                     ConsoleColor.Black,
                     value);
    }

    /// <summary>
    /// Writes a newline character (carriage return)
    /// to the output display of the host.
    /// </summary>
    public override void WriteLine()
    {
      Console.WriteLine();
    }

       /// <summary>
    /// Writes a line of characters to the output display of the host
    /// and appends a newline character(carriage return).
    /// </summary>
    /// <param name="value">The line to be written.</param>
    public override void WriteLine(string value)
    {
      Console.WriteLine(value);
    }

    /// <summary>
    /// Writes a progress report to the output display of the host.
    /// </summary>
    /// <param name="sourceId">Unique identifier of the source of the 
record. </param>
    /// <param name="record">A ProgressReport object.</param>
    public override void WriteProgress(long sourceId, ProgressRecord record)
    {

    }

    /// <summary>
    /// Writes a verbose message to the output display of the host.
    /// </summary>
    /// <param name="message">The verbose message that is displayed.</param>
    public override void WriteVerboseLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Green,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "VERBOSE: 
{0}", message));
    }

    /// <summary>



    /// Writes a warning message to the output display of the host.
    /// </summary>
    /// <param name="message">The warning message that is displayed.</param>
    public override void WriteWarningLine(string message)
    {
      this.WriteLine(
                     ConsoleColor.Yellow,
                     ConsoleColor.Black,
                     String.Format(CultureInfo.CurrentCulture, "WARNING: 
{0}", message));
    }

    /// <summary>
    /// Parse a string containing a hotkey character.
    /// Take a string of the form
    ///    Yes to &all
    /// and returns a two-dimensional array split out as
    ///    "A", "Yes to all".
    /// </summary>
    /// <param name="input">The string to process</param>
    /// <returns>
    /// A two dimensional array containing the parsed components.
    /// </returns>
    private static string[] GetHotkeyAndLabel(string input)
    {
      string[] result = new string[] { String.Empty, String.Empty };
      string[] fragments = input.Split('&');
      if (fragments.Length == 2)
      {
        if (fragments[1].Length > 0)
        {
          result[0] = fragments[1][0].ToString().
          ToUpper(CultureInfo.CurrentCulture);
        }

        result[1] = (fragments[0] + fragments[1]).Trim();
      }
      else
      {
        result[1] = input;
      }

      return result;
    }

    /// <summary>
    /// This is a private worker function splits out the
    /// accelerator keys from the menu and builds a two
    /// dimensional array with the first access containing the
    /// accelerator and the second containing the label string
    /// with the & removed.
    /// </summary>
    /// <param name="choices">The choice collection to process</param>
    /// <returns>
    /// A two dimensional array containing the accelerator characters



The following code is the implementation of the
System.Management.Automation.Host.PSHostRawUserInterface class that is used by this
host application. Those elements that are not implemented throw an exception or return
nothing.

C#

    /// and the cleaned-up labels</returns>
    private static string[,] BuildHotkeysAndPlainLabels(
         Collection<ChoiceDescription> choices)
    {
      // Allocate the result array
      string[,] hotkeysAndPlainLabels = new string[2, choices.Count];

      for (int i = 0; i < choices.Count; ++i)
      {
        string[] hotkeyAndLabel = GetHotkeyAndLabel(choices[i].Label);
        hotkeysAndPlainLabels[0, i] = hotkeyAndLabel[0];
        hotkeysAndPlainLabels[1, i] = hotkeyAndLabel[1];
      }

      return hotkeysAndPlainLabels;
    }
  }
}

Example 4

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Management.Automation.Host;

  /// <summary>
  /// A sample implementation of the PSHostRawUserInterface for console
  /// applications. Members of this class that easily map to the .NET
  /// console class are implemented. More complex methods are not
  /// implemented and throw a NotImplementedException exception.
  /// </summary>
  internal class MyRawUserInterface : PSHostRawUserInterface
  {
    /// <summary>
    /// Gets or sets the background color of text to be written.
    /// This maps to the corresponding Console.Background property.
    /// </summary>
    public override ConsoleColor BackgroundColor
    {
      get { return Console.BackgroundColor; }
      set { Console.BackgroundColor = value; }
    }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


    /// <summary>
    /// Gets or sets the host buffer size adapted from the Console buffer
    /// size members.
    /// </summary>
    public override Size BufferSize
    {
      get { return new Size(Console.BufferWidth, Console.BufferHeight); }
      set { Console.SetBufferSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the cursor position. In this example this
    /// functionality is not needed so the property throws a
    /// NotImplementException exception.
    /// </summary>
    public override Coordinates CursorPosition
    {
      get { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
      set { throw new NotImplementedException(
                 "The method or operation is not implemented."); }
    }

    /// <summary>
    /// Gets or sets the cursor size taken directly from the
    /// Console.CursorSize property.
    /// </summary>
    public override int CursorSize
    {
      get { return Console.CursorSize; }
      set { Console.CursorSize = value; }
    }

    /// <summary>
    /// Gets or sets the foreground color of the text to be written.
    /// This maps to the corresponding Console.ForegroundColor property.
    /// </summary>
    public override ConsoleColor ForegroundColor
    {
      get { return Console.ForegroundColor; }
      set { Console.ForegroundColor = value; }
    }

    /// <summary>
    /// Gets a value indicating whether a key is available. This maps to
    /// the corresponding Console.KeyAvailable property.
    /// </summary>
    public override bool KeyAvailable
    {
      get { return Console.KeyAvailable; }
    }

    /// <summary>
    /// Gets the maximum physical size of the window adapted from the
    /// Console.LargestWindowWidth and Console.LargestWindowHeight



    /// properties.
    /// </summary>
    public override Size MaxPhysicalWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets the maximum window size adapted from the
    /// Console.LargestWindowWidth and console.LargestWindowHeight
    /// properties.
    /// </summary>
    public override Size MaxWindowSize
    {
      get { return new Size(Console.LargestWindowWidth, 
Console.LargestWindowHeight); }
    }

    /// <summary>
    /// Gets or sets the window position adapted from the Console window 
position
    /// members.
    /// </summary>
    public override Coordinates WindowPosition
    {
      get { return new Coordinates(Console.WindowLeft, Console.WindowTop); }
      set { Console.SetWindowPosition(value.X, value.Y); }
    }

    /// <summary>
    /// Gets or sets the window size adapted from the corresponding Console
    /// calls.
    /// </summary>
    public override Size WindowSize
    {
      get { return new Size(Console.WindowWidth, Console.WindowHeight); }
      set { Console.SetWindowSize(value.Width, value.Height); }
    }

    /// <summary>
    /// Gets or sets the title of the window mapped to the Console.Title
    /// property.
    /// </summary>
    public override string WindowTitle
    {
      get { return Console.Title; }
      set { Console.Title = value; }
    }

    /// <summary>
    /// This API resets the input buffer. In this example this
    /// functionality is not needed so the method returns nothing.
    /// </summary>
    public override void FlushInputBuffer()



    {
    }

    /// <summary>
    /// This API returns a rectangular region of the screen buffer. In
    /// this example this functionality is not needed so the method throws
    /// a NotImplementException exception.
    /// </summary>
    /// <param name="rectangle">Defines the size of the rectangle.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override BufferCell[,] GetBufferContents(Rectangle rectangle)
    {
      throw new NotImplementedException(
               "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Reads a pressed, released, or pressed and released 
keystroke
    /// from the keyboard device, blocking processing until a keystroke is
    /// typed that matches the specified keystroke options. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="options">Options, such as IncludeKeyDown,  used when
    /// reading the keyboard.</param>
    /// <returns>Throws a NotImplementedException exception.</returns>
    public override KeyInfo ReadKey(ReadKeyOptions options)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API crops a region of the screen buffer. In this example
    /// this functionality is not needed so the method throws a
    /// NotImplementException exception.
    /// </summary>
    /// <param name="source">The region of the screen to be scrolled.
</param>
    /// <param name="destination">The region of the screen to receive the
    /// source region contents.</param>
    /// <param name="clip">The region of the screen to include in the 
operation.</param>
    /// <param name="fill">The character and attributes to be used to fill 
all cell.</param>
    public override void ScrollBufferContents(Rectangle source, Coordinates 
destination, Rectangle clip, BufferCell fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API copies an array of buffer cells into the screen buffer



The following code reads the command line and colors the text as it is entered. Tokens
are determined by using the System.Management.Automation.PSParser.Tokenize*
method.

C#

    /// at a specified location. In this example this  functionality is
    /// not needed si the method  throws a NotImplementedException 
exception.
    /// </summary>
    /// <param name="origin">The parameter is not used.</param>
    /// <param name="contents">The parameter is not used.</param>
    public override void SetBufferContents(Coordinates origin, BufferCell[,] 
contents)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }

    /// <summary>
    /// This API Copies a given character, foreground color, and background
    /// color to a region of the screen buffer. In this example this
    /// functionality is not needed so the method throws a
    /// NotImplementException exception./// </summary>
    /// <param name="rectangle">Defines the area to be filled. </param>
    /// <param name="fill">Defines the fill character.</param>
    public override void SetBufferContents(Rectangle rectangle, BufferCell 
fill)
    {
      throw new NotImplementedException(
                "The method or operation is not implemented.");
    }
  }
}

Example 5

namespace Microsoft.Samples.PowerShell.Host
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Text;

  /// <summary>
  /// This class is used to read the command line and color the text as
  /// it is entered. Tokens are determined using the PSParser.Tokenize
  /// method.
  /// </summary>
  internal class ConsoleReadLine
  {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSParser.Tokenize


    /// <summary>
    /// The buffer used to edit.
    /// </summary>
    private StringBuilder buffer = new StringBuilder();

    /// <summary>
    /// The position of the cursor within the buffer.
    /// </summary>
    private int current;

    /// <summary>
    /// The count of characters in buffer rendered.
    /// </summary>
    private int rendered;

    /// <summary>
    /// Store the anchor and handle cursor movement
    /// </summary>
    private Cursor cursor;

    /// <summary>
    /// The array of colors for tokens, indexed by PSTokenType
    /// </summary>
    private ConsoleColor[] tokenColors;

    /// <summary>
    /// We do not pick different colors for every token, those tokens
    /// use this default.
    /// </summary>
    private ConsoleColor defaultColor = Console.ForegroundColor;

    /// <summary>
    /// Initializes a new instance of the ConsoleReadLine class.
    /// </summary>
    public ConsoleReadLine()
    {
      this.tokenColors = new ConsoleColor[]
      {
        this.defaultColor,       // Unknown
        ConsoleColor.Yellow,     // Command
        ConsoleColor.Green,      // CommandParameter
        ConsoleColor.Cyan,       // CommandArgument
        ConsoleColor.Cyan,       // Number
        ConsoleColor.Cyan,       // String
        ConsoleColor.Green,      // Variable
        this.defaultColor,            // Member
        this.defaultColor,            // LoopLabel
        ConsoleColor.DarkYellow, // Attribute
        ConsoleColor.DarkYellow, // Type
        ConsoleColor.DarkCyan,   // Operator
        this.defaultColor,            // GroupStart
        this.defaultColor,            // GroupEnd
        ConsoleColor.Magenta,    // Keyword
        ConsoleColor.Red,        // Comment
        ConsoleColor.DarkCyan,   // StatementSeparator



                this.defaultColor,            // NewLine
                this.defaultColor,            // LineContinuation
                this.defaultColor,            // Position
      };
    }

    /// <summary>
    /// Read a line of text, colorizing while typing.
    /// </summary>
    /// <returns>The command line read</returns>
    public string Read()
    {
      this.Initialize();

      while (true)
      {
        ConsoleKeyInfo key = Console.ReadKey(true);

        switch (key.Key)
        {
          case ConsoleKey.Backspace:
               this.OnBackspace();
               break;
          case ConsoleKey.Delete:
               this.OnDelete();
               break;
          case ConsoleKey.Enter:
               return this.OnEnter();
          case ConsoleKey.RightArrow:
               this.OnRight(key.Modifiers);
               break;
          case ConsoleKey.LeftArrow:
               this.OnLeft(key.Modifiers);
               break;
          case ConsoleKey.Escape:
               this.OnEscape();
               break;
          case ConsoleKey.Home:
               this.OnHome();
               break;
          case ConsoleKey.End:
               this.OnEnd();
               break;
          case ConsoleKey.UpArrow:
          case ConsoleKey.DownArrow:
          case ConsoleKey.LeftWindows:
          case ConsoleKey.RightWindows:
          // ignore these
          continue;

          default:
          if (key.KeyChar == '\x0D')
          {
            goto case ConsoleKey.Enter;      // Ctrl-M
          }



          if (key.KeyChar == '\x08')
          {
            goto case ConsoleKey.Backspace;  // Ctrl-H
          }

          this.Insert(key);
          break;
        }
      }
    }

    /// <summary>
    /// Initializes the buffer.
    /// </summary>
    private void Initialize()
    {
      this.buffer.Length = 0;
      this.current = 0;
      this.rendered = 0;
      this.cursor = new Cursor();
    }

    /// <summary>
    /// Inserts a key.
    /// </summary>
    /// <param name="key">The key to insert.</param>
    private void Insert(ConsoleKeyInfo key)
    {
      this.buffer.Insert(this.current, key.KeyChar);
      this.current++;
      this.Render();
    }

    /// <summary>
    /// The End key was entered..
    /// </summary>
    private void OnEnd()
    {
      this.current = this.buffer.Length;
      this.cursor.Place(this.rendered);
    }

    /// <summary>
    /// The Home key was entered.
    /// </summary>
    private void OnHome()
    {
      this.current = 0;
      this.cursor.Reset();
    }

    /// <summary>
    /// The Escape key was entered.
    /// </summary>



    private void OnEscape()
    {
      this.buffer.Length = 0;
      this.current = 0;
      this.Render();
    }

    /// <summary>
    /// Moves to the left of the cursor position.
    /// </summary>
    /// <param name="consoleModifiers">Enumeration for Alt, Control,
    /// and Shift keys.</param>
    private void OnLeft(ConsoleModifiers consoleModifiers)
    {
      if ((consoleModifiers & ConsoleModifiers.Control) != 0)
      {
        // Move back to the start of the previous word.
        if (this.buffer.Length > 0 && this.current != 0)
        {
          bool nonLetter = IsSeparator(this.buffer[this.current - 1]);
          while (this.current > 0 && (this.current - 1 < 
this.buffer.Length))
          {
            this.MoveLeft();

            if (IsSeparator(this.buffer[this.current]) != nonLetter)
            {
              if (!nonLetter)
              {
                this.MoveRight();
                break;
              }

              nonLetter = false;
            }
          }
        }
      }
      else
      {
        this.MoveLeft();
      }
    }

    /// <summary>
    /// Determines if a character is a separator.
    /// </summary>
    /// <param name="ch">Character to investigate.</param>
    /// <returns>A value that indicates whether the character
    /// is a separator.</returns>
    private static bool IsSeparator(char ch)
    {
      return !Char.IsLetter(ch);
    }



    /// <summary>
    /// Moves to what is to the right of the cursor position.
    /// </summary>
    /// <param name="consoleModifiers">Enumeration for Alt, Control,
    /// and Shift keys.</param>
    private void OnRight(ConsoleModifiers consoleModifiers)
    {
      if ((consoleModifiers & ConsoleModifiers.Control) != 0)
      {
        // Move to the next word.
        if (this.buffer.Length != 0 && this.current < this.buffer.Length)
        {
          bool nonLetter = IsSeparator(this.buffer[this.current]);
          while (this.current < this.buffer.Length)
          {
            this.MoveRight();

            if (this.current == this.buffer.Length)
            {
              break;
            }

            if (IsSeparator(this.buffer[this.current]) != nonLetter)
            {
              if (nonLetter)
              {
                break;
              }

              nonLetter = true;
            }
          }
        }
      }
      else
      {
        this.MoveRight();
      }
    }

    /// <summary>
    /// Moves the cursor one character to the right.
    /// </summary>
    private void MoveRight()
    {
      if (this.current < this.buffer.Length)
      {
        char c = this.buffer[this.current];
        this.current++;
        Cursor.Move(1);
      }
    }

    /// <summary>
    /// Moves the cursor one character to the left.



    /// </summary>
    private void MoveLeft()
    {
      if (this.current > 0 && (this.current - 1 < this.buffer.Length))
      {
        this.current--;
        char c = this.buffer[this.current];
        Cursor.Move(-1);
      }
    }

    /// <summary>
    /// The Enter key was entered.
    /// </summary>
    /// <returns>A newline character.</returns>
    private string OnEnter()
    {
      Console.Out.Write("\n");
      return this.buffer.ToString();
    }

    /// <summary>
    /// The delete key was entered.
    /// </summary>
    private void OnDelete()
    {
      if (this.buffer.Length > 0 && this.current < this.buffer.Length)
      {
        this.buffer.Remove(this.current, 1);
        this.Render();
      }
    }

    /// <summary>
    /// The Backspace key was entered.
    /// </summary>
    private void OnBackspace()
    {
      if (this.buffer.Length > 0 && this.current > 0)
      {
        this.buffer.Remove(this.current - 1, 1);
        this.current--;
        this.Render();
      }
    }

    /// <summary>
    /// Displays the line.
    /// </summary>
    private void Render()
    {
      string text = this.buffer.ToString();

      // The PowerShell tokenizer is used to decide how to colorize
      // the input.  Any errors in the input are returned in 'errors',



      // but we won't be looking at those here.
      Collection<PSParseError> errors = null;
      Collection<PSToken> tokens = PSParser.Tokenize(text, out errors);

      if (tokens.Count > 0)
      {
        // We can skip rendering tokens that end before the cursor.
        int i;
        for (i = 0; i < tokens.Count; ++i)
        {
          if (this.current >= tokens[i].Start)
          {
            break;
          }
        }

        // Place the cursor at the start of the first token to render.  The
        // last edit may require changes to the colorization of characters
        // preceding the cursor.
        this.cursor.Place(tokens[i].Start);

        for (; i < tokens.Count; ++i)
        {
          // Write out the token.  We don't use tokens[i].Content, instead 
we
          // use the actual text from our input because the content 
sometimes
          // excludes part of the token, e.g. the quote characters of a 
string.
          Console.ForegroundColor = this.tokenColors[(int)tokens[i].Type];
          Console.Out.Write(text.Substring(tokens[i].Start, 
tokens[i].Length));

          // Whitespace doesn't show up in the array of tokens.  Write it 
out here.
          if (i != (tokens.Count - 1))
          {
            Console.ForegroundColor = this.defaultColor;
            for (int j = (tokens[i].Start + tokens[i].Length); j < tokens[i 
+ 1].Start; ++j)
            {
              Console.Out.Write(text[j]);
            }
          }
        }

        // It's possible there is text left over to output.  This happens 
when there is
        // some error during tokenization, e.g. a string literal is missing 
a closing quote.
        Console.ForegroundColor = this.defaultColor;
        for (int j = tokens[i - 1].Start + tokens[i - 1].Length; j < 
text.Length; ++j)
        {
          Console.Out.Write(text[j]);



        }
      }
      else
      {
        // If tokenization completely failed, just redraw the whole line.  
This
        // happens most frequently when the first token is incomplete, like 
a string
        // literal missing a closing quote.
        this.cursor.Reset();
        Console.Out.Write(text);
      }

      // If characters were deleted, we must write over previously written 
characters
      if (text.Length < this.rendered)
      {
        Console.Out.Write(new string(' ', this.rendered - text.Length));
      }

      this.rendered = text.Length;
      this.cursor.Place(this.current);
    }

    /// <summary>
    /// A helper class for maintaining the cursor while editing the command 
line.
    /// </summary>
    internal class Cursor
    {
      /// <summary>
      /// The top anchor for reposition the cursor.
      /// </summary>
      private int anchorTop;

      /// <summary>
      /// The left anchor for repositioning the cursor.
      /// </summary>
      private int anchorLeft;

      /// <summary>
      /// Initializes a new instance of the Cursor class.
      /// </summary>
      public Cursor()
      {
        this.anchorTop = Console.CursorTop;
        this.anchorLeft = Console.CursorLeft;
      }

      /// <summary>
      /// Moves the cursor.
      /// </summary>
      /// <param name="delta">The number of characters to move.</param>
      internal static void Move(int delta)
      {



System.Management.Automation.Host.PSHost

System.Management.Automation.Host.PSHostUserInterface

System.Management.Automation.Host.PSHostRawUserInterface

        int position = Console.CursorTop * Console.BufferWidth + 
Console.CursorLeft + delta;

        Console.CursorLeft = position % Console.BufferWidth;
        Console.CursorTop = position / Console.BufferWidth;
      }

      /// <summary>
      /// Resets the cursor position.
      /// </summary>
      internal void Reset()
      {
        Console.CursorTop = this.anchorTop;
        Console.CursorLeft = this.anchorLeft;
      }

      /// <summary>
      /// Moves the cursor to a specific position.
      /// </summary>
      /// <param name="position">The new position.</param>
      internal void Place(int position)
      {
        Console.CursorLeft = (this.anchorLeft + position) % 
Console.BufferWidth;
        int cursorTop = this.anchorTop + (this.anchorLeft + position) / 
Console.BufferWidth;
        if (cursorTop >= Console.BufferHeight)
        {
          this.anchorTop -= cursorTop - Console.BufferHeight + 1;
          cursorTop = Console.BufferHeight - 1;
        }

        Console.CursorTop = cursorTop;
      }
    } // End Cursor
  }
}

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHost
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostUserInterface
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Host.PSHostRawUserInterface


Runspace Samples
Article • 03/24/2025

This section includes sample code that shows how to use different types of runspaces to
run commands synchronously and asynchronously. You can use Microsoft Visual Studio
to create a console application and then copy the code from the topics in this section
into your host application.

Runspace01 Sample This sample shows how to use the
System.Management.Automation.PowerShell class to run the Get-Process cmdlet
synchronously and display its output in a console window.

Runspace02 Sample This sample shows how to use the
System.Management.Automation.PowerShell class to run the Get-Process and Sort-
Object cmdlets synchronously. The results of these commands is displayed by using a
System.Windows.Forms.DataGridView control.

Runspace03 Sample This sample shows how to use the
System.Management.Automation.PowerShell class to run a script synchronously, and
how to handle non-terminating errors. The script receives a list of process names and
then retrieves those processes. The results of the script, including any non-terminating
errors that were generated when running the script, are displayed in a console window.

Runspace04 Sample This sample shows how to use the
System.Management.Automation.PowerShell class to run commands, and how to catch
terminating errors that are thrown when running the commands. Two commands are
run, and the last command is passed a parameter argument that is not valid. As a result
no objects are returned and a terminating error is thrown.

Runspace05 Sample This sample shows how to add a snap-in to a
System.Management.Automation.Runspaces.InitialSessionState object so that the
cmdlet of the snap-in is available when the runspace is opened. The snap-in provides a

In This Section

７ Note

For samples of host applications that create custom host interfaces, see Custom
Host Samples.

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Sort-Object
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Sort-Object
https://learn.microsoft.com/en-us/dotnet/api/System.Windows.Forms.DataGridView
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


Get-Proc cmdlet (defined by the GetProcessSample01 Sample) that is run synchronously
using a System.Management.Automation.PowerShell object.

Runspace06 Sample This sample shows how to add a module to a
System.Management.Automation.Runspaces.InitialSessionState object so that the
module is loaded when the runspace is opened. The module provides a Get-Proc cmdlet
(defined by the GetProcessSample02 Sample) that is run synchronously using a
System.Management.Automation.PowerShell object.

Runspace07 Sample This sample shows how to create a runspace, and then use that
runspace to run two cmdlets synchronously by using a
System.Management.Automation.PowerShell object.

Runspace08 Sample This sample shows how to add commands and arguments to the
pipeline of a System.Management.Automation.PowerShell object and how to run the
commands synchronously.

Runspace09 Sample This sample shows how to add a script to the pipeline of a
System.Management.Automation.PowerShell object and how to run the script
asynchronously. Events are used to handle the output of the script.

Runspace10 Sample This sample shows how to create a default initial session state, how
to add a cmdlet to the System.Management.Automation.Runspaces.InitialSessionState,
how to create a runspace that uses the initial session state, and how to run the
command by using a System.Management.Automation.PowerShell object.

Runspace11 Sample This shows how to use the
System.Management.Automation.ProxyCommand class to create a proxy command that
calls an existing cmdlet, but restricts the set of available parameters. The proxy
command is then added to an initial session state that is used to create a constrained
runspace. This means that the user can access the functionality of the cmdlet only
through the proxy command.

See Also

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProxyCommand


Runspace01 Sample
Article • 09/17/2021

This sample shows how to use the System.Management.Automation.PowerShell class to
run the Get-Process cmdlet synchronously. The Get-Process cmdlet returns
System.Diagnostics.Process objects for each process running on the local computer. The
values of the System.Diagnostics.Process.ProcessName* and
System.Diagnostics.Process.HandleCount* properties are then extracted from the
returned objects and displayed in a console window.

This sample requires Windows PowerShell 2.0.

Creating a System.Management.Automation.PowerShell object to run a command.

Adding a command to the pipeline of the
System.Management.Automation.PowerShell object.

Running the command synchronously.

Using System.Management.Automation.PSObject objects to extract properties
from the objects returned by the command.

This sample runs the Get-Process cmdlet synchronously in the default runspace
provided by Windows PowerShell.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Management.Automation;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace01

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.ProcessName
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.HandleCount
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process


  {
    /// <summary>
    /// This sample uses the PowerShell class to execute
    /// the Get-Process cmdlet synchronously. The name and
    /// handlecount are then extracted from the PSObjects
    /// returned and displayed.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object to run a command.
    /// 2. Adding a command to the pipeline of the PowerShell object.
    /// 3. Running the command synchronously.
    /// 4. Using PSObject objects to extract properties from the objects
    ///    returned by the command.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create a PowerShell object. Creating this object takes care of
      // building all of the other data structures needed to run the 
command.
      using (PowerShell powershell = PowerShell.Create().AddCommand("Get-
Process"))
      {
        Console.WriteLine("Process              HandleCount");
        Console.WriteLine("--------------------------------");

        // Invoke the command synchronously and display the
        // ProcessName and HandleCount properties of the
        // objects that are returned.
        foreach (PSObject result in powershell.Invoke())
        {
          Console.WriteLine(
                      "{0,-20} {1}",
                      result.Members["ProcessName"].Value,
                      result.Members["HandleCount"].Value);
        }
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also



Runspace02 Sample
Article • 03/24/2025

This sample shows how to use the System.Management.Automation.PowerShell class to
run the Get-Process and Sort-Object cmdlets synchronously. The Get-Process cmdlet
returns System.Diagnostics.Process objects for each process running on the local
computer, and the Sort-Object  sorts the objects based on their
System.Diagnostics.Process.Id* property. The results of these commands is displayed by
using a System.Windows.Forms.DataGridView control.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.PowerShell object to run commands.

Adding commands to the pipeline of System.Management.Automation.PowerShell
object.

Running the commands synchronously.

Using a System.Windows.Forms.DataGridView control to display the output of the
commands in a Windows Forms application.

This sample runs the Get-Process and Sort-Object cmdlets synchronously in the default
runspace provided by Windows PowerShell. The output is displayed in a form using a
System.Windows.Forms.DataGridView control.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections;
  using System.Collections.ObjectModel;
  using System.Management.Automation;

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Sort-Object
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process
https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.Id
https://learn.microsoft.com/en-us/dotnet/api/System.Windows.Forms.DataGridView
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Windows.Forms.DataGridView
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Sort-Object
https://learn.microsoft.com/en-us/dotnet/api/System.Windows.Forms.DataGridView


  using System.Management.Automation.Runspaces;
  using System.Windows.Forms;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace02
  {
    /// <summary>
    /// This method creates the form where the output is displayed.
    /// </summary>
    private static void CreateForm()
    {
      Form form = new Form();
      DataGridView grid = new DataGridView();
      form.Controls.Add(grid);
      grid.Dock = DockStyle.Fill;

      // Create a PowerShell object. Creating this object takes care of
      // building all of the other data structures needed to run the 
command.
      using (PowerShell powershell = PowerShell.Create())
      {
        powershell.AddCommand("Get-Process").AddCommand("Sort-
Object").AddArgument("ID");
        if (Runspace.DefaultRunspace == null)
        {
          Runspace.DefaultRunspace = powershell.Runspace;
        }

        Collection<PSObject> results = powershell.Invoke();

        // The generic collection needs to be re-wrapped in an ArrayList
        // for data-binding to work.
        ArrayList objects = new ArrayList();
        objects.AddRange(results);

        // The DataGridView will use the PSObjectTypeDescriptor type
        // to retrieve the properties.
        grid.DataSource = objects;
      }

      form.ShowDialog();
    }

    /// <summary>
    /// This sample uses a PowerShell object to run the Get-Process
    /// and Sort-Object cmdlets synchronously. Windows Forms and
    /// data binding are then used to display the results in a
    /// DataGridView control.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:



Writing a Windows PowerShell Host Application

    /// 1. Creating a PowerShell object.
    /// 2. Adding commands and arguments to the pipeline of
    ///    the PowerShell object.
    /// 3. Running the commands synchronously.
    /// 4. Using a DataGridView control to display the output
    ///    of the commands in a Windows Forms application.
    /// </remarks>
    private static void Main(string[] args)
    {
      Runspace02.CreateForm();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace03 Sample
Article • 09/17/2021

This sample shows how to use the System.Management.Automation.PowerShell class to
run a script synchronously, and how to handle non-terminating errors. The script
receives a list of process names and then retrieves those processes. The results of the
script, including any non-terminating errors that were generated when running the
script, are displayed in a console window.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.PowerShell object to run a script.

Adding a script to the pipeline of the System.Management.Automation.PowerShell
object.

Passing input objects to the script from the calling program.

Running the script synchronously.

Using System.Management.Automation.PSObject objects to extract and display
properties from the objects returned by the script.

Retrieving and displaying error records that were generated when the script was
run.

This sample runs a script synchronously in the default runspace provided by Windows
PowerShell. The output of the script and any non-terminating errors that were
generated are displayed in a console window.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject


  using System;
  using System.Collections;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace03
  {
    /// <summary>
    /// This sample shows how to use the PowerShell class to run a
    /// script that retrieves process information for the list of
    /// process names passed to the script. It shows how to pass input
    /// objects to a script and how to retrieve error objects as well
    /// as the output objects.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object to run a script.
    /// 2. Adding a script to the pipeline of the PowerShell object.
    /// 3. Passing input objects to the script from the calling program.
    /// 4. Running the script synchronously.
    /// 5. Using PSObject objects to extract and display properties from
    ///    the objects returned by the script.
    /// 6. Retrieving and displaying error records that were generated
    ///    when the script was run.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Define a list of processes to look for.
      string[] processNames = new string[]
      {
        "lsass", "nosuchprocess", "services", "nosuchprocess2"
      };

      // The script to run to get these processes. Input passed
      // to the script will be available in the $input variable.
      string script = "$input | Get-Process -Name {$_}";

      // Create a PowerShell object. Creating this object takes care of
      // building all of the other data structures needed to run the script.
      using (PowerShell powershell = PowerShell.Create())
      {
        powershell.AddScript(script);

        Console.WriteLine("Process              HandleCount");
        Console.WriteLine("--------------------------------");

        // Invoke the script synchronously and display the
        // ProcessName and HandleCount properties of the
        // objects that are returned.
        foreach (PSObject result in powershell.Invoke(processNames))



Writing a Windows PowerShell Host Application

        {
          Console.WriteLine(
                            "{0,-20} {1}",
                            result.Members["ProcessName"].Value,
                            result.Members["HandleCount"].Value);
        }

        // Process any error records that were generated while running
        //  the script.
        Console.WriteLine("\nThe following non-terminating errors 
occurred:\n");
        PSDataCollection<ErrorRecord> errors = powershell.Streams.Error;
        if (errors != null && errors.Count > 0)
        {
          foreach (ErrorRecord err in errors)
          {
            System.Console.WriteLine("    error: {0}", err.ToString());
          }
        }
      }

      System.Console.WriteLine("\nHit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace04 Sample
Article • 09/17/2021

This sample shows how to use the System.Management.Automation.PowerShell class to
run commands, and how to catch terminating errors that are thrown when running the
commands. Two commands are run, and the last command is passed a parameter
argument that is not valid. As a result, no objects are returned and a terminating error is
thrown.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.PowerShell object.

Adding commands to the pipeline of the
System.Management.Automation.PowerShell object.

Adding parameter arguments to the pipeline.

Invoking the commands synchronously.

Using System.Management.Automation.PSObject objects to extract and display
properties from the objects returned by the commands.

Retrieving and displaying error records that were generated during the running of
the commands.

Catching and displaying terminating exceptions thrown by the commands.

This sample runs commands synchronously in the default runspace provided by
Windows PowerShell. The last command throws a terminating error because a
parameter argument that is not valid is passed to the command. The terminating error is
trapped and displayed.

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject


C#

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace04
  {
    /// <summary>
    /// This sample shows how to use a PowerShell object to run commands.
    /// The commands generate a terminating exception that the caller
    /// should catch and process.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object to run commands.
    /// 2. Adding commands to the pipeline of  the PowerShell object.
    /// 3. Passing input objects to the commands from the calling program.
    /// 4. Using PSObject objects to extract and display properties from the
    ///    objects returned by the commands.
    /// 5. Retrieving and displaying error records that were generated
    ///    while running the commands.
    /// 6. Catching and displaying terminating exceptions generated
    ///    while running the commands.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create a PowerShell object.
      using (PowerShell powershell = PowerShell.Create())
      {
        // Add the commands to the PowerShell object.
        powershell.AddCommand("Get-ChildItem").AddCommand("Select-
String").AddArgument("*");

        // Run the commands synchronously. Because of the bad regular 
expression,
        // no objects will be returned. Instead, an exception will be 
thrown.
        try
        {
          foreach (PSObject result in powershell.Invoke())
          {
            Console.WriteLine("'{0}'", result.ToString());
          }

          // Process any error records that were generated while running the 
commands.



Writing a Windows PowerShell Host Application

          Console.WriteLine("\nThe following non-terminating errors 
occurred:\n");
          PSDataCollection<ErrorRecord> errors = powershell.Streams.Error;
          if (errors != null && errors.Count > 0)
          {
            foreach (ErrorRecord err in errors)
            {
              System.Console.WriteLine("    error: {0}", err.ToString());
            }
          }
        }
        catch (RuntimeException runtimeException)
        {
          // Trap any exception generated by the commands. These exceptions
          // will all be derived from the RuntimeException exception.
          System.Console.WriteLine(
                        "Runtime exception: {0}: {1}\n{2}",
                        
runtimeException.ErrorRecord.InvocationInfo.InvocationName,
                        runtimeException.Message,
                        
runtimeException.ErrorRecord.InvocationInfo.PositionMessage);
        }
      }

      System.Console.WriteLine("\nHit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace05 Sample
Article • 03/24/2025

This sample shows how to add a snap-in to a
System.Management.Automation.Runspaces.InitialSessionState object so that the
cmdlet of the snap-in is available when the runspace is opened. The snap-in provides a
Get-Proc cmdlet (defined by the GetProcessSample01 Sample) that is run synchronously
by using a System.Management.Automation.PowerShell object.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.Runspaces.InitialSessionState object.

Adding the snap-in to the
System.Management.Automation.Runspaces.InitialSessionState object.

Creating a System.Management.Automation.Runspaces.Runspace object that uses
the System.Management.Automation.Runspaces.InitialSessionState object.

Creating a System.Management.Automation.PowerShell object that uses the
runspace.

Adding the snap-in's Get-Proc cmdlet to the pipeline of the
System.Management.Automation.PowerShell object.

Running the command synchronously.

Extracting properties from the System.Management.Automation.PSObject objects
returned by the command.

This sample creates a runspace that uses a
System.Management.Automation.Runspaces.InitialSessionState object to define the

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


elements that are available when the runspace is opened. In this sample, a snap-in that
defines a Get-Proc cmdlet is added to the initial session state.

C#

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace05
  {
    /// <summary>
    /// This sample shows how to define an initial session state that is
    /// used when creating a runspace. The sample invokes a command from
    /// a Windows PowerShell snap-in that is present in the console file.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    /// <remarks>
    /// This sample assumes that user has copied the GetProcessSample01.dll
    /// that is produced by the GetProcessSample01 sample to the current
    /// directory.
    /// This sample demonstrates the following:
    /// 1. Creating a default initial session state.
    /// 2. Adding a snap-in to the initial session state.
    /// 3. Creating a runspace that uses the initial session state.
    /// 4. Creating a PowerShell object that uses the runspace.
    /// 5. Adding the snap-in's Get-Proc cmdlet to the PowerShell object.
    /// 6. Using PSObject objects to extract and display properties from
    ///    the objects returned by the cmdlet.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create the default initial session state. The default initial
      // session state contains all the elements provided by Windows
      // PowerShell.
      InitialSessionState iss = InitialSessionState.CreateDefault();
      PSSnapInException warning;
      iss.ImportPSSnapIn("GetProcPSSnapIn01", out warning);

      // Create a runspace. Notice that no PSHost object is supplied to the
      // CreateRunspace method so the default host is used. See the Host
      // samples for more information on creating your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();

        // Create a PowerShell object.



Writing a Windows PowerShell Host Application

        using (PowerShell powershell = PowerShell.Create())
        {
          // Add the snap-in cmdlet and specify the runspace.
          powershell.AddCommand("GetProcPSSnapIn01\\Get-Proc");
          powershell.Runspace = myRunSpace;

          // Run the cmdlet synchronously.
          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");

          // Display the results.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                              "{0,-20} {1}",
                              result.Members["ProcessName"].Value,
                              result.Members["HandleCount"].Value);
          }
        }

        // Close the runspace to release any resources.
        myRunSpace.Close();
      }
      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace06 Sample
Article • 03/24/2025

This sample shows how to add a module to a
System.Management.Automation.Runspaces.InitialSessionState object so that the
module is loaded when the runspace is opened. The module provides a Get-Proc cmdlet
(defined by the GetProcessSample02 Sample) that is run synchronously by using a
System.Management.Automation.PowerShell object.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.Runspaces.InitialSessionState object.

Adding the module to the
System.Management.Automation.Runspaces.InitialSessionState object.

Creating a System.Management.Automation.Runspaces.Runspace object that uses
the System.Management.Automation.Runspaces.InitialSessionState object.

Creating a System.Management.Automation.PowerShell object that uses the
runspace.

Adding the module's Get-Proc cmdlet to the pipeline of the
System.Management.Automation.PowerShell object.

Running the command synchronously.

Extracting properties from the System.Management.Automation.PSObject objects
returned by the command.

This sample creates a runspace that uses a
System.Management.Automation.Runspaces.InitialSessionState object to define the

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState


elements that are available when the runspace is opened. In this sample, a module that
defines a Get-Proc cmdlet is added to the initial session state.

C#

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace06
  {
    /// <summary>
    /// This sample shows how to define an initial session state that is
    /// used when creating a runspace. The sample invokes a command from
    /// a binary module that is loaded by the initial session state.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample assumes that user has copied the GetProcessSample02.dll
    /// that is produced by the GetProcessSample02 sample to the current
    /// directory.
    /// This sample demonstrates the following:
    /// 1. Creating a default initial session state.
    /// 2. Adding a module to the initial session state.
    /// 3. Creating a runspace that uses the initial session state.
    /// 4. Creating a PowerShell object that uses the runspace.
    /// 5. Adding the module's Get-Proc cmdlet to the PowerShell object.
    /// 6. Running the command synchronously.
    /// 7. Using PSObject objects to extract and display properties from
    ///    the objects returned by the cmdlet.
    /// </remarks>
    private static void Main(string[] args)
    {
        // Create the default initial session state and add the module.
      InitialSessionState iss = InitialSessionState.CreateDefault();
      iss.ImportPSModule(new string[] { @".\GetProcessSample02.dll" });

      // Create a runspace. Notice that no PSHost object is supplied to the
      // CreateRunspace method so the default host is used. See the Host
      // samples for more information on creating your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();

        // Create a PowerShell object.
        using (PowerShell powershell = PowerShell.Create())
        {



Writing a Windows PowerShell Host Application

          // Add the cmdlet and specify the runspace.
          powershell.AddCommand(@"GetProcessSample02\Get-Proc");
          powershell.Runspace = myRunSpace;

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");

          // Display the results.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                              "{0,-20} {1}",
                              result.Members["ProcessName"].Value,
                              result.Members["HandleCount"].Value);
          }
        }

        // Close the runspace to release any resources.
        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace07 Sample
Article • 03/24/2025

This sample shows how to create a runspace, and then use that runspace to run two
cmdlets synchronously by using a System.Management.Automation.PowerShell object.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.Runspaces.Runspace object by using
the System.Management.Automation.Runspaces.RunspaceFactory class.

Creating a System.Management.Automation.PowerShell object that uses the
runspace.

Adding cmdlets to the pipeline of the System.Management.Automation.PowerShell
object.

Running the cmdlets synchronously.

Extracting properties from the System.Management.Automation.PSObject objects
returned by the command.

This sample creates a runspace that used by a
System.Management.Automation.PSObject object to run the Get-Process and Measure-
Object cmdlets.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceFactory
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-object
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-object


  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace07
  {
    /// <summary>
    /// This sample shows how to create a runspace and how to run commands
    /// using a PowerShell object. It builds a pipeline that runs the
    /// Get-Process cmdlet, which is piped to the Measure-Object
    /// cmdlet to count the number of processes running on the system.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a runspace using the RunspaceFactory class.
    /// 2. Creating a PowerShell object that uses the runspace.
    /// 3. Adding cmdlets to the pipeline of the PowerShell object.
    /// 4. Running the cmdlets synchronously.
    /// 5. Working with PSObject objects to extract properties
    ///    from the objects returned by the cmdlets.
    /// </remarks>
    private static void Main(string[] args)
    {
      Collection<PSObject> result;     // Will hold the result
                                       // of running the cmdlets.

      // Create a runspace. We can't use the RunspaceInvoke class
      // because we need to get at the underlying runspace to
      // explicitly add the commands. Notice that no PSHost object is
      // supplied to the CreateRunspace method so the default host is
      // used. See the Host samples for more information on creating
      // your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace())
      {
        myRunSpace.Open();

        // Create a PowerShell object and specify the runspace.
        PowerShell powershell = PowerShell.Create();
        powershell.Runspace = myRunSpace;

        // Use the using statement so we dispose of the PowerShell object
        // when we're done.
        using (powershell)
        {
          // Add the Get-Process cmdlet to the PowerShell object. Notice
          // we are specify the name of the cmdlet, not a script.
          powershell.AddCommand("Get-Process");

          // Add the Measure-Object cmdlet to count the number
          // of objects being returned. Commands are always added to the end
          // of the pipeline.
          powershell.AddCommand("Measure-Object");

          // Run the cmdlets synchronously and save the objects returned.



Writing a Windows PowerShell Host Application

          result = powershell.Invoke();
        }

        // Even after disposing of the pipeLine, we still need to set
        // the powershell variable to null so that the garbage collector
        // can clean it up.
        powershell = null;

        // Display the results of running the commands (checking that
        // everything is ok first.
        if (result == null || result.Count != 1)
        {
          throw new InvalidOperationException(
                    "pipeline.Invoke() returned the wrong number of 
objects");
        }

        PSMemberInfo count = result[0].Properties["Count"];
        if (count == null)
        {
          throw new InvalidOperationException(
                    "The object returned doesn't have a 'count' property");
        }

        Console.WriteLine(
                   "Runspace07: The Get-Process cmdlet returned {0} 
objects",
                   count.Value);

        // Close the runspace to release any resources.
        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace08 Sample
Article • 03/24/2025

This sample shows how to add commands and arguments to the pipeline of a
System.Management.Automation.PowerShell object and how to run the commands
synchronously.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.Runspaces.Runspace object by using
the System.Management.Automation.Runspaces.RunspaceFactory class.

Creating a System.Management.Automation.PowerShell object that uses the
runspace.

Adding cmdlets to the pipeline of the System.Management.Automation.PowerShell
object.

Running the cmdlets synchronously.

Extracting properties from the System.Management.Automation.PSObject objects
returned by the command.

This sample runs the Get-Process and Sort-Object cmdlets by using a
System.Management.Automation.PowerShell object.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceFactory
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Sort-Object
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell


  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace08
  {
    /// <summary>
    /// This sample shows how to use a PowerShell object to run commands. 
The
    /// PowerShell object builds a pipeline that include the Get-Process 
cmdlet,
    /// which is then piped to the Sort-Object cmdlet. Parameters are added 
to the
    /// Sort-Object cmdlet to sort the HandleCount property in descending 
order.
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates:
    /// 1. Creating a PowerShell object
    /// 2. Adding individual commands to the PowerShell object.
    /// 3. Adding parameters to the commands.
    /// 4. Running the pipeline of the PowerShell object synchronously.
    /// 5. Working with PSObject objects to extract properties
    ///    from the objects returned by the commands.
    /// </remarks>
    private static void Main(string[] args)
    {
      Collection<PSObject> results; // Holds the result of the pipeline 
execution.

      // Create the PowerShell object. Notice that no runspace is specified 
so a
      // new default runspace is used.
      PowerShell powershell = PowerShell.Create();

      // Use the using statement so that we can dispose of the PowerShell 
object
      // when we are done.
      using (powershell)
      {
        // Add the Get-Process cmdlet to the pipeline of the PowerShell 
object.
        powershell.AddCommand("Get-Process");

        // Add the Sort-Object cmdlet and its parameters to the pipeline of
        // the PowerShell object so that we can sort the HandleCount 
property
        //  in descending order.
        powershell.AddCommand("Sort-
Object").AddParameter("Descending").AddParameter("Property", "HandleCount");

        // Run the commands of the pipeline synchronously.
        results = powershell.Invoke();



Writing a Windows PowerShell Host Application

      }

      // Even after disposing of the PowerShell object, we still
      // need to set the powershell variable to null so that the
      // garbage collector can clean it up.
      powershell = null;

      Console.WriteLine("Process              HandleCount");
      Console.WriteLine("--------------------------------");

      // Display the results returned by the commands.
      foreach (PSObject result in results)
      {
        Console.WriteLine(
                          "{0,-20} {1}",
                          result.Members["ProcessName"].Value,
                          result.Members["HandleCount"].Value);
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace09 Sample
Article • 03/24/2025

This sample shows how to add a script to the pipeline of a
System.Management.Automation.PowerShell object and how to run the script
asynchronously. Events are used to handle the output of the script.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.PowerShell object that uses the
runspace.

Adding a script the pipeline of the System.Management.Automation.PowerShell
object.

Using the System.Management.Automation.PowerShell.BeginInvoke* method to
run the pipeline asynchronously.

Using the events of the System.Management.Automation.PowerShell object to
process the output of the script.

Using the System.Management.Automation.PowerShell.Stop* method to interrupt
the invocation of the pipeline.

This sample runs to run a script that generates the numbers from 1 to 10 with delays
between each number. The script is run asynchronously and events are used to handle
the output.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.BeginInvoke
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PowerShell.Stop


  using System.Collections.ObjectModel;
  using System.Diagnostics;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace09
  {
    /// <summary>
    /// This sample shows how to use a PowerShell object to run a
    /// script that generates the numbers from 1 to 10 with delays
    /// between each number. The pipeline of the PowerShell object
    /// is run asynchronously and events are used to handle the output.
    /// </summary>
    /// <param name="args">The parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object.
    /// 2. Adding a script to the pipeline of the PowerShell object.
    /// 3. Using the BeginInvoke method to run the pipeline asynchronously.
    /// 4. Using the events of the PowerShell object to process the
    ///    output of the script.
    /// 5. Using the PowerShell.Stop() method to interrupt the invocation of
    ///    the pipeline.
    /// </remarks>
    private static void Main(string[] args)
    {
      Console.WriteLine("Print the numbers from 1 to 10. Hit any key to halt 
processing\n");

      using (PowerShell powershell = PowerShell.Create())
      {
        // Add a script to the PowerShell object. The script generates the
        // numbers from 1 to 10 in half second intervals.
        powershell.AddScript("1..10 | foreach {$_ ; Start-Sleep -Milli 
500}");

        // Add the event handlers.  If we did not care about hooking the 
DataAdded
        // event, we would let BeginInvoke create the output stream for us.
        PSDataCollection<PSObject> output = new PSDataCollection<PSObject>
();
        output.DataAdded += new EventHandler<DataAddedEventArgs>
(Output_DataAdded);
        powershell.InvocationStateChanged += new 
EventHandler<PSInvocationStateChangedEventArgs>
(Powershell_InvocationStateChanged);

        // Invoke the pipeline asynchronously.
        IAsyncResult asyncResult = powershell.BeginInvoke<PSObject, 
PSObject>(null, output);



        // Wait for things to happen. If the user hits a key before the
        // script has completed, then call the PowerShell Stop() method
        // to halt processing.
        Console.ReadKey();
        if (powershell.InvocationStateInfo.State != 
PSInvocationState.Completed)
        {
          // Stop the invocation of the pipeline.
          Console.WriteLine("\nStopping the pipeline!\n");
          powershell.Stop();

          // Wait for the Windows PowerShell state change messages to be 
displayed.
          System.Threading.Thread.Sleep(500);
          Console.WriteLine("\nPress a key to exit");
          Console.ReadKey();
        }
      }
    }

    /// <summary>
    /// The output data added event handler. This event is called when
    /// data is added to the output pipe. It reads the data that is
    /// available and displays it on the console.
    /// </summary>
    /// <param name="sender">The output pipe this event is associated with.
</param>
    /// <param name="e">Parameter is not used.</param>
    private static void Output_DataAdded(object sender, DataAddedEventArgs 
e)
    {
      PSDataCollection<PSObject> myp = (PSDataCollection<PSObject>)sender;

      Collection<PSObject> results = myp.ReadAll();
      foreach (PSObject result in results)
      {
        Console.WriteLine(result.ToString());
      }
    }

    /// <summary>
    /// This event handler is called when the pipeline state is changed.
    /// If the state change is to Completed, the handler issues a message
    /// asking the user to exit the program.
    /// </summary>
    /// <param name="sender">This parameter is not used.</param>
    /// <param name="e">The PowerShell state information.</param>
    private static void Powershell_InvocationStateChanged(object sender, 
PSInvocationStateChangedEventArgs e)
    {
      Console.WriteLine("PowerShell object state changed: state: {0}\n", 
e.InvocationStateInfo.State);
      if (e.InvocationStateInfo.State == PSInvocationState.Completed)
      {
        Console.WriteLine("Processing completed, press a key to exit!");



Writing a Windows PowerShell Host Application

      }
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace10 Sample
Article • 03/24/2025

This sample shows how to create a default initial session state, how to add a cmdlet to
the System.Management.Automation.Runspaces.InitialSessionState, how to create a
runspace that uses the initial session state, and how to run the command by using a
System.Management.Automation.PowerShell object.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.Runspaces.InitialSessionState object.

Adding a cmdlet (defined by the Host application) to the
System.Management.Automation.Runspaces.InitialSessionState object.

Creating a System.Management.Automation.Runspaces.Runspace object that uses
the object.

Creating a System.Management.Automation.PowerShell object that uses the
System.Management.Automation.Runspaces.Runspace object.

Adding the command to the pipeline of the
System.Management.Automation.PowerShell object.

Extracting properties from the System.Management.Automation.PSObject objects
returned by the command.

This sample creates a runspace that uses a
System.Management.Automation.Runspaces.InitialSessionState object to define the
elements that are available when the runspace is opened. In this sample, the Get-Proc
cmdlet (defined by the Host application) is added to the initial session state, and the
cmdlet is run synchronously by using a System.Management.Automation.PowerShell
object.

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell


C#

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Diagnostics;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  #region GetProcCommand

  /// <summary>
  /// Class that implements the GetProcCommand.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet
  {
    #region Cmdlet Overrides

    /// <summary>
    /// For each of the requested process names, retrieve and write
    /// the associated processes.
    /// </summary>
    protected override void ProcessRecord()
    {
      // Get the current processes.
      Process[] processes = Process.GetProcesses();

      // Write the processes to the pipeline making them available
      // to the next cmdlet. The second argument (true) tells the
      // system to enumerate the array, and send one process object
      // at a time to the pipeline.
      WriteObject(processes, true);
    }

    #endregion Overrides
  } // End GetProcCommand class.

  #endregion GetProcCommand

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace10
  {
    /// <summary>
    /// This sample shows how to create a default initial session state, how 
to add
    /// add a cmdlet to the InitialSessionState object, and then how to 
create
    /// a Runspace object.



    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    /// This sample demonstrates:
    /// 1. Creating an InitialSessionState object.
    /// 2. Adding a cmdlet to the InitialSessionState object.
    /// 3. Creating a runspace that uses the InitialSessionState object.
    /// 4. Creating a PowerShell object that uses the Runspace object.
    /// 5. Running the added command synchronously.
    /// 6. Working with PSObject objects to extract properties
    ///    from the objects returned by the pipeline.
    private static void Main(string[] args)
    {
      // Create a default InitialSessionState object. The default
      // InitialSessionState object contains all the elements provided
      // by Windows PowerShell.
      InitialSessionState iss = InitialSessionState.CreateDefault();

      // Add the Get-Proc cmdlet to the InitialSessionState object.
      SessionStateCmdletEntry ssce = new SessionStateCmdletEntry("Get-Proc", 
typeof(GetProcCommand), null);
      iss.Commands.Add(ssce);

      // Create a Runspace object that uses the InitialSessionState object.
      // Notice that no PSHost object is specified, so the default host is 
used.
      // See the Hosting samples for information on creating your own custom 
host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();

        using (PowerShell powershell = PowerShell.Create())
        {
          powershell.Runspace = myRunSpace;

          // Add the Get-Proc cmdlet to the pipeline of the PowerShell 
object.
          powershell.AddCommand("Get-Proc");

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");

          // Display the output of the pipeline.
          foreach (PSObject result in results)
          {
             Console.WriteLine(
                               "{0,-20} {1}",
                               result.Members["ProcessName"].Value,
                               result.Members["HandleCount"].Value);
          }
        }

        // Close the runspace to release resources.



Writing a Windows PowerShell Host Application

        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Runspace11 Sample
Article • 03/24/2025

This sample shows how to use the System.Management.Automation.ProxyCommand
class to create a proxy command that calls an existing cmdlet, but restricts the set of
available parameters. The proxy command is then added to an initial session state that is
used to create a constrained runspace. This means that the user can access the
functionality of the cmdlet only through the proxy command.

This sample requires Windows PowerShell 2.0.

This sample demonstrates the following.

Creating a System.Management.Automation.CommandMetadata object that
describes the metadata of an existing cmdlet.

Creating a System.Management.Automation.Runspaces.InitialSessionState object.

Modifying the cmdlet metadata to remove a parameter of the cmdlet.

Adding the cmdlet to the
System.Management.Automation.Runspaces.InitialSessionState object and making
the cmdlet private.

Creating a proxy function that calls the existing cmdlet, but exposes only a
restricted set of parameters.

Adding the proxy function to the initial session state.

Creating a System.Management.Automation.PowerShell object that uses the
System.Management.Automation.Runspaces.Runspace object.

Calling the private cmdlet and the proxy function using a
System.Management.Automation.PowerShell object to demonstrate the
constrained runspace.

Requirements

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProxyCommand
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.CommandMetadata
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.InitialSessionState
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.Runspace
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell


This creates a proxy command for a private cmdlet to demonstrate a constrained
runspace.

C#

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Diagnostics;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  #region GetProcCommand

  /// <summary>
  /// This class implements the Get-Proc cmdlet. It has been copied
  /// verbatim from the GetProcessSample02.cs sample.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet
  {
    #region Parameters

    /// <summary>
    /// The names of the processes to act on.
    /// </summary>
    private string[] processNames;

    /// <summary>
    /// Gets or sets the list of process names on which
    /// the Get-Proc cmdlet will work.
    /// </summary>
    [Parameter(Position = 0)]
    [ValidateNotNullOrEmpty]
    public string[] Name
    {
      get { return this.processNames; }
      set { this.processNames = value; }
    }

    #endregion Parameters

    #region Cmdlet Overrides

    /// <summary>
    /// The ProcessRecord method calls the Process.GetProcesses
    /// method to retrieve the processes specified by the Name
    /// parameter. Then, the WriteObject method writes the
    /// associated processes to the pipeline.
    /// </summary>
    protected override void ProcessRecord()
    {



      // If no process names are passed to the cmdlet, get all
      // processes.
      if (this.processNames == null)
      {
        WriteObject(Process.GetProcesses(), true);
      }
      else
      {
        // If process names are passed to cmdlet, get and write
        // the associated processes.
        foreach (string name in this.processNames)
        {
          WriteObject(Process.GetProcessesByName(name), true);
        }
      } // if (processNames...
    } // ProcessRecord

    #endregion Cmdlet Overrides
  } // GetProcCommand

  #endregion GetProcCommand

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace11
  {
    /// <summary>
    /// This shows how to use the ProxyCommand class to create a proxy
    /// command that calls an existing cmdlet, but restricts the set of
    /// available parameters. The proxy command is then added to an initial
    /// session state that is used to create a constrained runspace. This
    /// means that the user can access the cmdlet only through the proxy
    /// command.
    /// </summary>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a CommandMetadata object that describes the metadata of 
an
    ///    existing cmdlet.
    /// 2. Modifying the cmdlet metadata to remove a parameter of the 
cmdlet.
    /// 3. Adding the cmdlet to an initial session state and making it 
private.
    /// 4. Creating a proxy function that calls the existing cmdlet, but 
exposes
    ///    only a restricted set of parameters.
    /// 6. Adding the proxy function to the initial session state.
    /// 7. Calling the private cmdlet and the proxy function to demonstrate 
the
    ///    constrained runspace.
    /// </remarks>
    private static void Main()
    {
      // Create a default initial session state. The default initial session 



state
      // includes all the elements that are provided by Windows PowerShell.
      InitialSessionState iss = InitialSessionState.CreateDefault();

      // Add the Get-Proc cmdlet to the initial session state.
      SessionStateCmdletEntry cmdletEntry = new 
SessionStateCmdletEntry("Get-Proc", typeof(GetProcCommand), null);
      iss.Commands.Add(cmdletEntry);

      // Make the cmdlet private so that it is not accessible.
      cmdletEntry.Visibility = SessionStateEntryVisibility.Private;

      // Set the language mode of the initial session state to NoLanguage to
      //prevent users from using language features. Only the invocation of
      // public commands is allowed.
      iss.LanguageMode = PSLanguageMode.NoLanguage;

      // Create the proxy command using cmdlet metadata to expose the
      // Get-Proc cmdlet.
      CommandMetadata cmdletMetadata = new 
CommandMetadata(typeof(GetProcCommand));

      // Remove one of the parameters from the command metadata.
      cmdletMetadata.Parameters.Remove("Name");

      // Generate the body of a proxy function that calls the original 
cmdlet,
      // but does not have the removed parameter.
      string bodyOfProxyFunction = ProxyCommand.Create(cmdletMetadata);

      // Add the proxy function to the initial session state. The name of 
the proxy
      // function can be the same as the name of the cmdlet, but to clearly
      // demonstrate that the original cmdlet is not available a different 
name is
      // used for the proxy function.
      iss.Commands.Add(new SessionStateFunctionEntry("Get-ProcProxy", 
bodyOfProxyFunction));

      // Create the constrained runspace using the initial session state.
      using (Runspace myRunspace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunspace.Open();

        // Call the private cmdlet to demonstrate that it is not available.
        try
        {
          using (PowerShell powershell = PowerShell.Create())
          {
            powershell.Runspace = myRunspace;
            powershell.AddCommand("Get-Proc").AddParameter("Name", 
"*explore*");
            powershell.Invoke();
          }
        }



        catch (CommandNotFoundException e)
        {
          System.Console.WriteLine(
                        "Invoking 'Get-Proc' failed as expected: {0}: {1}",
                        e.GetType().FullName,
                        e.Message);
        }

        // Call the proxy function to demonstrate that the -Name parameter 
is
        // not available.
        try
        {
          using (PowerShell powershell = PowerShell.Create())
          {
            powershell.Runspace = myRunspace;
            powershell.AddCommand("Get-ProcProxy").AddParameter("Name", 
"idle");
            powershell.Invoke();
          }
        }
        catch (ParameterBindingException e)
        {
          System.Console.WriteLine(
                        "\nInvoking 'Get-ProcProxy -Name idle' failed as 
expected: {0}: {1}",
                        e.GetType().FullName,
                        e.Message);
        }

        // Call the proxy function to demonstrate that it calls into the
        // private cmdlet to retrieve the processes.
        using (PowerShell powershell = PowerShell.Create())
        {
          powershell.Runspace = myRunspace;
          powershell.AddCommand("Get-ProcProxy");
          List<Process> processes = new List<Process>
(powershell.Invoke<Process>());
          System.Console.WriteLine(
                        "\nInvoking the Get-ProcProxy function called into 
the Get-Proc cmdlet and returned {0} processes",
                        processes.Count);
        }

        // Close the runspace to release resources.
        myRunspace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}



Writing a Windows PowerShell Host Application

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application?view=powershell-7.5


Remote Runspace Samples
Article • 09/17/2021

This section includes sample code that shows how to create runspaces that can be used
to connect to a computer by using WS-Management-based Windows PowerShell
remoting. You can use Microsoft Visual Studio to create a console application and then
copy the code from the topics in this section into your host application.

RemoteRunspace01 Sample This sample shows how to create a remote runspace that is
used to establish a remote connection.

RemoteRunspacePool01 Sample This sample shows how to construct a remote runspace
pool and how to run multiple commands concurrently by using this pool.

In This Section

７ Note

For more information about running commands on a remote computer, see
Windows PowerShell Remoting.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhosting%2Fremote-runspace-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhosting%2Fremote-runspace-samples.md&documentVersionIndependentId=c39cbd22-c18e-2d09-73b9-9103c25e7b69&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b8d6cb47-100b-a71b-c9a7-b7e0c04663c0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RemoteRunspace01 Sample
Article • 03/24/2025

This sample shows how to create a remote runspace that is used to establish a remote
connection.

This sample requires Windows PowerShell 2.0.

Creating a System.Management.Automation.Runspaces.WSManConnectionInfo
object.

Setting the
System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTi
meout* and
System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeo
ut* properties of the
System.Management.Automation.Runspaces.WSManConnectionInfo object.

Creating a remote runspace that uses the
System.Management.Automation.Runspaces.WSManConnectionInfo object to
establish the remote connection.

Closing the remote runspace to release the remote connection.

This sample defines a remote connection and then uses that connection information to
establish a remote connection.

C#

Requirements

Demonstrates

Example

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Management.Automation;             // Windows PowerShell 
namespace.
  using System.Management.Automation.Runspaces;   // Windows PowerShell 
namespace.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo


  /// <summary>
  /// This class contains the Main entry point for the application.
  /// </summary>
  internal class RemoteRunspace01
  {
    /// <summary>
    /// This sample shows how to use a WSManConnectionInfo object to set
    /// various timeouts and how to establish a remote connection.
    /// </summary>
    /// <param name="args">This parameter is not used.</param>
    public static void Main(string[] args)
    {
      // Create a WSManConnectionInfo object using the default constructor
      // to connect to the "localHost". The WSManConnectionInfo object can
      // also specify connections to remote computers.
      WSManConnectionInfo connectionInfo = new WSManConnectionInfo();

      // Set the OperationTimeout property. The OperationTimeout is used to 
tell
      // Windows PowerShell how long to wait (in milliseconds) before timing 
out
      // for any operation. This includes sending input data to the remote 
computer,
      // receiving output data from the remote computer, and more. The user 
can
      // change this timeout depending on whether the connection is to a 
computer
      // in the data center or across a slow WAN.
      connectionInfo.OperationTimeout = 4 * 60 * 1000; // 4 minutes.

      // Set the OpenTimeout property. OpenTimeout is used to tell Windows 
PowerShell
      // how long to wait (in milliseconds) before timing out while 
establishing a
      // remote connection. The user can change this timeout depending on 
whether the
      // connection is to a computer in the data center or across a slow 
WAN.
      connectionInfo.OpenTimeout = 1 * 60 * 1000; // 1 minute.

      // Create a remote runspace using the connection information.
      using (Runspace remoteRunspace = 
RunspaceFactory.CreateRunspace(connectionInfo))
      {
        // Establish the connection by calling the Open() method to open the 
runspace.
        // The OpenTimeout value set previously will be applied while 
establishing
        // the connection. Establishing a remote connection involves sending 
and
        // receiving some data, so the OperationTimeout will also play a 
role in this process.
        remoteRunspace.Open();



        // Add the code to run commands in the remote runspace here. The
        // OperationTimeout value set previously will play a role here 
because
        // running commands involves sending and receiving data.

        // Close the connection. Call the Close() method to close the remote
        // runspace. The Dispose() method (called by using primitive) will 
call
        // the Close() method if it is not already called.
        remoteRunspace.Close();
      }
    }
  }
}



RemoteRunspacePool01 Sample
Article • 03/24/2025

This sample shows how to construct a remote runspace pool and how to run multiple
commands concurrently by using this pool.

This sample requires Windows PowerShell 2.0.

Creating a System.Management.Automation.Runspaces.WSManConnectionInfo
object.

Setting the
System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTi
meout* and
System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeo
ut* properties of the
System.Management.Automation.Runspaces.WSManConnectionInfo object.

Creating a remote runspace that uses the
System.Management.Automation.Runspaces.WSManConnectionInfo object to
establish the remote connection.

Running the Get-Process and Get-Service cmdlets concurrently by using the
remote runspace pool.

Closing the remote runspace pool to release the remote connection.

This sample shows how to construct a remote runspace pool and how to run multiple
commands concurrently by using this pool.

C#

Requirements

Demonstrates

Example

namespace Samples
{
  using System;
  using System.Management.Automation;            // Windows PowerShell 

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OperationTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConnectionInfo.OpenTimeout
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.WSManConnectionInfo
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Process
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service


namespace.
  using System.Management.Automation.Runspaces;  // Windows PowerShell 
namespace.

  /// <summary>
  /// This class contains the Main entry point for the application.
  /// </summary>
  internal class RemoteRunspacePool01
  {
    /// <summary>
    /// This sample shows how to construct a remote RunspacePool and how to
    /// concurrently run the Get-Process and Get-Service commands using the
    /// runspaces of the pool.
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    public static void Main(string[] args)
    {
      // Create a WSManConnectionInfo object using the default constructor 
to
      // connect to the "localhost". The WSManConnectionInfo object can also
      // specify connections to remote computers.
      WSManConnectionInfo connectionInfo = new WSManConnectionInfo();

      // Create a remote runspace pool that uses the WSManConnectionInfo 
object.
      // The minimum runspaces value of 1 specifies that Windows PowerShell 
will
      // keep at least 1 runspace open. The maximum runspaces value of 2 
specifies
      // that Windows PowerShell will allows 2 runspaces to be opened at the
      // same time so that two commands can be run concurrently.
      using (RunspacePool remoteRunspacePool =
             RunspaceFactory.CreateRunspacePool(1, 2, connectionInfo))
      {
        // Call the Open() method to open the runspace pool and establish
        // the connection.
        remoteRunspacePool.Open();

        // Call the Create() method to create a pipeline, call the 
AddCommand(string)
        // method to add the "Get-Process" command, and then call the 
BeginInvoke()
        // method to run the command asynchronously using a runspace of the 
pool.
        PowerShell gpsCommand = PowerShell.Create().AddCommand("Get-
Process");
        gpsCommand.RunspacePool = remoteRunspacePool;
        IAsyncResult gpsCommandAsyncResult = gpsCommand.BeginInvoke();

        // The previous call does not block the current thread because it is
        // running asynchronously. Because the remote runspace pool can open 
two
        // runspaces, the second command can be run.
        PowerShell getServiceCommand = PowerShell.Create().AddCommand("Get-
Service");



        getServiceCommand.RunspacePool = remoteRunspacePool;
        IAsyncResult getServiceCommandAsyncResult = 
getServiceCommand.BeginInvoke();

        // When you are ready to handle the output, wait for the command to 
complete
        // before extracting results. A call to the EndInvoke() method will 
block and return
        // the output.
        PSDataCollection<PSObject> gpsCommandOutput = 
gpsCommand.EndInvoke(gpsCommandAsyncResult);

        // Process the output from the first command.
        if ((gpsCommandOutput != null) && (gpsCommandOutput.Count > 0))
        {
          Console.WriteLine("The first output from running Get-Process 
command: ");
          Console.WriteLine(
                            "Process Name: {0} Process Id: {1}",
                            
gpsCommandOutput[0].Properties["ProcessName"].Value,
                            gpsCommandOutput[0].Properties["Id"].Value);
          Console.WriteLine();
        }

        // Now process the output from the second command. As discussed 
previously, wait
        // for the command to complete before extracting the results.
        PSDataCollection<PSObject> getServiceCommandOutput = 
getServiceCommand.EndInvoke(
                                   getServiceCommandAsyncResult);

        // Process the output of the second command as needed.
        if ((getServiceCommandOutput != null) && 
(getServiceCommandOutput.Count > 0))
        {
          Console.WriteLine("The first output from running Get-Service 
command: ");
          Console.WriteLine(
                            "Service Name: {0} Description: {1} State: {2}",
                            
getServiceCommandOutput[0].Properties["ServiceName"].Value,
                            
getServiceCommandOutput[0].Properties["DisplayName"].Value,
                            
getServiceCommandOutput[0].Properties["Status"].Value);
        }

        // Once done with running all the commands, close the remote 
runspace pool.
        // The Dispose() method (called by using primitive) will call 
Close(), if it
        // is not already called.
        remoteRunspacePool.Close();
      } // End Using.



    } // End Main.
  } // End RemoteRunspacePool01 class
}

See Also



Formatting File Overview
Article • 03/13/2023

The display format for the objects that are returned by commands (cmdlets, functions,
and scripts) are defined by using formatting files ( format.ps1xml ). Several of these files
are provided by PowerShell to define the display format for those objects returned by
PowerShell-provided commands, such as the System.Diagnostics.Process object
returned by the Get-Process  cmdlet. However, you can also create your own custom
formatting files to overwrite the default display formats or you can write a custom
formatting file to define the display of objects returned by your own commands.

PowerShell uses the data in these formatting files to determine what is displayed and
how the displayed data is formatted. The displayed data can include the properties of an
object or the value of a script. Scripts are used if you want to display some value that is
not available directly from the properties of an object, such as adding the value of two
properties of an object and then displaying the sum as a piece of data. Formatting of
the displayed data is done by defining views for the objects that you want to display.
You can define a single view for each object, you can define a single view for multiple
objects, or you can define multiple views for the same object. There is no limit to the
number of views that you can define.

Each formatting file can define the following components that can be shared across all
the views defined by the file:

Default configuration setting, such as whether the data displayed in the rows of
tables will be displayed on the next line if the data is longer than the width of the
column. For more information about these settings, see Wrap Element for
TableRowEntry.

Sets of objects that can be displayed by any of the views of the formatting file. For
more information about these sets (referred to as selection sets), see Defining Sets
of Objects.

） Important

Formatting files do not determine the elements of an object that are returned to
the pipeline. When an object is returned to the pipeline, all members of that object
are available even if some are not displayed.

Common Features of Formatting Files

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process


Common controls that can be used by all the views of the formatting file. Controls
give you finer control on how data is displayed. For more information about
controls, see Defining Custom Controls.

Formatting views can display objects in a table format, list format, wide format, and
custom format. For the most part, each formatting definition is described by a set of
XML tags that describe the view. Each view contains the name of the view, the objects
that use the view, and the elements of the view, such as the column and row
information for a table view.

Lists the properties of an object or a script block value in one or more columns. Each
column represents a single property of the object or a script value. You can define a
table view that displays all the properties of an object, a subset of the properties of an
object, or a combination of properties and script values. Each row of the table
represents a returned object. Creating a table view is very similar to when you pipe an
object to the Format-Table  cmdlet. For more information about this view, see Table
View.

Lists the properties of an object or a script value in a single column. Each row of the list
displays an optional label or the property name followed by the value of the property or
script. Creating a list view is very similar to piping an object to the Format-List  cmdlet.
For more information about this view, see List View.

Lists a single property of an object or a script value in one or more columns. There is no
label or header for this view. Creating a wide view is very similar to piping an object to
the Format-Wide  cmdlet. For more information about this view, see Wide View.

Displays a customizable view of object properties or script values that does not adhere
to the rigid structure of table views, list views, or wide views. You can define a stand-
alone custom view, or you can define a custom view that is used by another view, such

Formatting Views

Table View

List View

Wide View

Custom View



as a table view or list view. Creating a custom view is very similar to piping an object to
the Format-Custom  cmdlet. For more information about this view, see Custom View.

The following XML examples show the basic XML components of a view. The individual
XML elements vary depending on which view you want to create, but the basic
components of the views are all the same.

To start with, each view has a Name  element that specifies a user friendly name that is
used to reference the view. a ViewSelectedBy  element that defines which .NET objects
are displayed by the view, and a control element that defines the view.

XML

Within the control element, you can define one or more entry elements. If you use
multiple definitions, you must specify which .NET objects use each definition. Typically
only one entry, with only one definition, is needed for each control.

XML

Components of a View

<ViewDefinitions>
  <View>
    <Name>NameOfView</Name>
    <ViewSelectedBy>...</ViewSelectedBy>
    <TableControl>...</TableControl>
  </View>
  <View>
    <Name>NameOfView</Name>
    <ViewSelectedBy>...</ViewSelectedBy>
    <ListControl>...</ListControl>
  <View>
  <View>
    <Name>NameOfView</Name>
    <ViewSelectedBy>...</ViewSelectedBy>
    <WideControl>...</WideControl>
  <View>
  <View>
    <Name>NameOfView</Name>
    <ViewSelectedBy>...</ViewSelectedBy>
    <CustomControl>...</CustomControl>
  </View>
</ViewDefinitions>

<ListControl>
  <ListEntries>
    <ListEntry>



Within each entry element of a view, you specify the item elements that define the .NET
properties or scripts that are displayed by that view.

XML

As shown in the preceding examples, the formatting file can contain multiple views, a
view can contain multiple definitions, and each definition can contain multiple items.

The following example shows the XML tags used to define a table view that contains
two columns. The ViewDefinitions element is the container element for all the views
defined in the formatting file. The View element defines the specific table, list, wide, or
custom view. Within each View element, the Name element specifies the name of the
view, the ViewSelectedBy element defines the objects that use the view, and the
different control elements (such as the TableControl  element shown in the following
example) define the type of the view.

XML

      <EntrySelectedBy>...</EntrySelectedBy>
      <ListItems>...</ListItems>
    </ListEntry>
    <ListEntry>
        <EntrySelectedBy>...</EntrySelectedBy>
      <ListItems>...</ListItems>
    </ListEntry>
    <ListEntry>
        <EntrySelectedBy>...</EntrySelectedBy>
      <ListItems>...</ListItems>
    </ListEntry>
  </ListEntries>
</ListControl>

<ListItems>
  <ListItem>...</ListItem>
  <ListItem>...</ListItem>
  <ListItem>...</ListItem>
</ListItems>

Example of a Table View

<ViewDefinitions>
  <View>
    <Name>Name of View</Name>
    <ViewSelectedBy>
      <TypeName>Object to display using this view</TypeName>



Creating a List View

Creating a Table View

Creating a Wide View

Creating Custom Controls

Writing a PowerShell Formatting and Types File

      <TypeName>Object to display using this view</TypeName>
    </ViewSelectedBy>
    <TableControl>
      <TableHeaders>
        <TableColumnHeader>
          <Width></Width>
        </TableColumnHeader>
        <TableColumnHeader>
          <Width></Width>
        </TableColumnHeader>
      </TableHeaders>
      <TableRowEntries>
        <TableRowEntry>
          <TableColumnItems>
            <TableColumnItem>
              <PropertyName>Header for column 1</PropertyName>
            </TableColumnItem>
            <TableColumnItem>
              <PropertyName>Header for column 2</PropertyName>
            </TableColumnItem>
          </TableColumnItems>
        </TableRowEntry>
      </TableRowEntries>
    </TableControl>
  </View>
</ViewDefinitions>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Formatting File Concepts
Article • 09/17/2021

The topics in this section provide information that you might need to know when
creating your own formatting files, such as the different types of views that you can
define and the special components of those views.

Creating a Table View Provides an example of a displayed table view and the XML
elements used to define the view.

Creating a List View Provides an example of a displayed list view and the XML elements
used to define the view.

Creating a Wide View Provides an example of a displayed wide view and the XML
elements used to define the view.

Creating Custom Controls Provides an example of a custom control.

Defining Selection Sets Provides information, an example, and describes the XML
elements used to create a selection set.

Defining Conditions for Displaying Data When defining what data is displayed by a view
or a control, you can specify a condition that must exist for the data to be displayed.

Formatting Displayed Data You can specify how the individual data points in your List,
Table, or Wide view are displayed.

PowerShell Formatting Files Lists the available formatting files provided by PowerShell.

In This Section

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fformatting-file-concepts%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fformatting-file-concepts.md&documentVersionIndependentId=be10f10e-c845-4d3a-a693-5bd925722b67&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f2e59d0a-36de-1746-b3d8-c45838057878+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Creating a Table View
Article • 01/20/2022

A table view displays data in one or more columns. Each row in the table represents a
.NET object, and each column of the table represents a property of the object or a script
value. You can define a table view that displays all the properties of an object or a subset
of the properties of an object.

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController object that is returned by the Get-Service
cmdlet. For this object, Windows PowerShell has defined a table view that displays the
Status  property, the Name  property (this property is an alias property for the

ServiceName  property), and the DisplayName  property. Each row in the table represents
an object returned by the cmdlet.

Output

The following XML shows the table view schema for displaying the
System.ServiceProcess.ServiceController object. You must specify each property that you
want displayed in the table view.

XML

A Table View Display

Status   Name               DisplayName
------   ----               -----------
Stopped  AJRouter           AllJoyn Router Service
Stopped  ALG                Application Layer Gateway Service
Stopped  AppIDSvc           Application Identity
Running  Appinfo            Application Information

Defining the Table View

<View>
  <Name>service</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <TableControl>
    <TableHeaders>
      <TableColumnHeader>
        <Width>8</Width>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


The following XML elements are used to define a list view:

The View element is the parent element of the table view. (This is the same parent
element for the list, wide, and custom control views.)

The Name element specifies the name of the view. This element is required for all
views.

The ViewSelectedBy element defines the objects that use the view. This element is
required.

The GroupBy element (not shown in this example) defines when a new group of
objects is displayed. A new group is started whenever the value of a specific
property or script changes. This element is optional.

The Controls element (not shown in this example) defines the custom controls that
are defined by the table view. Controls give you a way to further specify how the
data is displayed. This element is optional. A view can define its own custom
controls, or it can use common controls that can be used by any view in the
formatting file. For more information about custom controls, see Creating Custom
Controls.

      </TableColumnHeader>
      <TableColumnHeader>
        <Width>18</Width>
      </TableColumnHeader>
      <TableColumnHeader>
        <Width>38</Width>
      </TableColumnHeader>
    </TableHeaders>
    <TableRowEntries>
      <TableRowEntry>
        <TableColumnItems>
          <TableColumnItem>
           <PropertyName>Status</PropertyName>
          </TableColumnItem>
          <TableColumnItem>
            <PropertyName>Name</PropertyName>
          </TableColumnItem>
          <TableColumnItem>
            <PropertyName>DisplayName</PropertyName>
          </TableColumnItem>
        </TableColumnItems>
      </TableRowEntry>
    </TableRowEntries>
  </TableControl>
</View>



The HideTableHeaders element (not show in this example) specifies that the table
will not show any labels at the top of the table. This element is optional.

The TableControl element that defines the header and row information of the
table. Similar to all other views, a table view can display the values of object
properties or values generated by scripts.

1. The TableHeaders element and its child elements define what is displayed at the
top of the table.

2. The TableColumnHeader element defines what is displayed at the top of a column
of the table. Specify these elements in the order that you want the headers
displayed.

There is no limit to the number of these element that you can use, but the number
of TableColumnHeader elements in your table view must equal the number of
TableRowEntry elements that you use.

3. The Label element specifies the text that is displayed. This element is optional.

4. The Width element specifies the width (in characters) of the column. This element
is optional.

5. The Alignment element specifies how the label is displayed. The label can be
aligned to the left, to the right, or centered. This element is optional.

Table views can provide one or more definitions that specify what data is displayed in
the rows of the table by using the child elements of the TableRowEntries element. Notice
that you can specify multiple definitions for the rows of the table, but the headers for
the rows remains the same, regardless of what row definition is used. Typically, a table
will have only one definition.

In the following example, the view provides a single definition that displays the values of
several properties of the System.Diagnostics.Process object. A table view can display the
value of a property or the value of a script (not shown in the example) in its rows.

XML

Defining Column Headers

Defining the Table Rows

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


The following XML elements can be used to provide definitions for a row:

The TableRowEntries element and its child elements define what is displayed in the
rows of the table.

The TableRowEntry element provides a definition of the row. At least one
TableRowEntry is required; however, there is no maximum limit to the number of
elements that you can add. In most cases, a view will have only one definition.

The EntrySelectedBy element specifies the objects that are displayed by a specific
definition. This element is optional and is needed only when you define multiple
TableRowEntry elements that display different objects.

The Wrap element specifies that text that exceeds the column width is displayed
on the next line. By default, text that exceeds the column width is truncated.

The TableColumnItems element defines the properties or scripts whose values are
displayed in the row.

The TableColumnItem element defines the property or script whose value is
displayed in the column of the row. A TableColumnItem element is required for
each column of the row. The first entry is displayed in first column, the second
entry in the second column, and so on.

The PropertyName element specifies the property whose value is displayed in the
row. You must specify either a property or a script, but you cannot specify both.

The ScriptBlock element specifies the script whose value is displayed in the row.
You must specify either a script or a property, but you cannot specify both.

<TableRowEntries>
      <TableRowEntry>
        <TableColumnItems>
          <TableColumnItem>
           <PropertyName>Status</PropertyName>
          </TableColumnItem>
          <TableColumnItem>
            <PropertyName>Name</PropertyName>
          </TableColumnItem>
          <TableColumnItem>
            <PropertyName>DisplayName</PropertyName>
          </TableColumnItem>
        </TableColumnItems>
      </TableRowEntry>
    </TableRowEntries>



The FormatString element specifies a format pattern that defines how the property
or script value is displayed. This element is optional.

The Alignment element specifies how the value of the property or script is
displayed. The value can be aligned to the left, to the right, or centered. This
element is optional.

There are two ways to define which .NET objects use the table view. You can use the
ViewSelectedBy element to define the objects that can be displayed by all the
definitions of the view, or you can use the EntrySelectedBy element to define which
objects are displayed by a specific definition of the view. In most cases, a view has only
one definition, so objects are typically defined by the ViewSelectedBy element.

The following example shows how to define the objects that are displayed by the table
view using the ViewSelectedBy and TypeName elements. There is no limit to the number
of TypeName elements that you can specify, and their order is not significant.

XML

The following XML elements can be used to specify the objects that are used by the
table view:

The ViewSelectedBy element defines which objects are displayed by the list view.

The TypeName element specifies the .NET object that is displayed by the view. The
fully qualified .NET type name is required. You must specify at least one type or
selection set for the view, but there is no maximum number of elements that can
be specified.

The following example uses the ViewSelectedBy and SelectionSetName elements. Use
selection sets where you have a related set of objects that are displayed using multiple
views, such as when you define a list view and a table view for the same objects. For
more information about how to create a selection set, see Defining Selection Sets.

Defining the Objects That Use the Table View

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <TableControl>...</TableControl>
</View>



XML

The following XML elements can be used to specify the objects that are used by the list
view:

The ViewSelectedBy element defines which objects are displayed by the list view.

The SelectionSetName element specifies a set of objects that can be displayed by
the view. You must specify at least one selection set or type for the view, but there
is no maximum number of elements that can be specified.

The following example shows how to define the objects displayed by a specific
definition of the table view using the EntrySelectedBy element. Using this element, you
can specify the .NET type name of the object, a selection set of objects, or a selection
condition that specifies when the definition is used. For more information about how to
create a selection conditions, see Defining Conditions for Displaying Data.

XML

The following XML elements can be used to specify the objects that are used by a
specific definition of the list view:

The EntrySelectedBy element defines which objects are displayed by the definition.

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <SelectionSetName>.NET Type Set</SelectionSetName>
  </ViewSelectedBy>
  <TableControl>...</TableControl>
</View>

７ Note

When creating multiple definitions of the table view you cannot specify different
column headers. You can specify only what is displayed in the rows of the table,
such as what objects are displayed.

<TableRowEntry>
  <EntrySelectedBy>
    <TypeName>.NET Type</TypeName>
  </EntrySelectedBy>
</TableRowEntry>



The TypeName element specifies the .NET object that is displayed by the definition.
When using this element, the fully qualified .NET type name is required. You must
specify at least one type, selection set, or selection condition for the definition, but
there is no maximum number of elements that can be specified.

The SelectionSetName element (not shown) specifies a set of objects that can be
displayed by this definition. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of
elements that can be specified.

The SelectionCondition element (not shown) specifies a condition that must exist
for this definition to be used. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of
elements that can be specified. For more information about defining selection
conditions, see Defining Conditions for Displaying Data.

Formatting strings can be added to a view to further define how the data is displayed.
The following example shows how to define a formatting string for the value of the
StartTime  property.

XML

The following XML elements can be used to specify a format pattern:

The TableColumnItem element defines the property or script whose value is
displayed in the column of the row. A TableColumnItem element is required for
each column of the row. The first entry is displayed in first column, the second
entry in the second column, and so on.

The PropertyName element specifies the property whose value is displayed in the
row. You must specify either a property or a script, but you cannot specify both.

The FormatString element specifies a format pattern that defines how the property
or script value is displayed.

Using Format Strings

<TableColumnItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</TableColumnItem>



In the following example, the ToString  method is called to format the value of the
script. Scripts can call any method of an object. Therefore, if an object has a method,
such as ToString , that has formatting parameters, the script can call that method to
format the output value of the script.

XML

The following XML element can be used to calling the ToString  method:

The TableColumnItem element defines the property or script whose value is
displayed in the column of the row. A TableColumnItem element is required for
each column of the row. The first entry is displayed in first column, the second
entry in the second column, and so on.

The ScriptBlock element specifies the script whose value is displayed in the row.
You must specify either a script or a property, but you cannot specify both.

Writing a PowerShell Formatting File

<ListItem>
  <ScriptBlock>
    [string]::Format("{0,-10} {1,-8}", $_.LastWriteTime.ToString("d"), 
$_.LastWriteTime.ToString("t"))
  </ScriptBlock>
</ListItem>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Creating a List View
Article • 01/20/2022

A list view displays data in a single column (in sequential order). The data displayed in
the list can be the value of a .NET property or the value of a script.

The following output shows how Windows PowerShell displays the properties of
System.ServiceProcess.ServiceController objects that are returned by the Get-Service
cmdlet. In this example, three objects were returned, with each object separated from
the preceding object by a blank line.

PowerShell

Output

A List View Display

Get-Service | Format-List

Name                : AEADIFilters
DisplayName         : Andrea ADI Filters Service
Status              : Running
DependentServices   : {}
ServicesDependedOn  : {}
CanPauseAndContinue : False
CanShutdown         : False
CanStop             : True
ServiceType         : Win32OwnProcess

Name                : AeLookupSvc
DisplayName         : Application Experience
Status              : Running
DependentServices   : {}
ServicesDependedOn  : {}
CanPauseAndContinue : False
CanShutdown         : False
CanStop             : True
ServiceType         : Win32ShareProcess

Name                : AgereModemAudio
DisplayName         : Agere Modem Call Progress Audio
Status              : Running
DependentServices   : {}
ServicesDependedOn  : {}
CanPauseAndContinue : False
CanShutdown         : False
CanStop             : True

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service


The following XML shows the list view schema for displaying several properties of the
System.ServiceProcess.ServiceController object. You must specify each property that you
want displayed in the list view.

XML

The following XML elements are used to define a list view:

The View element is the parent element of the list view. (This is the same parent
element for the table, wide, and custom control views.)

The Name element specifies the name of the view. This element is required for all
views.

The ViewSelectedBy element defines the objects that use the view. This element is
required.

ServiceType         : Win32OwnProcess
...

Defining the List View

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>
    <ListEntries>
      <ListEntry>
        <ListItems>
          <ListItem>
            <PropertyName>Name</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>DisplayName</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>Status</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>ServiceType</PropertyName>
          </ListItem>
        </ListItems>
      </ListEntry>
    </ListEntries>
  </ListControl>
</View>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


The GroupBy element defines when a new group of objects is displayed. A new
group is started whenever the value of a specific property or script changes. This
element is optional.

The Controls element defines the custom controls that are defined by the list view.
Controls give you a way to further specify how the data is displayed. This element
is optional. A view can define its own custom controls, or it can use common
controls that can be used by any view in the formatting file. For more information
about custom controls, see Creating Custom Controls.

The ListControl element defines what is displayed in the view and how it is
formatted. Similar to all other views, a list view can display the values of object
properties or values generated by script.

For an example of a complete formatting file that defines a simple list view, see List View
(Basic).

List views can provide one or more definitions by using the child elements of the
ListControl element. Typically, a view will have only one definition. In the following
example, the view provides a single definition that displays several properties of the
System.Diagnostics.Process object. A list view can display the value of a property or the
value of a script (not shown in the example).

XML

Providing Definitions for Your List View

<ListControl>
    <ListEntries>
      <ListEntry>
        <ListItems>
          <ListItem>
            <PropertyName>Name</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>DisplayName</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>Status</PropertyName>
          </ListItem>
          <ListItem>
            <PropertyName>ServiceType</PropertyName>
          </ListItem>
        </ListItems>
      </ListEntry>
    </ListEntries>

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


The following XML elements can be used to provide definitions for a list view:

The ListControl element and its child elements define what is displayed in the view.

The ListEntries element provides the definitions of the view. In most cases, a view
will have only one definition. This element is required.

The ListEntry element provides a definition of the view. At least one ListEntry is
required; however, there is no maximum limit to the number of elements that you
can add. In most cases, a view will have only one definition.

The EntrySelectedBy element specifies the objects that are displayed by a specific
definition. This element is optional and is needed only when you define multiple
ListEntry elements that display different objects.

The ListItems element specifies the properties and scripts whose values are
displayed in the rows of the list view.

The ListItem element specifies a property or script whose value is displayed in a
row of the list view. A list view must specify at least one property or script. There is
no maximum limit to the number of rows that can be specified.

The PropertyName element specifies the property whose value is displayed in the
row. You must specify either a property or a script, but you cannot specify both.

The ScriptBlock element specifies the script whose value is displayed in the row.
You must specify either a script or a property, but you cannot specify both.

The Label element specifies the label that is displayed to the left of the property or
script value in the row. This element is optional. If a label is not specified, the name
of the property or the script is displayed. For a complete example, see List View
(Labels).

The ItemSelectionCondition element specifies a condition that must exist for the
row to be displayed. For more information about adding conditions to the list view,
see Defining Conditions for Displaying Data. This element is optional.

The FormatString element specifies a pattern that is used to display the value of
the property or script. This element is optional.

For an example of a complete formatting file that defines a simple list view, see List View
(Basic).

  </ListControl>



There are two ways to define which .NET objects use the list view. You can use the
ViewSelectedBy element to define the objects that can be displayed by all the
definitions of the view, or you can use the EntrySelectedBy element to define which
objects are displayed by a specific definition of the view. In most cases, a view has only
one definition, so objects are typically defined by the ViewSelectedBy element.

The following example shows how to define the objects that are displayed by the list
view using the ViewSelectedBy and TypeName elements. There is no limit to the number
of TypeName elements that you can specify, and their order is not significant.

XML

The following XML elements can be used to specify the objects that are used by the list
view:

The ViewSelectedBy element defines which objects are displayed by the list view.

The TypeName element specifies the .NET object that is displayed by the view. The
fully qualified .NET type name is required. You must specify at least one type or
selection set for the view, but there is no maximum number of elements that can
be specified.

For an example of a complete formatting file, see List View (Basic).

The following example uses the ViewSelectedBy and SelectionSetName elements. Use
selection sets where you have a related set of objects that are displayed using multiple
views, such as when you define a list view and a table view for the same objects. For
more information about how to create a selection set, see Defining Selection Sets.

XML

Defining the Objects That Use the List View

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </ViewSelectedBy>
  <ListControl>...</ListControl>
</View>

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <SelectionSetName>.NET Type Set</SelectionSetName>
  </ViewSelectedBy>



The following XML elements can be used to specify the objects that are used by the list
view:

The ViewSelectedBy element defines which objects are displayed by the list view.

The SelectionSetName element specifies a set of objects that can be displayed by
the view. You must specify at least one selection set or type for the view, but there
is no maximum number of elements that can be specified.

The following example shows how to define the objects displayed by a specific
definition of the list view using the EntrySelectedBy element. Using this element, you can
specify the .NET type name of the object, a selection set of objects, or a selection
condition that specifies when the definition is used. For more information about how to
create a selection conditions, see Defining Conditions for Displaying Data.

XML

The following XML elements can be used to specify the objects that are used by a
specific definition of the list view:

The EntrySelectedBy element defines which objects are displayed by the definition.

The TypeName element specifies the .NET object that is displayed by the definition.
When using this element, the fully qualified .NET type name is required. You must
specify at least one type, selection set, or selection condition for the definition, but
there is no maximum number of elements that can be specified.

The SelectionSetName element (not shown) specifies a set of objects that can be
displayed by this definition. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of
elements that can be specified.

The SelectionCondition element (not shown) specifies a condition that must exist
for this definition to be used. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of

  <ListControl>...</ListControl>
</View>

<ListEntry>
  <EntrySelectedBy>
    <TypeName>.NET Type</TypeName>
  </EntrySelectedBy>
</ListEntry>



elements that can be specified. For more information about defining selection
conditions, see Defining Conditions for Displaying Data.

You can separate the objects that are displayed by the list view into groups. This does
not mean that you define a group, only that Windows PowerShell starts a new group
whenever the value of a specific property or script changes. In the following example, a
new group is started whenever the value of the
System.ServiceProcess.ServiceController.ServiceType property changes.

XML

The following XML elements are used to define when a group is started:

The GroupBy element defines the property or script that starts the new group and
defines how the group is displayed.

The PropertyName element specifies the property that starts a new group
whenever its value changes. You must specify a property or script to start the
group, but you cannot specify both.

The ScriptBlock element specifies the script that starts a new group whenever its
value changes. You must specify a script or property to start the group, but you
cannot specify both.

The Label element defines a label that is displayed at the beginning of each group.
In addition to the text specified by this element, Windows PowerShell displays the
value that triggered the new group and adds a blank line before and after the
label. This element is optional.

The CustomControl element defines a control that is used to display the data. This
element is optional.

The CustomControlName element specifies a common or view control that is used
to display the data. This element is optional.

Displaying Groups of Objects in a List View

<GroupBy>
  <Label>Service Type</Label>
  <PropertyName>ServiceType</PropertyName>
</GroupBy>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController.ServiceType


For an example of a complete formatting file that defines groups, see List View
(GroupBy).

Formatting strings can be added to a view to further define how the data is displayed.
The following example shows how to define a formatting string for the value of the
StartTime  property.

XML

The following XML elements can be used to specify a format pattern:

The ListItem element specifies the data that is displayed by the view.

The PropertyName element specifies the property whose value is displayed by the
view. You must specify either a property or a script, but you cannot specify both.

The FormatString element specifies a format pattern that defines how the property
or script value is displayed in the view.

The ScriptBlock element (not shown) specifies the script whose value is displayed
by the view. You must specify either a script or a property, but you cannot specify
both.

In the following example, the ToString  method is called to format the value of the
script. Scripts can call any method of an object. Therefore, if an object has a method,
such as ToString , that has formatting parameters, the script can call that method to
format the output value of the script.

XML

The following XML element can be used to calling the ToString  method:

Using Format Strings

<ListItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</ListItem>

<ListItem>
  <ScriptBlock>
    [string]::Format("{0,-10} {1,-8}", $_.LastWriteTime.ToString("d"), 
$_.LastWriteTime.ToString("t"))
  </ScriptBlock>
</ListItem>



The ListItem element specifies the data that is displayed by the view.

The ScriptBlock element (not shown) specifies the script whose value is displayed
by the view. You must specify either a script or a property, but you cannot specify
both.

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


Creating a Wide View
Article • 03/13/2023

A wide view displays a single value for each object that's displayed. The displayed value
can be the value of a .NET object property or the value of a script. By default, there is no
label or header for this view.

The following example shows how Windows PowerShell displays the
System.Diagnostics.Process object that's returned by the Get-Process cmdlet when its
output is piped to the Format-Wide cmdlet. (By default, the Get-Process cmdlet returns
a table view.) In this example, the two columns are used to display the name of the
process for each returned object. The name of the object's property isn't displayed, only
the value of the property.

PowerShell

Output

A Wide View Display

Get-Process | Format-Wide

AEADISRV                     agrsmsvc
Ati2evxx                     Ati2evxx
audiodg                      CCC
CcmExec                      communicator
Crypserv                     csrss
csrss                        DevDtct2
DM1Service                   dpupdchk
dwm                          DxStudio
EXCEL                        explorer
GoogleToolbarNotifier        GrooveMonitor
hpqwmiex                     hpservice
Idle                         InoRpc
InoRT                        InoTask
ipoint                       lsass
lsm                          MOM
MSASCui                      notepad
...                          ...

Defining the Wide View

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/format-wide?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-process?view=powershell-7.5


The following XML shows the wide view schema for the System.Diagnostics.Process
object.

XML

The following XML elements are used to define a wide view:

The View element is the parent element of the wide view. (This is the same parent
element for the table, list, and custom control views.)
The Name element specifies the name of the view. This element is required for all
views.
The ViewSelectedBy element defines the objects that use the view. This element is
required.
The GroupBy element defines when a new group of objects is displayed. A new
group is started whenever the value of a specific property or script changes. This
element is optional.
The Controls elements defines the custom controls that are defined by the wide
view. Controls give you a way to further specify how the data is displayed. This
element is optional. A view can define its own custom controls, or it can use
common controls that can be used by any view in the formatting file. For more
information about custom controls, see Creating Custom Controls.
The WideControl element and its child elements define what's displayed in the
view. In the preceding example, the view is designed to display the
System.Diagnostics.Process.ProcessName property.

For an example of a complete formatting file that defines a simple wide view, see Wide
View (Basic).

<View>
  <Name>process</Name>
  <ViewSelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </ViewSelectedBy>
  <GroupBy>...</GroupBy>
  <Controls>...</Controls>
  <WideControl>
    <WideEntries>
      <WideEntry>
        <WideItem>
          <PropertyName>ProcessName</PropertyName>
        </WideItem>
      </WideEntry>
    </WideEntries>
  </WideControl>
</View>

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process.processname#system-diagnostics-process-processname


Wide views can provide one or more definitions by using the child elements of the
WideControl element. Typically, a view will have only one definition. In the following
example, the view provides a single definition that displays the
System.Diagnostics.Process.ProcessName property. A wide view can display the value of
a property or the value of a script (not shown in the example).

XML

The following XML elements can be used to provide definitions for a wide view:

The WideControl element and its child elements define what's displayed in the
view.
The AutoSize element specifies whether the column size and the number of
columns are adjusted based on the size of the data. This element is optional.
The ColumnNumber element specifies the number of columns displayed in the
wide view. This element is optional.
The WideEntries element provides the definitions of the view. In most cases, a view
will have only one definition. This element is required.
The WideEntry element provides a definition of the view. At least one WideEntry is
required; however, there is no maximum limit to the number of elements that you
can add. In most cases, a view will have only one definition.
The EntrySelectedBy element specifies the objects that are displayed by a specific
definition. This element is optional and is needed only when you define multiple
WideEntry elements that display different objects.
The WideItem element specifies the data that's displayed by the view. In contrast
to other types of views, a wide control can display only one item.
The PropertyName element specifies the property whose value is displayed by the
view. You must specify either a property or a script, but you can't specify both.
The ScriptBlock element specifies the script whose value is displayed by the view.
You must specify either a script or a property, but you can't specify both.

Providing Definitions for Your Wide View

<WideControl>
  <AutoSize/>
  <ColumnNumber></ColumnNumber>
  <WideEntries>
    <WideEntry>
      <WideItem>
        <PropertyName>ProcessName</PropertyName>
      </WideItem>
    </WideEntry>
  </WideEntries>
</WideControl>

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process.processname#system-diagnostics-process-processname


The FormatString element specifies a pattern that's used to display the data. This
element is optional.

For an example of a complete formatting file that defines a wide view definition, see
Wide View (Basic).

There are two ways to define which .NET objects use the wide view. You can use the
ViewSelectedBy element to define the objects that can be displayed by all the
definitions of the view, or you can use the EntrySelectedBy element to define which
objects are displayed by a specific definition of the view. In most cases, a view has only
one definition, so objects are typically defined by the ViewSelectedBy element.

The following example shows how to define the objects that are displayed by the wide
view using the ViewSelectedBy and TypeName elements. There is no limit to the number
of TypeName elements that you can specify, and their order isn't significant.

XML

The following XML elements can be used to specify the objects that are used by the
wide view:

The ViewSelectedBy element defines which objects are displayed by the wide view.
The TypeName element specifies the .NET that's displayed by the view. The fully
qualified .NET type name is required. You must specify at least one type or
selection set for the view, but there is no maximum number of elements that can
be specified.

For an example of a complete formatting file, see Wide View (Basic).

The following example uses the ViewSelectedBy and SelectionSetName elements. Use
selection sets where you have a related set of objects that are displayed using multiple
views, such as when you define a wide view and a table view for the same objects. For
more information about how to create a selection set, see Defining Selection Sets.

Defining the Objects That Use the Wide View

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </ViewSelectedBy>
  <WideControl>...</WideControl>
</View>



XML

The following XML elements can be used to specify the objects that are used by the
wide view:

The ViewSelectedBy element defines which objects are displayed by the wide view.
The SelectionSetName element specifies a set of objects that can be displayed by
the view. You must specify at least one selection set or type for the view, but there
is no maximum number of elements that can be specified.

The following example shows how to define the objects displayed by a specific
definition of the wide view using the EntrySelectedBy element. Using this element, you
can specify the .NET type name of the object, a selection set of objects, or a selection
condition that specifies when the definition is used. For more information about how to
create a selection conditions, see Defining Conditions for Displaying Data.

XML

The following XML elements can be used to specify the objects that are used by a
specific definition of the wide view:

The EntrySelectedBy element defines which objects are displayed by the definition.
The TypeName element specifies the .NET that's displayed by the definition. When
using this element the fully qualified .NET type name is required. You must specify
at least one type, selection set, or selection condition for the definition, but there is
no maximum number of elements that can be specified.
The SelectionSetName element (not shown) specifies a set of objects that can be
displayed by this definition. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of
elements that can be specified.

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <SelectionSetName>.NET Type Set</SelectionSetName>
  </ViewSelectedBy>
  <WideControl>...</WideControl>
</View>

<WideEntry>
  <EntrySelectedBy>
    <TypeName>.NET Type</TypeName>
  </EntrySelectedBy>
</WideEntry>



The SelectionCondition element (not shown) specifies a condition that must exist
for this definition to be used. You must specify at least one type, selection set, or
selection condition for the definition, but there is no maximum number of
elements that can be specified. For more information about defining selection
conditions, see Defining Conditions for Displaying Data.

You can separate the objects that are displayed by the wide view into groups. This
doesn't mean that you define a group, only that Windows PowerShell starts a new group
whenever the value of a specific property or script changes. In the following example, a
new group is started whenever the value of the
System.ServiceProcess.ServiceController.ServiceType property changes.

XML

The following XML elements are used to define when a group is started:

The GroupBy element defines the property or script that starts the new group and
defines how the group is displayed.
The PropertyName element specifies the property that starts a new group
whenever its value changes. You must specify a property or script to start the
group, but you can't specify both.
The ScriptBlock element specifies the script that starts a new group whenever its
value changes. You must specify a script or property to start the group, but you
can't specify both.
The Label element defines a label that's displayed at the beginning of each group.
In addition to the text specified by this element, Windows PowerShell displays the
value that triggered the new group and adds a blank line before and after the
label. This element is optional.
The CustomControl element defines a control that's used to display the data. This
element is optional.
The CustomControlName element specifies a common or view control that's used
to display the data. This element is optional.

Displaying Groups of objects in a Wide View

<GroupBy>
  <Label>Service Type</Label>
  <PropertyName>ServiceType</PropertyName>
</GroupBy>

https://learn.microsoft.com/en-us/dotnet/api/system.serviceprocess.servicecontroller.servicetype#system-serviceprocess-servicecontroller-servicetype


For an example of a complete formatting file that defines groups, see Wide View
(GroupBy).

Formatting strings can be added to a wide view to further define how the data is
displayed. The following example shows how to define a formatting string for the value
of the StartTime  property.

XML

The following XML elements can be used to specify a format pattern:

The WideItem element specifies the data that's displayed by the view.
The PropertyName element specifies the property whose value is displayed by the
view. You must specify either a property or a script, but you can't specify both.
The FormatString element specifies a format pattern that defines how the property
or script value is displayed in the view
The ScriptBlock element (not shown) specifies the script whose value is displayed
by the view. You must specify either a script or a property, but you can't specify
both.

In the following example, the ToString  method is called to format the value of the
script. Scripts can call any method of an object. Therefore, if an object has a method,
such as ToString , that has formatting parameters, the script can call that method to
format the output value of the script.

XML

The following XML element can be used to calling the ToString  method:

The WideItem element specifies the data that's displayed by the view.

Using Format Strings

<WideItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</WideItem>

<WideItem>
  <ScriptBlock>
    [string]::Format("{0,-10} {1,-8}", $_.LastWriteTime.ToString("d"), 
$_.LastWriteTime.ToString("t"))
  </ScriptBlock>
</WideItem>



The ScriptBlock element (not shown) specifies the script whose value is displayed
by the view. You must specify either a script or a property, but you can't specify
both.

Wide View (Basic)
Wide View (GroupBy)
Writing a PowerShell Formatting File

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Creating Custom Controls
Article • 09/17/2021

Custom controls are the most flexible components of a formatting file. Unlike table, list,
and wide views that define a formal structure of data, such as a table of data, custom
controls allow you to define how an individual piece of data is displayed. You can define
a common set of custom controls that are available to all the views of the formatting
file, you can define custom controls that are available to a specific view, or you can
define a set of controls that are available to a group of objects.

The following example shows a custom control that is defined in the
Certificates.Format.ps1xml file. This custom control is used to separate the
System.Management.Automation.Signature objects displayed in a table view.

XML

Custom Control Example

<Controls>
  <Control>
    <Name>SignatureTypes-GroupingFormat</Name>
    <CustomControl>
      <CustomEntries>
        <CustomEntry>
          <CustomItem>
            <Frame>
              <LeftIndent>4</LeftIndent>
              <CustomItem>
                <Text AssemblyName="System.Management.Automation" 
BaseName="FileSystemProviderStrings"
                  ResourceId="DirectoryDisplayGrouping"/>
                <ExpressionBinding>
                  <ScriptBlock>Split-Path $_.Path</ScriptBlock>
                </ExpressionBinding>
                <NewLine/>
              </CustomItem>
            </Frame>
          </CustomItem>
        </CustomEntry>
      </CustomEntries>
    </CustomControl>
  </Control>
</Controls>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Signature


Writing a PowerShell Formatting File

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Loading and Exporting Formatting Data
Article • 03/07/2023

Once you've created your formatting file, you need to update the format data of the
session by loading your files into the current session. PowerShell loads a predefined set
of formats. Once the format data of the current session is updated, PowerShell uses that
data to display the .NET objects associated with the views defined in the loaded formats.
There's no limit to the number of formats that you can load into the current session. You
can also export the format data in the current session back to a formatting file.

Formatting files can be loaded into the current session using the following methods:

You can import the formatting file into the current session from the command line.
Use the Update-FormatData cmdlet as described in the following procedure.

You can create a module manifest that references your formatting file. Modules
allow you to package your formatting files for distribution. Use the New-
ModuleManifest cmdlet to create the manifest, and the Import-Module cmdlet to
load the module into the current session. For more information about modules,
see Writing a Windows PowerShell Module.

You can create a snap-in that references your formatting file. Use the
System.Management.Automation.PSSnapIn.Formats to reference your formatting
files. However, best practice recommendation is to use modules to package
cmdlets and associated formatting and types files.

If you're invoking commands programmatically, you can add formatting files to the
initial session state of the runspace where the commands are run. For more
information, see the
System.Management.Automation.Runspaces.SessionStateFormatEntry class.

When a formatting file is loaded, it's added to an internal list that PowerShell uses to
choose the view used when displaying objects in the host. You can prepend your
formatting file to the beginning of the list, or you can append it to the end of the list.

Knowing where your formatting file is added to this list is important.

If you're loading a formatting file that defines the only view for an object, you can
use any of the methods described previously.

Loading format data

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/update-formatdata?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-modulemanifest?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pssnapin.formats#system-management-automation-pssnapin-formats
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.sessionstateformatentry


If you're loading a formatting file that defines a view for an object that has an
existing view defined, it must be added to the beginning of the list. You must use
the Update-FormatData cmdlet and prepend your file to the beginning of the list.

You can store formatting files anywhere on disk. However, it's recommended that you
store them in the same folder as your profile script.

Use the following command to determine the location of your profile script.

PowerShell

1. Store your formatting file to disk.

2. Run the Update-FormatData cmdlet using one of the following commands.

If you're changing how an object is displayed, use the following command to add
your formatting file to the front of the list.

PowerShell

Use the following command to add your formatting file to the end of the list.

PowerShell

Storing Your Formatting File

Split-Path -Path $PROFILE -Parent

Loading a format file

Update-FormatData -PrependPath PathToFormattingFile

Update-FormatData -AppendPath PathToFormattingFile

７ Note

Once format data has been loaded in a session it can't be removed. You must
open a new session without the format data loaded.

Exporting format data

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/update-formatdata?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/update-formatdata?view=powershell-7.5


PowerShell includes format definitions for many .NET types. You can use the Get-
FormatData cmdlet to view the format data that's loaded in the current session. You can
export the format data for a type to a file using the Export-FormatData cmdlet.

The following commands export the format data for the System.Guid  type to a file
named System.Guid.format.ps1xml  in the current directory.

PowerShell

Output

You can edit the exported file create a custom format definition for that type.

Get-FormatData System.Guid | Export-FormatData -Path 
./System.Guid.format.ps1xml
Get-Content ./System.Guid.format.ps1xml

<?xml version="1.0" encoding="utf-8"?>
<Configuration>
  <ViewDefinitions>
    <View>
      <Name>System.Guid</Name>
      <ViewSelectedBy>
        <TypeName>System.Guid</TypeName>
      </ViewSelectedBy>
      <TableControl>
        <TableHeaders />
        <TableRowEntries>
          <TableRowEntry>
            <TableColumnItems>
              <TableColumnItem>
                <PropertyName>Guid</PropertyName>
              </TableColumnItem>
            </TableColumnItems>
          </TableRowEntry>
        </TableRowEntries>
      </TableControl>
    </View>
  </ViewDefinitions>
</Configuration>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-formatdata?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/export-formatdata?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Floading-and-exporting-formatting-data%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Floading-and-exporting-formatting-data.md&documentVersionIndependentId=f6164ff5-66e9-0477-27e5-a847a3d47d45&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+eef622bf-98eb-00fe-32bd-ac20e2bd99b2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Defining Selection Sets
Article • 09/17/2021

When creating multiple views and controls, you can define sets of objects that are
referred to as selection sets. A selection set enables you to define the objects one time,
without having to define them repeatedly for each view or control. Typically, selection
sets are used when you have a set of related .NET objects. For example, The FileSystem
formatting file (FileSystem.format.ps1xml) defines a selection set of the file system types
that several views use.

You define selection sets as part of the common data that can be used by all the views
and controls defined in the formatting file. The following example shows how to define
three selection sets.

XML

You can reference a selection sets in the following ways:

Each view has a ViewSelectedBy  element that defines which objects are displayed
by using the view. The ViewSelectedBy  element has a SelectionSetName  child
element that specifies the selection set that all the definitions of the view use.
There is no restriction on the number of selection sets that you can reference from
a view.

In each definition of a view or control, the EntrySelectedBy  element defines which
objects are displayed by using that definition. Typically a view or control has only
one definition so the objects are defined by the ViewSelectedBy  element. The
EntrySelectedBy  element of the definition has a SelectionSetName  child element
that specifies the selection set. If you specify the selection set for a definition, you
cannot specify any of the other child elements of the EntrySelectedBy  element.

Where Selection Sets are Defined and
Referenced

<Configuration>
  <SelectionSets>
    <SelectionSet>...</SelectionSet>
    <SelectionSet>...</SelectionSet>
    <SelectionSet>...</SelectionSet>
  </SelectionSets>
</Configuration>



In each definition of a view or control, the SelectionCondition  element can be
used to specify a condition for when the definition is used. The
SelectionCondition  element has a SelectionSetName  child element that specifies
the selection set that triggers the condition. The condition is triggered when any of
the objects defined in the selection set are displayed. For more information about
how to set these conditions, see Defining Conditions for when Data is Displayed.

The following example shows a selection set that is taken directly from the FileSystem
formatting file provided by Windows PowerShell. For more information about other
Windows PowerShell formatting files, see Windows PowerShell Formatting Files.

XML

The previous selection set is referenced in the ViewSelectedBy  element of a table view.

XML

Selection Set Example

<SelectionSets>
  <SelectionSet>
    <Name>FileSystemTypes</Name>
    <Types>
     <TypeName>System.IO.DirectoryInfo</TypeName>
     <TypeName>System.IO.FileInfo</TypeName>
     <TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
     <TypeName>Deserialized.System.IO.FileInfo</TypeName>
    </Types>
  </SelectionSet>
</SelectionSets>

<ViewDefinitions>
  <View>
    <Name>Files</Name>
    <ViewSelectedBy>
      <SelectionSetName>FileSystemTypes</SelectionSetName>
    </ViewSelectedBy>
    <TableControl>...</TableControl>
  </View>
</ViewDefinitions>

XML Elements



There is no limit to the number of selection sets that you can define. The following XML
elements are used to create a selection set.

The SelectionSets element defines the sets of .NET objects that are referenced by
the views and controls of the formatting file.

The SelectionSet element defines a single set of .NET objects.

The Name element specifies the name that is used to reference the selection set.

The Types element specifies the .NET types of the objects of the selection set.
(Within formatting files, objects are specified by their .NET type.)

The following XML elements are used to specify a selection set.

The following element specifies the selection set to use in all the definitions of the
view:

SelectionSetName Element for ViewSelectedBy (Format)

SelectionSetName Element for EntrySelectedBy for GroupBy (Format)

The following elements specify the selection set used by a single view definition:

SelectionSetName Element for EntrySelectedBy for ListControl (Format)

SelectionSetName Element for EntrySelectedBy for TableControl (Format)

SelectionSetName Element for EntrySelectedBy for WideControl (Format)

SelectionSetName Element for EntrySelectedBy for CustomControl for View
(Format)

The following elements specify the selection set used by common and view control
definitions:

SelectionSetName Element for EntrySelectedBy for Controls for View (Format)

SelectionSetName Element for EntrySelectedBy for Controls for Configuration
(Format)

The following elements specify the selection set used when you define which
object to expand:

SelectionSetName Element for EntrySelectedBy for EnumerableExpansion
(Format)

The following elements specify the selection set used by selection conditions.



SelectionSetName Element for SelectionCondition for Controls for
Configuration (Format)

SelectionSetName Element for SelectionCondition for Controls for View
(Format)

SelectionSetName Element for SelectionCondition for CustomControl for View
(Format)

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion (Format)

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
ListEntry (Format)

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
TableControl (Format)

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
WideEntry (Format)

SelectionSetName Element for SelectionCondition for GroupBy (Format)

SelectionSets

SelectionSet

Name

Types

PowerShell Formatting Files

Defining Conditions for when Data is Displayed

Writing a PowerShell Formatting and Types File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fdefining-selection-sets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fdefining-selection-sets.md&documentVersionIndependentId=fd6c0c79-ab17-ea53-3c35-25a45fbbf031&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2e30411e-c7d0-1878-ddaf-6e6fc95c7f36+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Defining Conditions for Displaying Data
Article • 09/17/2021

When defining what data is displayed by a view or a control, you can specify a condition
that must exist for the data to be displayed. The condition can be triggered by a specific
property, or when a script or property value evaluates to true . When the selection
condition is met, the definition of the view or control is used.

When creating a definition for a view or control, the EntrySelectedBy  element is used to
specify which objects will use the definition or what condition must exist for the
definition to be used. The condition is specified by the SelectionCondition  element.

In the following example, a selection condition is specified for a definition of a table
view. In this example, the definition is used only when the specified script is evaluated to
true .

XML

There is no limit to the number of selection conditions that you can specify for a
definition of a view or control. The only requirements are the following:

The selection condition must specify one property name or script to trigger the
condition, but cannot specify both.

The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

Specifying a Selection Condition for a
Definition

<TableRowEntry>
  <EntrySelectedBy>
    <SelectionCondition>
      <ScriptBlock>ScriptToEvaluate</ScriptBlock>
    </SelectionCondition>
  </EntrySelectedBy>
  <TableColumnItems>
  </TableColumnItems>
</TableRowEntry>

Specifying a Selection Condition for an Item



You can also specify when an item of a list view or control is used by including the
ItemSelectionCondition  element in the item definition. In the following example, a
selection condition is specified for an item of a list view. In this example, the item is used
only when the script is evaluated to true .

XML

You can specify only one selection condition for an item. And the condition must specify
one property name or script to trigger the condition, but cannot specify both.

The following XML elements are used to create a selection condition.

The following elements specify selection conditions for view definitions:

SelectionCondition Element for EntrySelectedBy for TableControl (Format)

SelectionCondition Element for EntrySelectedBy for ListControl (Format)

SelectionCondition Element for EntrySelectedBy for WideControl (Format)

SelectionCondition Element for EntrySelectedBy for CustomControl (Format)

The following elements specify selection conditions for common and view control
definitions:

SelectionCondition Element for EntrySelectedBy for Controls for Configuration
(Format)

SelectionCondition Element for EntrySelectedBy for Controls for View (Format)

The following element specifies the selection condition for expanding collection
objects:

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion
(Format)

<ListItem>
  <ItemSelectionCondition>
    <ScriptBlock>ScriptToEvaluate</ScriptBlock>
  </ItemSelectionCondition>
</ListItem>

XML Elements



The following element specifies the selection condition for displaying a new group
of data:

SelectionCondition Element for EntrySelectedBy for GroupBy (Format)

The following element specifies an item selection condition for a list view:
ItemSelectionCondition Element for ListItem for ListControl (Format)

The following elements specify an item selection condition for controls:

ItemSelectionCondition Element for ExpressionBinding for Controls for
Configuration (Format)

ItemSelectionCondition Element for ExpressionBinding for Controls for View
(Format)

ItemSelectionCondition Element for ExpressionBinding for CustomControl
(Format)

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fdefining-conditions-for-displaying-data%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fdefining-conditions-for-displaying-data.md&documentVersionIndependentId=1281905a-0292-fcca-a612-5101fa427ec7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+309317bf-849f-e9fc-162c-c3b1f2448a75+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Formatting Displayed Data
Article • 03/13/2023

You can specify how the individual data points in your List, Table, or Wide view are
displayed. You can use the FormatString  element when defining the items of your view,
or you can use the ScriptBlock  element to call the FormatString  method on the data.

In the following example the value of the TotalProcessorTime property of the
System.Diagnostics.Process object is formatted using the FormatString element. the
TotalProcessorTime property

XML

Using the FormatString Element

<TableColumnItem>
  <PropertyName>TotalProcessorTime</PropertyName>
  <FormatString>{0:MMM}{0:dd}{0:HH}:{0:mm}</FormatString>
</TableColumnItem>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fformatting-displayed-data%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fformatting-displayed-data.md&documentVersionIndependentId=dcd08c10-3ae7-504b-65ea-8ac6d3ebf348&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+72edf7b2-0b52-2321-cb2a-b3b757d6962f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Windows PowerShell Formatting Files
Article • 09/17/2021

Windows PowerShell provides several formatting files (.format.ps1xml) that are located
in the installation directory ( $PSHOME ). Each of these files defines the default display for a
specific set of .NET objects. These files should never be changed. However, you can use
them as a reference for creating your own custom formatting files.

Certificate.Format.ps1xml  Defines the display of objects in the Certificate store such as
x.509 certificates and certificate stores.

DotNetTypes.Format.ps1xml  Defines the display of miscellaneous .NET objects such as
CultureInfo, FileVersionInfo, and EventLogEntry objects.

FileSystem.Format.ps1xml  Defines the display of file system objects such as file and
directory objects.

Help.Format.ps1xml  Defines the different views used by the Get-Help cmdlet, such as
the detailed, full, parameters, and example views.

PowerShellCore.Format.ps1xml  Defines the display of the objects generated by Windows
PowerShell core cmdlets, such as the objects returned by the Get-Member and Get-
History cmdlets.

PowerShellTrace.Format.ps1xml  Defines the display of trace objects such as those
generated by the Trace-Command cmdlet.

Registry.Format.ps1xml  Defines the display of registry objects such as key and entry
objects.

Writing a Windows PowerShell Cmdlet

See Also

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Get-Member
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-History
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-History
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Utility/Trace-Command
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5


How to Create a Formatting File
(.format.ps1xml)
Article • 09/17/2021

This topic describes how to create a formatting file (.format.ps1xml).

1. Create a text file (.txt) using a text editor such as Notepad.

2. Copy the following lines into the formatting file.

XML

The <Configuration></Configuration>  tags define the root Configuration
node. All additional XML tags will be enclosed within this node.

The <ViewDefinitions></ViewDefinitions>  tags define the ViewDefinitions
node. All views are defined within this node.

3. Save the file to the Windows PowerShell installation folder, to your module folder,
or to a subfolder of the module folder. Use the following name format when you
save the file: MyFile.format.ps1xml . Formatting files must use the .format.ps1xml
extension.

You are now ready to add views to the formatting file. There is no limit to the
number of views that can be defined in a formatting file. You can add a single view
for each object, multiple views for the same object, or a single view that is used by
multiple objects.

７ Note

You can also create a formatting file by making a copy of one of the files provided
by Windows PowerShell. If you make a copy of an existing file, delete the existing
digital signature, and add your own signature to the new file.

Create a .format.ps1xml file.

<?xml version="1.0" encoding="utf-8" ?>
<Configuration>
<ViewDefinitions>
</ViewDefinitions>
</Configuration>



Writing a Windows PowerShell Formatting and Types File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fhow-to-create-a-formatting-file-format-ps1xml%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fhow-to-create-a-formatting-file-format-ps1xml.md&documentVersionIndependentId=db0cad37-b0d1-0acc-5519-460a6daf9811&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a7480db5-88fb-c307-ce4c-4117d1184095+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Wide View (Basic)
Article • 03/24/2025

This example shows how to implement a basic wide view that displays the
System.ServiceProcess.ServiceController objects returned by the Get-Service  cmdlet.
For more information about the components of a wide view, see Creating a Wide View.

1. Copy the XML from the Example section of this topic into a text file.

2. Save the text file. Be sure to add the format.ps1xml  extension to the file to identify
it as a formatting file.

3. Open Windows PowerShell, and run the following command to load the formatting
file into the current session: Update-FormatData -PrependPath
<PathToFormattingFile> .

This formatting file demonstrates the following XML elements:

The Name element for the view.

The ViewSelectedBy element that defines what objects are displayed by the view.

The WideItem element that defines what property is displayed by the view.

The following XML defines a wide view that displays the value of the
System.ServiceProcess.ServiceController.ServiceName property.

Load this formatting file

２ Warning

This formatting file defines the display of an object that is already defined by
a Windows PowerShell formatting file. You must use the PrependPath
parameter when you run the cmdlet, and you cannot load this formatting file
as a module.

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController.ServiceName


XML

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController objects after this format file is loaded.

PowerShell

Output

Examples of Formatting Files

Writing a PowerShell Formatting File

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>
  <ViewDefinitions>
    <View>
      <Name>ServiceWideView</Name>
      <ViewSelectedBy>
        <TypeName>System.ServiceProcess.ServiceController</TypeName>
      </ViewSelectedBy>
      <WideControl>
        <WideEntries>
          <WideEntry>
            <WideItem>
              <PropertyName>ServiceName</PropertyName>
            </WideItem>
          </WideEntry>
        </WideEntries>
      </WideControl>
    </View>
  </ViewDefinitions>
</Configuration>

Get-Service f*

Fax                      FCSAM
fdPHost                  FDResPub
FontCache                FontCache3.0.0.0
FSysAgent                FwcAgent

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/examples-of-formatting-files?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Wide View (GroupBy)
Article • 03/24/2025

This example shows how to implement a wide view that displays groups of
System.ServiceProcess.ServiceController objects returned by the Get-Service  cmdlet.
For more information about the components of a wide view, see Creating a Wide View.

1. Copy the XML from the Example section of this topic into a text file.

2. Save the text file. Be sure to add the format.ps1xml  extension to the file to identify
it as a formatting file.

3. Open Windows PowerShell, and run the following command to load the formatting
file into the current session: Update-FormatData -PrependPath <Path to file> .

This formatting file demonstrates the following XML elements:

The Name element for the view.

The ViewSelectedBy element that defines what objects are displayed by the view.

The GroupBy element that defines when a new group is displayed.

The WideItem element that defines what property is displayed by the view.

The following XML defines a wide view that displays groups of objects. Each new group
is started when the value of the System.ServiceProcess.ServiceController.ServiceType

Load this formatting file

２ Warning

This formatting file defines the display of an object that is already defined by
a Windows PowerShell formatting files. You must use the PrependPath
parameter when you run the cmdlet, and you cannot load this formatting file
as a module.

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController.ServiceType


property changes.

XML

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController objects after this format file is loaded.

PowerShell

Output

<?xml version="1.0" encoding="utf-8" ?>

<Configuration>
  <ViewDefinitions>
    <View>
      <Name>ServiceWideView</Name>
      <ViewSelectedBy>
        <TypeName>System.ServiceProcess.ServiceController</TypeName>
      </ViewSelectedBy>
      <GroupBy>
        <Label>Service Type</Label>
        <PropertyName>ServiceType</PropertyName>
      </GroupBy>
      <WideControl>
        <WideEntries>
          <WideEntry>
            <WideItem>
              <PropertyName>ServiceName</PropertyName>
            </WideItem>
          </WideEntry>
        </WideEntries>
      </WideControl>
    </View>
  </ViewDefinitions>
</Configuration>

Get-Service f*

   Service Type: Win32OwnProcess

Fax                             FCSAM

   Service Type: Win32ShareProcess

fdPHost                         FDResPub
FontCache

   Service Type: Win32OwnProcess

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Examples of Formatting Files

Writing a PowerShell Formatting File

FontCache3.0.0.0                FSysAgent
FwcAgent

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/examples-of-formatting-files?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


List View (Basic)
Article • 03/24/2025

This example shows how to implement a basic list view that displays the
System.ServiceProcess.ServiceController objects returned by the Get-Service cmdlet. For
more information about the components of a list view, see Creating a List View.

1. Copy the XML from the Example section of this topic into a text file.

2. Save the text file. Be sure to add the format.ps1xml  extension to the file to identify
it as a formatting file.

3. Open Windows PowerShell, and run the following command to load the formatting
file into the current session: Update-FormatData -PrependPath
PathToFormattingFile .

This formatting file demonstrates the following XML elements:

The Name element for the view.

The ViewSelectedBy element that defines what objects are displayed by the view.

The ListControl element that defines what property is displayed by the view.

The ListItem element that defines what is displayed in a row of the list view.

The PropertyName element that defines which property is displayed.

Load this formatting file

２ Warning

This formatting file defines the display of an object that is already defined by a
Windows PowerShell formatting file. You must use the PrependPath  parameter
when you run the cmdlet, and you cannot load this formatting file as a module.

Demonstrates

Example

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-service


The following XML defines a list view that displays four properties of the
System.ServiceProcess.ServiceController object. In each row, the name of the property is
displayed followed by the value of the property.

XML

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController objects after this format file is loaded.

PowerShell

Output

<Configuration>
  <View>
    <Name>System.ServiceProcess.ServiceController</Name>
    <ViewSelectedBy>
      <TypeName>System.ServiceProcess.ServiceController</TypeName>
    </ViewSelectedBy>
    <ListControl>
      <ListEntries>
        <ListEntry>
          <ListItems>
            <ListItem>
              <PropertyName>Name</PropertyName>
            </ListItem>
            <ListItem>
              <PropertyName>DisplayName</PropertyName>
            </ListItem>
            <ListItem>
              <PropertyName>Status</PropertyName>
            </ListItem>
            <ListItem>
              <PropertyName>ServiceType</PropertyName>
            </ListItem>
          </ListItems>
        </ListEntry>
      </ListEntries>
    </ListControl>
  </View>
</Configuration>

Get-Service f*

Name        : Fax
DisplayName : Fax
Status      : Stopped
ServiceType : Win32OwnProcess

Name        : FCSAM

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Examples of Formatting Files

Writing a PowerShell Formatting File

DisplayName : Microsoft Antimalware Service
Status      : Running
ServiceType : Win32OwnProcess

Name        : fdPHost
DisplayName : Function Discovery Provider Host
Status      : Stopped
ServiceType : Win32ShareProcess

Name        : FDResPub
DisplayName : Function Discovery Resource Publication
Status      : Running
ServiceType : Win32ShareProcess

Name        : FontCache
DisplayName : Windows Font Cache Service
Status      : Running
ServiceType : Win32ShareProcess

Name        : FontCache3.0.0.0
DisplayName : Windows Presentation Foundation Font Cache 3.0.0.0
Status      : Stopped
ServiceType : Win32OwnProcess

Name        : FSysAgent
DisplayName : Microsoft Forefront System Agent
Status      : Running
ServiceType : Win32OwnProcess

Name        : FwcAgent
DisplayName : Firewall Client Agent
Status      : Running
ServiceType : Win32OwnProcess

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/examples-of-formatting-files?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


List View (Labels)
Article • 03/24/2025

This example shows how to implement a list view that displays a custom label for each
row of the list. This list view displays the properties of the
System.ServiceProcess.ServiceController object that is returned by the Get-Service
cmdlet. For more information about the components of a list view, see Creating a List
View.

1. Copy the XML from the Example section of this topic into a text file.

2. Save the text file. Be sure to add the format.ps1xml  extension to the file to identify
it as a formatting file.

3. Open Windows PowerShell, and run the following command to load the formatting
file into the current session: Update-FormatData -PrependPath
PathToFormattingFile .

This formatting file defines the display of an object that is already defined by a
Windows PowerShell formatting file. You must use the PrependPath  parameter when
you run the cmdlet, and you cannot load this formatting file as a module.

This formatting file demonstrates the following XML elements:

The Name element for the view.

The ViewSelectedBy element that defines what objects are displayed by the view.

The ListControl element that defines what property is displayed by the view.

The ListItem element that defines what is displayed in a row of the list view.

The Label element that defines what is displayed in a row of the list view.

The PropertyName element that defines which property is displayed.

Load this formatting file

２ Warning

Demonstrates

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service


The following XML defines a list view that displays a custom label in each row. In this
case, the label includes the property name with each letter capitalized and the word
"property". In each row, the name of the property is displayed followed by the value of
the property.

XML

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController objects after this format file is loaded.

PowerShell

Example

<Configuration>
  <ViewDefinitions>
    <View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>
    <ListEntries>
      <ListEntry>
        <ListItems>
          <ListItem>
            <Label>NAME property</Label>
            <PropertyName>Name</PropertyName>
          </ListItem>
          <ListItem>
            <Label>DISPLAYNAME property</Label>
            <PropertyName>DisplayName</PropertyName>
          </ListItem>
          <ListItem>
            <Label>STATUS property</Label>
            <PropertyName>Status</PropertyName>
          </ListItem>
          <ListItem>
            <Label>SERVICETYPE property</Label>
            <PropertyName>ServiceType</PropertyName>
          </ListItem>
        </ListItems>
      </ListEntry>
    </ListEntries>
  </ListControl>
</View>

  </ViewDefinitions>
</Configuration>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Output

Examples of Formatting Files

Writing a PowerShell Formatting File

Get-Service f*

NAME property        : Fax
DISPLAYNAME property : Fax
STATUS property      : Stopped
SERVICETYPE property : Win32OwnProcess

NAME property        : FCSAM
DISPLAYNAME property : Microsoft Antimalware Service
STATUS property      : Running
SERVICETYPE property : Win32OwnProcess

NAME property        : fdPHost
DISPLAYNAME property : Function Discovery Provider Host
STATUS property      : Stopped
SERVICETYPE property : Win32ShareProcess

NAME property        : FDResPub
DISPLAYNAME property : Function Discovery Resource Publication
STATUS property      : Running
SERVICETYPE property : Win32ShareProcess

NAME property        : FontCache
DISPLAYNAME property : Windows Font Cache Service
STATUS property      : Running
SERVICETYPE property : Win32ShareProcess

NAME property        : FontCache3.0.0.0
DISPLAYNAME property : Windows Presentation Foundation Font Cache 3.0.0.0
STATUS property      : Stopped
SERVICETYPE property : Win32OwnProcess

NAME property        : FSysAgent
DISPLAYNAME property : Microsoft Forefront System Agent
STATUS property      : Running
SERVICETYPE property : Win32OwnProcess

NAME property        : FwcAgent
DISPLAYNAME property : Firewall Client Agent
STATUS property      : Running
SERVICETYPE property : Win32OwnProcess

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/examples-of-formatting-files?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


List View (GroupBy)
Article • 03/24/2025

This example shows how to implement a list view that separates the rows of the list into
groups. This list view displays the properties of the
System.ServiceProcess.ServiceController objects returned by the Get-Service cmdlet. For
more information about the components of a list view, see Creating a List View.

1. Copy the XML from the Example section of this topic into a text file.

2. Save the text file. Be sure to add the format.ps1xml  extension to the file to identify
it as a formatting file.

3. Open Windows PowerShell, and run the following command to load the formatting
file into the current session: Update-FormatData -PrependPath
PathToFormattingFile .

This formatting file demonstrates the following XML elements:

The Name element for the view.

The ViewSelectedBy element that defines what objects are displayed by the view.

The GroupBy element that defines how a new group of objects is displayed.

The ListControl element that defines what property is displayed by the view.

The ListItem element that defines what is displayed in a row of the list view.

The PropertyName element that defines which property is displayed.

Load this formatting file

２ Warning

This formatting file defines the display of an object that is already defined by a
Windows PowerShell formatting file. You must use the PrependPath  parameter
when you run the cmdlet, and you cannot load this formatting file as a module.

Demonstrates

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Management/Get-Service


The following XML defines a list view that starts a new group whenever the value of the
System.ServiceProcess.ServiceController.Status property changes. When each group is
started, a custom label is displayed that includes the new value of the property.

XML

The following example shows how Windows PowerShell displays the
System.ServiceProcess.ServiceController objects after this format file is loaded. The blank
lines added before and after the group label are automatically added by Windows
PowerShell.

PowerShell

Example

<Configuration>
  <ViewDefinitions>
    <View>
      <Name>System.ServiceProcess.ServiceController</Name>
      <ViewSelectedBy>
        <TypeName>System.ServiceProcess.ServiceController</TypeName>
      </ViewSelectedBy>
      <GroupBy>
        <PropertyName>Status</PropertyName>
        <Label>New Service Status</Label>
      </GroupBy>
      <ListControl>
        <ListEntries>
          <ListEntry>
            <ListItems>
              <ListItem>
                <PropertyName>Name</PropertyName>
              </ListItem>
              <ListItem>
                <PropertyName>DisplayName</PropertyName>
              </ListItem>
              <ListItem>
                <PropertyName>ServiceType</PropertyName>
              </ListItem>
            </ListItems>
          </ListEntry>
        </ListEntries>
      </ListControl>
    </View>
  </ViewDefinitions>
</Configuration>

Get-Service f*

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController.Status
https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Output

Examples of Formatting Files

Writing a PowerShell Formatting File

   New Service Status: Stopped

Name        : Fax
DisplayName : Fax
ServiceType : Win32OwnProcess

   New Service Status: Running

Name        : FCSAM
DisplayName : Microsoft Antimalware Service
ServiceType : Win32OwnProcess

   New Service Status: Stopped

Name        : fdPHost
DisplayName : Function Discovery Provider Host
ServiceType : Win32ShareProcess

   New Service Status: Running

Name        : FDResPub
DisplayName : Function Discovery Resource Publication
ServiceType : Win32ShareProcess

Name        : FontCache
DisplayName : Windows Font Cache Service
ServiceType : Win32ShareProcess

   New Service Status: Stopped

Name        : FontCache3.0.0.0
DisplayName : Windows Presentation Foundation Font Cache 3.0.0.0
ServiceType : Win32OwnProcess

   New Service Status: Running

Name        : FSysAgent
DisplayName : Microsoft Forefront System Agent
ServiceType : Win32OwnProcess

Name        : FwcAgent
DisplayName : Firewall Client Agent
ServiceType : Win32OwnProcess

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/examples-of-formatting-files?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Format Schema XML Reference
Article • 09/17/2021

The topics in this section describe the XML elements used by formatting files
(Format.ps1xml files). Formatting files define how the .NET object is displayed; they do
not change the object itself.

Alignment Element for TableColumnHeader for TableControl (Format) Defines how the
data in a column header is displayed.

Alignment Element for TableColumnItem for TableControl (Format) Defines how the data
in the row is displayed.

AutoSize Element for TableControl (Format) Specifies whether the column size and the
number of columns are adjusted based on the size of the data.

Autosize Element for WideControl (Format) Specifies whether the column size and the
number of columns are adjusted based on the size of the data.

ColumnNumber Element for WideControl (Format) Specifies the number of columns
displayed in the wide view.

Configuration Element (Format) Represents the top-level element of the formatting file.

Control Element for Controls for Configuration (Format) Defines a common control that
can be used by all the views of the formatting file and the name that is used to
reference the control.

Control Element for Controls for View (Format) Defines a control that can be used by the
view and the name that is used to reference the control.

Controls Element for Configuration (Format) Defines the common controls that can be
used by all views of the formatting file.

Controls Element for View (Format) Defines the view controls that can be used by a
specific view.

CustomControl Element for Control for Configuration (Format) Defines a control. This
element is used when defining a common control that can be used by all the views in
the formatting file.

In This Section



CustomControl Element for Control for Controls for View (Format) Defines a control that
is used by the view.

CustomControl Element for GroupBy (Format) Defines the custom control that displays
the new group.

CustomControl Element (Format) Defines a custom control format for the view.

CustomControlName Element for ExpressionBinding for Controls for Configuration
(Format) Specifies the name of a common control. This element is used when defining a
common control that can be used by all the views in the formatting file.

CustomControlName Element for ExpressionBindine for Controls for View (Format)
Specifies the name of a common control or a view control. This element is used when
defining controls that can be used by a view.

CustomControlName Element of GroupBy (Format) Specifies the name of a custom
control that is used to display the new group. This element is used when defining a
table, list, wide or custom control view.

CustomEntry Element for CustomControl for Controls for Configuration (Format)
Provides a definition of the common control. This element is used when defining a
common control that can be used by all the views in the formatting file.

CustomEntry Element for CustomEntries for Controls for View (Format) Provides a
definition of the control. This element is used when defining controls that can be used
by a view.

CustomEntry Element for CustomEntries for View (Format) Provides a definition of the
custom control view.

CustomEntry Element for CustomControl for GroupBy (Format) Provides a definition of
the control. This element is used when defining how a new group of objects is displayed.

CustomEntries Element for CustomControl for Configuration (Format) Provides the
definitions of a common control. This element is used when defining a common control
that can be used by all the views in the formatting file.

CustomEntries Element for CustomControl for Controls for View (Format) Provides the
definitions for the control. This element is used when defining controls that can be used
by a view.

CustomEntries Element for CustomControl for GroupBy (Format) Provides the definitions
for the control. This element is used when defining how a new group of objects is
displayed.



CustomEntries Element for CustomControl for View (Format) Provides the definitions of
the custom control view. The custom control view must specify one or more definitions.

CustomItem Element for CustomEntry for Controls for Configuration Defines what data
is displayed by the control and how it is displayed. This element is used when defining a
common control that can be used by all the views in the formatting file.

CustomItem Element for CustomEntry for Controls for View (Format) Defines what data
is displayed by the control and how it is displayed. This element is used when defining
controls that can be used by a view.

CustomItem Element for CustomEntry for View (Format) Defines what data is displayed
by the custom control view and how it is displayed. This element is used when defining
a custom control view.

CustomItem Element for CustomEntry for GroupBy (Format) Defines what data is
displayed by the custom control view and how it is displayed. This element is used when
defining how a new group of objects is displayed.

DefaultSettings Element (Format) Defines common settings that apply to all the views of
the formatting file. Common settings include displaying errors, wrapping text in tables,
defining how collections are expanded, and more.

DisplayError Element (Format) Specifies that the string #ERR is displayed when an error
occurs displaying a piece of data.

EntrySelectedBy Element for CustomEntry for Controls for Configuration (Format)
Defines the .NET types that use the definition of the common control or the condition
that must exist for this control to be used. This element is used when defining a
common control that can be used by all the views in the formatting file.

EntrySelectedBy Element for CustomEntry for Controls for View (Format) Defines the
.NET types that use this control definition or the condition that must exist for this
definition to be used. This element is used when defining controls that can be used by a
view.

EntrySelectedBy Element for CustomEntry for View (Format) Defines the .NET types that
use this custom entry or the condition that must exist for this entry to be used.

EntrySelectedBy Element for EnumerableExpansion (Format) Defines the .NET types that
use this definition or the condition that must exist for this definition to be used.

EntrySelectedBy Element for CustomEntry for GroupBy (Format) Defines the .NET types
that use this control definition or the condition that must exist for this definition to be
used. This element is used when defining how a new group of objects is displayed.



EntrySelectedBy Element for ListEntry for ListControl (Format) Defines the .NET types
that use this list view definition or the condition that must exist for this definition to be
used. In most cases only one definition is needed for a list view. However, you can
provide multiple definitions for the list view if you want to use the same list view to
display different data for different objects.

EntrySelectedBy Element for TableRowEntry (Format) Defines the .NET types whose
property values are displayed in the row.

EntrySelectedBy Element for WideEntry (Format) Defines the .NET types that use this
definition of the wide view or the condition that must exist for this definition to be used.

EnumerableExpansion Element (Format) Defines how specific .NET collection objects are
expanded when they are displayed in a view.

EnumerableExpansions Element (Format) Defines how .NET collection objects are
expanded when they are displayed in a view.

EnumerateCollection Element for ExpressionBinding for Controls for Configuration
(Format) Specified that the elements of collections are displayed by the control. This
element is used when defining a common control that can be used by all the views in
the formatting file.

EnumerateCollection Element for ExpressionBinding for Controls for View (Format)
Specified that the elements of collections are displayed. This element is used when
defining controls that can be used by a view.

EnumerateCollection Element for Expression Binding for CustomControl for View
(Format) Specifies that the elements of collections are displayed. This element is used
when defining a custom control view.

EnumerateCollection Element for ExpressionBinding for GroupBy (Format) Specifies that
the elements of collections are displayed. This element is used when defining how a new
group of objects is displayed.

Expand Element (Format) Specifies how the collection object is expanded for this
definition.

ExpressionBinding Element for CustomItem for Controls for Configuration (Format)
Defines the data that is displayed by the control. This element is used when defining a
common control that can be used by all the views in the formatting file.

ExpressionBinding Element for CustomItem for Controls for View (Format) Defines the
data that is displayed by the control. This element is used when defining controls that
can be used by a view.



ExpressionBinding Element for CustomItem for CustomControl for View (Format) Defines
the data that is displayed by the control. This element is used when defining a custom
control view.

ExpressionBinding Element for CustomItem for GroupBy (Format) Defines the data that
is displayed by the control. This element is used when defining how a new group of
objects is displayed.

FirstLineHanging Element for Frame for Controls for Configuration (Format) Specifies
how many characters the first line of data is shifted to the left. This element is used
when defining a common control that can be used by all the views in the formatting file.

FirstLineHanging Element of Frame of Controls of View (Format) Specifies how many
characters the first line of data is shifted to the left. This element is used when defining
controls that can be used by a view.

FirstLineHanging Element for Frame for CustomControl for View (Format) Specifies how
many characters the first line of data is shifted to the left. This element is used when
defining a custom control view.

FirstLineHanging Element for Frame for GroupBy (Format) Specifies how many
characters the first line of data is shifted to the left. This element is used when defining
how a new group of objects is displayed.

FirstLineIndent Element for Frame for Controls for Configuration (Format) Specifies how
many characters the first line of data is shifted to the right. This element is used when
defining a common control that can be used by all the views in the formatting file.

FirstLineIndent Element of Frame of Controls of View (Format) Specifies how many
characters the first line of data is shifted to the right. This element is used when defining
controls that can be used by a view.

FirstLineIndent Element Specifies how many characters the first line of data is shifted to
the right. This element is used when defining a custom control view.

FirstLineIndent Element for Frame for GroupBy (Format) Specifies how many characters
the first line of data is shifted to the right. This element is used when defining how a
new group of objects is displayed.

FormatString Element for ListItem (Format) Specifies a format pattern that defines how
the property or script value is displayed.

FormatString Element for TableColumnItem (Format) Specifies a format pattern that
defines how the property or script value of the table is displayed.



FormatString Element for WideItem for WideControl (Format) Specifies a format pattern
that defines how the property or script value is displayed in the view.

Frame Element for CustomItem for Controls for Configuration (Format) Defines how the
data is displayed, such as shifting the data to the left or right. This element is used when
defining a common control that can be used by all the views in the formatting file.

Frame Element for CustomItem for Controls for View (Format) Defines how the data is
displayed, such as shifting the data to the left or right. This element is used when
defining controls that can be used by a view.

Frame Element for CustomItem for CustomControl for View (Format) Defines how the
data is displayed, such as shifting the data to the left or right. This element is used when
defining a custom control view.

Frame Element for CustomItem for GroupBy (Format) Defines how the data is displayed,
such as shifting the data to the left or right. This element is used when defining how a
new group of objects is displayed.

GroupBy Element for View (Format) Defines how Windows PowerShell displays a new
group of objects.

HideTableHeaders Element (Format) Specifies that the headers of the table are not
displayed.

ItemSelectionCondition Element for ExpressionBinding for Controls for Configuration
(Format) Defines the condition that must exist for this control to be used. This element is
used when defining a common control that can be used by all the views in the
formatting file.

ItemSelectionCondition Element of ExpressionBinding for Controls for View (Format)
Defines the condition that must exist for this control to be used. This element is used
when defining controls that can be used by a view.

ItemSelectionCondition Element for Expression Binding for CustomControl for View
(Format) Defines the condition that must exist for this control to be used. There is no
limit to the number of selection conditions that can be specified for a control item. This
element is used when defining a custom control view.

ItemSelectionCondition Element for ExpressionBinding for GroupBy (Format) Defines the
condition that must exist for this control to be used. There is no limit to the number of
selection conditions that can be specified for a control item. This element is used when
defining how a new group of objects is displayed.



ItemSelectionCondition Element for ListItem (Format) Defines the condition that must
exist for this list item to be used.

Label Element for ListItem for ListControl(Format) Specifies the label for the property or
script value in the row.

Label Element for GroupBy (Format) Specifies a label that is displayed when a new group
is encountered.

Label Element for TableColumnHeader (Format) Defines the label that is displayed at the
top of a column.

LeftIndent Element for Frame for Controls for Configuration (Format) Specifies how
many characters the data is shifted away from the left margin. This element is used
when defining a common control that can be used by all the views in the formatting file.

LeftIndent Element of Frame of Controls of View (Format) Specifies how many characters
the data is shifted away from the left margin. This element is used when defining
controls that can be used by a view.

LeftIndent Element for Frame for CustomControl for View (Format) Specifies how many
characters the data is shifted away from the left margin. This element is used when
defining a custom control view.

LeftIndent Element for Frame for GroupBy (Format) Specifies how many characters the
data is shifted away from the left margin. This element is used when defining how a new
group of objects is displayed.

ListControl Element (Format) Defines a list format for the view.

ListEntry Element (Format) Provides a definition of the list view.

ListEntries Element (Format) Defines how the rows of the list view are displayed.

ListItem Element (Format) Defines the property or script whose value is displayed in a
row of the list view.

ListItems Element (Format) Defines the properties and scripts that are displayed in the
list view.

Name Element for Control for Controls for Configuration (Format) Specifies the name of
the control. This element is used when defining a common control that can be used by
all the views in the formatting file.

Name Element for SelectionSet (Format) Specifies the name used to reference the
selection set.



Name Element for View (Format) Specifies the name that is used to identify the view.

NewLine Element for CustomItem for Controls for Configuration (Format) Adds a blank
line to the display of the control. This element is used when defining a common control
that can be used by all the views in the formatting file.

NewLine Element for CustomItem for Controls for View (Format) Adds a blank line to the
display of the control. This element is used when defining controls that can be used by a
view.

NewLine Element for CustomItem for CustomControl for View (Format) Adds a blank
line to the display of the control. This element is used when defining a custom control
view.

NewLine Element for CustomItem for GroupBy (Format) Adds a blank line to the display
of the control. This element is used when defining how a new group of objects is
displayed.

PropertyName Element for ExpressionBinding for Controls for Configuration (Format)
Specifies the .NET property whose value is displayed by the common control. This
element is used when defining a common control that can be used by all the views in
the formatting file.

PropertyName Element for ExpressionBinding for Controls for View (Format) Specifies
the .NET property whose value is displayed by the control. This element is used when
defining controls that can be used by a view.

PropertyName Element for ExpressionBinding for CustomControl for View (Format)
Specifies the .NET property whose value is displayed by the control. This element is used
when defining a custom control view

PropertyName Element for ExpressionBinding for GroupBy (Format) Specifies the .NET
property whose value is displayed by the control. This element is used when defining
how a new group of objects is displayed.

PropertyName Element for GroupBy (Format) Specifies the .NET property that starts a
new group whenever its value changes.

PropertyName Element for ItemSelectionCondition for Controls for Configuration
(Format) Specifies the .NET property that triggers the condition. When this property is
present or when it evaluates to true , the condition is met, and the control is used. This
element is used when defining a common control that can be used by all the views in
the formatting file.



PropertyName Element for ItemSelectionCondition for Controls for View (Format)
Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining controls that can be used by a view.

PropertyName Element for ItemSelectionCondition for CustomControl for View (Format
Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining a custom control view.

PropertyName Element for ItemSelectionCondition for GroupBy (Format) Specifies the
.NET property that triggers the condition. When this property is present or when it
evaluates to true , the condition is met, and the control is used. This element is used
when defining how a new group of objects is displayed.

PropertyName Element for ItemSelectionCondition for ListItem (Format) Specifies the
.NET property that triggers the condition. When this property is present or when it
evaluates to true , the condition is met, and the view is used. This element is used when
defining a list view.

PropertyName Element for ListItem for ListControl (Format) Specifies the .NET property
whose value is displayed in the list.

PropertyName Element for SelectionCondition for EntrySelectedBy for ListEntry (Format)
Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the entry is used. This element is
used when defining a common control that can be used by all the views in the
formatting file.

PropertyName Element for SelectionCondition for Controls for View (Format) Specifies
the .NET property that triggers the condition. When this property is present or when it
evaluates to true , the condition is met, and the entry is used. This element is used when
defining controls that can be used by a view.

PropertyName Element for SelectionCondition for CustomControl for View (Format)
Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the definition is used. This element
is used when defining a custom control view.

PropertyName Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion (Format) Specifies the .NET property that triggers the condition.
When this property is present or when it evaluates to true , the condition is met, and the
definition is used.



PropertyName Element for SelectionCondition for GroupBy (Format) Specifies the .NET
property that triggers the condition. When this property is present or when it evaluates
to true , the condition is met, and the definition is used. This element is used when
defining how a new group of objects is displayed.

PropertyName Element for SelectionCondition for EntrySelectedBy for ListEntry (Format)
Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the list entry is used.

PropertyName Element for SelectionCondition for EntrySelectedBy for TableRowEntry
(Format) Specifies the .NET property that triggers the condition. When this property is
present or when it evaluates to true , the condition is met, and the table entry is used.

PropertyName Element for SelectionCondition for EntrySelectedBy for WideEntry
(Format) Specifies the .NET property that triggers the condition. When this property is
present or when it evaluates to true , the condition is met, and the definition is used.

PropertyName Element for TableColumnItem (Format) Specifies the property whose
value is displayed in the column of the row.

PropertyName Element for WideItem (Format) Specifies the property of the object
whose value is displayed in the wide view.

RightIndent Element for Frame for Controls for Configuration (Format) Specifies how
many characters the data is shifted away from the right margin. This element is used
when defining a common control that can be used by all the views in the formatting file.

RightIndent Element of Frame of Controls of View (Format) Specifies how many
characters the data is shifted away from the right margin. This element is used when
defining controls that can be used by a view.

RightIndent Element Specifies how many characters the data is shifted away from the
right margin. This element is used when defining a custom control view.

RightIndent Element for Frame for GroupBy (Format) Specifies how many characters the
data is shifted away from the right margin. This element is used when defining how a
new group of objects is displayed.

ScriptBlock Element for ExpressionBinding for Controls for Configuration (Format)
Specifies the script whose value is displayed by the common control. This element is
used when defining a common control that can be used by all the views in the
formatting file.



ScriptBlock Element for ExpressionBinding for Controls for View (Format) Specifies the
script whose value is displayed by the control. This element is used when defining
controls that can be used by a view.

ScriptBlock Element for ExpressionBinding for CustomCustomControl for View (Format)
Specifies the script whose value is displayed by the control. This element is used when
defining a custom control view.

ScriptBlock Element for ExpressionBinding for GroupBy (Format) Specifies the script
whose value is displayed by the control. This element is used when defining how a new
group of objects is displayed.

ScriptBlock Element for GroupBy (Format) Specifies the script that starts a new group
whenever its value changes.

ScriptBlock Element for ItemSelectionCondition for Controls for Configuration (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining a common
control that can be used by all the views in the formatting file.

ScriptBlock Element for ItemSelectionCondition for Controls for View (Format) Specifies
the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining controls
that can be used by a view.

ScriptBlock Element for ItemSelectionCondition for CustomControl for View (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining a custom
control view.

ScriptBlock Element for ItemSelectionCondition for GroupBy (Format) Specifies the script
that triggers the condition. When this script is evaluated to true , the condition is met,
and the control is used. This element is used when defining how a new group of objects
is displayed.

ScriptBlock Element for ItemSelectionCondition for ListControl (Format) Specifies the
script that triggers the condition. When this script is evaluated to true , the condition is
met, and the list item is used. This element is used when defining a list view.

ScriptBlock Element for ListItem (Format) Specifies the script whose value is displayed in
the row of the list.

ScriptBlock Element for SelectionCondition for Controls for Configuration (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the



condition is met, and the definition is used. This element is used when defining a
common control that can be used by all the views in the formatting file.

ScriptBlock Element for SelectionCondition for Controls for View (Format) Specifies the
script that triggers the condition. When this script is evaluated to true , the condition is
met, and the definition is used. This element is used when defining controls that can be
used by a view.

ScriptBlock Element for SelectionCondition for CustomControl for View (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the definition is used. This element is used when defining a
custom control view.

ScriptBlock Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion (Format) Specifies the script that triggers the condition.

ScriptBlock Element for SelectionCondition for GroupBy (Format) Specifies the script
that triggers the condition. When this script is evaluated to true , the condition is met,
and the definition is used. This element is used when defining how a new group of
objects is displayed.

ScriptBlock Element for SelectionCondition for EntrySelectedBy for ListEntry (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the list entry is used.

ScriptBlock Element for SelectionCondition for EntrySelectedBy for TableRowEntry
(Format) Specifies the script block that triggers the condition. When this script is
evaluated to true , the condition is met, and the table entry is used.

ScriptBlock Element for SelectionCondition for EntrySelectedBy for WideEntry (Format)
Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the wide entry definition is used.

ScriptBlock Element for TableColumnItem (Format) Specifies the script whose value is
displayed in the column of the row.

ScriptBlock Element for WideItem (Format) Specifies the script whose value is displayed
in the wide view.

SelectionCondition Element for EntrySelectedBy for CustomEntry for Configuration
(Format) Defines a condition that must exist for a common control definition to be used.
This element is used when defining a common control that can be used by all the views
in the formatting file.



SelectionCondition Element for EntrySelectedBy for Controls for View (Format) Defines a
condition that must exist for the control definition to be used. This element is used
when defining controls that can be used by a view.

SelectionCondition Element for EntrySelectedBy for CustomControl for View (Format)
Defines a condition that must exist for a control definition to be used. This element is
used when defining a custom control view.

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion (Format)
Defines the condition that must exist to expand the collection objects of this definition.

SelectionCondition Element for EntrySelectedBy for GroupBy (Format) Defines a
condition that must exist for a control definition to be used. This element is used when
defining how a new group of objects is displayed.

SelectionCondition Element for EntrySelectedBy for ListEntry (Format) Defines the
condition that must exist to use this definition of the list view. There is no limit to the
number of selection conditions that can be specified for a list definition.

SelectionCondition Element for EntrySelectedBy for TableRowEntry (Format) Defines the
condition that must exist to use for this definition of the table view. There is no limit to
the number of selection conditions that can be specified for a table definition.

SelectionCondition Element for EntrySelectedBy for WideEntry (Format) Defines the
condition that must exist for this definition to be used. There is no limit to the number
of selection conditions that can be specified for a wide entry definition.

SelectionSet Element (Format) Defines a set of .NET objects that can be referenced by
the name of the set.

SelectionSetName Element for EntrySelectedBy for Controls for Configuration (Format)
Specifies a set of .NET types that use this definition of the control. This element is used
when defining a common control that can be used by all the views in the formatting file.

SelectionSetName Element for EntrySelectedBy for Controls for View (Format) Specifies
a set of .NET types that use this definition of the control. This element is used when
defining controls that can be used by a view.

SelectionSetName Element for EntrySelectedBy for CustomEntry (Format) Specifies a set
of .NET objects for the list entry. There is no limit to the number of selection sets that
can be specified for an entry.

SelectionSetName Element for EntrySelectedBy for EnumerableExpansion (Format)
Specifies the set of .NET types that are expanded by this definition.



SelectionSetName Element for EntrySelectedBy for GroupBy (Format) Specifies a set of
.NET objects for the list entry. There is no limit to the number of selection sets that can
be specified for an entry. This element is used when defining how a new group of
objects is displayed.

SelectionSetName Element for EntrySelectedBy for ListEntry (Format) Specifies a set of
.NET objects for the list entry. There is no limit to the number of selection sets that can
be specified for an entry.

SelectionSetName Element for EntrySelectedBy for TableRowEntry (Format) Specifies a
set of .NET types the use this entry of the table view. There is no limit to the number of
selection sets that can be specified for an entry.

SelectionSetName Element for EntrySelectedBy for WideEntry (Format) Specifies a set of
.NET objects for the definition. The definition is used whenever one of these objects is
displayed.

SelectionSetName Element for SelectionCondition for Controls for Configuration
(Format) Specifies the set of .NET types that trigger the condition. When any of the
types in this set are present, the condition is met, and the object is displayed by using
this control. This element is used when defining a common control that can be used by
all the views in the formatting file.

SelectionSetName Element for SelectionCondition for Controls for View (Format)
Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met and the object is displayed using this control. This
element is used when defining controls that can be used by a view.

EntrySelectedBy Element for CustomEntry for View (Format) Specifies the set of .NET
types that trigger the condition. When any of the types in this set are present, the
condition is met and the object is displayed using this control. This element is used
when defining a custom control view.

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion (Format) Specifies the set of .NET types that trigger the condition.
When any of the types in this set are present, the condition is met.

SelectionSetName Element for SelectionCondition for GroupBy (Format) Specifies the
set of .NET types that trigger the condition. When any of the types in this set are
present, the condition is met, and the object is displayed by using this control. This
element is used when defining how a new group of objects is displayed.

SelectionSetName Element for SelectionCondition for EntrySelectedBy for ListEntry
(Format) Specifies the set of .NET types that trigger the condition. When any of the



types in this set are present, the condition is met, and the object is displayed by using
this definition of the list view.

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
TableRowEntry (Format) Specifies the set of .NET types that trigger the condition. When
any of the types in this set are present, the condition is met, and the object is displayed
by using this definition of the table view.

SelectionSetName Element for SelectionCondition for EntrySelectedBy for WideEntry
(Format) Specifies the set of .NET types that trigger the condition. When any of the
types in this set are present, the condition is met, and the object is displayed by using
this definition of the wide view.

SelectionSetName Element for ViewSelectedBy (Format) Specifies a set of .NET objects
that are displayed by the view.

SelectionSets Element (Format) Defines the sets of .NET objects that can be used by
individual format views.

ShowError Element (Format) Specifies that the full error record is displayed when an
error occurs while displaying a piece of data.

TableColumnHeader Element for TableHeaders for TableControl (Format) Defines the
label, the width of the column, and the alignment of the label for a column of the table.

TableColumnItem Element (Format) Defines the property or script whose value is
displayed in the column of the row.

TableColumnItems Element (Format) Defines the properties or scripts whose values are
displayed in the row.

TableControl Element (Format) Defines a table format for a view.

TableHeaders Element (Format) Defines the headers for the columns of a table.

TableRowEntries Element (Format) Defines the rows of the table.

TableRowEntry Element (Format) Defines the data that is displayed in a row of the table.

Text Element for CustomItem for Controls for Configuration (Format) Specifies text that
is added to the data that is displayed by the control, such as a label, brackets to enclose
the data, and spaces to indent the data. This element is used when defining a common
control that can be used by all the views in the formatting file.

Text Element for CustomItem for Controls for View (Format) Specifies text that is added
to the data that is displayed by the control, such as a label, brackets to enclose the data,



and spaces to indent the data. This element is used when defining controls that can be
used by a view.

Text Element for CustomItem (Format) Specifies text that is added to the data that is
displayed by the control, such as a label, brackets to enclose the data, and spaces to
indent the data. This element is used when defining a custom control view.

Text Element for CustomItem for GroupBy (Format) Specifies text that is added to the
data that is displayed by the control, such as a label, brackets to enclose the data, and
spaces to indent the data. This element is used when defining how a new group of
objects is displayed.

TypeName Element for EntrySelectedBy for Controls for Configuration (Format) Specifies
a .NET type that uses this definition of the control. This element is used when defining a
common control that can be used by all the views in the formatting file.

TypeName Element for EntrySelectedBy for Controls for View (Format) Specifies a .NET
type that uses this definition of the control. This element is used when defining controls
that can be used by a view.

TypeName Element for EntrySelectedBy for CustomEntry for View (Format) Specifies a
.NET type that uses this definition of the custom control view. There is no limit to the
number of types that can be specified for a definition.

TypeName Element for EntrySelectedBy for EnumerableExpansion (Format) Specifies a
.NET type that is expanded by this definition. This element is used when defining a
default settings.

TypeName Element for EntrySelectedBy for GroupBy (Format) Specifies a .NET type that
uses this definition of the custom control. This element is used when defining how a
new group of objects is displayed.

TypeName Element for EntrySelectedBy for ListControl (Format) Specifies a .NET type
that uses this entry of the list view. There is no limit to the number of types that can be
specified for a list entry.

TypeName Element for EntrySelectedBy for TableRowEntry (Format) Specifies a .NET type
that uses this entry of the table view. There is no limit to the number of types that can
be specified for a table entry.

TypeName Element for EntrySelectedBy for WideEntry (Format) Specifies a .NET type for
the definition. The definition is used whenever this object is displayed.

TypeName Element for SelectionCondition for Controls for Configuration (Format)
Specifies a .NET type that triggers the condition. This element is used when defining a



common control that can be used by all the views in the formatting file.

TypeName Element for SelectionCondition for Controls for View (Format) Specifies a
.NET type that triggers the condition. This element is used when defining controls that
can be used by a view.

TypeName Element for SelectionCondition for CustomControl for View (Format)
Specifies a .NET type that triggers the condition. This element is used when defining a
custom control view.

TypeName Element for SelectionCondition for EntrySelectedBy for EnumerableExpansion
(Format) Specifies a .NET type that triggers the condition.

TypeName Element for SelectionCondition for GroupBy (Format) Specifies a .NET type
that triggers the condition. This element is used when defining how a new group of
objects is displayed.

TypeName Element for SelectionCondition for EntrySelectedBy for ListControl (Format)
Specifies a .NET type that triggers the condition. When this type is present, the list entry
is used.

TypeName Element for SelectionCondition for EntrySelectedBy for TableRowEntry
(Format) Specifies a .NET type that triggers the condition. When this type is present, the
condition is met, and the table row is used.

TypeName Element for SelectionCondition for EntrySelectedBy for WideEntry (Format)
Specifies a .NET type that triggers the condition. When this type is present, the
definition is used.

TypeName Element for Types (Format) Specifies the .NET type of an object that belongs
to the selection set.

TypeName Element for ViewSelectedBy (Format) Specifies a .NET object that is displayed
by the view.

Types Element (Format) Defines the .NET objects that are in the selection set.

View Element (Format) Defines a view that is used to display one or more .NET objects.

ViewDefinitions Element (Format) Defines the views used to display objects.

ViewSelectedBy Element (Format) Defines the .NET objects that are displayed by the
view.

WideControl Element (Format) Defines a wide (single value) list format for the view. This
view displays a single property value or script value for each object.



WideEntries Element (Format) Provides the definitions of the wide view. The wide view
must specify one or more definitions.

WideEntry Element (Format) Provides a definition of the wide view.

WideItem Element (Format) Defines the property or script whose value is displayed.

Width Element (Format) Defines the width (in characters) of a column.

Wrap Element (Format) Specifies that text that exceeds the column width is displayed on
the next line.

WrapTables Element (Format) Specifies that data in a table cell is moved to the next line
if the data is longer than the width of the column.

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fformat-schema-xml-reference%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fformat-schema-xml-reference.md&documentVersionIndependentId=a45a8df6-d0a6-e3e2-03ae-59f99340f3e3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+eb654061-1f46-7192-72cf-9c23142342e0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Configuration Element
Article • 09/17/2021

Represents the top-level element of a formatting file.

Configuration Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Configuration  element. This element must be the root element for each formatting
file, and this element must contain at least one child element.

None.

Element Description

Controls Element for
Configuration

Optional element.

Schema

Syntax

<Configuration>
  <DefaultSettings>...</DefaultSettings>
  <SelectionSets>...</SelectionSets>
  <Controls>...</Controls>
  <ViewDefinitions>...</ViewDefinitions>
</Configuration>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Defines the common controls that can be used by all views of the
formatting file.

DefaultSettings Element Optional element.

Defines common settings that apply to all the views of the
formatting file.

SelectionSets Element
Format

Optional element.

Defines the common sets of .NET objects that can be used by all
views of the formatting file.

ViewDefinitions Element Optional element.

Defines the views used to display objects.

None.

Formatting files define how objects are displayed. In most cases, this root element
contains a ViewDefinitions element that defines the table, list, and wide views of the
formatting file. In addition to the view definitions, the formatting file can define
common selection sets, settings, and controls that those views can use.

Controls Element for Configuration

DefaultSettings Element

SelectionSets Element

ViewDefinitions Element

Writing a PowerShell Formatting File

Parent Elements

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fconfiguration-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fconfiguration-element-format.md&documentVersionIndependentId=569c40d9-baf2-7d47-21b0-a71c7feff6de&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fcba3bc9-087c-f1ea-7f1a-2afee7fccb67+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Controls Element for Configuration
Article • 09/17/2021

Defines the common controls that can be used by all views of the formatting file.

Configuration Element
Controls Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Controls  element.

None.

Element Description

Control Element for Controls for
Configuration

Required element.

Defines a common control that can be used by all views of
the formatting file.

Schema

Syntax

<Controls>
  <Control>...</Control>
</Controls>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table

Parent Elements



Element Description

Configuration Element Represents the top-level element of a formatting file.

You can create any number of common controls. For each control, you must specify the
name that is used to reference the control and the components of the control.

Configuration Element

Control Element for Controls for Configuration

Writing a PowerShell Formatting File

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcontrols-element-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcontrols-element-for-configuration-format.md&documentVersionIndependentId=96953d80-2848-4acb-64ca-08e18f042d77&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+558ef6e6-8cd8-1acf-3258-f99ada1625f6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Control Element for Controls for
Configuration
Article • 09/17/2021

Defines a common control that can be used by all the views of the formatting file and
the name that is used to reference the control.

Configuration Element
Controls Element
Control Element

XML

The following sections describe the attributes, child elements, and the parent element
for the Control  element. You must specify only one of each child element.

None.

Element Description

CustomControl Element for Control for Controls for
Configuration

Required element.

Schema

Syntax

<Control>
  <Name>NameOfControl</Name>
  <CustomControl>...</CustomControl>
</Control>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element DescriptionDefines the control.

Name Element for Control for Configuration Required element.

Specifies the name used to reference the
control.

Element Description

Controls Element of
Configuration

Defines the common controls that can be used by all views of the
formatting file or by other controls.

The name given to this control can be referenced in the following elements:

ExpressionBinding Element for CustomItem

GroupBy Element for View

Controls Element of Configuration

CustomControl element for Control for Configuration

ExpressionBinding Element for CustomItem

GroupBy Element for View(Format)

Name Element for Control for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcontrol-element-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcontrol-element-for-controls-for-configuration-format.md&documentVersionIndependentId=b77218be-025a-bf91-e1e9-47baf78ec923&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+11858aed-9603-ed47-7bb9-f227e36ad3fb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControl Element for Control for
Controls for Configuration
Article • 09/17/2021

Defines a control. This element is used when defining a common control that can be
used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element

XML

The following sections describe the attributes, child elements, and the parent element of
the CustomControl  element. This element must have at least one child element. There is
no maximum limit to the number of child elements that can be specified.

None.

Schema

Syntax

<CustomControl>
  <CustomEntries>...</CustomEntries>
</CustomControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

CustomEntries Element for CustomControl for
Configuration

Required element.

Provides the definitions of a
control.

Element Description

Control Element for Controls
for Configuration

Defines a common control that can be used by all the views of the
formatting file and the name that is used to reference the control.

Control Element for Controls for Configuration

CustomEntries Element for CustomControl for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-control-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-control-for-controls-for-configuration-format.md&documentVersionIndependentId=16461376-d7a4-ea5e-38ec-693607216f2b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d36aa62c-697a-5221-81a6-86f3125830f0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntries Element for
CustomControl for Controls for
Configuration
Article • 09/17/2021

Provides the definitions of a common control. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomEntries  element. You must specify one or more child elements.

None.

Schema

Syntax

<CustomEntries>
  <CustomEntry>...</CustomEntry>
</CustomEntries>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomEntry Element for CustomControl for Controls for
Configuration

Provides a definition of the common
control.

Element Description

CustomControl Element for Control for Configuration Defines a common control.

In most cases, a control has only one definition, which is defined in a single CustomEntry
element. However it is possible to have multiple definitions if you want to use the same
control to display different .NET objects. In those cases, you can define a CustomEntry
element for each object or set of objects.

CustomControl Element for Control for Configuration

CustomEntry Element for CustomControl for Controls for Configuration

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-controls-for-configuration-format.md&documentVersionIndependentId=0649fa40-1241-a506-69b9-59cd9b6a8097&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3bea9de6-ad29-cfa4-e991-208d440c6199+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntry Element for
CustomControl for Controls for
Configuration
Article • 09/17/2021

Provides a definition of the common control. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomEntry  element. You must specify the items displayed by the definition.

None.

Schema

Syntax

<CustomEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <CustomItem>...</CustomItem>
</CustomEntry>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for Controls for
Configuration

Optional element.

Defines the .NET types that use the definition of the
common control or the condition that must exist for this
control to be used.

CustomItem Element for CustomEntry
for Controls for Configuration

Required element.

Defines what data is displayed by the control and how it
is displayed.

Element Description

CustomEntries Element for CustomControl for
Configuration

Provides the definitions of the common
control.

In most cases, only one definition is required for each common custom control, but it is
possible to have multiple definitions if you want to use the same control to display
different .NET objects. In those cases, you can provide a separate definition for each
object or set of objects.

CustomEntries Element for CustomControl for Configuration

CustomItem Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customcontrol-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customcontrol-for-controls-for-configuration-format.md&documentVersionIndependentId=62fc9272-65a4-9049-b071-fbbcfdf3e12e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+03ec358a-a891-6c84-365a-117ce5dc14ad+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomItem Element for CustomEntry
for Controls for Configuration
Article • 09/17/2021

Defines what data is displayed by the control and how it is displayed. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomItem  element. For more information, see Remarks.

None.

Schema

Syntax

<CustomItem>
  <ExpressionBinding>...</ExpressionBinding>
  <NewLine/>
  <Text>TextToDisplay</Text>
  <Frame>...</Frame>
</CustomItem>

Attributes and Elements

Attributes



Element Description

ExpressionBinding Element for CustomItem for
Controls for Configuration

Optional element.

Defines the data that is displayed by the
control.

Frame Element for CustomItem for Controls for
Configuration

Optional element.

Defines how the data is displayed, such as
shifting the data to the left or right.

NewLine Element for CustomItem for Controls
for Configuration

Optional element.

Adds a blank line to the display of the control.

Text Element for CustomItem for Controls for
Configuration

Optional element.

Adds text, such as parentheses or brackets, to
the display of the control.

Element Description

CustomEntry Element for CustomControl for Controls for
Configuration

Provides a definition of the
control.

When specifying the child elements of the CustomItem  element, keep the following in
mind:

The child elements must be added in the following sequence: ExpressionBinding ,

NewLine , Text , and Frame .
There is no maximum limit to the number of sequences that you can specify.
In each sequence, there is no maximum limit to the number of ExpressionBinding
elements that you can use.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



ExpressionBinding Element for CustomItem for Controls for Configuration

Frame Element for CustomItem for Controls for Configuration

NewLine Element for CustomItem for Controls for Configuration

Text Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-controls-for-configuration-format.md&documentVersionIndependentId=cc48592a-a3fe-8748-74bb-7b3a8fb26f08&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+20b1d454-6263-48b8-580e-b4619aea5ece+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ExpressionBinding Element for
CustomItem for Controls for
Configuration
Article • 09/17/2021

Defines the data that is displayed by the control. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element

XML

The following sections describe attributes, child elements, and the parent element of the
ExpressionBinding  element.

Schema

Syntax

<ExpressionBinding>
  <CustomControl>...</CustomControl>
  <CustomControlName>NameofCommonCustomControl</CustomControlName>
  <EnumerateCollection/>
  <ItemSelectionCondition>...</ItemSelectionCondition>
  <PropertyName>Nameof.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate></ScriptBlock>
</ExpressionBinding>

Attributes and Elements

Attributes



None.

Element Description

CustomControl Element Optional element.

Defines a control that is used by this
control.

CustomControlName Element for ExpressionBinding
for Controls for Configuration

Optional element.

Specifies the name of a common control
or a view control.

EnumerateCollection Element for ExpressionBinding
for Controls for Configuration

Optional element.

Specified that the elements of collections
are displayed by the control.

ItemSelectionCondition Element for
ExpressionBinding for Controls for Configuration

Optional element.

Defines the condition that must exist for
this common control to be used.

PropertyName Element for ExpressionBinding for
Controls for Configuration

Optional element.

Specifies the .NET property whose value is
displayed by the common control.

ScriptBlock Element for ExpressionBinding for
Controls for Configuration

Optional element.

Specifies the script whose value is
displayed by the common control.

Element Description

CustomItem Element for CustomEntry for
Controls for Configuration

Defines what data is displayed by the custom
control view and how it is displayed.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table



CustomItem Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-controls-for-configuration-format.md&documentVersionIndependentId=16bea5b1-dd25-4a16-a264-1bfcaef366cb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+292f2762-acdd-fa2b-36cc-e0847d97d181+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControlName Element for
ExpressionBinding for Controls for
Configuration
Article • 09/17/2021

Specifies the name of a common control. This element is used when defining a common
control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
CustomControlName Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControlName  element.

None.

Schema

Syntax

<CustomControlName>NameofCustomControl</CustomControlName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for Controls
for Configuration

Defines the data that is displayed by
the control.

Specify the name of the control.

You can create common controls that can be used by all the views of a formatting file,
and you can create view controls that can be used by a specific view. The following
elements specify the names of these controls:

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

ExpressionBinding Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-controls-for-configuration-format.md&documentVersionIndependentId=4194f26a-e180-d3d6-df52-3bc8b71d9106&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7cad19fc-68fd-c928-23f4-4e468690313b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EnumerateCollection Element for
ExpressionBinding for Controls for
Configuration
Article • 09/17/2021

Specified that the elements of collections are displayed by the control. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
EnumerateCollection Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerateCollection  element.

None.

Schema

Syntax

<EnumerateCollection/>

Attributes and Elements

Attributes



None.

Element Description

ExpressionBinding Element for CustomItem for Controls
for Configuration

Defines the data that is displayed by
the control.

ExpressionBinding Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-controls-for-configuration-format.md&documentVersionIndependentId=8b79d71c-313c-b1e6-68a0-5a445d341ee3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+96ad98e4-a80f-d7d2-40e2-15e14743a2e4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ItemSelectionCondition Element for
ExpressionBinding for Controls for
Configuration
Article • 09/17/2021

Defines the condition that must exist for this control to be used. This element is used
when defining a common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
ItemSelectionCondition  element.

None.

Schema

Syntax

<ItemSelectionCondition>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ItemSelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for ItemSelectionCondition for
Controls for Configuration

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for ItemSelectionCondition for
Controls for Configuration

Optional element.

Specifies the script that triggers the
condition.

Element Description

ExpressionBinding Element for CustomItem for Controls
for Configuration

Defines the data that is displayed by
the control.

You can specify one property name or a script for this condition but cannot specify both.

PropertyName Element for ItemSelectionCondition for Controls for Configuration

ScriptBlock Element for ItemSelectionCondition for Controls for Configuration

ExpressionBinding Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-controls-for-configuration-format.md&documentVersionIndependentId=c5556aad-8255-b194-320f-73bb84a32ac5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+69a37cd7-9f70-ec57-d531-38a3a358686a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ItemSelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

None.

Element Description

ItemSelectionCondition Element for ExpressionBinding
for Controls for Configuration

Defines the condition that must exist
for this control to be used.

Specify the name of the .NET property that triggers the condition.

If this element is used, you cannot specify the ScriptBlock element when defining the
selection condition.

ScriptBlock Element for ItemSelectionCondition for Controls for Configuration

ItemSelectionCondition Element for ExpressionBinding for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=2c3ed221-69bd-780a-cfdd-5d6cebf41e6c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f0ce1d56-aa16-357d-0642-74ed71a5e0d8+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ItemSelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining a common
control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

ItemSelectionCondition Element for ExpressionBinding
for Controls for Configuration

Defines the condition that must exist
for this control to be used.

Specify the script that is evaluated.

If this element is used, you cannot specify the PropertyName element when defining the
selection condition.

PropertyName Element for ItemSelectionCondition for Controls for Configuration

ItemSelectionCondition Element for ExpressionBinding for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=354e751d-4b00-29a4-9174-f0d8610973fb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c87231a8-ba90-bcf5-8763-d71594f98abe+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ExpressionBinding for Controls for
Configuration
Article • 09/17/2021

Specifies the .NET property whose value is displayed by the common control. This
element is used when defining a common control that can be used by all the views in
the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

ExpressionBinding Element for CustomItem for Controls
for Configuration

Defines the data that is displayed by
the control.

Specify the name of the .NET property whose value is displayed by the control.

ExpressionBinding Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-controls-for-configuration-format.md&documentVersionIndependentId=6b50ad5b-47e4-a7cd-233f-bec9f3a3bd7e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0cdfbc30-f9e7-81f4-7c5e-952fea6998b4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ExpressionBinding for Controls for
Configuration
Article • 09/17/2021

Specifies the script whose value is displayed by the common control. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

ExpressionBinding Element for CustomItem for
Controls for Configuration

Defines the data that is displayed by the
common control.

Specify the script whose value is displayed by the control.

ExpressionBinding Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-controls-for-configuration-format.md&documentVersionIndependentId=6d305f56-4dd2-e165-8ef6-44d34c4a6921&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e8edfcad-387b-13a1-8274-43b44b5e549c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Frame Element for CustomItem for
Controls for Configuration
Article • 09/17/2021

Defines how the data is displayed, such as shifting the data to the left or right. This
element is used when defining a common control that can be used by all the views in
the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element

XML

The following sections describe attributes, child elements, and the parent element of the
Frame  element.

None.

Schema

Syntax

<Frame>
  <LeftIndent>NumberOfCharactersToShift</LeftIndent>
  <RightIndent>NumberOfCharactersToShift</RightIndent>
  <FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>
  <FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>
  <CustomItem>...</CustomItem>
</Frame>

Attributes and Elements

Attributes



Element Description

CustomItem Element Required Element

FirstLineHanging Element for Frame for
Controls for Configuration

Optional element.

Specifies how many characters the first line of
data is shifted to the left.

FirstLineIndent Element for Frame for
Controls for Configuration

Optional element.

Specifies how many characters the first line of
data is shifted to the right.

LeftIndent Element for Frame for Controls for
Configuration

Optional element.

Specifies how many characters the data is shifted
away from the left margin.

RightIndent Element for Frame for Controls
for Configuration

Optional element.

Specifies how many characters the data is shifted
away from the right margin.

Element Description

CustomItem Element for CustomEntry for
Controls for Configuration

Defines what data is displayed by the control
and how it is displayed.

You cannot specify the FirstLineHanging and the FirstLineIndent elements in the same
Frame  element.

FirstLineHanging Element for Frame for Controls for Configuration

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



FirstLineIndent Element for Frame for Controls for Configuration

LeftIndent Element for Frame for Controls for Configuration

RightIndent Element for Frame for Controls for Configuration

CustomItem Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-controls-for-configuration-format.md&documentVersionIndependentId=dcf1d111-92ba-bb37-282e-61a35379f0ac&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+555df6a6-5bce-4fd1-a89d-2c02e873e934+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineHanging Element for Frame for
Controls for Configuration
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the left. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineHanging Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineHanging  element.

None.

Schema

Syntax

<FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for Configuration

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineIndent  element.

Frame Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-controls-for-configuration-format.md&documentVersionIndependentId=6a52f5c5-8e12-85b2-4176-8ae12b5a0f10&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bf4da7b9-5e3d-ed75-4644-b36986d08a98+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineIndent Element for Frame for
Controls for Configuration
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the right. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineIndent  element.

None.

Schema

Syntax

<FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for Configuration

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineHanging element.

FirstLineHanging Element for Frame for Controls for Configuration

Frame Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-controls-for-configuration-format.md&documentVersionIndependentId=96bc1b3f-e6b4-2cca-f56e-da17713aba85&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+dff5c89f-0431-4bcf-4654-c65020980b5c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


LeftIndent Element for Frame for
Controls for Configuration
Article • 09/17/2021

Specifies how many characters the data is shifted away from the left margin. This
element is used when defining a common control that can be used by all the views in
the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
LeftIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
LeftIndent  element.

None.

Schema

Syntax

<LeftIndent>CharactersToShift</LeftIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for Configuration

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the data to the left.

Frame Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-controls-for-configuration-format.md&documentVersionIndependentId=a715ffce-8be2-6c29-796d-951afb3dc74c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9c0d0dea-d3f1-580c-16d1-765639579da7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RightIndent Element for Frame for
Controls for Configuration
Article • 09/17/2021

Specifies how many characters the data is shifted away from the right margin. This
element is used when defining a common control that can be used by all the views in
the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
RightIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
RightIndent  element.

None.

Schema

Syntax

<RightIndent>CharactersToShift</RightIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for Configuration

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the data to the right.

Frame Element for CustomItem for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-controls-for-configuration-format.md&documentVersionIndependentId=4dd6851b-1fdb-57e4-0b34-497a98023e32&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a9c4ff96-66dc-67ba-f5ab-44be38ebc4f6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


NewLine Element for CustomItem for
Controls for Configuration
Article • 09/17/2021

Adds a blank line to the display of the control. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
NewLine Element

XML

The following sections describe attributes, child elements, and the parent element of the
NewLine  element.

None.

None.

Schema

Syntax

<NewLine/>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomItem Element for CustomEntry for Controls for
Configuration

Defines a control for the custom
control view.

CustomItem Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-controls-for-configuration-format.md&documentVersionIndependentId=179c05c7-ec2d-33bd-7c00-d2745bc19c56&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+52bf15d0-cbbc-6c9d-f499-9e932abb7e3a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Text Element for CustomItem for
Controls for Configuration
Article • 09/17/2021

Specifies text that is added to the data that is displayed by the control, such as a label,
brackets to enclose the data, and spaces to indent the data. This element is used when
defining a common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Text Element

XML

The following sections describe attributes, child elements, and the parent element of the
Text  element.

None.

None.

Schema

Syntax

<Text>TextToDisplay</Text>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomItem Element for CustomEntry for
Controls for Configuration

Defines what data is displayed by the control
and how it is displayed.

Specify the text of a control for data that you want to display.

CustomItem Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-controls-for-configuration-format.md&documentVersionIndependentId=acc8453b-61bc-e465-a9f7-b6b45689053d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d9b41d6e-6973-68a7-5394-aa7660e06b3d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
CustomEntry for Controls
Article • 09/17/2021

Defines the .NET types that use the definition of the common control or the condition
that must exist for this control to be used. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and the parent element of the
EntrySelectedBy  element.

None.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>SelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for Configuration

Optional element.

Defines the condition that must exist for the
common control definition to be used.

SelectionSetName Element for EntrySelectedBy
for Controls for Configuration

Optional element.

Specifies a set of .NET types that use this
definition of the common control.

TypeName Element for EntrySelectedBy for
Controls for Configuration

Optional element.

Specifies a .NET type that uses this definition of
the common control.

Element Description

CustomEntry Element for CustomControl for Controls for
Configuration

Provides a definition of the common
control.

At a minimum, each definition must have at least one .NET type, selection set, or
selection condition specified. There is no maximum limit to the number of types,
selection sets, or selection conditions that you can specify.

SelectionCondition Element for EntrySelectedBy for Controls for Configuration

SelectionSetName Element for EntrySelectedBy for Controls for Configuration

CustomEntry Element for CustomControl for Controls for Configuration

TypeName Element for EntrySelectedBy for Controls for Configuration

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-controls-for-configuration-format.md&documentVersionIndependentId=261f32e0-6e0d-e07d-b716-f497a47ec25a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e35e847a-22a3-a9ca-55b3-aa68e69a3886+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for Controls for
Configuration
Article • 09/17/2021

Defines a condition that must exist for a common control definition to be used. This
element is used when defining a common control that can be used by all the views in
the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



None.

Element Description

PropertyName Element for SelectionCondition for
Controls for Configuration

Optional element.

Specifies a .NET property that triggers
the condition.

ScriptBlock Element for SelectionCondition for Controls
for Configuration

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
Controls for Configuration

Optional element.

Specifies the set of .NET types that
triggers the condition.

TypeName Element for SelectionCondition for Controls
for Configuration

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for CustomEntry for
Controls for Configuration

Defines the .NET types that use this entry of the
common control definition.

The following guidelines must be followed when defining a selection condition:

The selection condition must specify a least one property name or a script block,
but cannot specify both.
The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



For more information about how selection conditions can be used, see Defining
Conditions for when Data is Displayed.

PropertyName Element for SelectionCondition for Controls for Configuration

ScriptBlock Element for SelectionCondition for Controls for Configuration

SelectionSetName Element for SelectionCondition for Controls for Configuration

TypeName Element for SelectionCondition for Controls for Configuration

EntrySelectedBy Element for CustomEntry for Controls for Configuration

Writing a Windows PowerShell Formatting and Types File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-controls-for-configuration-format.md&documentVersionIndependentId=a451e1ac-e069-7e8d-3ef4-0611c535f9ad&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+dc6ed64b-1882-717d-8c40-6e8d1806ef31+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the entry is used. This element is
used when defining a common control that can be used by all the views in the
formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for Configuration

Defines a condition that must exist for a
common control definition to be used.

Specify the .NET property name.

The selection condition must specify a least one property name or a script, but cannot
specify both. For more information about how selection conditions can be used, see
Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=db04d589-f1a5-5e75-3ac2-f38342718c5e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+146d8275-d287-bdde-fc12-fd025a8ebae3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the definition is used. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for Configuration

Defines a condition that must exist for the
common control definition to be used.

Specify the script that is evaluated.

The selection condition must specify a least one script or property name to evaluate, but
cannot specify both. For more information about how selection conditions can be used,
see Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=cfecbb4f-8958-307a-2db1-606cd1e1e4a7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+49772879-8fbc-64af-057b-f0790804734d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met, and the object is displayed by using this control.
This element is used when defining a common control that can be used by all the views
in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for Configuration

Defines a condition that must exist for the
control definition to be used.

Specify the name of the selection set.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Sets of Objects.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for Configuration

Defining Conditions for When Data Is Displayed

Defining Selection Sets

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=3ee2faf8-5e6a-9c95-2a98-3209ac289e58&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2cfb599b-6ec8-60ba-decc-da81d7fe7458+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for Controls for
Configuration
Article • 09/17/2021

Specifies a .NET type that triggers the condition. This element is used when defining a
common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  Element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy for
CustomEntry for Configuration

Defines a condition that must exist for the
control definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

SelectionCondition Element for EntrySelectedBy for CustomEntry for Configuration

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-controls-for-configuration-format.md&documentVersionIndependentId=2e4e0cc7-6e29-4613-0bed-c0bf12f6231d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1388da04-497e-eebe-2c58-8e65f0cb600b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for Controls for
Configuration
Article • 09/17/2021

Specifies a set of .NET types that use this definition of the control. This element is used
when defining a common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element of Configuration
Control Element for Controls for Configuration
CustomControl Element for Control for Configuration
CustomEntries Element for CustomControl for Configuration
CustomEntry Element for CustomControl for Controls for Configuration
EntrySelectedBy Element for CustomEntry for Controls for Configuration
SelectionSetName Element for EntrySelectedBy for Controls for Configuration

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

EntrySelectedBy Element for
CustomEntry for Controls for
Configuration

Defines the .NET types that use this control definition
or the condition that must exist for this definition to be
used.

Specify the name of the selection set.

Each control definition must have at least one type name, selection set, or selection
condition defined.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For more information about defining selection sets, see Defining
Selection Sets.

EntrySelectedBy Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-controls-for-configuration-format.md&documentVersionIndependentId=20624c88-5a05-d9af-ddc5-29c462dd736d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ee7e1cb8-9c8c-cba1-f0f5-99adf0924570+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for Controls for Configuration
Article • 09/17/2021

Specifies a .NET type that uses this definition of the control. This element is used when
defining a common control that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for Controls for
Configuration

Defines the .NET types that use this control definition
or the condition that must exist for this definition to be
used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

EntrySelectedBy Element for CustomEntry for Controls for Configuration

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-controls-for-configuration-format.md&documentVersionIndependentId=92b31c06-ed02-5ae6-f5a3-de65acd8d1be&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+65dfa74a-d007-6842-d02c-b3a6cb7a169f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Name Element for Control for Controls
for Configuration
Article • 09/17/2021

Specifies the name of the control. This element is used when defining a common control
that can be used by all the views in the formatting file.

Configuration Element
Controls Element
Control Element
Name Element

XML

The following sections describe attributes, child elements, and the parent element of the
Name  element.

None.

None.

Schema

Syntax

<Name>NameOfControl</Name>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Control Element for Controls
for Configuration

Defines a common control that can be used by all the views of the
formatting file and the name that is used to reference the control.

Specify the name that is used to reference this control.

The name specified here can be used in the following elements to reference this control.

When creating a table, list, wide or custom control view, the control can be
specified by the following element: GroupBy Element for View

When creating another common control, this control can be specified by the
following element: ExpressionBinding Element for CustomItem for Controls for
Configuration

When creating a control that can be used by a view, this control can be specified
by the following element: ExpressionBinding Element for CustomItem for Controls
for View

Control Element for Controls for Configuration

ExpressionBinding Element for CustomItem for Controls for Configuration

ExpressionBinding Element for CustomItem for Controls for View

GroupBy Element for View

Writing a PowerShell Formatting File

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fname-element-for-control-for-controls-for-configuration-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fname-element-for-control-for-controls-for-configuration-format.md&documentVersionIndependentId=36f8ae50-a662-9fe0-112b-e08a9698033d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8ed1330b-eb09-1dbe-cd11-61c92026e3c2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


DefaultSettings Element
Article • 09/17/2021

Defines common settings that apply to all the views of the formatting file. Common
settings include displaying errors, wrapping text in tables, defining how collections are
expanded, and more.

Configuration Element
DefaultSettings Element

XML

The following sections describe attributes, child elements, and the parent element of the
DefaultSettings  element.

None.

Schema

Syntax

<DefaultSettings>
  <ShowError/>
  <DisplayError/>
 <PropertyCountForTable>NumberOfProperties</PropertyCountFortable>
  <WrapTables/>
  <EnumerableExpansions>...</EnumerableExpansions>
</DefaultSettings>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

DisplayError Element Optional element.

Specifies that the string #ERR is displayed when an error occurs
while displaying a piece of data.

EnumerableExpansions
Element

Optional element.

Defines the different ways that .NET objects are expanded when
they are displayed in a view.

PropertyCountForTable Optional element.

Specifies the minimum number of properties that an object must
have to display the object in a table view.

ShowError Element Optional element.

Specifies that the full error record is displayed when an error occurs
while displaying a piece of data.

WrapTables Element Optional element.

Specifies that data in a table is moved to the next line if it does not
fit into the width of the column.

Element Description

Configuration Element Represents the top-level element of a formatting file.

Configuration Element

DisplayError Element

EnumerableExpansions Element

Parent Elements

ﾉ Expand table

Remarks

See Also



PropertyCountForTable

ShowError Element

WrapTables Element

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fdefaultsettings-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fdefaultsettings-element-format.md&documentVersionIndependentId=e47cb0e4-026d-ce39-fb56-d5084a2d360f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4ee6cadf-93bf-d62c-7ee6-ccea95440050+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


DisplayError Element
Article • 09/17/2021

Specifies that the string #ERR is displayed when an error occurs displaying a piece of
data.

Configuration Element
DefaultSettings Element
DisplayError Element

XML

The following sections describe attributes, child elements, and the parent element of the
DisplayError  element.

None.

None.

Element Description

DefaultSettings Defines common settings that apply to all the views of the formatting

Schema

Syntax

<DisplayError/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Element file.

By default, when an error occurs while trying to display a piece of data, the location of
the data is left blank. When this element is set to true, the #ERR string will be displayed.

DefaultSettings Element

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fdisplayerror-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fdisplayerror-element-format.md&documentVersionIndependentId=8e848327-de95-2ea2-4274-990eceac20bd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fd1ea420-9133-82db-e118-0c1db5403e5a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EnumerableExpansions Element
Article • 09/17/2021

Defines how .NET collection objects are expanded when they are displayed in a view.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerableExpansions  element. There is no limit to the number of child elements that
you can use.

None.

Element Description

EnumerableExpansion
Element

Optional element.

Defines the specific .NET collection objects that are expanded when
they are displayed in a view.

Schema

Syntax

<EnumerableExpansions>
  <EnumerableExpansion>...</EnumerableExpansion>
</EnumerableExpansions>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

DefaultSettings
Element

Defines common settings that apply to all the views of the formatting
file.

This element is used to define how collection objects and the objects in the collection
are displayed. In this case, a collection object refers to any object that supports the
System.Collections.ICollection interface.

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumerableexpansions-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumerableexpansions-element-format.md&documentVersionIndependentId=636bbebd-9a91-877e-bcd3-6a985107a19e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ecfab229-4042-e74d-afa7-6ea43078192d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EnumerableExpansion Element
Article • 09/17/2021

Defines how specific .NET collection objects are expanded when they are displayed in a
view.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerableExpansion  element.

None.

Element Description

EntrySelectedBy Element for
EnumerableExpansion

Optional element.

Schema

Syntax

<EnumerableExpansion>
  <EntrySelectedBy>...</EntrySelectedBy>
  <Expand>EnumOnly, CoreOnly, Both</Expand>
</EnumerableExpansion>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Defines which .NET collection objects are expanded
by this definition.

Expand Element Specifies how the collection object is expanded for
this definition.

Element Description

EnumerableExpansions
Element

Defines the different ways that .NET collection objects are
expanded when they are displayed in a view.

This element is used to define how collection objects and the objects in the collection
are displayed. In this case, a collection object refers to any object that supports the
System.Collections.ICollection interface.

The default behavior is to display only the properties of the objects in the collection.

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumerableexpansion-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumerableexpansion-element-format.md&documentVersionIndependentId=181f1695-bcbd-01ae-2747-ef75493bffd2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bf978b8f-19e7-29fe-ea8c-3888654653ef+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
EnumerableExpansion
Article • 09/17/2021

Defines the .NET types that use this definition or the condition that must exist for this
definition to be used.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element for EnumerableExpansion

XML

The following sections describe attributes, child elements, and the parent element of the
EntrySelectedBy  element.

None.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

SelectionCondition Element for
EntrySelectedBy for EnumerableExpansion

Optional element.

Defines the condition that must exist to expand
the collection objects of this definition.

SelectionSetName Element for
EntrySelectedBy for EnumerableExpansion

Optional element.

Specifies a set of .NET types that use this
definition of how collection objects are
expanded.

TypeName Element for EntrySelectedBy for
EnumerableExpansion

Optional element.

Specifies a .NET type that uses this definition of
how collection objects are expanded.

Element Description

EnumerableExpansion
Element

Defines how specific .NET collection objects are expanded when
they are displayed in a view.

You must specify at least one type, selection set, or selection condition for a definition
entry. There is no maximum limit to the number of child elements that you can use.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or that a specific property value
or script evaluates to true . For more information about selection conditions, see
Defining Conditions for Displaying Data.

Defining Conditions for Displaying Data

EnumerableExpansion Element

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion

Parent Elements

ﾉ Expand table

Remarks

See Also



SelectionSetName Element for EntrySelectedBy for EnumerableExpansion

TypeName Element for EntrySelectedBy for EnumerableExpansion

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-enumerableexpansion-format.md&documentVersionIndependentId=6a9bfd0d-882c-c460-bde4-e88ab2b77cf8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cd97e5d2-145e-fcdb-de83-7df321078afe+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for
EnumerableExpansion
Article • 12/18/2023

Defines the condition that must exist to expand the collection objects of this definition.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element. You must specify a single PropertyName  or ScriptBlock
element. The SelectionSetName  and TypeName  elements are optional. You can specify
one of either element.

None.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for SelectionCondition for
EntrySelectedBy for EnumerableExpansion

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for SelectionCondition for
EntrySelectedBy for EnumerableExpansion

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
EntrySelectedBy for EnumerableExpansion

Optional element.

Specifies the set of .NET types that
triggers the condition.

TypeName Element for SelectionCondition for
EntrySelectedBy for EnumerableExpansion

Optional element.

Specifies a .NET type that triggers
the condition.

Element Description

EntrySelectedBy Element for
EnumerableExpansion

Defines which .NET collection objects are expanded
by this definition.

Each definition must have at least one type name, selection set, or selection condition
defined.

When you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

For more information about how to use selection conditions, see Defining Conditions
for Displaying Data.

For more information about other components of a wide view, see Wide View.

Defining Conditions for When Data Is Displayed

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=6c0e52e2-88f2-498e-7698-4f8715163672&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d4040c72-e61c-3d93-463b-2a5a2182e143+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for Controls for View
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the entry is used. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element for Controls for View
CustomControl Element for Control for Controls for View
CustomEntries Element for CustomControl for Controls for View
CustomEntry Element for CustomEntries for Controls for View
EntrySelectedBy Element for CustomEntry for Controls for View
SelectionCondition Element for EntrySelectedBy for Controls for View
PropertyName Element for SelectionCondition for Controls for View

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for View

Defines a condition that must exist for the
control definition to be used.

Specify the .NET property name.

The selection condition must specify a least one property name or a script, but cannot
specify both. For more information about how selection conditions can be used, see
Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=e791b211-17fc-9882-cf30-fb417b0dffad&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+92f3037e-21d9-2f6e-2251-a27781127c56+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for Controls for View
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the definition is used. This element is used when defining controls
that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for View

Defines a condition that must exist for the
control definition to be used.

Specify the script that is evaluated.

The selection condition must specify a least one script or property name to evaluate, but
cannot specify both. For more information about how selection conditions can be used,
see Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=de7c952d-2d89-166b-e9b6-e1367a1e5b61&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a5704567-eb9c-806b-4a09-629ce8f11c34+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for EntrySelectedBy
for EnumerableExpansion
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansions Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and parent element of the
SelectionSetName  element.

None.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for EnumerableExpansion

Defines the condition that must exist to expand
the collection objects of this definition.

Specify the name of the selection set.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for Displaying Data.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Selection Sets.

Defining Selection Sets

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=98b96a7d-16ec-5fbe-81a2-466551754764&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+60d936d2-6fda-2ea6-7060-54b4e4361108+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for EntrySelectedBy
for EnumerableExpansion
Article • 09/17/2021

Specifies a .NET type that triggers the condition.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansions Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for EnumerableExpansion

Defines the condition that must exist to expand
the collection objects of this definition.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=f7b82309-3997-a9f8-458b-f2d05519efbe&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d1edf01c-84ed-0790-efef-67a85d640d5d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for
EnumerableExpansion
Article • 09/17/2021

Specifies the set of .NET types that are expanded by this definition.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
EnumerableExpansion

Defines the .NET collection objects that are expanded
by this definition.

Specify the name of the selection set.

Each definition must specify one or more type names, a selection set, or a selection
condition.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you might want to create a table view and a list
view for the same set of objects. For more information about defining selection sets, see
Defining Sets of Objects for a View.

Defining Selection Sets

EntrySelectedBy Element for EnumerableExpansion

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=9fc967ac-bf0f-2db9-4141-6ed5501c5771&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b1b16407-0eae-a0ad-b813-b26eb9f0ac68+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for EnumerableExpansion
Article • 09/17/2021

Specifies a .NET type that is expanded by this definition. This element is used when
defining a default settings.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

EntrySelectedBy Element for
EnumerableExpansion

Defines the .NET types that use this definition or the
condition that must exist for this definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

EntrySelectedBy Element for EnumerableExpansion

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=9cede581-d8c3-2837-4c8d-3dc9011f24df&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6a117621-3dc1-fe34-0f81-a7ca5f743459+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Expand Element
Article • 09/17/2021

Specifies how the collection object is expanded for this definition.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
Expand Element

XML

The following sections describe attributes, child elements, and the parent element of the
Expand  element.

None.

None.

Schema

Syntax

<Expand>EnumOnly, CoreOnly, Both</Expand>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

EnumerableExpansion
Element

Defines how specific .NET collection objects are expanded when
they are displayed in a view.

Specify one of the following values:

EnumOnly: Displays only the properties of the objects in the collection.

CoreOnly: Displays only the properties of the collection object.

Both: Displays the properties of the objects in the collection and the properties of
the collection object.

This element is used to define how collection objects and the objects in the collection
are displayed. In this case, a collection object refers to any object that supports the
System.Collections.ICollection interface.

The default behavior is to display only the properties of the objects in the collection.

Writing a PowerShell Formatting File

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fexpand-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fexpand-element-format.md&documentVersionIndependentId=b24de779-0f8b-c6ae-67ee-3a4007f105be&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+37cf50db-0fa4-396a-9419-838e72b816fd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyCountForTable Element
Article • 09/17/2021

Optional element. Specifies the minimum number of properties that an object must
have to display the object in a table view.

DefaultSettings Element
PropertyCountForTable Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyCountForTable  element. The default value for this element is 4 .

None.

None.

Element Description

DefaultSettings
Element

Defines common settings that apply to all the views of the formatting
file.

Schema

Syntax

<PropertyCountForTable>NumberOfProperties</PropertyCountFortable>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertycountfortable-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertycountfortable-element-format.md&documentVersionIndependentId=641099b0-147e-491e-431e-2e89b388bc9d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4bc70499-2cd8-b84b-a315-99a12dc90a05+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ShowError Element
Article • 09/17/2021

Specifies that the full error record is displayed when an error occurs while displaying a
piece of data.

Configuration Element
DefaultSettings Element
ShowError Element

scr

The following sections describe attributes, child elements, and the parent element of the
ShowError  element. The default value for this element is false .

None.

None.

Element Description

DefaultSettings Defines common settings that apply to all the views of the formatting

Schema

Syntax

<ShowError/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Element file.

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fshowerror-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fshowerror-element-format.md&documentVersionIndependentId=70713706-99bc-b7c4-361f-71b92ad75f35&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+099d989a-94b1-0d13-863c-6dad9ee2c61f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


WrapTables Element
Article • 09/17/2021

Specifies that data in a table cell is moved to the next line if the data is longer than the
width of the column.

Configuration Element
DefaultSettings Element
WrapTables Element

XML

The following sections describe attributes, child elements, and the parent element of the
WrapTables  element.

None.

None.

Element Description

DefaultSettings Defines common settings that apply to all the views of the formatting

Schema

Syntax

<WrapTables/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Element file.

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwraptables-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwraptables-element-format.md&documentVersionIndependentId=4f2f85cb-1515-6b71-2beb-e9ca951d2ca2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a011547b-3b56-55bb-f12b-fb197b0833cf+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSets Element
Article • 09/17/2021

Defines the common sets of .NET objects that can be used by all views of the formatting
file. The views and controls of the formatting file can reference the complete set of
objects by using only the name of the selection set.

Configuration Element
SelectionSets Element

XML

The following sections describe the attributes, child elements, and parent element of the
SelectionSets  element. Each child element defines a set of objects that can be
referenced by the name of the set. The order of the child elements is not significant.

None.

Element Description

SelectionSet
Element

Required element.

Schema

Syntax

<SelectionSets>
  <SelectionSet>...</SelectionSet>
</SelectionSets>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Defines a single set of .NET objects that can be referenced by the name of
the set.

Element Description

Configuration Element Represents the top-level element of a formatting file.

You can use selection sets when you have a set of related objects that you want to
reference by using a single name, such as a set of objects that are related through
inheritance. When defining your views, you can specify the set of objects by using the
name of the selection set instead of listing all the objects within each view.

Common selection sets are specified by their name when defining the views of the
formatting file or the definitions of the views. In these cases, the SelectionSetName  child
element of the ViewSelectedBy  and EntrySelectedBy  elements specifies the set to be
used. For more information about selection sets, see Defining Sets of Objects.

Configuration Element

Defining Selection Sets

SelectionSet Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsets-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsets-element-format.md&documentVersionIndependentId=90181895-8809-d7f4-fee8-0c9e9f3baeae&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+87647dbb-ac24-cb40-45c0-d860bb6d9e63+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSet Element
Article • 09/17/2021

Defines a set of .NET objects that can be referenced by the name of the set.

Configuration Element
SelectionSets Element
SelectionSet Element

XML

The following sections describe the attributes, child elements, and the parent element of
the SelectionSet  element. Each selection set must have a name, and it must specify the
.NET objects of the set.

None.

Element Description

Name Element for SelectionSet Required element.

Specifies the name used to reference the selection set.

Schema

Syntax

<SelectionSet>
  <Name>SelectionSetName</Name>
  <Types>...</Types>
</SelectionSet>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Types Element Required element.

Defines the .NET objects that are in the selection set.

Element Description

SelectionSets Element
Format

Defines the common sets of .NET objects that can be used by all views
of the formatting file.

You can use selection sets when you have a set of related objects that you want to
reference by using a single name, such as a set of objects that are related through
inheritance. When defining your views, you can specify the set of objects by using the
name of the selection set instead of listing all the objects within each view.

Common selection sets are specified by their name when defining the views of the
formatting file or the definitions of the views. In these cases, the SelectionSetName  child
element of the ViewSelectedBy  and EntrySelectedBy  elements specifies the set to be
used. For more information about selection sets, see Defining Sets of Objects.

The following example shows a SelectionSet  element that defines four .NET types.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<SelectionSets>
  <SelectionSet>
    <Name>FileSystemTypes</Name>
    <Types>
     <TypeName>System.IO.DirectoryInfo</TypeName>
     <TypeName>System.IO.FileInfo</TypeName>
     <TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
     <TypeName>Deserialized.System.IO.FileInfo</TypeName>
    </Types>



Defining Selection Sets

Name Element of SelectionSet

SelectionSets Element

Types Element

Writing a PowerShell Formatting File

  </SelectionSet>
</SelectionSets>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionset-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionset-element-format.md&documentVersionIndependentId=0075fc32-1832-3d67-d647-686aa274b8f7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ac9f3e6d-1b47-768b-e597-9cd41c481eae+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Name Element for SelectionSet
Article • 09/17/2021

Specifies the name used to reference the selection set.

Configuration Element
SelectionSets Element
SelectionSet Element
Name Element

XML

The following sections describe the attributes, child elements, and parent element of the
Name  Element.

None.

None.

Element Description

SelectionSet Defines a single set of .NET objects that can be referenced by the name of

Schema

Syntax

<Name>Name of selection set</Name>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Element the set.

Specify the name to reference the selection set. There are no restrictions as to what
characters can be used.

The name specified here is used in the SelectionSetName  element. The selection set that
can be used by a view, by a definition of a view (views can have multiple definitions), or
when specifying a selection condition. For more information about selection sets, see
Defining Sets of Objects.

This example shows a SelectionSet  element that defines four .NET types. The name of
the selection set is "FileSystemTypes".

XML

Defining Selection Sets

SelectionSet Element

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<SelectionSets>
  <SelectionSet>
    <Name>FileSystemTypes</Name>
    <Types>
     <TypeName>System.IO.DirectoryInfo</TypeName>
     <TypeName>System.IO.FileInfo</TypeName>
     <TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
     <TypeName>Deserialized.System.IO.FileInfo</TypeName>
    </Types>
  </SelectionSet>
</SelectionSets>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fname-element-for-selectionset-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fname-element-for-selectionset-format.md&documentVersionIndependentId=8e4539c4-be79-796e-d5f6-abbbf258e5bf&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4e4a77da-8703-34bc-9747-f6f74a7337a4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Types Element for SelectionSet
Article • 09/17/2021

Defines the .NET objects that are in the selection set.

Configuration Element
SelectionSets Element
SelectionSet Element
Types Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Types  element. There must be at least one child element, but there is no maximum
limit to the number of child elements that can be added.

None.

Element Description

TypeName Element of Types Required element.

Schema

Syntax

<Types>
  <TypeName>Nameof.NetType</TypeName>
</Types>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Specifies the .NET object that belongs to the selection set.

Element Description

SelectionSet
Element

Defines a set of .NET objects that can be referenced by the name of the
set.

The objects defined by this element make up a selection set that can be used by a view,
by a definition of a view (views can have multiple definitions), or when specifying a
selection condition. For more information about selection sets, see Defining Sets of
Objects.

This example shows a SelectionSet  element that defines four .NET types.

XML

Defining Sets of Objects

SelectionSet Element

Parent Elements

ﾉ Expand table

Remarks

Example

<SelectionSets>
  <SelectionSet>
    <Name>FileSystemTypes</Name>
    <Types>
     <TypeName>System.IO.DirectoryInfo</TypeName>
     <TypeName>System.IO.FileInfo</TypeName>
     <TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
     <TypeName>Deserialized.System.IO.FileInfo</TypeName>
    </Types>
  </SelectionSet>
</SelectionSets>

See Also



TypeName Element of Types

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypes-element-for-selectionset-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypes-element-for-selectionset-format.md&documentVersionIndependentId=4d156b2e-b0a3-f026-9580-50a050c8bf87&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+12122fc0-45fd-f7f4-d922-9c80ca73b1f7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for Types
Article • 09/17/2021

Specifies the .NET type of an object that belongs to the selection set.

Configuration Element
SelectionSets Element
SelectionSet Element
Types Element
TypeName Element

XML

The following sections describe the attributes, child elements, and the parent element of
the TypeName  element. At least one TypeName  element must be included in the selection
set.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</Name>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

Types Element Defines the .NET objects that are in the selection set.

Specify the fully qualified name for the .NET type.

You can use selection sets when you have a set of related objects that you want to
reference by using a single name, such as a set of objects that are related through
inheritance. When defining your views, you can specify the set of objects by using the
name of the selection set instead of listing all the objects within each view.

Common selection sets are specified by their name when defining the views of the
formatting file. In these cases, the SelectionSetName  child element of the
ViewSelectedBy  element for the view specifies the set. However, different entries of a
view can also specify a selection set that applies to only that entry of the view. For more
information about selection sets, see Defining Sets of Objects.

The following example shows a SelectionSet  element that defines four .NET types.

Defining Selection Sets

Text Value

Remarks

Example

<SelectionSets>
  <SelectionSet>
    <Name>FileSystemTypes</Name>
    <Types>
     <TypeName>System.IO.DirectoryInfo</TypeName>
     <TypeName>System.IO.FileInfo</TypeName>
     <TypeName>Deserialized.System.IO.DirectoryInfo</TypeName>
     <TypeName>Deserialized.System.IO.FileInfo</TypeName>
    </Types>
  </SelectionSet>
</SelectionSets>

See Also



SelectionSet Element

SelectionSets Element

Types Element

Writing a Windows PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-types-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-types-format.md&documentVersionIndependentId=3a36a953-b41f-0591-02d0-19b2a04f03b8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+49fd977d-235b-9a43-a7a4-4f87e326ddbe+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ViewDefinitions Element
Article • 09/17/2021

Defines the views used to display .NET objects. These views can display the properties
and script values of an object in a table format, list format, wide format, and custom
control format.

Configuration Element
ViewDefinitions

XML

The following sections describe the attributes, child elements, and parent element of the
ViewDefinitions  element. There is no limit to the number of views that can be defined
in a formatting file, and they can be added in any order.

None.

Element Description

View Element Defines a view that is used to display one or more .NET objects.

Schema

Syntax

<ViewDefinitions>
  <View>...</View>
</ViewDefinitions>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Configuration Element Represents the top-level element of a formatting file.

For more information about the components of the different types of views, see the
following topics:

Creating a Table View

Creating a List View

Creating a Wide View

Custom Controls

This example shows a ViewDefinitions  element that contains the parent elements for a
table view and a list view.

XML

Configuration Element

View Element

Parent Elements

ﾉ Expand table

Remarks

Example

<Configuration>
  <ViewDefinitions>
    <View>
      <TableControl>...</TableControl>
    </View>
    <View>
      <ListControl>...</ListControl>
    </View>
  </ViewDefinitions>
</Configuration>

See Also



Creating a Table View

Creating a List View

Creating a Wide View

Custom Controls

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fviewdefinitions-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fviewdefinitions-element-format.md&documentVersionIndependentId=d40ce5f2-c795-7c5e-482f-027642638180&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+05448833-9ed2-331e-3666-21d5eeadfb9a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


View Element
Article • 09/17/2021

Defines a view that displays one or more .NET objects. There is no limit to the number of
views that can be defined in a formatting file.

Configuration Element
ViewDefinitions Element
View Element

XML

The following sections describe the attributes, child elements, and the parent element of
the View  element. You must specify one and only one of the control child elements, and
you must specify the name of the view and the objects that use the view. Defining
custom controls, how to group objects, and specifying if the view is out-of-band are
optional.

None.

Schema

Syntax

<View>
  <Name>Friendly name of view.</Name>
  <OutOfBand />
  <ViewSelectedBy>...</ViewSelectedBy>
  <Controls>...</Controls>
  <GroupBy>...</GroupBy>
  <TableControl>...</TableControl>
  <ListControl>...</ListControl>
  <WideControl>...</WideControl>
  <CustomControl>...</CustomControl>
</View>

Attributes and Elements

Attributes



Element Description

Controls Element for
View

Optional element.

Defines a set of controls that can be referenced by their name from
within the view.

CustomControl Element Optional element.

Defines a custom control format for the view.

GroupBy Element for
View

Optional element.

Defines how the members of the .NET objects are grouped.

ListControl Element Optional element.

Defines a list format for the view.

Name Element for View Required element.

Specifies the name used to reference the view.

OutOfBand Optional element

When OutOfBand is true, the view applies regardless of previous
objects that may have selected a different view.

TableControl Element Optional element.

Defines a table format for the view.

ViewSelectedBy Element
for View

Required element.

Defines the .NET objects that this view displays.

WideControl Element Optional element.

Defines a wide (single value) list format for the view.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table



Element Description

ViewDefinitions Element Defines the views used to display objects.

For more information about the components of different views and custom controls, see
the following topics:

Table View Components

List View Components

Wide View Components

Custom Controls

This example shows a View  element that defines a table view for the
System.ServiceProcess.ServiceController object.

XML

ViewDefinitions Element

Name Element for View

ViewSelectedBy Element

Controls Element for View

Remarks

Example

<ViewDefinitions>
  <View>
    <Name>service</Name>
    <ViewSelectedBy>
      <TypeName>System.ServiceProcess.ServiceController</TypeName>
    </ViewSelectedBy>
    <TableControl>...</TableControl>
  </View>
</ViewDefinitions>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


GroupBy Element for View

TableControl Element

ListControl Element

WideControl Element

CustomControl Element

Writing a PowerShell Formatting File

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Controls Element for View
Article • 09/17/2021

Defines the view controls that can be used by a specific view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element

XML

The following sections describe the attributes, child elements, and parent elements of
the Controls  element. This element must have at least one child element. There is no
maximum number of child elements, nor is their order significant.

None.

Element Description

Control Element for Controls for View Defines a control that can be used by the view.

Schema

Syntax

<Controls>
  <Control>...</Control>
</Controls>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

View Element Defines a view that is used to display the members of one or more .NET objects.

Control Element

View Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcontrols-element-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcontrols-element-for-view-format.md&documentVersionIndependentId=49fa9704-5a4f-af95-8401-bdd31e6fcbdf&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d55c022d-1b95-62a2-445c-9475595021f3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Control Element for Controls for View
Article • 09/17/2021

Defines a control that can be used by the view and the name that is used to reference
the control.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Control  element.

None.

Schema

Syntax

<Control>
  <Name>NameOfControl</Name>
  <CustomControl>...</CustomControl>
</Control>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Name Element for Control for View Required element.

Specifies the name of the control.

CustomControl Element for Control for Controls for View Required element.

Defines the control used by this view.

Element Description

Controls Element Defines the view controls that can be used by a specific view.

This control can be specified by the following elements:

CustomControlName Element for ExpressionBinding for Controls for View

CustomControlName Element for ExpressionBinding for CustomControl for View

CustomControlName Element for ExpressionBinding for GroupBy

CustomControlName Element for GroupBy

CustomControl Element for Control for Controls for View

CustomControlName Element for ExpressionBinding for Controls for View

CustomControlName Element for ExpressionBinding for CustomControl for View

CustomControlName Element for ExpressionBinding for GroupBy

CustomControlName Element for ExpressionBinding for GroupBy

Controls Element

Name Element for Control for Controls for View

Parent Elements

ﾉ Expand table

Remarks

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcontrol-element-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcontrol-element-for-controls-for-view-format.md&documentVersionIndependentId=cc2065f6-cd36-902c-a947-02394f7dd02d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+34e5a03d-a522-2c16-f0d5-c22cfc11af0a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControl Element for Control for
Controls for View
Article • 09/17/2021

Defines a control that is used by the view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControl  element. You must specify only one child element.

None.

Schema

Syntax

<CustomControl>
  <CustomEntries>...</CustomEntries>
</CustomControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

CustomEntries Element for CustomControl for Controls for
View

Required element.

Provides the definitions for the
control.

Element Description

Control Element for
Controls for View

Defines a control that can be used by the view and the name that is
used to reference the control.

CustomEntries Element for CustomControl for View

Control Element for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-control-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-control-for-controls-for-view-format.md&documentVersionIndependentId=4397de90-9fdb-72e1-64c5-e9eec2f83170&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+46cbd608-844b-1f85-e802-1a6974dbfe94+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntries Element for
CustomControl for Controls for View
Article • 09/17/2021

Provides the definitions for the control. This element is used when defining controls that
can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element

XML

The following sections describe attributes, child elements, and parent elements of the
CustomEntries  element. There is no maximum limit to the number of child elements that
can be specified.

None.

Schema

Syntax

<CustomEntries>
  <CustomEntry>...</CustomEntry>
</CustomEntries>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomEntry Element for CustomEntries for Controls for
View

Required element.

Provides a definition of the
control.

Element Description

CustomControl Element for Control for Controls for View Defines the control used by the view.

In most cases, a control has only one definition, which is specified in a single
CustomEntry  element. However, it is possible to provide multiple definitions if you want
to use the same control to display different .NET objects. In those cases, you can define
a CustomEntry  element for each object or set of objects.

CustomEntry Element for CustomEntries for Controls for View

CustomControl Element for Control for Controls for View

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-controls-for-view-format.md&documentVersionIndependentId=298c43b6-f0f5-244b-c4fb-e09b61166940&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9c83bd2f-eacc-29cc-e8a2-3756479d303a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntry Element for CustomEntries
for Controls for View
Article • 09/17/2021

Provides a definition of the control. This element is used when defining controls that can
be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element

XML

The following sections describe attributes, child elements, and the parent elements of
the CustomEntry  element.

None.

Schema

Syntax

<CustomEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <CustomItem>...</CustomItem>
</CustomEntry>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for Controls for View

Optional element.

Defines the .NET types that use this control definition or
the condition that must exist for this definition to be used.

CustomItem Element for
CustomEntry for Controls for View

Required element.

Defines how the control displays the data.

Element Description

CustomEntries Element for CustomControl for View Provides the definitions for the control.

CustomEntries Element for CustomControl for View

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customentries-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customentries-for-controls-for-view-format.md&documentVersionIndependentId=d56826d8-663d-12c0-b034-073b1c8518d7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d5f6f284-3741-d9e9-b151-416bca18ff47+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomItem Element for CustomEntry
for Controls for View
Article • 09/17/2021

Defines what data is displayed by the control and how it is displayed. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomItem  element. For more information, see Remarks.

None.

Schema

Syntax

<CustomItem>
  <ExpressionBinding>...</ExpressionBinding>
  <NewLine/>
  <Text>TextToDisplay</Text>
  <Frame>...<Frame>
</CustomItem>

Attributes and Elements

Attributes



Element Description

ExpressionBinding Element for CustomItem
for Controls for View

Optional element.

Defines the data that is displayed by the control.

Frame Element for CustomItem for Controls
for View

Optional element.

Defines how the data is displayed, such as shifting
the data to the left or right.

NewLine Element for CustomItem for
Controls for View

Optional element.

Adds a blank line to the display of the control.

Text Element for CustomItem for Controls for
View

Optional element.

Adds text, such as parentheses or brackets, to the
display of the control.

Element Description

CustomEntry Element for CustomEntries for Controls for
View

Provides a definition of the
control.

When specifying the child elements of the CustomItem  element, keep the following in
mind:

The child elements must be added in the following sequence: ExpressionBinding ,

NewLine , Text , and Frame .
There is no maximum limit to the number of sequences that you can specify.
In each sequence, there is no maximum limit to the number of ExpressionBinding
elements that you can use.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



ExpressionBinding Element for CustomItem for Controls for View

Frame Element for CustomItem for Controls for View

NewLine Element for CustomItem for Controls for View

Text Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-controls-for-view-format.md&documentVersionIndependentId=fe9e5321-3d15-372b-26a0-6adcee6fb9a7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5c9c3144-af75-c44b-beb2-bdf6c4595d19+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ExpressionBinding Element for
CustomItem for Controls for View
Article • 09/17/2021

Defines the data that is displayed by the control. This element is used when defining
controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element

XML

The following sections describe attributes, child elements, and the parent element of the
ExpressionBinding  element.

Schema

Syntax

<ExpressionBinding>
  <CustomControl>...</CustomControl>
  <CustomControlName>NameofCommonCustomControl</CustomControlName>
  <EnumerateCollection/>
  <ItemSelectionCondition>...</ItemSelectionCondition>
  <PropertyName>Nameof.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate></ScriptBlock>
</ExpressionBinding>

Attributes and Elements

Attributes



None.

Element Description

CustomControl Element Optional element.

Defines a control that is used by this
control.

CustomControlName Element for ExpressionBinding
for Controls for View

Optional element.

Specifies the name of a common control
or a view control.

EnumerateCollection Element for ExpressionBinding
for Controls for View

Optional element.

Specifies that the elements of collections
are displayed.

ItemSelectionCondition Element of
ExpressionBinding for Controls for View

Optional element.

Defines the condition that must exist for
this control to be used.

PropertyName Element for ExpressionBinding for
Controls for View

Optional element.

Specifies the .NET property whose value is
displayed by the control.

ScriptBlock Element for ExpressionBinding for
Controls for View

Optional element.

Specifies the script whose value is
displayed by the control.

Element Description

CustomItem Element for CustomEntry for
Controls for View

Defines what data is displayed by the control and
how it is displayed.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table



CustomItem Element for CustomEntry for Controls for View

CustomControlName Element for ExpressionBinding for Controls for View

EnumerateCollection Element for ExpressionBinding for Controls for View

ItemSelectionCondition Element of ExpressionBinding for Controls for View

PropertyName Element for ExpressionBinding for Controls for View

ScriptBlock Element for ExpressionBinding for Controls for View

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-controls-for-view-format.md&documentVersionIndependentId=641a656b-73af-84a2-b05e-abd8428aab0d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bc010c83-68b7-d75e-46c4-9790547b71f7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControlName Element for
ExpressionBinding for Controls for View
Article • 09/17/2021

Specifies the name of a common control or a view control. This element is used when
defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
CustomControlName Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControlName  element.

None.

Schema

Syntax

<CustomControlName>NameofCustomControl</CustomControlName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
Controls for View

Defines the data that is displayed by the
control.

Specify the name of the control.

You can create common controls that can be used by all the views of a formatting file,
and you can create view controls that can be used by a specific view. The following
elements specify the names of these controls:

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

ExpressionBinding Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-controls-for-view-format.md&documentVersionIndependentId=73eb31ae-42a4-02d2-c8bc-7335051b96d7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+616e287f-9ff3-df9b-b948-b38f2cb70d48+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EnumerateCollection Element for
ExpressionBinding for Controls for View
Article • 09/17/2021

Specified that the elements of collections are displayed. This element is used when
defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
EnumerateCollection Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerateCollection  element.

None.

Schema

Syntax

<EnumerateCollection/>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
Controls for View

Defines the data that is displayed by the
control.

ExpressionBinding Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-controls-for-view-format.md&documentVersionIndependentId=a6231552-8281-6171-3027-8a2a2e9417c4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a3dadac7-9a36-7f37-ed12-ef519a1bebab+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ItemSelectionCondition Element for
ExpressionBinding for Controls for View
Article • 09/17/2021

Defines the condition that must exist for this control to be used. This element is used
when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
ItemSelectionCondition  element.

None.

Schema

Syntax

<ItemSelectionCondition>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ItemSelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for ItemSelectionCondition for
Controls for View

Optional element.

Specifies the .NET property that triggers
the condition.

ScriptBlock Element for ItemSelectionCondition for
Controls for View

Optional element.

Specifies the script that triggers the
condition.

Element Description

ExpressionBinding Element for CustomItem for
Controls for View

Defines the data that is displayed by the
control.

You can specify one property name or a script for this condition but cannot specify both.

PropertyName Element for ItemSelectionCondition for Controls for View

ScriptBlock Element for ItemSelectionCondition for Controls for View

ExpressionBinding Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-controls-for-view-format.md&documentVersionIndependentId=7258b11d-8dbc-6dca-2ba1-e68c5ef90729&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1ef7ae01-7db7-2f1e-55d5-f06a1c7de627+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ItemSelectionCondition for Controls for
View
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

None.

Element Description

ItemSelectionCondition Element of
ExpressionBinding for Controls for View

Defines the condition that must exist for
this control to be used.

Specify the name of the .NET property that triggers the condition.

If this element is used, you cannot specify the ScriptBlock element when defining the
selection condition.

ScriptBlock Element for ItemSelectionCondition for Controls for View

ItemSelectionCondition Element of ExpressionBinding for Controls for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=54bc6493-1398-324f-30b9-8d7ea4b1bf89&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+007d4033-3699-ae1d-94d6-45ad4d935960+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ItemSelectionCondition for Controls for
View
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining controls
that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

None.

Element Description

ItemSelectionCondition Element of
ExpressionBinding for Controls for View

Defines the condition that must exist for
this control to be used.

Specify the script that is evaluated.

If this element is used, you cannot specify the PropertyName element when defining the
selection condition.

PropertyName Element for ItemSelectionCondition for Controls for View

ItemSelectionCondition Element of ExpressionBinding for Controls for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=919638b6-b3a9-23bd-5ce7-4add6b07bca1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+323480f9-3577-5ffb-dce6-e4558fa2f5d2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ExpressionBinding for Controls for View
Article • 09/17/2021

Specifies the .NET property whose value is displayed by the control. This element is used
when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
Controls for View

Defines the data that is displayed by the
control.

Specify the name of the .NET property whose value is displayed by the control.

ExpressionBinding Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-controls-for-view-format.md&documentVersionIndependentId=0bbc9dd3-7b26-652f-70b9-df4682bc9c40&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f015e138-994b-4e94-b661-c7d1ec49a28f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ExpressionBinding for Controls for View
Article • 09/17/2021

Specifies the script whose value is displayed by the control. This element is used when
defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
Controls for View

Defines the data that is displayed by the
control.

Specify the script whose value is displayed by the control.

ExpressionBinding Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-controls-for-view-format.md&documentVersionIndependentId=62ccefb8-35c0-6005-9c7e-f64030e11ec8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ef548f66-cfac-d0ae-bfeb-b99d00c92f40+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Frame Element for CustomItem for
Controls for View
Article • 09/17/2021

Defines how the data is displayed, such as shifting the data to the left or right. This
element is used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element

XML

The following sections describe attributes, child elements, and the parent element of the
Frame  element.

Schema

Syntax

<Frame>
  <LeftIndent>NumberOfCharactersToShift</LeftIndent>
  <RightIndent>NumberOfCharactersToShift</RightIndent>
  <FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>
  <FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>
  <CustomItem>...</CustomItem>
</Frame>

Attributes and Elements

Attributes



None.

Element Description

CustomItem Element Required Element

FirstLineHanging Element of Frame of
Controls of View

Optional element.

Specifies how many characters the first line is shifted
to the left.

FirstLineIndent Element of Frame of
Controls of View

Optional element.

Specifies how many characters the first line is shifted
to the right.

LeftIndent Element of Frame of Controls
of View

Optional element.

Specifies how many characters the data is shifted
away from the left margin.

RightIndent Element of Frame of
Controls of View

Optional element.

Specifies how many characters the data is shifted
away from the right margin.

Element Description

CustomItem Element for CustomEntry for
Controls for View

Defines what data is displayed by the control and
how it is displayed.

You cannot specify the FirstLineHanging and the FirstLineIndent elements in the same
Frame  element.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



FirstLineHanging Element of Frame of Controls of View

FirstLineIndent Element of Frame of Controls of View

LeftIndent Element of Frame of Controls of View

RightIndent Element of Frame of Controls of View

CustomItem Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-controls-for-view-format.md&documentVersionIndependentId=aba7dd1e-28b0-c9f6-a604-0da6a5076604&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b5147cd2-8077-808c-2d07-a8486f22bab9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineHanging Element for Frame for
Controls for View
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the left. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineHanging Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineHanging  element.

None.

Schema

Syntax

<FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for View

Defines how the data is displayed, such as shifting the
data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineIndent element.

FirstLineIndent Element for Frame for Controls for View

Frame Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-controls-for-view-format.md&documentVersionIndependentId=58f8b228-499f-4aa0-e02d-bf4c116a5911&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+31badb0f-ce89-ee37-cc05-3659cd905214+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineIndent Element for Frame for
Controls for View
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the right. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineIndent  element.

None.

Schema

Syntax

<FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for View

Defines how the data is displayed, such as shifting the
data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineHanging element.

FirstLineHanging Element for Frame for Controls for View

Frame Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-controls-for-view-format.md&documentVersionIndependentId=381fa4ed-d0d0-06d2-842a-f33878200ba5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fedd0a27-fa90-0ea7-1195-3e02a7d53058+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


LeftIndent Element for Frame for
Controls for View
Article • 09/17/2021

Specifies how many characters the data is shifted away from the left margin. This
element is used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
LeftIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
LeftIndent  element.

None.

Schema

Syntax

<LeftIndent>CharactersToShift</LeftIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for View

Defines how the data is displayed, such as shifting the
data to the left or right.

Specify the number of characters that you want to shift the data to the left.

Frame Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-controls-for-view-format.md&documentVersionIndependentId=3d1accd0-185c-8b5b-66a0-827a09b8ec5b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a1f11cfc-1d68-3514-3988-3c9f5827dc8d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RightIndent Element for Frame for
Controls for View
Article • 09/17/2021

Specifies how many characters the data is shifted away from the right margin. This
element is used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
RightIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
RightIndent  element.

None.

Schema

Syntax

<RightIndent>CharactersToShift</RightIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
Controls for View

Defines how the data is displayed, such as shifting the
data to the left or right.

Specify the number of characters that you want to shift the data to the right.

Frame Element for CustomItem for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-controls-for-view-format.md&documentVersionIndependentId=382c5a7a-36bf-7952-3d06-bb9dd3a9efd1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c6caa82e-dcbb-3f5a-d88f-3f876ed45c4e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


NewLine Element for CustomItem for
Controls for View
Article • 09/17/2021

Adds a blank line to the display of the control. This element is used when defining
controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
NewLine Element

XML

The following sections describe attributes, child elements, and the parent element of the
NewLine  element.

None.

Schema

Syntax

<NewLine/>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

CustomItem Element for CustomEntry for
Controls for View

Defines what data is displayed by the control and
how it is displayed.

CustomItem Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-controls-for-view-format.md&documentVersionIndependentId=9c418608-19d6-c496-080e-5704533e503b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7a884318-a34a-cf54-3aa2-9626544ec266+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Text Element for CustomItem for
Controls for View
Article • 09/17/2021

Specifies text that is added to the data that is displayed by the control, such as a label,
brackets to enclose the data, and spaces to indent the data. This element is used when
defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element

XML

The following sections describe attributes, child elements, and the parent element of the
Text  element.

None.

Schema

Syntax

<Text>TextToDisplay</Text>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

CustomItem Element for CustomEntry for
Controls for View

Defines what data is displayed by the control and
how it is displayed.

Specify the text of a control for data that you want to display.

CustomItem Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-controls-for-view-format.md&documentVersionIndependentId=165adada-b0c2-90dd-ccd1-147cb8e43653&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f9f4f3d0-69b0-10e7-2f79-e072921c8399+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
CustomEntry for Controls for View
Article • 09/17/2021

Defines the .NET types that use this control definition or the condition that must exist
for this definition to be used. This element is used when defining controls that can be
used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and parent element of the
EntrySelectedBy  element. You must specify at least one type, selection set, or selection
condition for a definition. There is no maximum limit to the number of child elements
that you can use.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for View

Optional element.

Defines the condition that must exist for this
definition to be used.

SelectionSetName Element for EntrySelectedBy
for Controls for View

Optional element.

Specifies a set of .NET types that use this
definition of the control.

TypeName Element for EntrySelectedBy for
Controls for View

Optional element.

Specifies a .NET type that uses this definition
of the control.

Element Description

CustomEntry Element for CustomEntries for Controls for
View

Provides a definition of the
control.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or when a specific property
value or script evaluates to true . For more information about selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

CustomEntry Element for CustomEntries for Controls for View

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-controls-for-view-format.md&documentVersionIndependentId=87759c44-ace6-3ea5-c253-80edfcae2192&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7f0fdedf-ff76-12c3-5f9a-33c282a6c66a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for Controls for View
Article • 09/17/2021

Defines a condition that must exist for the control definition to be used. This element is
used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element.

None.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for SelectionCondition for
Controls for View

Optional element.

Specifies a .NET property that triggers the
condition.

ScriptBlock Element for SelectionCondition for
Controls for View

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
Controls for View

Optional element.

Specifies the set of .NET types that
triggers the condition.

TypeName Element for SelectionCondition for
Controls for View

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for
CustomEntry for Controls for View

Defines the .NET types that use this control definition or
the condition that must exist for this definition to be used.

When you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.
The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

PropertyName Element for SelectionCondition for Controls for View

ScriptBlock Element for SelectionCondition for Controls for View

SelectionSetName Element for SelectionCondition for Controls for View

TypeName Element for SelectionCondition for Controls for View

EntrySelectedBy Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-controls-for-view-format.md&documentVersionIndependentId=57a4cbe3-5238-5eda-c6b2-315a1264cfb6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0843687e-a4a3-c508-93d3-54d33c60602d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for CustomControl
for View
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the definition is used. This element
is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for CustomControl for View

Defines a condition that must exist for the
control definition to be used.

Specify the .NET property name.

The selection condition must specify a least one property name or a script, but cannot
specify both. For more information about how selection conditions can be used, see
Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for CustomControl for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=0c50123e-ff51-055d-c139-76207613b1b3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+224c774b-398e-8869-29e5-b790a5684d8c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for CustomControl
for View
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the definition is used. This element is used when defining a
custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for CustomControl for View

Defines a condition that must exist for the
control definition to be used.

Specify the script that is evaluated.

The selection condition must specify a least one script or property name to evaluate, but
cannot specify both. For more information about how selection conditions can be used,
see Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for CustomControl for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=c1e6a5d8-5e8e-b2bf-cab1-eafa36829ee0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8b715b2f-21ca-8234-fdec-516784819272+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for Controls for View
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met and the object is displayed using this control. This
element is used when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for View

Defines a condition that must exist for the
control definition to be used.

Specify the name of the selection set.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Selection Sets.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for Displaying Data.

SelectionCondition Element for EntrySelectedBy for Controls for View

Defining Conditions for When Data Is Displayed

Defining Selection Sets

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=543e619a-bdc5-388d-6a38-f267ea462379&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1803e0c7-c85e-94f5-9461-3304f1c0a1a9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for Controls for View
Article • 09/17/2021

Specifies a .NET type that triggers the condition. This element is used when defining
controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  Element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for Controls for View

Defines a condition that must exist for the
control definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

SelectionCondition Element for EntrySelectedBy for Controls for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-controls-for-view-format.md&documentVersionIndependentId=7f87cbab-4a9b-10ed-6dca-70ee55bfebfa&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fb018eb9-0ba5-df24-9015-d65fa0a24930+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for Controls for View
Article • 09/17/2021

Specifies a set of .NET types that use this definition of the control. This element is used
when defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

EntrySelectedBy Element for
CustomEntry for Controls for View

Defines the .NET types that use this control definition or
the condition that must exist for this definition to be used.

Specify the name of the selection set.

Each control definition must have at least one type name, selection set, or selection
condition defined.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For more information about defining selection sets, see Defining
Selection Sets.

EntrySelectedBy Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-controls-for-view-format.md&documentVersionIndependentId=37f7ddce-4202-420c-9c14-8407248cb45b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+53892f9e-2a34-283c-6062-1c2614bd0fdc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for Controls for View
Article • 09/17/2021

Specifies a .NET type that uses this definition of the control. This element is used when
defining controls that can be used by a view.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
CustomControl Element
CustomEntries Element
CustomEntry Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

EntrySelectedBy Element for
CustomEntry for Controls for View

Defines the .NET types that use this control definition or
the condition that must exist for this definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

EntrySelectedBy Element for CustomEntry for Controls for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-controls-for-view-format.md&documentVersionIndependentId=2e6c40c3-b355-c72a-bfcd-2e36339168ec&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+358cbfa8-de12-e09b-7074-1c501ec99ff3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Name Element for Control for Controls
for View
Article • 09/17/2021

Specifies the name of the control.

Configuration Element
ViewDefinitions Element
View Element
Controls Element
Control Element
Name Element

XML

The following sections describe attributes, child elements, and the parent element of the
Name  element.

None.

None.

Schema

Syntax

<Name>ControlName</Name>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

Control Element for
Controls for View

Defines a control that can be used by the view and the name that is
used to reference the control.

Specify the name that is used to reference the control.

The name specified here can be used in the following elements to reference this control.

When creating a table, list, wide or custom control view, the control can be
specified by the following element: GroupBy Element for View

When creating another control that can be used by a view, this control can be
specified by the following element: ExpressionBinding Element for CustomItem for
Controls for View

GroupBy Element for View

ExpressionBinding Element for CustomItem for Controls for View

Control Element for Controls for View

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fname-element-for-control-for-controls-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fname-element-for-control-for-controls-for-view-format.md&documentVersionIndependentId=d861e49b-90ed-4472-05c6-c2e77fd78f20&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+087cac08-109b-1fde-c9d1-1f2787786d88+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControl Element for View
Article • 09/17/2021

Defines a custom control format for the view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControl  element. You must specify one child element.

None.

Element Description

CustomEntries Element for CustomControl for
View

Required element.

Provides the definitions of the custom control
view.

Schema

Syntax

<CustomControl>
  <CustomEntries>...</CustomEntries>
</CustomControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

View Element Defines a view that is used to display one or more .NET objects.

In most cases, only one definition is required for each control view, but it is possible to
provide multiple definitions if you want to use the same view to display different .NET
objects. In those cases, you can provide a separate definition for each object or set of
objects.

CustomEntries Element for CustomControl for View

View Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-view-format.md&documentVersionIndependentId=228e913e-8180-524f-27d7-6f645f3806c4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0ee006d1-0f6f-32d1-6421-aff9677a4ecc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntries Element for
CustomControl for View
Article • 09/17/2021

Provides the definitions of the custom control view. The custom control view must
specify one or more definitions.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControlEntries  element. You must specify one or more child elements.

None.

Schema

Syntax

<CustomEntries>
  <CustomEntry>...</CustomEntry>
</CustomEntries>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

CustomEntry Element for CustomEntries for
View

Required element.

Provides a definition of the custom control
view.

Element Description

CustomControl Element for View Required element.

Defines a custom control format for the view.

In most cases, a control has only one definition, which is defined in a single CustomEntry
element. However it is possible to have multiple definitions if you want to use the same
control to display different .NET objects. In those cases, you can define a CustomEntry
element for each object or set of objects.

CustomControl Element for View

CustomEntry Element for CustomEntries for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-view-format.md&documentVersionIndependentId=e5f40699-a53e-6d0d-e4f9-23433392fc5e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b27e2c7a-2c7b-f41c-6fe2-465cbcaff8f1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


CustomEntry Element for CustomEntries
for CustomControl for View
Article • 09/17/2021

Provides a definition of the custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomEntry  element. You must specify the items displayed by the definition.

None.

Schema

Syntax

<CustomEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <CustomItem>...</CustomItem>
</CustomEntry>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

EntrySelectedBy Element for
CustomEntry for View

Optional element.

Defines the .NET types that use the definition of the custom
control view or the condition that must exist for this definition to
be used.

CustomItem Element for
CustomEntry for View

Defines a control for the custom control definition.

Element Description

CustomEntries Element for
CustomControl for View

Provides the definitions of the custom control view. The
custom control view must specify one or more definitions.

In most cases, only one definition is required for each custom control view, but it is
possible to have multiple definitions if you want to use the same view to display
different .NET objects. In those cases, you can provide a separate definition for each
object or set of objects.

CustomControl Element for View

CustomItem Element for CustomEntry for View

EntrySelectedBy Element for CustomEntry for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customentries-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customentries-for-customcontrol-for-view-format.md&documentVersionIndependentId=769a7415-1f44-275f-cb0a-962b2e970cef&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+63d94f37-c3a6-4f68-9965-5b42ce9cec48+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomItem Element for CustomEntry
for CustomControl for View
Article • 09/17/2021

Defines what data is displayed by the custom control view and how it is displayed. This
element is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomItem  element.

None.

Schema

Syntax

<CustomItem>
  <ExpressionBinding>...</ExpressionBinding>
  <Frame>...</Frame>
  <NewLine/>
  <Text>TextToDisplay</Text>
</CustomItem>

Attributes and Elements

Attributes

Child Elements



Element Description

ExpressionBinding Element for CustomItem
for CustomControl for View

Optional element.

Defines the data that is displayed by the control.

Frame Element for CustomItem for
CustomControl for View

Optional element.

Defines what data is displayed by the custom
control view and how it is displayed.

NewLine Element for CustomItem for Custom
Control for View

Optional element.

Adds a blank line to the display of the control.

Text Element for CustomItem for
CustomControl for View

Optional element.

Specifies additional text to the data displayed by
the control.

Element Description

CustomEntry Element for CustomEntries for
CustomControl for View

Provides a definition of the custom
control view.

CustomEntry Element for CustomEntries for View

ExpressionBinding Element for CustomItem for CustomControl for View

Frame Element for CustomItem for CustomControl for View

NewLine Element for CustomItem for CustomControl for View

Text Element for CustomItem for CustomControl for View

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-customcontrol-for-view-format.md&documentVersionIndependentId=51eeac2c-265f-c782-f7ff-afd962c91591&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d5d2428f-65f8-19dc-36cf-ed0149f044f9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ExpressionBinding Element for
CustomItem for CustomControl for View
Article • 02/06/2023

Defines the data that is displayed by the control. This element is used when defining a
custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element

XML

The following sections describe attributes, child elements, and the parent element of the
ExpressionBinding  element.

None.

Schema

Syntax

<ExpressionBinding>
  <CustomControl>...</CustomControl>
  <CustomControlName>NameofCommonCustomControl</CustomControlName>
  <EnumerateCollection/>
  <ItemSelectionCondition>...</ItemSelectionCondition>
  <PropertyName>Nameof.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ExpressionBinding>

Attributes and Elements

Attributes



Element Description

CustomControl Element Optional element.

Defines a control that is used by this
control.

CustomControlName Element for ExpressionBinding
for CustomControl for View

Optional element.

Specifies the name of a common control
or a view control.

EnumerateCollection Element for ExpressionBinding
for CustomControl for View

Optional element.

Specified that the elements of
collections are displayed.

ItemSelectionCondition Element for ExpressionBinding
for CustomControl for View

Optional element.

Defines the condition that must exist for
this control to be used.

PropertyName Element for ExpressionBinding for
CustomControl for View

Optional element.

Specifies the .NET property whose value
is displayed by the control.

ScriptBlock Element for ExpressionBinding for
CustomCustomControl for View

Optional element.

Specifies the script whose value is
displayed by the control.

Element Description

CustomItem Element for CustomEntry for
CustomControl for View

Defines what data is displayed by the custom
control view and how it is displayed.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



CustomControlName Element for ExpressionBinding for CustomControl for View

EnumerateCollection Element for ExpressionBinding for CustomControl for View

ItemSelectionCondition Element for ExpressionBinding for CustomControl for View

PropertyName Element for ExpressionBinding for CustomControl for View

ScriptBlock Element for ExpressionBinding for CustomControl for View

CustomItem Element for CustomEntry for CustomControl for View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-customcontrol-for-view-format.md&documentVersionIndependentId=b0281d94-16de-2ef2-67c7-9bf4da14a207&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d66b27d6-65a0-bd66-7ac5-cf3dc65c4094+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControlName Element for
ExpressionBinding for CustomControl
for View
Article • 09/17/2021

Specifies the name of a common control or a view control. This element is used when
defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
CustomControlName Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControlName  element.

None.

Schema

Syntax

<CustomControlName>NameofCustomControl</CustomControlName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem Defines the data that is displayed by the control.

Specify the name of the control.

You can create common controls that can be used by all the views of a formatting file
and you can create view controls that can be used by a specific view. The names of
these controls are specified by the following elements.

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

ExpressionBinding Element for CustomItem

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-customcontrol-for-view-format.md&documentVersionIndependentId=b9cbef42-a80e-044c-9c96-f5d5bbc505ce&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+34958986-6bf5-17d8-2b49-c97cfdb147bc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


EnumerateCollection Element for
ExpressionBinding for CustomControl
for View
Article • 09/17/2021

Specifies that the elements of collections are displayed. This element is used when
defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
EnumerateCollection Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerateCollection  element.

None.

Schema

Syntax

<EnumerateCollection/>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem Defines the data that is displayed by the control.

ExpressionBinding Element for CustomItem

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-customcontrol-for-view-format.md&documentVersionIndependentId=4cda3b2b-c328-dc3d-f493-e778065f3012&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+564b3cf8-6111-a524-bda2-8a7e216d473d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ItemSelectionCondition Element for
ExpressionBinding for CustomControl
Article • 09/17/2021

Defines the condition that must exist for this control to be used. There is no limit to the
number of selection conditions that can be specified for a control item. This element is
used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
ItemSelectionCondition  element.

None.

Schema

Syntax

<ItemSelectionCondition>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ItemSelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for ItemSelectionCondition for
CustomControl for View (Format

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for ItemSelectionCondition for
CustomControl for View

Optional element.

Specifies the script that triggers the
condition.

Element Description

ExpressionBinding Element for CustomItem for
CustomControl for View

Defines the data that is displayed by
the control.

You can specify one property name or a script for this condition but cannot specify both.

Writing a PowerShell Formatting File

ExpressionBinding Element for CustomItem for CustomControl for View

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-customcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-customcontrol-format.md&documentVersionIndependentId=17b14d3a-aed5-47e1-1708-3a91332da6d3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fb9bae65-bd9f-dc85-885a-bc6eb61b2a0e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ItemSelectionCondition for
CustomControl for View
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element for CustomControl for View
CustomEntry Element for CustomEntries for View
CustomItem Element for CustomEntry for View
ExpressionBinding Element for CustomItem for CustomControl for View
ItemSelectionCondition Element for Expression Binding for CustomControl for
View
PropertyName Element for ItemSelectionCondition for CustomControl for View
(Format

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

None.

Element Description

ItemSelectionCondition Element for Expression Binding
for CustomControl for View

Defines the condition that must exist
for this control to be used.

Specify the name of the .NET property that triggers the condition.

If this element is used, you cannot specify the ScriptBlock element when defining the
selection condition.

ScriptBlock Element for ItemSelectionCondition for CustomControl for View

ItemSelectionCondition Element for Expression Binding for CustomControl for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=2ac53fd2-214a-393a-155f-a80056964464&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d107a27e-fafe-be85-2f63-634bef67813f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ItemSelectionCondition for
CustomControl for View
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining a custom
control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

ItemSelectionCondition Element for Expression Binding
for CustomControl for View

Defines the condition that must exist
for this control to be used.

Specify the script that is evaluated.

If this element is used, you cannot specify the PropertyName element when defining the
selection condition.

PropertyName Element for ItemSelectionCondition for CustomControl for View

ItemSelectionCondition Element for Expression Binding for CustomControl for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=86b8f404-e649-dd1e-fbfb-0395bde3419a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+df233c34-307c-77e1-b30b-00fb6f66217c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ExpressionBinding for CustomControl
for View
Article • 09/17/2021

Specifies the .NET property whose value is displayed by the control. This element is used
when defining a custom control view

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
CustomControl for View

Defines the data that is displayed by
the control.

Specify the name of the .NET property whose value is displayed by the control.

ExpressionBinding Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-customcontrol-for-view-format.md&documentVersionIndependentId=baca1500-68a9-4179-88d1-065b50a97f1a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1a4c34ea-a317-0e7c-3aa3-8ba450f15259+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ExpressionBinding for CustomControl
for View
Article • 09/17/2021

Specifies the script whose value is displayed by the control. This element is used when
defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
CustomControl for View

Defines the data that is displayed by
the control.

Specify the script whose value is displayed by the control.

ExpressionBinding Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-customcontrol-for-view-format.md&documentVersionIndependentId=2ec74af2-eeb8-c05c-1c50-57db6052afdc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bf7e1f97-b9a9-f29c-6f17-43f6d7f86c23+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Frame Element for CustomItem for
CustomControl for View
Article • 09/17/2021

Defines how the data is displayed, such as shifting the data to the left or right. This
element is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element

XML

The following sections describe attributes, child elements, and the parent element of the
Frame  element.

None.

Schema

Syntax

<Frame>
  <LeftIndent>NumberOfCharactersToShift</LeftIndent>
  <RightIndent>NumberOfCharactersToShift</RightIndent>
  <FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>
  <FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>
  <CustomItem>...</CustomItem>
</Frame>

Attributes and Elements

Attributes



Element Description

CustomItem Element Required Element

FirstLineHanging
Element

Optional element.

Specifies how many characters the first line of data is shifted to the
left.

FirstLineIndent Element Optional element.

Specifies how many characters the first line of data is shifted to the
right.

LeftIndent Element Optional element.

Specifies how many characters the data is shifted away from the left
margin.

RightIndent Element Optional element.

Specifies how many characters the data is shifted away from the right
margin.

Element Description

CustomItem Element for CustomEntry
for View

Defines what data is displayed by the control and how it
is displayed.

You cannot specify the FirstLineHanging and the FirstLineIndent elements in the same
Frame  element.

FirstLineHanging Element

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



FirstLineIndent Element

LeftIndent Element

RightIndent Element

CustomItem Element for CustomEntry for View

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-customcontrol-for-view-format.md&documentVersionIndependentId=e55c8e87-a846-2bea-b02a-ebc1d80d72d1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+459f890f-0509-4d37-004b-276b2750b002+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineHanging Element for Frame for
CustomControl
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the left. This element is
used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineHanging Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineHanging  element.

None.

None.

Schema

Syntax

<FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>

Attributes and Elements

Attributes

Child Elements



Element Description

Frame Element for CustomItem for
CustomControl for View

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineIndent element.

FirstLineIndent Element for Frame for CustomControl for View

Frame Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-customcontrol-for-view-format.md&documentVersionIndependentId=2d3e5003-3d3c-181d-5e98-b0da483b6cd8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cf29fc19-9234-9de2-995d-3e0c56021066+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineIndent Element for Frame for
CustomControl for View
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the right. This element is
used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineIndent  element.

None.

None.

Schema

Syntax

<FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>

Attributes and Elements

Attributes

Child Elements



Element Description

Frame Element for CustomItem for
CustomControl for View

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineHanging element.

FirstLineHanging Element for Frame for CustomControl for View

Frame Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-customcontrol-for-view-format.md&documentVersionIndependentId=bcd0e95f-c5f1-adf8-2760-6163a5e89896&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b16a287d-352f-9590-6fc5-0db9268c89b5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


LeftIndent Element for Frame for
CustomControl for View
Article • 09/17/2021

Specifies how many characters the data is shifted away from the left margin. This
element is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
LeftIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
LeftIndent  element.

None.

None.

Schema

Syntax

<LeftIndent>CharactersToShift</LeftIndent>

Attributes and Elements

Attributes

Child Elements



Element Description

Frame Element for CustomItem for
CustomControl for View

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the data to the left.

Frame Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-customcontrol-for-view-format.md&documentVersionIndependentId=33793e54-4d62-0cf8-87b5-4d08e4844c87&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+224fa1fc-2893-16b4-d9ee-5c93e4ec50fc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RightIndent Element for Frame for
CustomControl for View
Article • 09/17/2021

Specifies how many characters the data is shifted away from the right margin. This
element is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
RightIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
RightIndent  element.

None.

None.

Schema

Syntax

<RightIndent>CharactersToShift</RightIndent>

Attributes and Elements

Attributes

Child Elements



Element Description

Frame Element for CustomItem for
CustomControl for View

Defines how the data is displayed, such as shifting
the data to the left or right.

Specify the number of characters that you want to shift the data to the right.

Frame Element for CustomItem for CustomControl for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-customcontrol-for-view-format.md&documentVersionIndependentId=6736774d-0304-4a60-2169-da1dfba22052&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+20ae2008-28ab-d4a1-b33d-664e0b60e0b2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


NewLine Element for CustomItem for
CustomControl for View
Article • 09/17/2021

Adds a blank line to the display of the control. This element is used when defining a
custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
NewLine Element

XML

The following sections describe attributes, child elements, and the parent element of the
NewLine  element.

None.

None.

Schema

Syntax

<NewLine/>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomItem Element for CustomEntry for View Defines a control for the custom control view.

CustomItem Element for CustomEntry for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-customcontrol-for-view-format.md&documentVersionIndependentId=b7ae965a-5cea-5ce0-fbe9-3d7bbc309a7b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+badbe5ea-9146-6350-c420-5deccfb56a70+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Text Element for CustomItem for
CustomView for View
Article • 09/17/2021

Specifies text that is added to the data that is displayed by the control, such as a label,
brackets to enclose the data, and spaces to indent the data. This element is used when
defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Text Element

XML

The following sections describe attributes, child elements, and the parent element of the
Text  element.

None.

None.

Schema

Syntax

<Text>TextToDisplay</Text>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomItem Element for CustomEntry for View Defines a control for the custom control view.

Specify the text of a control for data that you want to display.

CustomItem Element for CustomEntry for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-customview-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-customview-for-view-format.md&documentVersionIndependentId=bb32d196-c3cc-277b-33ff-625753527d4c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+902c5530-f3d0-63bb-22d3-7678539c37a7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
CustomEntry for CustomControl for
View
Article • 09/17/2021

Defines the .NET types that use this custom entry or the condition that must exist for
this entry to be used.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and the parent element of the
EntrySelectedBy  element.

None.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes



Element Description

SelectionCondition Element for
EntrySelectedBy for CustomEntry

Optional element.

Defines the condition that must exist for this
definition to be used.

SelectionSetName Element for EntrySelectedBy
for CustomEntry

Optional element.

Specifies a set of .NET types that use this
definition of the control view.

TypeName Element for EntrySelectedBy for
CustomEntry

Optional element.

Specifies a .NET type that uses this definition of
the control view.

Element Description

CustomEntry Element for CustomEntries for
View

Defines the controls used by specific .NET
objects.

You must specify at least one type, selection set, or selection condition for an entry.
There is no maximum limit to the number of child elements that you can use.

Selection conditions are used to define a condition that must exist for the entry to be
used, such as when an object has a specific property or when a specific property value
or script evaluates to true . For more information about selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

For more information about the components of a custom control view, see Custom
Control View.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



SelectionCondition Element for EntrySelectedBy for CustomEntry

SelectionSetName Element for EntrySelectedBy for CustomEntry

TypeName Element for EntrySelectedBy for CustomEntry

CustomEntry Element for CustomEntries for View

Custom Control View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-customcontrol-for-view-format.md&documentVersionIndependentId=7a8b202f-9d74-d7e4-e93e-7c1aab02ac11&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e1dce886-2131-d936-daa3-5784d3277301+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for CustomControl
Article • 02/06/2023

Defines a condition that must exist for a control definition to be used. This element is
used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element.

None.

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes

Child Elements



Element Description

PropertyName Element for SelectionCondition for
CustomControl for View

Optional element.

Specifies a .NET property that triggers
the condition.

ScriptBlock Element for SelectionCondition for
CustomControl for View

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
Custom Control for View

Optional element.

Specifies the set of .NET types that
triggers the condition.

TypeName Element for SelectionCondition for
CustomControl for View

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for
CustomEntry for CustomControl for
View

Defines the .NET types that use this control definition or
the condition that must exist for this definition to be
used.

When you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.
The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



PropertyName Element for SelectionCondition for CustomControl for View

ScriptBlock Element for SelectionCondition for CustomControl for View

SelectionSetName Element for SelectionCondition for Custom Control for View

TypeName Element for SelectionCondition for CustomControl for View

EntrySelectedBy Element for CustomEntry for CustomControl for View

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-customcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-customcontrol-format.md&documentVersionIndependentId=d8c75183-e3dd-fbe5-4491-d186ae741517&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7fa3f17f-58f3-c8df-dd44-90854380dc34+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for EntrySelectedBy
for EnumerableExpansion
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the definition is used.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for EnumerableExpansion

Defines the condition that must exist to expand
the collection objects of this definition.

Specify the .NET property name.

The selection condition must specify at least one property name or a script to evaluate,
but cannot specify both. For more information about how to use selection conditions,
see Defining Conditions for when Data is Displayed.

Defining Conditions for When Data is Displayed

ScriptBlock Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=db3bc1bb-f522-3938-3d4a-0c2c7b8fc7d7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e9e7a1c3-70ba-2210-70e8-00c1f55d2fca+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for EntrySelectedBy
for EnumerableExpansion
Article • 09/17/2021

Specifies the script that triggers the condition.

Configuration Element
DefaultSettings Element
EnumerableExpansions Element
EnumerableExpansion Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for EnumerableExpansion

Defines the condition that must exist to expand
the collection objects of this definition.

Specify the script that is evaluated.

The selection condition must specify at least one script or property name to evaluate,
but cannot specify both. For more information about how to use selection conditions,
see Defining Conditions for when Data is Displayed.

Defining Conditions for When Data Is Displayed

PropertyName Element for SelectionCondition for EntrySelectedBy for
EnumerableExpansion

SelectionCondition Element for EntrySelectedBy for EnumerableExpansion

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-enumerableexpansion-format.md&documentVersionIndependentId=4876d0e9-2cd3-ac0d-fda6-a4a57c82495e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d3dc64c1-3600-5e07-8976-a8d933e237b0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for CustomControl
for View
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met and the object is displayed using this control. This
element is used when defining a custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for CustomControl for View

Defines a condition that must exist for the
control definition to be used.

Specify the name of the selection set.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Sets of Objects.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

SelectionCondition Element for EntrySelectedBy for CustomControl for View

Defining Conditions for When Data Is Displayed

Defining Selection Sets

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=7cd34902-1003-1a0f-864d-58a3c4ab1ba2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+64795f13-1999-2777-8587-2fb65a2714a2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for CustomControl
for View
Article • 09/17/2021

Specifies a .NET type that triggers the condition. This element is used when defining a
custom control view.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  Element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for CustomControl for View

Defines a condition that must exist for the
control definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

SelectionCondition Element for EntrySelectedBy for CustomControl for View

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-customcontrol-for-view-format.md&documentVersionIndependentId=a35ee406-33a0-1149-46f5-1add744aaf0c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+40d201a4-3186-5bf0-5e82-7830b2bf653e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for CustomControl for
View
Article • 09/17/2021

Specifies a set of .NET objects for the list entry. There is no limit to the number of
selection sets that can be specified for an entry.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

EntrySelectedBy Element for
CustomEntry for View

Defines the .NET types that use this custom entry or the
condition that must exist for this entry to be used.

Specify the name of the selection set.

Each custom control entry must have at least one type name, selection set, or selection
condition defined.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you might want to create a table view and a list
view for the same set of objects. For more information about defining selection sets, see
Defining Selection Sets.

For more information about the components of a custom control view, see Creating
Custom Controls.

EntrySelectedBy Element for CustomEntry for View

Custom Control View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-customcontrol-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-customcontrol-for-view-format.md&documentVersionIndependentId=7e64cf9f-f882-0111-17af-dd540b3caf36&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7460d67b-99b9-be30-aea3-714b79c8b153+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for CustomEntry for View
Article • 09/17/2021

Specifies a .NET type that uses this definition of the custom control view. There is no
limit to the number of types that can be specified for a definition.

Configuration Element
ViewDefinitions Element
View Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for View

Defines the .NET types that use this custom control view
definition or the condition that must exist for this definition to
be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

Each custom control view definition must have at least one type name, selection set, or
selection condition defined.

For more information about the components of a custom control view, see Creating
Custom Controls.

Creating Custom Controls

EntrySelectedBy Element for CustomEntry for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-customentry-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-customentry-for-view-format.md&documentVersionIndependentId=d1ec38df-2932-82f9-0c71-f46333bd0a00&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5bf38b76-7526-4a4b-195b-e5b8ebc0bccc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GroupBy Element for View
Article • 09/17/2021

Defines how a new group of objects is displayed. This element is used when defining a
table, list, wide, or custom control view.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element

XML

The following sections describe attributes, child elements, and parent elements.

None.

Schema

Syntax

<GroupBy>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
  <Label>TextToDisplay</Label>
  <CustomControl>...</CustomControl>
  <CustomControlName>NameOfControl</CustomControlName>
</GroupBy>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

CustomControl Element for
GroupBy

Optional element.

Defines the custom control that display new groups.

CustomControlName Element for
GroupBy

Optional element.

Specifies the name of a control that is used to display the
new group.

Label Element for GroupBy Optional element.

Specifies a label that is displayed when a new group is
encountered.

PropertyName Element for GroupBy Optional element.

Specifies the .NET property the starts a new group
whenever its value changes.

ScriptBlock Element for GroupBy Optional element.

Specifies the script that starts a new group whenever its
value changes.

Element Description

View Element Defines a view that displays one or more .NET objects.

When defining how a new group of objects is displayed, you must specify the property
or script that will start the new group; however, you cannot specify both.

CustomControlName Element for GroupBy

Label Element for GroupBy

Parent Elements

ﾉ Expand table

Remarks

See Also



PropertyName Element for GroupBy

ScriptBlock Element for GroupBy

View Element

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fgroupby-element-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fgroupby-element-for-view-format.md&documentVersionIndependentId=0a0fde57-d8f3-7dcf-bafa-9927a5193598&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+68003b95-f438-91ff-64b5-18297b6e8842+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControl Element for GroupBy
Article • 09/17/2021

Defines the custom control that displays the new group.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element

XML

The following sections describe the attributes, child elements, and parent element of the
CustomControl  element. You can specify any number of child elements and list them in
any order.

None.

Element Description

CustomEntries Element for CustomControl for GroupBy Required element.

Schema

Syntax

<CustomControl>
  <CustomEntries>...</CustomEntries>
<CustomControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Provides the definitions for the control.

Element Description

GroupBy Element for View Defines how Windows PowerShell displays a new group of objects.

CustomEntries Element for CustomControl for GroupBy

GroupBy Element for View

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrol-element-for-groupby-format.md&documentVersionIndependentId=91357be7-771e-f644-3cd4-24643f5880bc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8a96d0e2-8626-a093-458d-0795a3be909d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntries Element for
CustomControl for GroupBy
Article • 09/17/2021

Provides the definitions for the control. This element is used when defining how a new
group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element

XML

The following sections describe attributes, child elements, and parent elements of the
CustomEntries  element. There is no maximum limit to the number of child elements that
can be specified.

None.

Schema

Syntax

<CustomEntries>
  <CustomEntry>...</CustomEntry>
</CustomEntries>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

CustomEntry Element for CustomControl for GroupBy Required element.

Provides a definition of the control.

Element Description

CustomControl Element for GroupBy Defines the custom control that displays the new group.

In most cases, a control has only one definition, which is specified in a single
CustomEntry  element. However, it is possible to provide multiple definitions if you want
to use the same control to display different groups. In those cases, you can define a
CustomEntry  element for a group.

CustomEntry Element for CustomEntries for Controls for View

CustomControl Element for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentries-element-for-customcontrol-for-groupby-format.md&documentVersionIndependentId=51626c41-c6fe-89a1-8011-7035e72d0a93&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b25fd282-a464-3d7b-e2f8-a7ded7163b8f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomEntry Element for
CustomControl for GroupBy
Article • 09/17/2021

Provides a definition of the control. This element is used when defining how a new
group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element

XML

The following sections describe attributes, child elements, and the parent elements of
the CustomEntry  element.

None.

Schema

Syntax

<CustomEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <CustomItem>...</CustomItem>
</CustomEntry>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for GroupBy

Optional element.

Defines the .NET types that use this control definition or the
condition that must exist for this definition to be used.

CustomItem Element for
CustomEntry for GroupBy

Required element.

Defines how the control displays the data.

Element Description

CustomEntries Element for CustomControl for GroupBy Provides the definitions for the control.

EntrySelectedBy Element for CustomEntry for GroupBy

CustomItem Element for CustomEntry for GroupBy

CustomEntries Element for CustomControl for GroupBy

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customcontrol-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomentry-element-for-customcontrol-for-groupby-format.md&documentVersionIndependentId=649051d9-ae66-7c9d-9084-2181c7905225&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+654d3860-be39-f384-82d9-29957640798e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomItem Element for CustomEntry
for GroupBy
Article • 09/17/2021

Defines what data is displayed by the custom control view and how it is displayed. This
element is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomItem Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomItem  element.

None.

Schema

Syntax

<CustomItem>
  <ExpressionBinding>...</ExpressionBinding>
  <Frame>...</Frame>
  <NewLine/>
  <Text>TextToDisplay</Text>
</CustomItem>

Attributes and Elements

Attributes

Child Elements



Element Description

ExpressionBinding Element for
CustomItem for GroupBy

Optional element.

Defines the data that is displayed by the control.

Frame Element for CustomItem for
GroupBy

Optional element.

Defines what data is displayed by the custom control
view and how it is displayed.

NewLine Element for CustomItem for
GroupBy

Optional element.

Adds a blank line to the display of the control.

Text Element for CustomItem for
GroupBy

Optional element.

Specifies additional text to the data displayed by the
control.

Element Description

CustomEntry Element for CustomControl for
GroupBy

Provides a definition of the custom control
view.

CustomEntry Element for CustomControl for GroupBy

ExpressionBinding Element for CustomItem for GroupBy

Frame Element for CustomItem for GroupBy

NewLine Element for CustomItem for GroupBy

Text Element for CustomItem for GroupBy

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomitem-element-for-customentry-for-groupby-format.md&documentVersionIndependentId=cf91ac1a-2e25-0120-c95e-d25b6ddff8b4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0b561505-db2c-623f-9468-ae95cde4cf7f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ExpressionBinding Element for
CustomItem for GroupBy
Article • 09/17/2021

Defines the data that is displayed by the control. This element is used when defining
how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element

XML

The following sections describe attributes, child elements, and the parent element of the
ExpressionBinding  element.

Schema

Syntax

<ExpressionBinding>
  <CustomControl>...</CustomControl>
  <CustomControlName>NameofCommonCustomControl</CustomControlName>
  <EnumerateCollection/>
  <ItemSelectionCondition>...</ItemSelectionCondition>
  <PropertyName>Nameof.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate></ScriptBlock>
</ExpressionBinding>

Attributes and Elements

Attributes



None.

Element Description

CustomControl Element Optional element.

Defines a control that is used
by this control.

CustomControlName Element for ExpressionBinding for
GroupBy

Optional element.

Specifies the name of a
common control or a view
control.

EnumerateCollection Element for ExpressionBinding for
GroupByEnumerateCollection Element for ExpressionBinding for
GroupBy

Optional element.

Specified that the elements of
collections are displayed.

ItemSelectionCondition Element for ExpressionBinding for
GroupBy

Optional element.

Defines the condition that
must exist for this control to be
used.

PropertyName Element for ExpressionBinding for GroupBy Optional element.

Specifies the .NET property
whose value is displayed by
the control.

ScriptBlock Element for ExpressionBinding for GroupBy Optional element.

Specifies the script whose
value is displayed by the
control.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table



Element Description

CustomItem Element for
CustomEntry for GroupBy

Defines what data is displayed by the custom control view
and how it is displayed.

CustomControlName Element for ExpressionBinding for GroupBy

EnumerateCollection Element for ExpressionBinding for GroupBy

ItemSelectionCondition Element for ExpressionBinding for GroupBy

PropertyName Element for ExpressionBinding for GroupBy

ScriptBlock Element for ExpressionBinding for GroupBy

CustomItem Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fexpressionbinding-element-for-customitem-for-groupby-format.md&documentVersionIndependentId=1276f3e1-66a3-d006-5d66-7a52efa3bbab&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+17d125a5-2593-bd44-7a15-565277bd126b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControlName Element for
ExpressionBinding for GroupBy
Article • 09/17/2021

Specifies the name of a common control or a view control. This element is used when
defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
CustomControlName Element

XML

The following sections describe attributes, child elements, and the parent element of the
CustomControlName  element.

None.

Schema

Syntax

<CustomControlName>NameofCustomControl</CustomControlName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
GroupBy

Defines the data that is displayed by the
control.

Specify the name of the control.

You can create common controls that can be used by all the views of a formatting file,
and you can create view controls that can be used by a specific view. The following
elements specify the names of these controls:

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

ExpressionBinding Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-expressionbinding-for-groupby-format.md&documentVersionIndependentId=87340bad-6525-a6c6-2c84-f8eab7a10de7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8765bc11-692e-e291-30d5-ff0c3ad59a2a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EnumerateCollection Element for
ExpressionBinding for GroupBy
Article • 09/17/2021

Specifies that the elements of collections are displayed. This element is used when
defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
EnumerateCollection Element

XML

The following sections describe attributes, child elements, and the parent element of the
EnumerateCollection  element.

None.

Schema

Syntax

<EnumerateCollection/>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
GroupBy

Defines the data that is displayed by the
control.

ExpressionBinding Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fenumeratecollection-element-for-expressionbinding-for-groupby-format.md&documentVersionIndependentId=a1ee0791-1838-8092-18cc-6aac15092525&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f405d7a4-20a0-e40c-ec92-acdc7c9b7b1b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ItemSelectionCondition Element for
ExpressionBinding for GroupBy
Article • 09/17/2021

Defines the condition that must exist for this control to be used. There is no limit to the
number of selection conditions that can be specified for a control item. This element is
used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
ItemSelectionCondition  element.

None.

Schema

Syntax

<ItemSelectionCondition>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ItemSelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for ItemSelectionCondition
for GroupBy

Optional element.

Specifies the .NET property that triggers
the condition.

ScriptBlock Element for ItemSelectionCondition for
GroupBy

Optional element.

Specifies the script that triggers the
condition.

Element Description

ExpressionBinding Element for CustomItem for
GroupBy

Defines the data that is displayed by the
control.

You can specify one property name or a script for this condition but cannot specify both.

Writing a PowerShell Formatting File

ExpressionBinding Element for CustomItem for GroupBy

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-expressionbinding-for-groupby-format.md&documentVersionIndependentId=1dd3a036-0db3-6ccb-ea34-6b7ebec5a9ca&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4e4c6195-44a5-d4c2-16e9-09fbcb5870a0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ItemSelectionCondition for GroupBy
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the control is used. This element is
used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

ItemSelectionCondition Element for
ExpressionBinding for GroupBy

Defines the condition that must exist for this
control to be used.

Specify the name of the .NET property that triggers the condition.

If this element is used, you cannot specify the ScriptBlock element when defining the
selection condition.

ScriptBlock Element for ItemSelectionCondition for GroupBy

ItemSelectionCondition Element for ExpressionBinding for GroupBy

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-groupby-format.md&documentVersionIndependentId=00018036-f537-2c0b-1591-46974ba7dbb3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+40b730c9-e609-6340-b4d8-53cf71a570a4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ItemSelectionCondition for GroupBy
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the control is used. This element is used when defining how a new
group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ItemSelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

ItemSelectionCondition Element for
ExpressionBinding for GroupBy

Defines the condition that must exist for this
control to be used.

Specify the script that is evaluated.

If this element is used, you cannot specify the PropertyName element when defining the
selection condition.

ItemSelectionCondition Element for ExpressionBinding for GroupBy

PropertyName Element for ItemSelectionCondition for GroupBy

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-groupby-format.md&documentVersionIndependentId=51527542-d329-2137-7e92-6a4ce67ce440&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+330e9be4-f76c-e08a-9155-ae534d33fd9b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ExpressionBinding for GroupBy
Article • 09/17/2021

Specifies the .NET property whose value is displayed by the control. This element is used
when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
GroupBy

Defines the data that is displayed by the
control.

Specify the name of the .NET property whose value is displayed by the control.

ExpressionBinding Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-expressionbinding-for-groupby-format.md&documentVersionIndependentId=3e5df67c-d5bb-3ec3-50f3-5739ab281e65&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+446efc07-d878-15ed-3b8d-7c3c3ec6c1c2+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ExpressionBinding for GroupBy
Article • 09/17/2021

Specifies the script whose value is displayed by the control. This element is used when
defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
ExpressionBinding Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ExpressionBinding Element for CustomItem for
GroupBy

Defines the data that is displayed by the
control.

Specify the script whose value is displayed by the control.

ExpressionBinding Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-expressionbinding-for-groupby-format.md&documentVersionIndependentId=2d8f16a8-7869-b828-b498-ccf74d789aed&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4f7f5b37-7efa-4dcd-5a81-3ff28a00195e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Frame Element for CustomItem for
GroupBy
Article • 09/17/2021

Defines how the data is displayed, such as shifting the data to the left or right. This
element is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element

XML

The following sections describe attributes, child elements, and the parent element of the
Frame  element.

None.

Schema

Syntax

<Frame>
  <LeftIndent>NumberOfCharactersToShift</LeftIndent>
  <RightIndent>NumberOfCharactersToShift</RightIndent>
  <FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>
  <FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>
  <CustomItem>...</CustomItem>
</Frame>

Attributes and Elements

Attributes



Element Description

CustomItem Element Required Element

FirstLineHanging Element for Frame for
GroupBy

Optional element.

Specifies how many characters the first line of
data is shifted to the left.

FirstLineIndent Element for Frame for
GroupBy

Optional element.

Specifies how many characters the first line of
data is shifted to the right.

LeftIndent Element for Frame for GroupBy Optional element.

Specifies how many characters the data is shifted
away from the left margin.

RightIndent Element for Frame for
GroupByRightIndent Element

Optional element.

Specifies how many characters the data is shifted
away from the right margin.

Element Description

CustomItem Element for CustomEntry
for GroupBy

Defines what data is displayed by the control and how
it is displayed.

You cannot specify the FirstLineHanging and the FirstLineIndent elements in the same
Frame  element.

FirstLineHanging Element for Frame for GroupBy

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



FirstLineIndent Element for Frame for GroupBy

LeftIndent Element for Frame for GroupBy

RightIndent Element for Frame for GroupBy

CustomItem Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fframe-element-for-customitem-for-groupby-format.md&documentVersionIndependentId=3c0b79bf-4cdd-1dcf-6504-76facea20d69&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8e0da0e0-e76f-566a-76bf-42903d2816e8+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineHanging Element for Frame for
GroupBy
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the left. This element is
used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineHanging Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineHanging  element.

None.

Schema

Syntax

<FirstLineHanging>NumberOfCharactersToShift</FirstLineHanging>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
GroupBy

Defines how the data is displayed, such as shifting the data
to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineIndent element.

FirstLineIndent Element for Frame for GroupBy

Frame Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlinehanging-element-for-frame-for-groupby-format.md&documentVersionIndependentId=416451c0-b4cb-e6a8-054c-2d8a16b331d8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+890a248a-0cde-fede-518d-e5785497cea7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FirstLineIndent Element for Frame for
GroupBy
Article • 09/17/2021

Specifies how many characters the first line of data is shifted to the right. This element is
used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element for View
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
FirstLineIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
FirstLineIndent  element.

None.

Schema

Syntax

<FirstLineIndent>NumberOfCharactersToShift</FirstLineIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
GroupBy

Defines how the data is displayed, such as shifting the data
to the left or right.

Specify the number of characters that you want to shift the first line of the data.

If this element is specified, you cannot specify the FirstLineHanging element.

FirstLineHanging Element for Frame for GroupBy

Frame Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ffirstlineindent-element-for-frame-for-groupby-format.md&documentVersionIndependentId=3768ab40-9bac-f7fd-744a-012d1d54006b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9aed12f3-2744-3695-5f63-d0cecbb61dc3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


LeftIndent Element for Frame
Article • 09/17/2021

Specifies how many characters the data is shifted away from the left margin. This
element is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
LeftIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
LeftIndent  element.

None.

None.

Schema

Syntax

<LeftIndent>CharactersToShift</LeftIndent>

Attributes and Elements

Attributes

Child Elements



Element Description

Frame Element for CustomItem for
GroupBy

Defines how the data is displayed, such as shifting the data
to the left or right.

Specify the number of characters that you want to shift the data to the left.

Frame Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fleftindent-element-for-frame-for-groupby-format.md&documentVersionIndependentId=f8b5b082-d982-2deb-ed70-af6f1699dd71&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+69386653-ccc1-fcfc-0504-278c0547f380+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RightIndent Element for Frame for
GroupBy
Article • 09/17/2021

Specifies how many characters the data is shifted away from the right margin. This
element is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Frame Element
RightIndent Element

XML

The following sections describe attributes, child elements, and parent element of the
RightIndent  element.

None.

Schema

Syntax

<RightIndent>CharactersToShift</RightIndent>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

Frame Element for CustomItem for
GroupBy

Defines how the data is displayed, such as shifting the data
to the left or right.

Specify the number of characters that you want to shift the data to the right.

Frame Element for CustomItem for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Frightindent-element-for-frame-for-groupby-format.md&documentVersionIndependentId=179f2f72-9036-6bad-3316-6c220446cb5a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+19343299-1008-5121-49b1-ec76b9085e6e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


NewLine Element for CustomItem for
GroupBy
Article • 09/17/2021

Adds a blank line to the display of the control. This element is used when defining how a
new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
NewLine Element

XML

The following sections describe attributes, child elements, and the parent element of the
NewLine  element.

None.

None.

Schema

Syntax

<NewLine/>

Attributes and Elements

Attributes

Child Elements



Element Description

CustomItem Element for CustomEntry for
GroupBy

Defines a control for the custom control
view.

CustomItem Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fnewline-element-for-customitem-for-groupby-format.md&documentVersionIndependentId=724b9ef1-7423-4a30-3611-8c490465cefe&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6b592c06-f28c-6123-ac32-2a6179dadd4c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Text Element for CustomItem for
GroupBy
Article • 09/17/2021

Specifies text that is added to the data that is displayed by the control, such as a label,
brackets to enclose the data, and spaces to indent the data. This element is used when
defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
CustomItem Element
Text Element

XML

The following sections describe attributes, child elements, and the parent element of the
Text  element.

None.

Schema

Syntax

<Text>TextToDisplay</Text>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

CustomItem Element for CustomEntry for
GroupBy

Defines a control for the custom control
view.

Specify the text of a control for data that you want to display.

CustomItem Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftext-element-for-customitem-for-groupby-format.md&documentVersionIndependentId=aaa30db4-0896-e638-b41f-bed0732fb62f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+941e8dc7-f3ac-8197-73e3-a2b17c3a1f61+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
CustomEntry for GroupBy
Article • 09/17/2021

Defines the .NET types that use this control definition or the condition that must exist
for this definition to be used. This element is used when defining how a new group of
objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element for View
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and parent element of the
EntrySelectedBy  element. You must specify at least one type, selection set, or selection
condition for a definition. There is no maximum limit to the number of child elements
that you can use.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for GroupBy

Optional element.

Defines the condition that must exist for this
definition to be used.

SelectionSetName Element for
EntrySelectedBy for GroupBy

Optional element.

Specifies a set of .NET types that use this
definition of the control.

TypeName Element for EntrySelectedBy for
GroupBy

Optional element.

Specifies a .NET type that uses this definition of
the control.

Element Description

CustomEntry Element for CustomControl for GroupBy Provides a definition of the control.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or when a specific property
value or script evaluates to true . For more information about selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

SelectionCondition Element for EntrySelectedBy for GroupBy

SelectionSetName Element for EntrySelectedBy for GroupBy

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also



TypeName Element for EntrySelectedBy for GroupBy

CustomEntry Element for CustomEntries for Controls for View

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-customentry-for-groupby-format.md&documentVersionIndependentId=9549aa8d-3b17-bef9-7f16-8155b753f592&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+22a739f6-0712-748a-3bb7-163617fef2cc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for GroupBy
Article • 09/17/2021

Defines a condition that must exist for a control definition to be used. This element is
used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element for View
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element.

None.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for SelectionCondition for
GroupBy

Optional element.

Specifies a .NET property that triggers the
condition.

ScriptBlock Element for SelectionCondition for
GroupBy

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition
for GroupBy

Optional element.

Specifies the set of .NET types that triggers
the condition.

TypeName Element for SelectionCondition for
GroupBy

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for
CustomEntry for GroupBy

Defines the .NET types that use this control definition or the
condition that must exist for this definition to be used.

When you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.

The selection condition can specify any number of .NET types or selection sets, but
cannot specify

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



both. For more information about how to use selection conditions, see Defining
Conditions for when Data is Displayed.

PropertyName Element for SelectionCondition for CustomControl for View

ScriptBlock Element for SelectionCondition for CustomControl for View

SelectionSetName Element for SelectionCondition for Custom Control for View

TypeName Element for SelectionCondition for GroupBy

EntrySelectedBy Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-groupby-format.md&documentVersionIndependentId=c1cfe0d8-5e13-06a3-a689-a80d23e087f3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5c8e9fc8-c12a-a673-b276-ea26dedd0669+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for GroupBy
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the definition is used. This element
is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for GroupBy

Defines a condition that must exist for the control
definition to be used.

Specify the .NET property name.

The selection condition must specify a least one property name or a script, but cannot
specify both. For more information about how selection conditions can be used, see
Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-groupby-format.md&documentVersionIndependentId=2329a26e-844d-dc8d-2112-e1d69a48a8a1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+52b07963-add3-4420-762a-24458dc41a16+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for EntrySelectedBy
for GroupBy
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the definition is used. This element is used when defining how a
new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for GroupBy

Defines a condition that must exist for the control
definition to be used.

Specify the script that is evaluated.

The selection condition must specify a least one script or property name to evaluate, but
cannot specify both. For more information about how selection conditions can be used,
see Defining Conditions for Displaying Data.

SelectionCondition Element for EntrySelectedBy for GroupBy

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-groupby-format.md&documentVersionIndependentId=271d7d6d-7988-8ae3-eca2-532fa5291ef2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+72c3143a-ef95-3af8-6ccd-d0059465b963+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for GroupBy
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met, and the object is displayed by using this control.
This element is used when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for GroupBy

Defines a condition that must exist for the control
definition to be used.

Specify the name of the selection set.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Selection Sets.

When this element is specified, you cannot specify the TypeName element. For more
information about defining selection conditions, see Defining Conditions for Displaying
Data.

TypeName Element for SelectionCondition for GroupBy

SelectionCondition Element for EntrySelectedBy for GroupBy

Defining Conditions for When Data Is Displayed

Defining Selection Sets

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-groupby-format.md&documentVersionIndependentId=18fcd44b-45d0-c2c1-7fcd-4a0d9de07405&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7005d3a3-ac52-b21e-faec-a5777bca8256+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for GroupBy
Article • 09/17/2021

Specifies a .NET type that triggers the condition. This element is used when defining
how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  Element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for GroupBy

Defines a condition that must exist for the control
definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

When this element is specified, you cannot specify the SelectionSetName  element. For
more information about defining selection conditions, see Defining Conditions for
Displaying Data.

SelectionCondition Element for EntrySelectedBy for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-groupby-format.md&documentVersionIndependentId=6ca0d2d4-3a38-4531-e48f-804d4f1a4b0b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+aaca209e-3878-574e-87df-cfff71583412+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for GroupBy
Article • 09/17/2021

Specifies a set of .NET objects for the list entry. There is no limit to the number of
selection sets that can be specified for an entry. This element is used when defining how
a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

EntrySelectedBy Element for
CustomEntry for GroupBy

Defines the .NET types that use this custom entry or the
condition that must exist for this entry to be used.

Specify the name of the selection set.

Each custom control definition must have at least one type name, selection set, or
selection condition defined.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you may want to create a table view and a list view
for the same set of objects. For more information about defining selection sets, see
Defining Selection Sets.

For more information about the components of a custom control view, see Creating
Custom Controls.

EntrySelectedBy Element for CustomEntry for GroupBy

Creating Custom Controls

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-groupby-format.md&documentVersionIndependentId=1bf1ded7-93e0-091f-9bbc-6aea72aa7ca6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+663b77b8-189b-4017-46ba-634f895be98f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for GroupBy
Article • 09/17/2021

Specifies a .NET type that uses this definition of the custom control. This element is used
when defining how a new group of objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControl Element
CustomEntries Element
CustomEntry Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
CustomEntry for GroupBy

Defines the .NET types that use this control definition or the
condition that must exist for this definition to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

Each control definition must have at least one type name, selection set, or selection
condition defined.

For more information about the components of a custom control view, see Creating
Custom Controls.

Creating Custom Controls

EntrySelectedBy Element for CustomEntry for GroupBy

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-groupby-format.md&documentVersionIndependentId=68d9b645-9d36-e69e-27bf-87094539b615&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+dd1e5b16-6e63-3680-76ce-05ed759435f9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


CustomControlName Element for
GroupBy
Article • 09/17/2021

Specifies the name of a custom control that is used to display the new group. This
element is used when defining a table, list, wide or custom control view.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
CustomControlName Element

XML

The following sections describe the attributes, child elements, and parent elements of
the CustomControlName  element.

None.

None.

Schema

Syntax

<CustomControlName>ControlName</CustomControlName>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

GroupBy Element for View Defines how Windows PowerShell displays a new group of objects.

Specify the name of the custom control that is used to display a new group.

You can create common controls that can be used by all the views of a formatting file,
and you can create view controls that can be used by a specific view. The following
elements specify the names of these custom controls:

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

GroupBy Element for View

Name Element for Control for Controls for Configuration

Name Element for Control for Controls for View

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcustomcontrolname-element-for-groupby-format.md&documentVersionIndependentId=33a49723-2cf0-bc02-e0dd-187ea27db376&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+33cec5e8-836b-25e7-7392-514a6c611530+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Label Element for GroupBy
Article • 09/17/2021

Specifies a label that is displayed when a new group is encountered.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
Label Element

XML

The following sections describe the attributes, child elements, and parent element of the
Label  element.

None.

None.

Schema

Syntax

<Label>DisplayedLabel</Label>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

GroupBy Element for View Defines how a new group of objects is displayed.

Specify the text that is displayed whenever Windows PowerShell encounters a new
property or script value.

In addition to the text specified by this element, Windows PowerShell displays the new
value that starts the group, and adds a blank line before and after the group.

The following example shows the label for a new group. The displayed label would look
similar to this: Service Type: NewValueofProperty

XML

For an example of a complete formatting file that includes this element, see Wide View
(GroupBy).

GroupBy Element for View

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<GroupBy>
  <Label>Service Type</Label>
  <PropertyName>ServiceType</PropertyName>
</GroupBy>

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Flabel-element-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Flabel-element-for-groupby-format.md&documentVersionIndependentId=0e89da1a-86de-a2e9-9078-df051fcea55d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ec52d8e2-1ee3-f8f5-e5b4-289b4f9fb494+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for GroupBy
Article • 09/17/2021

Specifies the .NET property that starts a new group whenever its value changes.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

GroupBy Element for View Defines how a group of .NET objects is displayed.

Specify the .NET property name.

Windows PowerShell starts a new group whenever the value of this property changes.

When this element is specified, you cannot specify the ScriptBlock element to start a
new group.

The following example shows how to start a new group when the value of a property
changes.

XML

For an example of a complete formatting file that includes this element, see Wide View
(GroupBy).

GroupBy Element for View

ScriptBlock Element for GroupBy

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<GroupBy>
  <Label>Service Type</Label>
  <PropertyName>ServiceType</PropertyName>
</GroupBy>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-groupby-format.md&documentVersionIndependentId=e0065e5a-490c-114a-ef6c-1910b8b5aa00&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bdbd376c-9659-e83a-f2d3-f0b6b35c4d1f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for GroupBy
Article • 09/17/2021

Specifies the script that starts a new group whenever its value changes.

Configuration Element
ViewDefinitions Element
View Element
GroupBy Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

GroupBy Element for View Defines how a group of .NET objects is displayed.

Specify the script that is evaluated.

PowerShell starts a new group whenever the value of this script changes.

When this element is specified, you cannot specify the PropertyName element to start a
new group.

PropertyName Element for GroupBy

GroupBy Element for View

Writing a PowerShell Formatting File

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-groupby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-groupby-format.md&documentVersionIndependentId=affe8093-c5fa-7273-93af-6bf2467db0ef&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cf044743-e339-b53f-3ad5-4aa268bd2006+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ListControl Element
Article • 09/17/2021

Defines a list format for the view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element

XML

The following sections describe the attributes, child elements, and the parent element of
the ListControl  element. This element must contain only a single child element.

None.

Element Description

ListEntries Element Required element.

Provides the definitions of the list view.

Schema

Syntax

<ListControl>
  <ListEntries>...</ListEntries>
</ListControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

View Element Defines a view that is used to display the members of one or more objects.

For more information about creating a list view, see Creating a List View.

This example shows a list view for the System.ServiceProcess.ServiceController object.

View Element

ListEntries Element

Creating a List View

Writing a Windows PowerShell Formatting and Types File

Parent Elements

ﾉ Expand table

Remarks

Example

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>
    <ListEntries>
      <ListEntry>...</ListEntry>
    </ListEntries>
  </ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


ListEntries Element
Article • 03/24/2025

Provides the definitions of the list view. The list view must specify one or more
definitions.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element

XML

The following sections describe the attributes, child elements, and the parent element of
the ListEntries  element. At least one child element must be specified.

None.

Element Description

ListEntry Element Provides a definition of the list view.

Schema

Syntax

<ListEntries>
  <ListEntry>...</ListEntry>
</ListEntries>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

ListControl Element Defines a list format for the view.

For more information about list views, see List View.

This example shows the XML elements that define the list view for the
System.ServiceProcess.ServiceController object.

XML

ListControl Element

ListEntry Element

List View

Writing a Windows PowerShell Formatting and Types File

Parent Elements

ﾉ Expand table

Remarks

Example

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>
    <ListEntries>
      <ListEntry>
        <ListItems>...</ListItems>
      </ListEntry>
    </ListEntries>
  </ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


ListEntry Element
Article • 09/17/2021

Provides a definition of the list view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element

XML

The following sections describe the attributes, child elements, and the parent element of
the ListEntry  element.

None.

Element Description

EntrySelectedBy Element
for ListEntry

Optional element.

Defines the .NET objects that use this list view definition or the
condition that must exist for this definition to be used.

Syntax

<ListEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <ListItems>...</ListItems>
</ListEntry>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

ListItems Element Required element.

Defines the properties and scripts whose values are displayed by the
list view.

Element Description

ListEntries Element Provides the definitions of the list view.

A list view is a list format that displays property values or script values for each object.
For more information about list views, see Creating a List View.

This example shows the XML elements that define the list view for the
System.ServiceProcess.ServiceController object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>
    <ListEntries>
      <ListEntry>
        <ListItems>...</ListItems>
      </ListEntry>
    </ListEntries>
  </ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Creating a List View

EntrySelectedBy Element for ListEntry

ListEntries Element

ListItems Element

Writing a Windows PowerShell Formatting and Types File

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


EntrySelectedBy Element for ListEntry
Article • 09/17/2021

Defines the .NET types that use this list view definition or the condition that must exist
for this definition to be used. In most cases only one definition is needed for a list view.
However, you can provide multiple definitions for the list view if you want to use the
same list view to display different data for different objects.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element

XML

The following sections describe the attributes, child elements, and the parent element of
the EntrySelectedBy  element.

None.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for ListControl

Optional element.

Defines the condition that must exist for this list
view definition to be used.

SelectionSetName Element for
EntrySelectedBy for ListControl

Optional element.

Specifies a set of .NET types that use this list view
definition.

TypeName Element for EntrySelectedBy for
ListControl

Optional element.

Specifies a .NET type that uses this list view
definition.

Element Description

ListEntry Element for ListControl Defines how the rows of the list are displayed.

You must specify at least one type, selection set, or selection condition for a list view
definition. There is no maximum limit to the number of child elements that you can use.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or that a specific property value
or script evaluates to true . For more information about selection conditions, see
Defining Conditions for when Data is displayed.

For more information about the components of a list view, see Creating a List View.

The following example shows how to define the objects for a list view using their .NET
type name.

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

Example



XML

ListEntry Element for ListControl

SelectionCondition Element for EntrySelectedBy for ListControl

SelectionSetName Element for EntrySelectedBy for ListControl

TypeName Element for EntrySelectedBy for ListControl

Creating a List View

Defining Conditions for when Data is Displayed

Writing a PowerShell Formatting File

<ListEntry>
  <EntrySelectedBy>
    <TypeName>NameofDotNetType</TypeName>>
  </EntrySelectedBy>
</ListEntry>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-listentry-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-listentry-for-listcontrol-format.md&documentVersionIndependentId=fc791023-a74b-be80-2062-85fd13da0711&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f26fd170-e220-f0d5-9954-24f197440797+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for ListControl
Article • 09/17/2021

Defines the condition that must exist to use this definition of the list view. There is no
limit to the number of selection conditions that can be specified for a list definition.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element.

None.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for SelectionCondition for
EntrySelectedBy for ListEntry

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for SelectionCondition for
EntrySelectedBy for ListEntry

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
EntrySelectedBy for ListEntry

Optional element.

Specifies the set of .NET types that
trigger the condition.

TypeName Element for SelectionCondition for
EntrySelectedBy for ListEntry

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for
TableRowEntry

Defines the .NET types that use this table entry or the condition
that must exist for this entry to be used.

lWhen you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.
The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

For more information about other components of a list view, see Creating a List View.

Creating a List View

Defining Conditions for When Data Is Displayed

ListEntry Element

SelectionSetName Element for EntrySelectedBy for ListEntry

TypeName Element for EntrySelectedBy for ListEntry

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/typename-element-for-entryselectedby-for-listcontrol-format
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=801b1fae-8304-7ae4-e7af-8ddfee4ebea2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0c7611f6-75e2-5716-1712-855e0a629808+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for EntrySelectedBy
for ListControl
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the list entry is used.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

None.

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for ListEntry

Defines the condition that must exist for this list
entry to be used.

Specify the .NET property name.

The selection condition must specify at least one property name or a script block, but
cannot specify both. For more information about how to use selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

For more information about other components of a list view, see Creating List View.

Creating a List View

Defining Conditions for When Data is Displayed

ListEntry Element

ScriptBlock Element for SelectionCondition for EntrySelectedBy for ListEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=96234654-d359-e28b-2848-1527ad731327&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b1deb317-4a6e-fecc-2e68-a37732382e96+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


ScriptBlock Element for
SelectionCondition for EntrySelectedBy
for ListControl
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the list entry is used.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for ListEntry

Defines the condition that must exist for this list
entry to be used.

Specify the script that is evaluated.

The selection condition must specify a least one script or property name to evaluate, but
cannot specify both. (For more information about how selection conditions can be used,
see Defining Conditions for when a View Entry or Item is Used.)

For more information about the other components of a list view, see List View.

ListEntry Element

PropertyName Element for SelectionCondition for EntrySelectedBy for ListEntry

SelectionCondition Element for EntrySelectedBy for ListEntry

List View

Defining Conditions for when a View Entry or Item is Used

Writing a Windows PowerShell Formatting and Types File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=460751b0-319e-c956-4df7-a9bfa0b9707a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1f873548-ba2d-ecbb-42e9-316056786b6d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for EntrySelectedBy
for ListEntry
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met, and the object is displayed by using this definition
of the list view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for ListEntry

Defines the condition that must exist to use this
definition of the list view.

Specify the name of the selection set.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Sets of Objects.

For more information about other components of a list view, see Creating a List View.

Creating a List View

Defining Conditions for When Data Is Displayed

SelectionCondition Element for EntrySelectedBy for ListEntry

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-listentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-listentry-format.md&documentVersionIndependentId=7cd4376b-9533-3dc0-a7ef-c84b30dddda5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+511a1ac4-6a46-b314-fc67-a13b6f55070f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for EntrySelectedBy
for ListControl
Article • 09/17/2021

Specifies a .NET type that triggers the condition. When this type is present, the list entry
is used.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for ListControl

Defines the condition that must exist for this
list entry to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

The selection condition can specify any number of .NET types or selection sets, but
cannot specify both. For more information about how to use selection conditions, see
Defining Conditions for when Data is Displayed.

For more information about other the components of a list view, see Creating a List
View.

Creating a List View

Defining Conditions for When Data Is Displayed

SelectionCondition Element for EntrySelectedBy for ListControl

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=6d1c7896-e3d1-ffd4-47af-e0190d7ac950&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+59207aee-519d-058a-61a7-98323c7cd812+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.   Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for ListControl
Article • 09/17/2021

Specifies a set of .NET objects for the list entry. There is no limit to the number of
selection sets that can be specified for an entry.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and parent element of the
SelectionSetName  element.

None.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
ListEntry

Defines the .NET types that use this list entry or the condition that
must exist for this entry to be used.

Specify the name of the selection set.

Each list entry must have at least one type name, selection set, or selection condition
defined.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you might want to create a table view and a list
view for the same set of objects. For more information about defining selection sets, see
Defining Sets of objects for a View.

For more information about the components of a list view, see Creating a List View.

The following example shows how to specify a selection set for an entry of a list view.

XML

Creating a List View

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<ListEntry>
  <EntrySelectedBy>
    <SelectionSetName>NameofSelectionSet</SelectionSetName>
  </EntrySelectedBy>
  <ListItems>...</ListItems>
</ListEntry>

See Also



EntrySelectedBy Element for ListEntry

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=1f2c4572-aecc-234c-c8ba-89ba11929796&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e05103d9-b6c1-ef9a-5098-2b59944e4b01+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for ListControl
Article • 09/17/2021

Specifies a .NET type that uses this entry of the list view. There is no limit to the number
of types that can be specified for a list entry.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
EntrySelectedBy
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
ListEntry

Defines the .NET types that use this list entry or the condition that
must exist for this entry to be used.

Specify the fully-qualified name of the .NET type, such as System.IO.DirectoryInfo .

Each list entry must have at least one type name, selection set, or selection condition
defined.

For more information about how this element is used in a list view, see List View.

The following example shows how to specify a selection set for an entry of a list view.

XML

Creating a List View

EntrySelectedBy Element for ListEntry

SelectionSetName Element for EntrySelectedBy for ListEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<ListEntry>
  <EntrySelectedBy>
    <TypeName>Nameof.NetType</TypeName>
  </EntrySelectedBy>
  <ListItems>...</ListItems>
</ListEntry>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-listcontrol-format.md&documentVersionIndependentId=f160c458-33df-323e-ed7e-a093de364de5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a914097f-edfc-975e-d1b1-a8d1795d92c1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ListItems Element
Article • 09/17/2021

Defines the properties and scripts whose values are displayed in the rows of the list
view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element

XML

The following sections describe the attributes, child elements, and parent element of the
ListItems  element. There is no limit to the number of child elements that can be
specified. The order of the child elements defines the order that values are displayed in
the list view.

None.

Syntax

<ListItems>
  <ListItem>...</ListItem>
</ListItems>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

ListItem Element for
ListControl

Required element.

Defines the property or script whose value is displayed by the list
view.

Element Description

ListEntry Element for ListControl Provides a definition of the list view.

For more information about this type of view, see Creating a List View.

This example shows the XML elements that define three rows of the list view.

XML

ListEntry Element for ListControl

ListItem Element for ListControl

Parent Elements

ﾉ Expand table

Remarks

Example

<ListEntry>
    <ListItems>
      <ListItem>
        <Label>Property1: </Label>
        <PropertyName>.NetTypeProperty1</PropertyName>
      </ListItem>
      <ListItem>
        <PropertyName>.NetTypeProperty2</PropertyName>
      </ListItem>
      <ListItem>
        <ScriptBlock>$_.ProcessName + ":" $_.Id</ScriptBlock>
      </ListItem>
  </ListEntry>

See Also



Creating a List View

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Flistitems-element-for-listentry-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Flistitems-element-for-listentry-for-listcontrol-format.md&documentVersionIndependentId=917d4838-ca97-5324-136e-76f7d9c8a60d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cc7fab6f-9895-c669-bd91-794d40299726+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FormatString Element for ListItem for
ListControl
Article • 01/18/2022

Specifies a format pattern that defines how the property or script value is displayed.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
FormatString Element

XML

The following sections describe the attributes, child elements, and the parent element of
the FormatString  element.

None.

None.

Schema

Syntax

<FormatString>PropertyPattern</FormatString>

Attributes and Elements

Attributes

Child Elements



Element Description

ListItem Element Defines the property or script whose value is displayed in a row of the list view.

Specify the pattern that is used to format the data. For example, you can use this pattern
to format the value of any property that is of type System.TimeSpan: {0:MMM}{0:dd}
{0:HH}:{0:mm}.

Format strings can be used when creating table views, list views, wide views, or custom
views. For more information about formatting a value displayed in a view, see
Formatting Displayed Data.

For more information about using format strings in list views, see Creating List View.

The following example shows how to define a formatting string for the value of the
StartTime  property.

XML

Creating a List View

ListItem Element

Writing a Windows PowerShell Formatting and Types File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<ListItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</ListItem>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.TimeSpan
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


ItemSelectionCondition Element for
ListItem for ListControl
Article • 09/17/2021

Defines the condition that must exist for this list item to be used.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
ItemSelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
ItemSelectionCondition  element.

None.

Schema

Syntax

<ItemSelectionCondition>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</ItemSelectionCondition>

Attributes and Elements

Attributes

Child Elements



Element Description

PropertyName Element for ItemSelectionCondition
for ListControl

Optional element.

Specifies the .NET property that triggers
the condition.

ScriptBlock Element for ItemSelectionCondition for
ListControl

Optional element.

Specifies the script that triggers the
condition.

Element Description

ListItem Element for ListItems for
ListControl

Defines the property or script whose value is displayed in a
row of the list view.

You can specify one property name or a script for this condition but cannot specify both.

ListItem Element for ListItems for ListControl

PropertyName Element for ItemSelectionCondition for ListControl

ScriptBlock Element for ItemSelectionCondition for ListControl

Writing a PowerShell Formatting File

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-listitem-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fitemselectioncondition-element-for-listitem-for-listcontrol-format.md&documentVersionIndependentId=1916712f-24bd-e602-4f2d-e0400a1e9aab&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6051fe9e-194d-0799-0109-660ed35f32e5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
ItemSelectionCondition for ListControl
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the view is used. This element is
used when defining a list view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
ItemSelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent elements of
the PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ItemSelectionCondition Element for ListItem for ListControl

Specify the name of the property whose value is displayed.

If this element is used, you cannot specify the ScriptBlock element when defining the
selection condition.

ScriptBlock Element for ItemSelectionCondition for ListIControl

ItemSelectionCondition Element for ListItem for ListControl

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-itemselectioncondition-for-listcontrol-format.md&documentVersionIndependentId=c923c614-697f-7620-495f-064216cd3675&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d5456f50-b911-46b8-f0ad-d88dc200a793+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
ItemSelectionCondition for ListControl
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the list item is used. This element is used when defining a list view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element for ListControl
ListEntry Element for ListEntries for ListControl
ListItems Element for ListEntry for ListControl
ListItem Element for ListItems for List Control
ItemSelectionCondition Element for ListItem for ListControl
ScriptBlock Element for ItemSelectionCondition for ListControl

XML

The following sections describe attributes, child elements, and the parent elements of
the ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

ItemSelectionCondition Element for ListItem for
ListControl

Defines the condition that must exist for this list
item to be used.

Specify the script that is evaluated.

If this element is used, you cannot specify the PropertyName  element when defining the
selection condition.

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-itemselectioncondition-for-listcontrol-format.md&documentVersionIndependentId=346d4acc-262b-f62c-a2c9-9db07225b89b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c8e552c6-e291-4610-2f66-d748138b7484+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Label Element for ListItem for
ListControl
Article • 09/17/2021

Specifies the label that is displayed to the left of the property or script value in the row.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
Label Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Label  element.

None.

None.

Schema

Syntax

<Label>Label for displayed value</Label>

Attributes and Elements

Attributes

Child Elements



Element Description

ListItem Element for ListItems for
ListControl

Defines the property or script whose value is displayed in a
row of the list view.

Specify the label to be display to the left of the property or script value.

If a label is not specified, the name of the property or the script is displayed. For more
information about using labels in a list view, see Creating a List View.

The following example shows how to add a label to a row.

XML

Creating a List View

ListItem Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<ListItem>
  <Label>Property1: </Label>
  <PropertyName>DotNetProperty1</PropertyName>
</ListItem>

See Also

６  Collaborate with us on PowerShell feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Flabel-element-for-listitem-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Flabel-element-for-listitem-for-listcontrol-format.md&documentVersionIndependentId=8ff14832-bb6e-7095-fd44-2e8457690ac7&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+40a23ddc-2b24-57c8-f67f-c2758f369922+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ListItem Element
Article • 09/17/2021

Defines the property or script whose value is displayed in a row of the list view.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element

XML

The following sections describe the attributes, child elements, and parent element of the
ListItem  element. Only one property or script can be specified.

None

Schema

Syntax

<ListItem>
  <PropertyName>PropertyToDisplay</PropertyName>
  <ScriptBlock>ScriptToExecute</ScriptBlock>
  <Label>LabelToDisplay</Label>
  <FormatString>FormatPattern</FormatString>
  <ItemSelectionCondition>...</ItemSelectionCondition>
</ListItem>

Attributes and Elements

Attributes

Child Elements



Element Description

FormatString Element for ListItem for
ListControl

Optional element.

Specifies a format string that defines how the
property or script value is displayed.

ItemSelectionCondition Element for
ListItem for ListControl

Optional element.

Defines the condition that must exist for this list
item to be used.

Label Element for ListItem for ListControl Optional element

Specifies the label that is displayed to the left of the
property or script value in the row.

PropertyName Element for ListItem for
ListControl

Optional element.

Specifies the .NET property whose value is displayed
in the row.

ScriptBlock Element for ListItem for
ListControl

Optional element.

Specifies the script whose value is displayed in the
row.

Element Description

ListItems Element for List
Control

Defines the properties and scripts whose values are displayed in
the list view.

For more information about the components of a list view, see Creating a List View.

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

Example



This example shows the XML elements that define three rows of the list view. The first
two rows display the value of a .NET property, and the last row displays a value
generated by a script.

XML

ListItems Element

FormatString Element for ListItem

Label Element for ListItem

PropertyName Element for ListItem

ScriptBlock Element for ListItem

Creating a List View

Writing a Windows PowerShell Formatting and Types File

<ListEntry>
    <ListItems>
      <ListItem>
        <Label>Property1: </Label>
        <PropertyName>DotNetProperty1</PropertyName>
      </ListItem>
      <ListItem>
        <PropertyName>DotNetProperty2</PropertyName>
      </ListItem>
      <ListItem>
        <ScriptBlock>$_.ProcessName + ":" $_.Id</ScriptBlock>
      </ListItem>
    </ListItems>
</ListEntry>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Flistitem-element-for-listitems-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Flistitem-element-for-listitems-for-listcontrol-format.md&documentVersionIndependentId=5d346520-b83d-1d98-0e29-043b96b12036&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+69ab7372-d2f9-2fb8-9bd4-80dfbae7fc53+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


PropertyName Element for ListItem for
ListControl
Article • 09/17/2021

Specifies the .NET property whose value is displayed in the list.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
PropertyName Element

XML

The following sections describe the attributes, child elements, and the parent element of
the PropertyName  element.

None.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



Element Description

ListItem
Element

Defines the property or script whose value is displayed in the row of the list
view.

Specify the name of the property whose value is displayed.

When this element is specified, you cannot specify the ScriptBlock element.

In addition to displaying the property value, you can also specify a label for the value or
a format string that can be used to change the display of the value. For more
information about specifying data in a list view, see Creating a List View.

The following example shows how to specify the label and property whose value is
displayed.

XML

ScriptBlock Element for ListItem for ListControl

Creating a List View

ListItem Element for ListControl(Format)

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

ListItem>
  <Label>NameOfProperty</Label>
  <PropertyName>.NetTypeProperty</PropertyName>
</ListItem>

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-listitem-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-listitem-for-listcontrol-format.md&documentVersionIndependentId=0a10ad39-7e98-52af-0f43-67d4aa15aeb4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+748978ba-6d10-4aa0-e082-d4dd7fbf0634+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for ListItem for
ListControl
Article • 09/17/2021

Specifies the script whose value is displayed in the row.

Configuration Element
ViewDefinitions Element
View Element
ListControl Element
ListEntries Element
ListEntry Element
ListItems Element
ListItem Element
ScriptBlock Element

XML

The following sections describe the attributes, child elements, and the parent element of
the ScriptBlock  element.

None.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



Element Description

ListItem Element Defines the property or script whose value is displayed in a row of the list view.

Specify the script whose value is displayed in the row.

When this element is specified, you cannot specify the PropertyName element.

For more information about specifying scripts in a list view, see List View.

The following example shows how to specify the property whose value is displayed.

XML

PropertyName Element for ListItem for ListControl

Creating a List View

ListItem Element for ListItems for ListControl

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<ListItem>
  <ScriptBlock>$_.ProcessName + ":" $_.Id</ScriptBlock>
</ListItem>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-listitem-for-listcontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-listitem-for-listcontrol-format.md&documentVersionIndependentId=3dbfda58-8830-fc8d-4be4-e79f157cc4b3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+862ba138-693b-ed81-9e62-10c9a58c1768+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Name Element for View
Article • 03/24/2025

Specifies the name that is used to identify the view.

Configuration Element
ViewDefinitions Element
View Element
Name Element

XML

The following sections describe attributes, child elements, and the parent element of the
Name  element. Only one Name  element is allowed for each view.

None.

None.

Element Description

View Element Defines a view that is used to display the members of one or more .NET objects.

Schema

Syntax

<Name>ViewName</Name>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Specify a unique friendly name for the view. This name can include a reference to the
type of the view (such as a table view or list view), which object or set of objects use the
view, what command returns the objects, or a combination of these.

For more information about the different types of views, see the following topics: Table
View, List View, Wide View, and Custom View.

The following example shows a View  element that defines a table view for the
System.ServiceProcess.ServiceController object. The name of the view is "service".

XML

Creating a List View

Creating a Table View

Creating a Wide View

Creating Custom Controls

View Element

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<View>
  <Name>service</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <TableControl>...</TableControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


OutOfBand Element
Article • 09/17/2021

In a pipeline, the first object emitted is chosen as the type to format the output of the
pipeline. PowerShell attempts for format subsequent objects using the same view. If the
object does not fit the view, it is not displayed. You can create OutOfBand views that can
be used for format these other types.

Configuration Element
ViewDefinitions Element
View Element
OutOfBand Element

XML

The following sections describe attributes, child elements, and the parent element of the
OutOfBand  element.

None.

None.

Schema

Syntax

<OutOfBand/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

View Element Defines a view that displays one or more .NET objects.

When the "shape" of formatting (view) has been determined by previous objects, you
may want objects of different types to continue using that shape (table, list, or whatever)
even if they specify their own views. Or sometimes you want your view to take over.
When OutOfBand is true, the view applies regardless of previous objects that may have
selected a different view.

View Element

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Foutofband-element-for-view-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Foutofband-element-for-view-format.md&documentVersionIndependentId=a367dabb-1e4a-e133-2e25-9597f4dec31a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b1c3059d-c119-68bc-da78-a59bb8187c0a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TableControl Element
Article • 09/17/2021

Defines a table format for a view.

ViewDefinitions Element
View Element
TableControl Element

XML

The following sections describe attributes, child elements, and parent element of the
TableControl  element. You must specify the rows of the table. All other child elements
are optional.

None.

Schema

Syntax

<TableControl>
  <AutoSize/>
  <HideTableHeaders/>
  <TableHeaders>...</TableHeaders>
  <TableRowEntries>...</TableRowEntries>
</TableControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

AutoSize Element for
TableControl

Optional element.

Specifies whether the column size and the number of columns
are adjusted based on the size of the data.

HideTableHeaders Element for
TableControl

Optional element.

Indicates whether the header of the table is not displayed.

TableHeaders Element for
TableControl

Required element.

Defines the labels, the widths, and the alignment of the data
for the columns of the table view.

TableRowEntries Element for
TableControl

Optional element.

Provides the definitions of the table view.

Element Description

View Element Defines a view that is used to display the members of one or more objects.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableControl  element that is used to display the properties of the
System.ServiceProcess.ServiceController object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<View>
  <Name>service</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <TableControl>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Creating a Table View

View Element

AutoSize Element for TableControl

HideTableHeaders Element

TableHeaders Element

TableRowEntries Element

Writing a PowerShell Formatting File

    <TableHeaders>...</TableHeaders>
    <TableRowEntries>...</TableRowEntries>
  </TableControl>
</View>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


AutoSize Element for TableControl
Article • 09/17/2021

Specifies whether the column size and the number of columns are adjusted based on
the size of the data.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
AutoSize Element

XML

The following sections describe attributes, child elements, and the parent element of the
AutoSize  element.

None.

None.

Schema

Syntax

<AutoSize/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

TableControl Element Defines a table format for a view.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

TableControl Element

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fautosize-element-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fautosize-element-for-tablecontrol-format.md&documentVersionIndependentId=622968e9-e372-25e1-7641-0236042de662&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8f18fea5-930f-c88f-8898-d01e5eca22b6+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


HideTableHeaders Element
Article • 09/17/2021

Specifies that the headers of the table are not displayed.

ViewDefinitions Element
View Element
TableControl Element
HideTableHeaders Element

VB

The following sections describe the attributes, child elements, and parent element of the
HideTableHeaders  element.

None.

None.

Element Description

TableControl Element Defines a table format for a view.

Schema

Syntax

<HideTableHeaders/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Specify true  to hide the headers of the table.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

TableControl Element

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fhidetableheaders-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fhidetableheaders-element-format.md&documentVersionIndependentId=22aec1e0-2f8a-b989-1e88-1c0b0999b596&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+babc7f4c-2fb1-8db1-f86f-8cdba0942868+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TableHeaders Element
Article • 09/17/2021

Defines the headers for the columns of a table.

ViewDefinitions Element
View Element
TableControl Element
TableHeaders Element for TableControl

XML

The following sections describe the attributes, child elements, and parent elements of
the TableHeaders  element. There must be a child element for each property of the
object that is to be displayed. The column header information is displayed in the order
that the child elements are specified.

None.

Schema

Syntax

<TableHeaders>
  <TableColumnHeader>...</TableColumnHeader>
</TableHeaders>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

TableColumnHeader
Element

Optional element.

Defines the label, the width, and the alignment of the data for a
column of a table view.

Element Description

TableControl Element Defines a table format for a view.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableHeaders  element that defines two column headers.

XML

Creating a Table View

TableColumnHeader Element

Parent Elements

ﾉ Expand table

Remarks

Example

<TableHeaders>
  <TableColumnHeader>
    <Label>Column 1</Label>
    <Width>16</Width>
    <Alignment>Left</Alignment>
  </TableColumnHeader>
  <TableColumnHeader>
    <Label>Column 2</Label>
    <Width>10</Width>
    <Alignment>Centered</Alignment>
  </TableColumnHeader>
</TableHeaders>

See Also



TableControl Element

Writing a PowerShell Formatting File

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


TableColumnHeader Element
Article • 09/17/2021

Defines the label, the width of the column, and the alignment of the label for a column
of the table.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableHeaders Element
TableColumnHeader Element

XML

The following sections describe attributes, child elements, and the parent element of the
TableColumnHeader  element.

None.

Schema

Syntax

<TableColumnHeader>
  <Label>DisplayedLabel</Label>
  <Width>NumberOfCharacters</Width>
  <Alignment>Left, Right, or Centered</Alignment>
</TableColumnHeader>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Label Element For
TableColumnHeader for
TableControl

Optional element.

Defines the label that is displayed at the top of the column. If
no label is specified, the name of the property whose value is
displayed in the rows is used.

Width Element for
TableColumnHeader for
TableControl

Required element.

Specifies the width (in characters) of the column.

Alignment Element for
TableColumnHeader for
TableControl

Optional element.

Specifies how the label of the column is displayed. If no
alignment is specified, the label is aligned on the left.

Element Description

TableHeaders Element Defines the columns of a table view.

Specify a header for each column of the table. The columns are displayed in the order in
which the TableColumnHeader  elements are defined.

A table must have the same number of TableColumnHeader  elements as TableRowEntry
elements. The column header defines how the text at the top of the table is displayed.
The row entries define what data is displayed in the rows of the table.

For more information about the components of a table view, see Table View.

The following example shows two TableColumnHeader  elements. The first element
defines a column whose label is "Column 1", has a width of 16 characters, and whose
label is aligned on the left. The second element defines a column whose label is
"Column 2", has a width of 10 characters, and whose label is centered in the column.

Parent Elements

ﾉ Expand table

Remarks

Example



XML

Alignment Element for TableColumnHeader for TableControl

Creating a Table View

Label Element for TableColumnHeader for TableControl

TableHeaders Element for TableControl

Width for TableColumnHeader for TableControl Element

Writing a PowerShell Formatting File

<TableHeaders>
  <TableColumnHeader>
    <Label>Column 1</Label>
    <Width>16</Width>
    <Alignment>Left</Alignment>
  </TableColumnHeader>
    <TableColumnHeader>
    <Label>Column 2</Label>
    <Width>10</Width>
    <Alignment>Centered</Alignment>
  </TableColumnHeader>
</TableHeaders>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Alignment Element for
TableColumnHeader
Article • 09/17/2021

Defines how the data in a column header is displayed.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableHeaders Element
TableColumnHeader Element
Alignment Element

XML

The following sections describe the attributes, child elements, and parent element of the
Alignment  element.

None.

None.

Schema

Syntax

<Alignment>AlignmentType</Alignment>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

TableColumnHeader
Element

Defines a label, the width, and the alignment of the data for a
column of the table.

Specify one of the following values. These values are not case-sensitive.

Left - Aligns the data displayed in the column on the left This is the default if this
element is not specified.
Right - Aligns the data displayed in the column on the right.
Center - Centers the data displayed in the column.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableColumnHeader  element whose data is aligned on the center.

XML

Creating a Table View

TableColumnHeader Element

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

Example

<TableColumnHeader>
  <Label>Column 1</Label>
  <Width>16</Width>
  <Alignment>Center</Alignment>
</TableColumnHeader>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Label Element for TableColumnHeader
for TableControl
Article • 09/17/2021

Defines the label that is displayed at the top of a column. This element is used when
defining a table view.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableHeaders Element
TableColumnHeader Element
Label Element

XML

The following sections describe the attributes, child elements, and the parent element of
the Label  element. Only one label is allowed for each column.

None.

None.

Schema

Syntax

<Label>DisplayedLabel</Label>

Attributes and Elements

Attributes

Child Elements



Element Description

TableColumnHeader Element for
TableHeaders for TableControl

Defines a label, the width, and the alignment of the
data for a column of the table.

Specify the text that is displayed at the top of the column of the table. There are no
restricted characters for the column label.

If no label is specified, the name of the property whose value is displayed in the rows is
used.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableColumnHeader  element whose label is "Column 1".

XML

Creating a Table View

TableColumnHeader Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<TableColumnHeader>
  <Label>Column 1</Label>
  <Width>16</Width>
  <Alignment>Left</Alignment>
</TableColumnHeader>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


Width Element for TableColumnHeader
Article • 09/17/2021

Defines the width (in characters) of a column.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableHeaders Element
TableColumnHeader
Width Element

XML

The following sections describe the attributes, child elements, and parent element of the
Width  element used when defining column headers.

None.

None.

Schema

Syntax

<Width>NumberOfCharacters</Width>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

TableColumnHeader Element for
TableHeaders for TableControl

Defines a label, width, and alignment of the data
for a column of the table.

When at all possible, specify a width (in characters) that is greater than the length of the
displayed property values.

For more information about the components of a table view, see Creating a Table View.

The following example shows a TableColumnHeader  element whose width is 16
characters.

XML

Creating a Table View

TableColumnHeader Element for TableHeader for TableControl

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<TableColumnHeader>
  <Label>Column 1</Label>
  <Width>16</Width>
  <Alignment>Left</Alignment>
</TableColumnHeader>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


TableRowEntries Element
Article • 09/17/2021

Defines the rows of the table.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element

XML

The following sections describe the attributes, child elements, and parent element of the
TableRowEntries  element.

None.

Element Description

TableRowEntry Element for TableRowEntries for
TableControl

Required element.

Schema

Syntax

<TableRowEntries>
  <TableRowEntry>...</TableRowEntry>
</TableRowEntries>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

Defines the data that is displayed in a row of
the table.

Element Description

TableControl Element Defines a table format for a view.

You must specify one or more TableRowEntry  elements for the table view. There is no
maximum limit to the number of TableRowEntry  elements that can be added nor is their
order significant.

For more information about the components of a table view, see Creating a Table View.

The following example shows a TableRowEntries  element that defines a row that
displays the values of two properties of the System.Diagnostics.Process object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<TableRowEntries>
  <TableRowEntry>
    <EntrySelectedBy>
      <TypeName>System.Diagnostics.Process</TypeName>
    </EntrySelectedBy>
    <TableColumnItems>
      <TableColumnItem>
        <PropertyName> Property for first column</PropertyName>
      </TableColumnItem>
      <TableColumnItem>
        <PropertyName> Property for second column</PropertyName>
      </TableColumnItem>
    </TableColumnItems>
  </TableRowEntry>
</TableRowEntries>

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


Creating a Table View

TableControl Element

TableRowEntry Element

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftablerowentries-element-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftablerowentries-element-for-tablecontrol-format.md&documentVersionIndependentId=9f20da47-3b0c-565b-cb31-d180d6759081&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f130d1d6-a96e-7901-077a-6b2cbc245a68+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TableColumnItems Element
Article • 02/03/2023

Defines the properties or scripts whose values are displayed in a row.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element for TableControl
TableRowEntry Element for TableRowEntries for TableControl
TableColumnItems Element for TableControlEntry for TableControl

XML

The following sections describe the attributes, child elements, and parent element of the
TableColumnItems  element.

None.

Schema

Syntax

<TableColumnItems>
  <TableColumnItem>...</TableColumnItem>
</TableColumnItems>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

TableColumnItem Element for
TableColumnItems for TableControl

Required element.

Defines the property or script whose value is
displayed in a column of the row.

Element Description

TableRowEntry Element for TableRowEntries for
TableControl

Defines the data that is displayed in a row of
the table.

A TableColumnItem  element is required for each column of the row. The first entry is
displayed in first column, the second entry in the second column, and so on.

For more information about the components of a table view, see Creating a Table View.

The following example shows a TableColumnItems  element that defines three properties
of the System.Diagnostics.Process object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<TableColumnItems>
  <TableColumnItem>
    <PropertyName>Status</PropertyName>
  </TableColumnItem>
  <TableColumnItem>
    <PropertyName>Name</PropertyName>
  </TableColumnItem>
  <TableColumnItem>
    <PropertyName>DisplayName</PropertyName>
  </TableColumnItem>
</TableColumnItems>

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


Creating a Table View

TableColumnItem Element

TableRowEntry Element

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftablecolumnitems-element-for-tablerowentry-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftablecolumnitems-element-for-tablerowentry-for-tablecontrol-format.md&documentVersionIndependentId=dd8fc2ae-6587-382b-5786-7d825b56c4ad&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+53040ddc-52ed-b379-06d6-1f5df3d9a237+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TableColumnItem Element
Article • 09/17/2021

Defines the property or script whose value is displayed in the column of the row.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
TableColumnItems Element
TableColumnItem Element

XML

The following sections describe the attributes, child elements, and parent element of the
TableColumnItem  element.

None.

Schema

Syntax

<TableColumnItem>
  <Alignment>Left, Right, or Center</Alignment>
  <FormatString>FormatPattern</FormatString>
  <PropertyName>Nameof.NetProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</TableColumnItem>

Attributes and Elements

Attributes

Child Elements



Element Description

Alignment Element for TableColumnItem
for TableControl

Optional element.

Defines how the data in a column of the row is
displayed.

FormatString Element for
TableColumnItem for TableControl

Specifies a format pattern that is used to format the
data in the column of the row.

PropertyName Element for
TableColumnItem for TableControl

Optional element.

Specifies the name of the property whose value is
displayed.

ScriptBlock Element for TableColumnItem
for TableControl

Optional element.

Specifies the script whose value is displayed in the
column of a row.

Element Description

TableColumnItems Element for
TableControlEntry for TableControl

Defines the properties or scripts whose values
are displayed in the row.

You can specify a property of an object or a script in each column of the row. If no child
elements are specified, the item is a placeholder, and no data is displayed.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableColumnItem  element that displays the value of the Status
property of the System.Diagnostics.Process object.

XML

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


Creating a Table View

Alignment Element for TableColumnItem for TableControl

TableColumnItems Element

FormatString Element for TableColumnItem for TableControl

PropertyName Element for TableColumnItem for TableControl

ScriptBlock Element for TableColumnItem for TableControl

Writing a PowerShell Formatting File

<TableColumnItem>
   <Alignment>Centered</Alignment>
  <PropertyName>Status</PropertyName>
</TableColumnItem>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftablecolumnitem-element-for-tablecolumnitems-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftablecolumnitem-element-for-tablecolumnitems-for-tablecontrol-format.md&documentVersionIndependentId=064f9506-43be-11f1-ad4e-ca30fb7c5be8&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+899c1d62-f32b-ac83-660d-2fc8e7f2a055+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Alignment Element for
TableColumnItem
Article • 09/17/2021

Defines how the data in a column of the row is displayed.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
TableColumnItems Element
TableColumnItem Element
Alignment Element

XML

The following sections describe the attributes, child elements, and parent element of the
Alignment  element.

None.

None.

Schema

Syntax

<Alignment>AlignmentType</Alignment>

Attributes and Elements

Attributes

Child Elements



Element Description

TableColumnItem
Element

Defines a label, the width, and the alignment of the data for a column
of the table.

Specify one of the following values. (These values are not case-sensitive.)

Left - Shifts the data displayed in the column to the left. (This is the default if this
element is not specified.)
Right - Shifts the data displayed in the column to the right.
Center - Centers the data displayed in the column.

For more information about the components of a table view, see Table View.

Table View

TableColumnItem Element

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Falignment-element-for-tablecolumnitem-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Falignment-element-for-tablecolumnitem-for-tablecontrol-format.md&documentVersionIndependentId=d340c22e-51fd-a75f-7cf6-ff171d2cb9ff&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1352ccd6-4d09-8b39-ce36-815c405aeeaf+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FormatString Element for
TableColumnItem for TableControl
Article • 01/18/2022

Specifies a format pattern that defines how the property or script value of the table is
displayed.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
TableColumnItems Element
TableColumnItem Element
FormatString Element

XML

The following sections describe attributes, child elements, and the parent element of the
FormatString  element.

None.

None.

Schema

Syntax

<FormatString>FormatPattern</FormatString>

Attributes and Elements

Attributes

Child Elements



Element Description

TableColumnItem
Element

Defines the property or script whose value is displayed in the column
of the row.

Specify the pattern that is used to format the data. For example, this pattern can be
used to format the value of any property that is of type System.TimeSpan: {0:MMM}
{0:dd}{0:HH}:{0:mm}.

Format strings can be used when creating table views, list views, wide views, or custom
views. For more information about formatting a value displayed in a view, see
Formatting Displayed Data.

For more information about the components of a table view, see Table View.

The following example shows how to define a formatting string for the value of the
StartTime  property.

XML

Creating a Table View

Formatting Displayed Data

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<TableColumnItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</TableColumnItem>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.TimeSpan


TableColumnItem Element

Writing a PowerShell Formatting File

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


PropertyName Element for
TableColumnItem for TableControl
Article • 09/17/2021

Specifies the property whose value is displayed in the column of the row.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
TableColumnItems Element
TableColumnItem Element
PropertyName Element

XML

The following sections describe attributes, child elements, and parent element of the
PropertyName  element.

None.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



Element Description

TableColumnItem
Element

Defines the property or script whose value is displayed in the column
of the row.

Specify the name of the property whose value is displayed.

For more information about the components of a table view, see Creating a Table View.

This example shows a TableColumnItem  element that specifies the Status  property of
the System.Diagnostics.Process object.

XML

Creating a Table View

TableColumnItem Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

Example

<TableColumnItem>
   <Alignment>Centered</Alignment>
  <PropertyName>Status</PropertyName>
</TableColumnItem>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-tablecolumnitem-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-tablecolumnitem-for-tablecontrol-format.md&documentVersionIndependentId=9245b496-fde4-5b89-922d-61b939f22cc3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5bac1632-ead5-48c9-49e9-5507eae26dd7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
TableColumnItem for TableControl
Article • 09/17/2021

Specifies the script whose value is displayed in the column of the row.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
TableColumnItems Element
TableColumnItem Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



Element Description

TableColumnItem
Element

Defines the property or script whose value is displayed in the column
of the row.

Specify the script whose value is displayed.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

TableColumnItem Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-tablecolumnitem-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-tablecolumnitem-for-tablecontrol-format.md&documentVersionIndependentId=bd4a9b61-c543-3a5d-3c99-2b44460c9fc6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f0a95a5b-9e93-ccb4-05da-7be4a89dc5a5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TableRowEntry Element
Article • 09/17/2021

Defines the data that is displayed in a row of the table.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element for TableControl
TableRowEntry Element for TableRowEntries

XML

The following sections describe attributes, child elements, and parent element of the
TableRowEntry  element.

None.

Schema

Syntax

<TableRowEntry>
  <Wrap/>
  <EntrySelectedBy>...</EntrySelectedBy>
  <TableColumnItems>...</TableColumnItems>
</TableRowEntry>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

EntrySelectedBy Element for TableRowEntry
for TableControl

Required element.

Defines the objects whose property values are
displayed in the row.

TableColumnItems Element for
TableRowEntry for TableControl

Required element.

Defines the properties or scripts whose values are
displayed.

Wrap Element for TableRowEntry for
TableControl

Optional element.

Specifies that text that exceeds the column width is
displayed on the next line.

Element Description

TableRowEntries Element for TableControl Defines the rows of the table.

One TableColumnItems  element and one EntrySelectedBy  element must be specified.

For more information about the components of a table view, see Creating a Table View.

The following example shows a TableRowEntry  element that defines a row that displays
the values of two properties of the System.Diagnostics.Process object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<TableRowEntry>
  <EntrySelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </EntrySelectedBy>
  <TableColumnItems>
    <TableColumnItem>
      <PropertyName> Property for first column</PropertyName>

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


Creating a Table View

EntrySelectedBy Element for TableRowEntry for TableControl

TableColumnItems Element for TableRowEntry for TableControl

TableRowEntries Element for TableControl

Wrap Element for TableRowEntry for TableControl

Writing a PowerShell Formatting File

    </TableColumnItem>
    <TableColumnItem>
      <PropertyName> Property for second column</PropertyName>
    </TableColumnItem>
  </TableColumnItems>
</TableRowEntry>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftablerowentry-element-for-tablerowentries-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftablerowentry-element-for-tablerowentries-for-tablecontrol-format.md&documentVersionIndependentId=e95550fb-24f3-ac7a-db97-31c87958120a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+24b00659-862c-f505-e732-56dc4ff378d8+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for
TableRowEntry
Article • 09/17/2021

Defines the .NET types that use this definition of the table view or the condition that
must exist for this definition to be used.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and the parent element of the
EntrySelectedBy  element.

None.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes

Child Elements



Element Description

SelectionCondition Element for
EntrySelectedBy for TableControl

Optional element.

Defines the condition that must exist for this table
view definition to be used.

SelectionSetName Element for
EntrySelectedBy for TableControl

Optional element.

Specifies a set of .NET types that use this table
view definition.

TypeName Element for EntrySelectedBy for
TableControl

Optional element.

Specifies a .NET type that uses this table view
definition.

Element Description

TableRowEntry Element for TableControl Defines the data that is displayed in a row of the table.

You must specify at least one type, selection set, or selection condition for a table view
definition. There is no maximum limit to the number of child elements that you can use.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or that a specific property value
or script evaluates to true . For more information about selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

For more information about the components of a table view, see Creating a Table View.

The following example shows a TableRowEntry  element that is used to display the
properties of the System.Diagnostics.Process object.

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


XML

Creating a Table View

SelectionCondition Element for EntrySelectedBy for TableControl

SelectionSetName Element for EntrySelectedBy for TableControl

TableRowEntry Element for TableControl

TypeName Element for EntrySelectedBy for TableControl

Writing a PowerShell Formatting File

<TableRowEntry>
  <EntrySelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </EntrySelectedBy>
  <TableColumnItems>
    <TableColumnItem>
      <PropertyName>PropertyForFirstColumn</PropertyName>
    </TableColumnItem>
    <TableColumnItem>
      <PropertyName>PropertyForSecondColumn</PropertyName>
    </TableColumnItem>
  </TableColumnItems>
</TableRowEntry>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-tablerowentry-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-tablerowentry-for-tablecontrol-format.md&documentVersionIndependentId=c258a05d-1290-f2f2-7c5a-00e8f87d82d2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4e5f3e49-bb09-79db-4e46-d38fc81ec0ea+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for TableControl
Article • 09/17/2021

Defines the condition that must exist to use for this definition of the table view. There is
no limit to the number of selection conditions that can be specified for a table
definition.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition element.

None.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



Element Description

PropertyName Element for SelectionCondition for
EntrySelectedBy for TableRowEntry

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for SelectionCondition for
EntrySelectedBy for TableRowEntry

Optional element.

Specifies the script that triggers the
condition.

SelectionSetName Element for SelectionCondition for
EntrySelectedBy for TableRowEntry

Optional element.

Specifies the set of .NET types that
trigger the condition.

TypeName Element for SelectionCondition for
EntrySelectedBy for TableRowEntry

Optional element.

Specifies a .NET type that triggers
the condition.

Element Description

EntrySelectedBy Element for
TableRowEntry

Defines the .NET types that use this table entry or the condition
that must exist for this entry to be used.

Each list entry must have at least one type name, selection set, or selection condition
defined.

When you are defining a selection condition, the following requirements apply:

The selection condition must specify a least one property name or a script block,
but cannot specify both.

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

For more information about how to use selection conditions, see Defining Conditions
for when a View Entry or Item is Used.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

Defining Conditions for When Data Is Displayed

EntrySelectedBy Element

PropertyName Element for SelectionCondition for EntrySelectedBy for TableRowEntry

ScriptBlock Element for SelectionCondition for EntrySelectedBy for TableRowEntry

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
TableRowEntry

TypeName Element for SelectionCondition for EntrySelectedBy for TableRowEntry

Writing a Windows PowerShell Formatting and Types File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=f64523e5-daa9-4306-4cfa-4d32b07f176a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a548ce6a-dde6-932d-0267-232d3c4e3d00+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for EntrySelectedBy
for TableRowEntry
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the table entry is used.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Schema

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for TableRowEntry

Defines the condition that must exist for this
table entry to be used.

Specify the .NET property name.

The selection condition must specify at least one property name or a script block, but
cannot specify both. For more information about how selection conditions can be used,
see Defining Conditions for when a View Entry or Item is Used.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

Defining Conditions for When Data Is Displayed

ScriptBlock Element for SelectionCondition for EntrySelectedBy for TableRowEntry

SelectionCondition Element for EntrySelectedBy for TableRowEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-tablerowentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-tablerowentry-format.md&documentVersionIndependentId=2bae4188-00db-f791-0305-2bd44a072c21&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+513d446f-19d3-dd6c-1812-288b787a8497+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for EntrySelectedBy
for TableControl
Article • 09/17/2021

Specifies the script block that triggers the condition. When this script is evaluated to
true , the condition is met, and the table entry is used.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionCondition Element
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for TableRowEntry

Defines the condition that must exist for this
table entry to be used.

Specify the script that is evaluated.

The selection condition must specify at least one script block or property name, but
cannot specify both. For more information about how to use selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

Defining Conditions for When Data Is Displayed

PropertyName Element for SelectionCondition for EntrySelectedBy for TableRowEntry

SelectionCondition Element for EntrySelectedBy for TableRowEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=8193eec8-9653-76ab-a38a-60439af8ab24&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4f353889-32c8-0bdb-ea5e-b137d0577160+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for EntrySelectedBy
for TableControl
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met, and the object is displayed by using this definition
of the table view.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for TableRowEntry

Defines the condition that must exist to use for
this definition of the table view.

Specify the name of the selection set.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Sets of Objects.

For more information about other components of a wide view, see Creating a Table
View.

Creating a Table View

Defining Conditions for When Data Is Displayed

TypeName Element for SelectionCondition for EntrySelectedBy for TableRowEntry

SelectionCondition Element for EntrySelectedBy for TableRowEntry

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=982b1dda-c6e3-22cc-8cec-7487a3e5a27d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3d1b23cd-0812-a640-41aa-4bf85d6c603a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for EntrySelectedBy
for TableControl
Article • 09/17/2021

Specifies a .NET type that triggers the condition. When this type is present, the condition
is met, and the table row is used.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for EntrySelectedBy
for TableRowEntry

Defines the condition that must exist for this
table row to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

The selection condition can specify any number of .NET types or selection sets, but
cannot specify both. For more information about how to use selection conditions, see
Defining Conditions for when a View Entry or Item is Used.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

Defining Conditions for When Data Is Displayed

SelectionCondition Element for EntrySelectedBy for TableRowEntry

SelectionSetName Element for SelectionCondition for EntrySelectedBy for
TableRowEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=c9a13777-88b4-fbd3-9dc7-132c8e16a627&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3947ee81-312e-7c84-b8d7-8823cd84ac6b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for TableControl
Article • 09/17/2021

Specifies a set of .NET types the use this entry of the table view. There is no limit to the
number of selection sets that can be specified for an entry.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and parent elements.

None.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

EntrySelectedBy
Element

Defines the .NET types that use this entry or the condition that must exist
for this entry to be used.

Specify the name of the selection set.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you might want to create a table view and a list
view for the same set of objects. For more information about defining selection sets, see
Defining Sets of objects for a View.

If you specify a selection set for an entry, you cannot specify a type name. For more
information about how to specify a .NET type, see TypeName Element for
EntrySelectedBy for TableRowEntry.

For more information about the components of a table view, see Creating a Table View.

EntrySelectedBy Element

Defining Sets of objects for a View

Creating a Table View

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=b1d8ead5-db1a-6e09-a2ea-c37bfa21244d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fdad11b9-8c21-72e1-c611-aab4f4bcdcc8+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for TableControl
Article • 09/17/2021

Specifies a .NET type that uses this entry of the table view. There is no limit to the
number of types that can be specified for a table entry.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element
TableRowEntry Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy
Element

Defines the .NET types that use this entry or the condition that must exist
for this entry to be used.

Specify the name of the .NET type.

Each list entry must have at least one type name, selection set, or selection condition
defined.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

EntrySelectedBy Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-tablecontrol-format.md&documentVersionIndependentId=659ac15a-f800-5296-b3ac-fad483e422e3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a9e0935e-3ada-e6b2-0e3a-abf3f14022a7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Wrap Element for TableRowEntry
Article • 09/17/2021

Specifies that text that exceeds the column width is displayed on the next line. By
default, text that exceeds the column width is truncated.

Configuration Element
ViewDefinitions Element
View Element
TableControl Element
TableRowEntries Element for TableControl
TableRowEntry Element for TableRowEntries for TableControl
Wrap Element for TableRowEntry for TableControl

XML

The following sections describe attributes, child elements, and parent elements of the
Wrap  element.

None.

None.

Schema

Syntax

<Wrap/>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

TableRowEntry Element for TableRowEntries for
TableControl

Defines the data that is displayed in a row of
the table.

For more information about the components of a table view, see Creating a Table View.

Creating a Table View

TableRowEntry Element for TableRowEntries for TableControl

Writing a PowerShell Formatting File

ﾉ Expand table

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwrap-element-for-tablerowentry-for-tablecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwrap-element-for-tablerowentry-for-tablecontrol-format.md&documentVersionIndependentId=36dfa418-8722-c9f4-356b-3fd511e10d88&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e279a6ac-e9fc-a96f-b30c-13728ab89517+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ViewSelectedBy Element
Article • 09/17/2021

Defines the .NET objects that are displayed by the view. Each view must specify at least
one .NET object.

ViewDefinitions Element
View Element
ViewSelectedBy Element

XML

The following sections describe the attributes, child elements, and parent element of the
ViewSelectedBy  element. This element must contain at least one TypeName  or
SelectionSetName  child element. There is no limit to the number of child elements that
can be specified nor is their order significant.

None.

Schema

Syntax

<ViewSelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>SelectionSet</SelectionSetName>
</ViewSelectedBy>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

TypeName Element for ViewSelectedBy Optional element.

Specifies a .NET object that is displayed by the view.

SelectionSetName Element for
ViewSelectedBy

Optional element.

Specifies a set of .NET objects that are displayed by
the view.

Element Description

View Element Defines a view that displays one or more .NET objects.

For more information about how this element is used in different views, see Table View
Components, List View Components, Wide View Components, and Custom Control
Components.

The SelectionSetName  element is used when the formatting file defines a set of objects
that are displayed by multiple views. For more information about how selection sets are
defined and referenced, see Defining Sets of Objects.

The following example shows how to specify the
System.ServiceProcess.ServiceController object for a list view. The same schema is used
for table, wide, and custom views.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController


Creating a List View

Creating a Table View

Creating a Wide View

Creating Custom Controls

Defining Selection Sets

SelectionSetName Element for ViewSelectedBy

TypeName Element

Writing a PowerShell Formatting File

  <ListControl>...</ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


SelectionSetName Element for
ViewSelectedBy
Article • 09/17/2021

Specifies a set of .NET objects that are displayed by the view.

Configuration Element
ViewDefinitions Element
View Element
ViewSelectedBy Element
SelectionSetName Element

XML

The following sections describe the attributes, child elements, and the parent element of
the SelectionSetName  element.

None.

None.

Schema

Syntax

<SelectionSetName>Name of selection set<SelectionSetName>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

ViewSelectedBy Element Defines the .NET objects that are displayed by the view.

Specify the name of the selection set that is defined by the Name  element for the
selection set.

You can use selection sets when you have a set of related objects that you want to
reference by using a single name, such as a set of objects that are related through
inheritance. For more information about defining and referencing selection sets, see
Defining Sets of Objects.

The following example shows how to specify a selection set for a list view. The same
schema is used for table, wide, and custom views.

XML

Defining Selection Sets

ViewSelectedBy Element

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<View>
  <Name>Name of View</Name>
  <ViewSelectedBy>
    <SelectionSetName>NameofSelectionSet</SelectionSetName>>
  </ViewSelectedBy>
  <ListControl>...</ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-viewselectedby-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-viewselectedby-format.md&documentVersionIndependentId=536a53bc-9e66-6ad0-509c-cc23f180f4bf&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bdbd754c-d61c-977b-c869-d1fad547d416+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for ViewSelectedBy
Article • 09/17/2021

Specifies a .NET object that is displayed by the view.

Configuration Element
ViewDefinitions Element
View Element
ViewSelectedBy Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent elements of
the TypeName  element.

None.

None.

Schema

Syntax

<TypeName>FullyQualifiedTypeName</TypeName>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

ViewSelectedBy Element Defines the .NET objects that are displayed by the view.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

For more information about how this element is used in different views, see Creating a
Table View, Creating a List View, Creating a Wide View, and Custom View Components.

The following example shows how to specify the
System.ServiceProcess.ServiceController object for a list view. The same schema is used
for table, wide, and custom views.

XML

Creating a List View

Creating a Table View

Creating a Wide View

Creating Custom Controls

ViewSelectedBy Element

Writing a PowerShell Formatting File

Text Value

Remarks

Example

<View>
  <Name>System.ServiceProcess.ServiceController</Name>
  <ViewSelectedBy>
    <TypeName>System.ServiceProcess.ServiceController</TypeName>
  </ViewSelectedBy>
  <ListControl>...</ListControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.ServiceProcess.ServiceController
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


WideControl Element
Article • 09/17/2021

Defines a wide (single value) list format for the view. This view displays a single property
value or script value for each object.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element

XML

The following sections describe the attributes, child elements, and parent element of the
WideControl  element. You cannot specify the AutoSize  and ColumnNumber  elements at
the same time.

None.

Schema

Syntax

<WideControl>
  <AutoSize/>
  <ColumnNumber>PositiveInteger</ColumnNumber>
  <WideEntries>...</WideEntries>
</WideControl>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

AutoSize Element for
WideControl

Optional element.

Specifies whether the column size and the number of columns
are adjusted based on the size of the data.

ColumnNumber Element for
WideControl

Optional element.

Specifies the number of columns displayed in the wide view.

WideEntries Element Required element.

Provides the definitions of the wide view.

Element Description

View Element Defines a view that is used to display one or more .NET objects.

When defining a wide view, you can add the AutoSize  element or the ColumnNumber  but
you cannot add both.

In most cases, only one definition is required for each wide view, but it is possible to
have multiple definitions if you want to use the same view to display different .NET
objects. In those cases, you can provide a separate definition for each object or set of
objects.

For more information about the components of a wide view, see Wide View
Components.

The following example shows a WideControl  element that is used to display a property
of the System.Diagnostics.Process object.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process


For a complete example of a wide view, see Wide View (Basic).

Autosize Element for WideControl

ColumnNumber Element for WideControl

View Element

WideEntries Element

Wide View (Basic)

Creating a Wide View

Writing a PowerShell Formatting File

<View>
  <Name>process</Name>
  <ViewSelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </ViewSelectedBy>
  <WideControl>
    <WideEntries>...</WideEntries>
  </WideControl>
</View>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwidecontrol-element-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwidecontrol-element-format.md&documentVersionIndependentId=9f1a570d-1851-8625-6ae6-20272b7d6f86&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ad33c7c6-f93f-4ef2-067c-05a1a845635d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AutoSize Element for WideControl
Article • 09/17/2021

Specifies whether the column size and the number of columns are adjusted based on
the size of the data.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
Autosize Element

XML

The following sections describe attributes, child elements, and the parent element of the
AutoSize  element.

None.

None

Schema

Syntax

<AutoSize/>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

WideControl Element Defines a wide (single value) list format for the view.

When defining a wide view, you can add the AutoSize  element or the ColumnNumber
element, but you cannot add both.

For more information about the components of a wide view, see Creating a Wide View.

For an example of a wide view, see Wide View (Basic).

ColumnNumber Element for WideControl

Creating a Wide View

WideControl Element

Writing a PowerShell Formatting File

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fautosize-element-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fautosize-element-for-widecontrol-format.md&documentVersionIndependentId=ad1ef3b1-29b9-ea37-959c-2da988615c36&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b84ab2b5-529f-0bd9-2848-03455d199ee3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ColumnNumber Element for
WideControl
Article • 09/17/2021

Specifies the number of columns displayed in the wide view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
ColumnNumber Element

XML

The following sections describe attributes, child elements, and the parent element of the
ColumnNumber  element.

None.

None.

Schema

Syntax

<ColumnNumber>PositiveInteger</ColumnNumber>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

WideControl Element Defines a wide (single value) list format for the view.

Specify a positive integer value.

When defining a wide view, you can add the AutoSize  element or the ColumnNumber
element, but you cannot add both.

For more information about the components of a wide view, see Creating a Wide View.

For an example of a wide view, see Wide View (Basic).

Autosize Element for WideControl

Creating a Wide View

Wide View (Basic)

Writing a PowerShell Formatting File

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fcolumnnumber-element-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fcolumnnumber-element-for-widecontrol-format.md&documentVersionIndependentId=f72749a6-9c0b-17a6-7596-24bb09a94d80&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7c8f3dc2-76a7-85b8-d0e8-9e1eac2f7b50+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


WideEntries Element
Article • 09/17/2021

Provides the definitions of the wide view. The wide view must specify one or more
definitions.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element

XML

The following sections describe the attributes, child elements, and parent element of the
WideEntries  element. At least one child element must be specified.

None.

Element Description

WideEntry Element Provides a definition of the wide view.

Schema

Syntax

<WideEntries>
  <WideEntry>...</WideEntry>
</WideEntries>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

WideControl Element Defines a wide (single value) list format for the view.

A wide view is a list format that displays a single property value or script value for each
object. For more information about the components of a wide view, see Wide View
Components.

The following example shows a WideEntries  element that defines a single WideEntry
element. The WideEntry  element contains a single WideItem  element that defines what
property or script value is displayed in the view.

XML

For a complete example of a wide view, see Wide View (Basic).

Creating a Wide View

WideControl Element

WideEntry Element

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Remarks

Example

<WideControl>
  <WideEntries>
    <WideEntry>
      <WideItem>...</WideItem>
    <WideEntry>
  </WideEntries>
</WideControl>

See Also

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwideentries-element-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwideentries-element-for-widecontrol-format.md&documentVersionIndependentId=dadcb289-ec6d-6a6a-2e1e-e7b5d3ccb2c6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cd4068c2-063c-0124-3086-b44e274a4097+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


WideEntry Element
Article • 09/17/2021

Provides a definition of the wide view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element

XML

The following sections describe the attributes, child elements, and the parent element of
the WideEntry  element. You must specify a single WideItem  child element.

None.

Schema

Syntax

<WideEntry>
  <EntrySelectedBy>...</EntrySelectedBy>
  <WideItem>...</WideItem>
</WideEntry>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

EntrySelectedBy Element
for WideEntry

Optional element.

Defines the .NET types that use this wide entry definition or the
condition that must exist for this definition to be used.

WideItem Element Required element.

Defines the property or script whose value is displayed.

Element Description

WideEntries Element Provides the definitions of the wide view.

A wide view is a list format that displays a single property value or script value for each
object. Unlike other types of views, you can specify only one item element for each view
definition. For more information about the other components of a wide view, see
Creating a Wide View.

The following example shows a WideEntry  element that defines a single WideItem
element. The WideItem  element defines the property whose value is displayed in the
view.

XML

Parent Elements

ﾉ Expand table

Remarks

Example

<WideEntries>
  <WideEntry>
    <WideItem>
      <PropertyName>ProcessName</PropertyName>
    </WideItem>
  </WideEntry>
</WideEntries>



For a complete example of a wide view, see Wide View (Basic).

Creating a Wide View

SelectionCondition Element for WideEntry

SelectionSetName Element for WideEntry

TypeName Element for WideEntry

WideEntries Element

WideItem Element

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwideentry-element-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwideentry-element-for-widecontrol-format.md&documentVersionIndependentId=6c3b4ddf-d99b-0827-1c94-c5853854aa61&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+995c8801-9d19-00ee-850d-95eaac3454fa+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


EntrySelectedBy Element for WideEntry
Article • 09/17/2021

Defines the .NET types that use this definition of the wide view or the condition that
must exist for this definition to be used.

Configuration Element ViewDefinitions Element View Element WideControl Element
WideEntries Element WideEntry Element EntrySelectedBy Element

XML

The following sections describe attributes, child elements, and the parent element of the
EntrySelectedBy  element.

None.

Element Description

SelectionCondition Element for
EntrySelectedBy for WideEntry

Optional element.

Defines the condition that must exist for this wide
view definition to be used.

Schema

Syntax

<EntrySelectedBy>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <SelectionCondition>...</SelectionCondition>
</EntrySelectedBy>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

SelectionSetName Element for
EntrySelectedBy for WideEntry

Optional element.

Specifies a set of .NET types that use this wide
view definition.

TypeName Element for EntrySelectedBy for
WideEntry

Optional element.

Specifies a .NET type that uses this wide view
definition.

Element Description

WideEntry Element Provides a definition of the wide view.

You must specify at least one type, selection set, or selection condition for a wide view
definition. There is no maximum limit to the number of child elements that you can use.

Selection conditions are used to define a condition that must exist for the definition to
be used, such as when an object has a specific property or that a specific property value
or script value evaluates to true . For more information about selection conditions, see
Defining Conditions for Displaying Data.

For more information about other components of a wide view, see Creating a Wide
View.

WideEntry Element

SelectionCondition Element for EntrySelectedBy for WideEntry

SelectionSetName Element for EntrySelectedBy for WideEntry

TypeName Element for EntrySelectedBy for WideEntry

Creating a Wide View

Parent Elements

ﾉ Expand table

Remarks

See Also



Defining Conditions for Displaying Data

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-wideentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fentryselectedby-element-for-wideentry-format.md&documentVersionIndependentId=d1e15ae6-801b-c681-3c38-01d665eb5938&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+75d51435-e577-f584-2f38-c70f4695de62+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionCondition Element for
EntrySelectedBy for WideControl
Article • 09/17/2021

Defines the condition that must exist for this definition to be used. There is no limit to
the number of selection conditions that can be specified for a wide entry definition.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionCondition Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionCondition  element. You must specify a single PropertyName  or ScriptBlock
element. The SelectionSetName  and TypeName  elements are optional. You can specify
one of either element.

Schema

Syntax

<SelectionCondition>
  <TypeName>Nameof.NetType</TypeName>
  <SelectionSetName>NameofSelectionSet</SelectionSetName>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToEvaluate</ScriptBlock>
</SelectionCondition>

Attributes and Elements

Attributes



None.

Element Description

PropertyName Element for SelectionCondition for
EntrySelectedBy for WideEntry

Optional element.

Specifies the .NET property that
triggers the condition.

ScriptBlock Element for SelectionCondition for
EntrySelectedBy for WideEntry

Optional element.

Specifies the script block that triggers
the condition.

SelectionSetName Element for SelectionCondition for
EntrySelectedBy for WideEntry

Optional element.

Specifies the set of .NET types that
triggers the condition.

TypeName Element for SelectionCondition for
EntrySelectedBy for WideEntry

Optional element.

Specifies a .NET type that triggers the
condition.

Element Description

EntrySelectedBy Element for
WideEntry

Defines the .NET types that use this wide entry or the condition
that must exist for this entry to be used.

Each wide entry must have at least one type name, selection set, or selection condition
defined.

When you are defining a selection condition, the following requirements apply:

Child Elements

ﾉ Expand table

Parent Elements

ﾉ Expand table

Remarks



The selection condition must specify a least one property name or a script block,
but cannot specify both.
The selection condition can specify any number of .NET types or selection sets, but
cannot specify both.

For more information about how to use selection conditions, see Defining Conditions
for when a View Entry or Item is Used.

For more information about other components of a wide view, see Creating a Wide
View.

Creating a Wide View

Defining Conditions for When Data Is Displayed

EntrySelectedBy Element for WideEntry

PropertyName Element for SelectionCondition for EntrySelectedBy for WideEntry

ScriptBlock Element for SelectionCondition for EntrySelectedBy for WideEntry

SelectionSetName Element for SelectionCondition for EntrySelectedBy for WideEntry

TypeName Element for SelectionCondition for EntrySelectedBy for WideEntry

Writing a PowerShell Formatting File

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectioncondition-element-for-entryselectedby-for-widecontrol-format.md&documentVersionIndependentId=5fa5e097-ec70-2246-9a71-0917cc008ea1&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+361cc553-c1ec-b132-aeb1-079a15e1272b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


PropertyName Element for
SelectionCondition for EntrySelectedBy
for WideEntry
Article • 09/17/2021

Specifies the .NET property that triggers the condition. When this property is present or
when it evaluates to true , the condition is met, and the definition is used.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionCondition Element
PropertyName Element

XML

C#

The following sections describe attributes, child elements, and the parent element of the
PropertyName  element.

None.

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for WideEntry

Defines the condition that must exist for this
definition to be used.

Specify the .NET property name.

The selection condition must specify at least one property name or a script to evaluate,
but cannot specify both. For more information about how to use selection conditions,
see Defining Conditions for when Data is Displayed.

For more information about other components of a wide view, see Wide View.

Creating a Wide View

Defining Conditions for When Data Is Displayed

ScriptBlock Element for SelectionCondition for EntrySelectedBy for WideEntry

SelectionCondition Element for EntrySelectedBy for WideEntry

Writing a PowerShell Formatting File

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-wideentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-selectioncondition-for-entryselectedby-for-wideentry-format.md&documentVersionIndependentId=f8c9732a-63c4-147d-8fbd-e869daa31c57&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cacbaa0e-81fa-53d1-9eda-ecb4f891aafb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for
SelectionCondition for EntrySelectedBy
for WideControl
Article • 09/17/2021

Specifies the script that triggers the condition. When this script is evaluated to true , the
condition is met, and the wide entry definition is used.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionCondition
ScriptBlock Element

XML

The following sections describe attributes, child elements, and the parent element of the
ScriptBlock  element.

None.

Schema

Syntax

<ScriptBlock>ScriptToEvaluate</ScriptBlock>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for WideEntry

Defines the condition that must exist for this
definition to be used.

Specify the script that is evaluated.

The selection condition must specify at least one script or property name to evaluate,
but cannot specify both. For more information about how to use selection conditions,
see Defining Conditions for when Data is Displayed.

For more information about other components of a wide view, see Wide View.

Creating a Wide View

Defining Conditions for When Data Is Displayed

PropertyName Element for SelectionCondition for EntrySelectedBy for WideEntry

SelectionCondition Element for EntrySelectedBy for WideEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-selectioncondition-for-entryselectedby-for-widecontrol-format.md&documentVersionIndependentId=26d4bf95-ed25-ab52-a189-5eea0523af5f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ae2da408-d9a6-0519-6501-88884ab85477+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
SelectionCondition for EntrySelectedBy
for WideEntry
Article • 09/17/2021

Specifies the set of .NET types that trigger the condition. When any of the types in this
set are present, the condition is met, and the object is displayed by using this definition
of the wide view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionCondition Element
SelectionSetName Element

XML

The following sections describe attributes, child elements, and the parent element of the
SelectionSetName  element.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for WideEntry

Defines the condition that must exist for this
definition to be used.

Specify the name of the selection set.

The selection condition can specify a selection set or .NET type, but cannot specify both.
For more information about how to use selection conditions, see Defining Conditions
for when Data is Displayed.

Selection sets are common groups of .NET objects that can be used by any view that the
formatting file defines. For more information about creating and referencing selection
sets, see Defining Sets of Objects.

For more information about other components of a wide view, see Creating a Wide
View.

Creating a Wide View

Defining Conditions for When Data Is Displayed

Defining Selection Sets

SelectionCondition Element for EntrySelectedBy for WideEntry

TypeName Element for SelectionCondition for EntrySelectedBy for WideEntry

Child Elements

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also



Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-wideentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-selectioncondition-for-entryselectedby-for-wideentry-format.md&documentVersionIndependentId=a73de30c-aabe-6a35-c172-1c579c95e657&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+7f9eaa53-5297-4a02-b0df-596e0e39e4a5+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for
SelectionCondition for EntrySelectedBy
for WideControl
Article • 09/17/2021

Specifies a .NET type that triggers the condition. When this type is present, the
definition is used.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionCondition Element
TypeName Element

XML

The following sections describe attributes, child elements, and the parent element of the
TypeName  element.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



None.

Element Description

SelectionCondition Element for
EntrySelectedBy for WideEntry

Defines the condition that must exist for this
wide entry to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

The selection condition can specify a .NET type or a selection set, but cannot specify
both. For more information about how to use selection conditions, see Defining
Conditions for when Data is Displayed.

For more information about other components of a wide view, see Creating a Wide
View.

Creating a Wide View

Defining Conditions for When Data Is Displayed

SelectionCondition Element for EntrySelectedBy for WideEntry

SelectionSetName Element for SelectionCondition for EntrySelectedBy for WideEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-selectioncondition-for-entryselectedby-for-widecontrol-format.md&documentVersionIndependentId=16a9f458-9bd7-e951-d0b2-c1e69f5debf5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+86f040f4-a23e-263c-5f8f-3ab61922dd0b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


TypeName Element for EntrySelectedBy
for WideEntry
Article • 09/17/2021

Specifies a .NET type for the definition. The definition is used whenever this object is
displayed.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
TypeName Element

XML

The following sections describe the attributes, child elements, and the parent element of
the TypeName  element.

None.

None.

Schema

Syntax

<TypeName>Nameof.NetType</TypeName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
WideEntry

Defines the .NET types that use this wide entry or the condition
that must exist for this entry to be used.

Specify the fully qualified name of the .NET type, such as System.IO.DirectoryInfo .

Each wide entry must specify one or more .NET types, a selection set, or the selection
condition that must exist for the definition to be used.

For more information about other components of a wide view, see Creating a Wide
View.

Creating a Wide View

EntrySelectedBy Element for WideEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-wideentry-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Ftypename-element-for-entryselectedby-for-wideentry-format.md&documentVersionIndependentId=ef0c30db-334c-854d-f171-596bd6572842&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3dcdf5ca-34b7-e8e3-d61a-3dae221c5a92+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


SelectionSetName Element for
EntrySelectedBy for WideControl
Article • 09/17/2021

Specifies a set of .NET objects for the definition. The definition is used whenever one of
these objects is displayed.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
EntrySelectedBy Element
SelectionSetName Element

XML

The following sections describe the attributes, child elements, and the parent element of
the SelectionSetName  element.

None.

None.

Schema

Syntax

<SelectionSetName>NameofSelectionSet</SelectionSetName>

Attributes and Elements

Attributes

Child Elements



Element Description

EntrySelectedBy Element for
WideEntry

Defines the .NET types that use this wide entry or the condition
that must exist for this entry to be used.

Specify the name of the selection set.

Each definition must specify one type name, selection set, or selection condition.

Selection sets are typically used when you want to define a group of objects that are
used in multiple views. For example, you might want to create a table view and a list
view for the same set of objects. For more information about defining selection sets, see
Defining Sets of Objects for a View.

For more information about other components of a wide view, see Creating a Wide
View.

Creating a Wide View

Defining Selection Sets

EntrySelectedBy Element for WideEntry

Writing a PowerShell Formatting File

Parent Elements

ﾉ Expand table

Text Value

Remarks

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fselectionsetname-element-for-entryselectedby-for-widecontrol-format.md&documentVersionIndependentId=375d4c99-7716-1ee0-8522-c5dd34a122a5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ee22756f-7ac2-8e53-a7a5-0dc82c792dcd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


WideItem Element for WideControl
Article • 09/17/2021

Defines the property or script whose value is displayed.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
WideItem Element

XML

The following sections describe the attributes, child elements, and the parent element of
the WideItem  element. The FormatString  element is optional. However, you must specify
a PropertyName  or ScriptBlock  element, but you cannot specify both.

None.

Schema

Syntax

<WideItem>
  <PropertyName>.NetTypeProperty</PropertyName>
  <ScriptBlock>ScriptToExecute</ScriptBlock>
  <FormatString>FormatPattern</FormatString>
</WideItem>

Attributes and Elements

Attributes

Child Elements

ﾉ Expand table



Element Description

FormatString Element for WideItem
for WideControl

Optional element.

Specifies a format pattern that defines how the property or
script value is displayed in the view.

PropertyName Element for
WideItem

Specifies the property of the object whose value is
displayed in the wide view.

ScriptBlock Element for WideItem Specifies the script whose value is displayed in the wide
view.

Element Description

WideEntry Element Provides a definition of the wide view.

For more information about the components of a wide view, see Wide View.

The following example shows a WideEntry  element that defines a single WideItem
element. The WideItem  element defines the property or script whose value is displayed
in the view.

XML

For a complete example of a wide view, see Wide View (Basic).

Parent Elements

ﾉ Expand table

Remarks

Example

<WideEntry>
  <WideItem>
    <PropertyName>ProcessName</PropertyName>
  </WideItem>
</WideEntry>

See Also



FormatString Element for WideItem for WideControl

PropertyName Element for WideItem

ScriptBlock Element for WideItem

WideEntry Element

Writing a PowerShell Formatting File

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fwideitem-element-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fwideitem-element-for-widecontrol-format.md&documentVersionIndependentId=70de0253-4114-6133-9c6a-05d448ad1dd9&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1af28ce7-c2a1-d261-3861-59d31e48b369+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


FormatString Element for WideItem
Article • 01/18/2022

Specifies a format pattern that defines how the property or script value is displayed in
the view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
WideItem Element
FormatString Element

XML

The following sections describe the attributes, child elements, and the parent element of
the FormatString  element.

None.

None.

Schema

Syntax

<FormatString>PropertyPattern</FormatString>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

WideItem Element for
WideControl

Defines the property or script whose value is displayed in a row
of the list view.

Specify the pattern that is used to format the data. For example, you can use this pattern
to format the value of any property that is of type System.TimeSpan: {0:MMM}{0:dd}
{0:HH}:{0:mm}.

Format strings can be used when creating table views, list views, wide views, or custom
views. For more information about formatting a value displayed in a view, see
Formatting Displayed Data.

For more information about using format strings in wide views, see Creating a Wide
View.

The following example shows how to define a formatting string for the value of the
StartTime  property.

XML

Creating a Wide View

WideItem Element for WideControl

Writing a Windows PowerShell Formatting and Types File

ﾉ Expand table

Text Value

Remarks

Example

<WideItem>
  <PropertyName>StartTime</PropertyName>
  <FormatString>{0:MMM} {0:DD} {0:HH}:{0:MM}</FormatString>
</WideItem>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.TimeSpan
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


PropertyName Element for WideItem
for WideControl
Article • 09/17/2021

Specifies the property of the object whose value is displayed in the wide view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
WideItem Element
PropertyName Element

XML

The following sections describe the attributes, child elements, and parent element of the
PropertyName  element.

None.

None.

Syntax

<PropertyName>.NetTypeProperty</PropertyName>

Attributes and Elements

Attributes

Child Elements

Parent Elements

ﾉ Expand table



Element Description

WideItem Element Defines the property or script whose value is displayed in the wide view.

Specify the name of the property whose value is displayed.

For more information about the components of a wide view, see Creating a Wide View.

This example shows a wide view that displays the value of the ProcessName property of
the System.Diagnostics.Process object.

XML

WideItem Element

Creating a Wide View

Writing a PowerShell Formatting File

Text Value

Remarks

Example

View>
  <Name>process</Name>
  <ViewSelectedBy>
    <TypeName>System.Diagnostics.Process</TypeName>
  </ViewSelectedBy>
  <WideControl>
    <WideEntries>
      <WideEntry>
        <WideItem>
          <PropertyName>ProcessName</PropertyName>
        </WideItem>
      </WideEntry>
    </WideEntries>
  </WideControl>
</View>

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process
https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fpropertyname-element-for-wideitem-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fpropertyname-element-for-wideitem-for-widecontrol-format.md&documentVersionIndependentId=b91fede5-e369-f15b-fd10-64fd5f6ad4fa&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e661dcf9-8558-2cf8-cec3-737939086a6e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ScriptBlock Element for WideItem for
WideControl
Article • 09/17/2021

Specifies the script whose value is displayed in the wide view.

Configuration Element
ViewDefinitions Element
View Element
WideControl Element
WideEntries Element
WideEntry Element
WideItem Element
ScriptBlock Element

XML

The following sections describe the attributes, child elements, and parent element of the
ScriptBlock  element.

None.

None.

Schema

Syntax

<ScriptBlock>ScriptToExecute</ScriptBlock>

Attributes and Elements

Attributes

Child Elements

Parent Elements



Element Description

WideItem
Element

Defines the property or script block whose value is displayed in the wide
view.

Specify the script whose value is displayed.

For more information about the components of a wide view, see Creating a Wide View.

This example shows a WideItem  element that defines a script whose value is displayed in
the view.

XML

WideItem Element

Creating a Wide View

Writing a PowerShell Formatting File

ﾉ Expand table

Text Value

Remarks

Example

<WideItem>
  <ScriptBlock>ScriptToExecute</ScriptBlock>
</WideItem>

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/format/writing-a-powershell-formatting-file?view=powershell-7.5
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fformat%2Fscriptblock-element-for-wideitem-for-widecontrol-format%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fformat%2Fscriptblock-element-for-wideitem-for-widecontrol-format.md&documentVersionIndependentId=e8cef75d-6735-690a-7ad5-d2f7e5b81392&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+21b9ba68-d6f3-4d38-9814-c58143342c67+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Writing Help for PowerShell Scripts and
Functions
Article • 07/10/2023

PowerShell scripts and functions should be fully documented whenever they're shared
with others. The Get-Help  cmdlet displays the script and function help topics in the
same format as it displays help for cmdlets, and all the Get-Help  parameters work on
script and function help topics.

PowerShell scripts can include a help topic about the script and help topics about each
functions in the script. Functions that are shared independently of scripts can include
their own help topics.

This document explains the format and correct placement of the help topics, and it
suggests guidelines for the content.

The help topic that describes a script or function can be implemented as a set of
comments within the script or function. When writing comment-based help for a script
and for functions in a script, pay careful attention to the rules for placing the comment-
based help. The placement determines whether the Get-Help  cmdlet associates the help
topic with the script or a function. For more information about writing comment-based
help topics, see about_Comment_Based_Help.

The help topic that describes a script or function can be implemented in an XML file that
uses the command help schema. To associate the script or function with the XML file,
use the .EXTERNALHELP  comment keyword followed by the path and name of the XML
file.

When the .EXTERNALHELP  comment keyword is present, it takes precedence over
comment-based help, even when Get-Help  can't find a help file that matches the value
of the .EXTERNALHELP  keyword.

Types of Script and Function Help

Comment-Based Help

XML-Based Command Help

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help


You can post your help topics on the internet and then direct Get-Help  to open the
topics. For more information about writing comment-based help topics, see Supporting
Online Help.

There is no established method for writing conceptual ("About") topics for scripts and
functions. However, you can post conceptual topics on the internet list the topics and
their URLs in the Related Links section of a command help topic.

If you are writing a very brief help topic with only a few of the available command
help sections, be sure to include clear descriptions of the script or function
parameters. Also include one or two sample commands in the examples section,
even if you decide to omit example descriptions.

In all descriptions, refer to the command as a script or function. This information
helps the user to understand and manage the command.

For example, the following detailed description states that the New-Topic
command is a script. This reminds users that they need to specify the path and full
name when they run it.

"The New-Topic script creates a blank conceptual topic for each topic name in
the input file..."

The following detailed description states that Disable-PSRemoting  is a function.
This information is particularly useful to users when the session includes multiple
commands with the same name, some of which might be hidden by a command
with higher precedence.

The Disable-PSRemoting  function disables all session configurations on the
local computer...

In a script help topic, explain how to use the script as a whole. If you are also
writing help topics for functions in the script, mention the functions in your script
help topic and include references to the function help topics in the Related Links
section of the script help topic. Conversely, when a function is part of a script,
explain in the function help topic the role that the function plays in the script and

Online Help

Content Considerations for Script and Function
Help

https://learn.microsoft.com/en-us/powershell/scripting/developer/module/supporting-online-help?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/module/supporting-online-help?view=powershell-7.5


how it might be used independently. Then list the script help topic in the Related
Links section of the function help topic.

When writing examples for a script help topic, be sure to include the path to the
script file in the example command. This reminds users that they must specify the
path explicitly, even when the script is in the current directory.

In a function help topic, remind users that the function exists only in the current
session and, to use it in other sessions, they need to add it, or add it a PowerShell
profile.

Get-Help  displays the help topic for a script or function only when the script file
and help topic files are saved in the correct locations. Therefore, it's not useful to
include instructions for installing PowerShell, or saving or installing the script or
function in a script or function help topic. Instead, include any installation
instructions in the document that you use to distribute the script or function.

Writing Comment-Based Help Topics

See Also



Writing Comment-Based Help Topics
Article • 07/10/2023

You can write comment-based Help topics for functions and scripts using special Help
comment keywords.

The Get-Help  cmdlet displays comment-based Help in the same format in which it
displays the cmdlet Help topics that are generated from XML files. Users can use all of
the parameters of Get-Help , such as Detailed, Full, Example, and Online, to display
function and script Help.

You can also write XML-based Help topics for scripts and functions and use the Help
comment keywords to redirect users to the XML-based topics or other topics.

Syntax of Comment-Based Help - Describes the syntax of comment-based help.
Comment-Based Help Keywords - Lists the keywords in comment-based help.
Placing Comment-Based Help in Functions - Shows where to place comment-
based help for a function.
Placing Comment-Based Help in Scripts - Shows where to place comment-based
help for a script.

In This Section

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fwriting-comment-based-help-topics%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fwriting-comment-based-help-topics.md&documentVersionIndependentId=67b9cca0-0d73-b5db-d883-c67237baba9e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+62f3a85e-bef6-bc00-a7fa-2e153841e6dd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Syntax of Comment-Based Help
Article • 03/24/2025

This section describes the syntax of comment-based help.

The syntax for comment-based Help is as follows:

-or -

Comment-based Help is written as a series of comments. You can type a comment
symbol ( # ) before each line of comments, or you can use the <#  and #>  symbols to
create a comment block. All the lines within the comment block are interpreted as
comments.

Each section of comment-based Help is defined by a keyword and each keyword is
preceded by a dot ( . ). The keywords can appear in any order. The keyword names
aren't case-sensitive.

A comment block must contain at least one help keyword. Some of the keywords, such
as .EXAMPLE , can appear many times in the same comment block. The Help content for
each keyword begins on the line after the keyword and can span multiple lines.

All the lines in a comment-based Help topic must be contiguous. If a comment-based
Help topic follows a comment that isn't part of the Help topic, there must be at least

Syntax Diagram

# .< help keyword>
# <help content>

<#
.< help keyword>
< help content>
#>

Syntax Description



one blank line between the last non-Help comment line and the beginning of the
comment-based Help.

For example, the following comment-based help topic contains the .DESCRIPTION
keyword and its value, which is a description of a function or script.

PowerShell

<#
    .DESCRIPTION
    The Get-Function function displays the name and syntax of all functions 
in the session.
#>



Comment-Based Help Keywords
Article • 07/10/2023

This topic lists and describes the keywords in comment-based help.

The following are valid comment-based Help keywords. They're listed in the order in
which they typically appear in a Help topic along with their intended use. These
keywords can appear in any order in the comment-based Help, and they're not case-
sensitive.

Note that the .EXTERNALHELP  keyword takes precedence over all other comment-based
help keywords. When .EXTERNALHELP  is present, the Get-Help cmdlet doesn't display
comment-based help, even when it can't find a help file that matches the value of the
keyword.

A brief description of the function or script. This keyword can be used only once in each
topic.

A detailed description of the function or script. This keyword can be used only once in
each topic.

The description of a parameter. You can include a .PARAMETER  keyword for each
parameter in the function or script.

The .PARAMETER  keywords can appear in any order in the comment block, but the order
in which the parameters appear in the param  statement or function declaration
determines the order in which the parameters appear in Help topic. To change the order
of parameters in the Help topic, change the order of the parameters in the param
statement or function declaration.

Keywords in Comment-Based Help

.SYNOPSIS

.DESCRIPTION

.PARAMETER <Parameter-Name>

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help


You can also specify a parameter description by placing a comment in the param
statement immediately before the parameter variable name. If you use both a param
statement comment and a .PARAMETER  keyword, the description associated with the
.PARAMETER  keyword is used, and the param  statement comment is ignored.

A sample command that uses the function or script, optionally followed by sample
output and a description. Repeat this keyword for each example.

The Microsoft .NET Framework types of objects that can be piped to the function or
script. You can also include a description of the input objects.

The .NET Framework type of the objects that the cmdlet returns. You can also include a
description of the returned objects.

Additional information about the function or script.

The name of a related topic. Repeat this keyword for each related topic. This content
appears in the Related Links section of the Help topic.

The .LINK  keyword content can also include a Uniform Resource Identifier (URI) to an
online version of the same Help topic. The online version opens when you use the
Online  parameter of Get-Help . The URI must begin with "http" or "https".

The name of the technology or feature that the function or script uses, or to which it's
related. The Component parameter of Get-Help  uses this value to filter the search
results returned by Get-Help .

.EXAMPLE

.INPUTS

.OUTPUTS

.NOTES

.LINK

.COMPONENT



The name of the user role for the help topic. The Role parameter of Get-Help  uses this
value to filter the search results returned by Get-Help .

The keywords that describe the intended use of the function. The Functionality
parameter of Get-Help  uses this value to filter the search results returned by Get-Help .

Redirects to the Help topic for the specified command. You can redirect users to any
Help topic, including Help topics for a function, script, cmdlet, or provider.

Specifies the Help category of the item in .FORWARDHELPTARGETNAME . Use this keyword to
avoid conflicts when there are commands with the same name.

Valid values are:

Alias
Cmdlet
HelpFile
Function
Provider
General
FAQ
Glossary
ScriptCommand
ExternalScript
Filter
All

Specifies a session that contains the Help topic. Enter a variable that contains a
PSSession. This keyword is used by the Export-PSSession  cmdlet to find the Help topics

.ROLE

.FUNCTIONALITY

.FORWARDHELPTARGETNAME <Command-Name>

.FORWARDHELPCATEGORY <Category>

.REMOTEHELPRUNSPACE <PSSession-variable>



for the exported commands.

Specifies the path and/or name of an XML-based Help file for the script or function.

The .EXTERNALHELP  keyword tells the Get-Help cmdlet to get help for the script or
function in an XML-based file. The .EXTERNALHELP  keyword is required when using an
XML-based help file for a script or function. Without it, Get-Help  will not find a help file
for the function or script.

The .EXTERNALHELP  keyword takes precedence over all other comment-based help
keywords. When .EXTERNALHELP  is present, the Get-Help cmdlet doesn't display
comment-based help, even when it can't find a help file that matches the value of the
keyword.

When the function is exported by a script module, the value of .EXTERNALHELP  should be
a filename without a path. Get-Help  looks for the file in a locale-specific subdirectory of
the module directory. There are no requirements for the filename, but a best practice is
to use the following filename format: <ScriptModule>.psm1-help.xml .

When the function isn't associated with a module, include a path and filename in the
value of the .EXTERNALHELP  keyword. If the specified path to the XML file contains UI-
culture-specific subdirectories, Get-Help  searches the subdirectories recursively for an
XML file with the name of the script or function in accordance with the language
fallback standards established for Windows, just as it does for all XML-based Help
topics.

For more information about the cmdlet Help XML-based Help file format, see Writing
Windows PowerShell Cmdlet Help.

.EXTERNALHELP <XML Help File>

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help


Placing Comment-Based Help in
Functions
Article • 07/10/2023

This topic explains where to place comment-based help for a function so that the Get-
Help  cmdlet associates the comment-based help topic with the correct function.

At the beginning of the function body.

At the end of the function body.

Before the Function  keyword. When the function is in a script or script module,
there can't be more than one blank line between the last line of the comment-
based help and the Function  keyword. Otherwise, Get-Help  associates the help
with the script, not with the function.

The following examples show each of the three placement options for comment-based
help for a function.

The following example shows comment-based at the beginning of a function body.

PowerShell

Where to Place Comment-Based Help for a
Function

Examples of Help Placement in a Function

Help at the Beginning of a Function Body

function MyProcess
{
    <#
       .DESCRIPTION
       The MyProcess function gets the Windows PowerShell process.
    #>

    Get-Process powershell
}



The following example shows comment-based at the end of a function body.

PowerShell

The following examples shows comment-based on the line before the function keyword.

PowerShell

Help at the End of a Function Body

function MyFunction
{
    Get-Process powershell

    <#
       .DESCRIPTION
       The MyProcess function gets the Windows PowerShell process.
    #>
}

Help Before the Function Keyword

<#
    .DESCRIPTION
    The MyProcess function gets the Windows PowerShell process.
#>
function MyFunction { Get-Process powershell}



Placing Comment-Based Help in Scripts
Article • 07/10/2023

This topic explains where to place comment-based help for a script so that the Get-Help
cmdlet associates the comment-based help topic with scripts and not with any functions
that might be in the script.

At the beginning of the script file.

Script Help can be preceded in the script only by comments and blank lines.

At the end of the script file.

If the first item in the script body (after the Help) is a function declaration, there
must be at least two blank lines between the end of the script Help and the
function declaration. Otherwise, the Help is interpreted as being Help for the
function, not Help for the script.

The following examples show each of the placement options for comment-based help
for a script.

The following example shows comment-based at the beginning of a script.

PowerShell

Where to Place Comment-Based Help for a
Script

Examples of Help Placement in a Script

Help at the Beginning of a Script

<#
.DESCRIPTION
This script performs a series of network connection tests.
#>

param [string]$ComputerName
...

Help at the End of a Script



The following example shows comment-based at the end of a script.

PowerShell

...
function Ping { Test-Connection -ComputerName $ComputerName }

<#
.DESCRIPTION
This script performs a series of network connection tests.
#>



Autogenerated Elements of Comment-
Based Help
Article • 03/24/2025

The Get-Help  cmdlet automatically generates several elements of a comment-based
topic. These autogenerated elements make comment-based help look very much like
the help that's generated from XML files.

The Get-Help  cmdlet automatically generates the following elements of a help topic.
You can't edit these elements directly, but you can change the results by changing the
source of the element.

The Name section of a function Help topic is taken from the function name in the
function definition. The Name of a script Help topic is taken from the script filename. To
change the name or its capitalization, change the function definition or the script
filename.

The Syntax section of the Help topic is generated from the parameter list in the param
statement of the function or script. To add detail to the Help topic syntax, such as the
.NET type of a parameter, add the detail to the parameter list. If you don't specify a
parameter type, the Object type is inserted as the default value.

The Parameters section of the Help topic is generated from the parameter list in the
function or script and from the descriptions that you add using the .PARAMETER  keyword
or comments in the parameter list.

Parameters appear in the Parameters section in the same order that they appear in the
parameter list. The spelling and capitalization of parameter names is also taken from the
parameter list; it isn't affected by the parameter name specified by the .PARAMETER
keyword.

Autogenerated Elements

Name

Syntax

Parameter List



The common parameters are added to the syntax and parameter list of the Help topic,
even if they have no effect. For more information about the common parameters, see
about_CommonParameters.

Get-Help  generates the table of parameter attributes that appears when you use the
Full or Parameter parameter of Get-Help . The value of the Required, Position, and
Default value attributes is taken from the function or script syntax.

The Remarks section of the Help topic is automatically generated from the function or
script name. You can't change or affect its content.

Common Parameters

Parameter Attribute Table

Remarks

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters


Examples of Comment-based Help
Article • 03/24/2025

This topic includes examples that demonstrate how to use comment-based help for
scripts and functions.

The following sample function includes comment-based Help.

PowerShell

Example 1: Comment-based Help for a Function

function Add-Extension
{
    param ([string]$Name,[string]$Extension = "txt")
    $Name = $Name + "." + $Extension
    $Name

    <#
        .SYNOPSIS
        Adds a file name extension to a supplied name.

        .DESCRIPTION
        Adds a file name extension to a supplied name.
        Takes any strings for the file name or extension.

        .PARAMETER Name
        Specifies the file name.

        .PARAMETER Extension
        Specifies the extension. "Txt" is the default.

        .INPUTS
        None. You can't pipe objects to Add-Extension.

        .OUTPUTS
        System.String. Add-Extension returns a string with the extension or 
file name.

        .EXAMPLE
        PS> Add-Extension -Name "File"
        File.txt

        .EXAMPLE
        PS> Add-Extension -Name "File" -Extension "doc"
        File.doc

        .EXAMPLE
        PS> Add-Extension "File" "doc"



The following output shows the results of a Get-Help  command that displays the help
for the Add-Extension  function.

PowerShell

Output

        File.doc

        .LINK
        Online version: http://www.fabrikam.com/add-extension.html

        .LINK
        Set-Item
    #>
}

PS> Get-Help Add-Extension -Full

NAME
    Add-Extension

SYNOPSIS
    Adds a file name extension to a supplied name.

SYNTAX
    Add-Extension [[-Name] <String>] [[-Extension] <String>] 
[<CommonParameters>]

DESCRIPTION
    Adds a file name extension to a supplied name. Takes any strings for the 
file name or extension.

PARAMETERS
    -Name
        Specifies the file name.

        Required?                    false
        Position?                    0
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?

    -Extension
        Specifies the extension. "Txt" is the default.

        Required?                    false
        Position?                    1
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?



The following sample function includes comment-based Help.

Notice the blank lines between the closing #>  and the param  statement. In a script that
doesn't have a param  statement, there must be at least two blank lines between the final
comment in the Help topic and the first function declaration. Without these blank lines,
Get-Help  associates the Help topic with the function, instead of the script.

PowerShell

    <CommonParameters>
        This cmdlet supports the common parameters: -Verbose, -Debug,
        -ErrorAction, -ErrorVariable, -WarningAction, -WarningVariable,
        -OutBuffer and -OutVariable. For more information, type
        "Get-Help about_CommonParameters".

INPUTS
    None. You can't pipe objects to Add-Extension.

OUTPUTS
    System.String. Add-Extension returns a string with the extension or file 
name.

    -------------------------- EXAMPLE 1 --------------------------

    PS> Add-Extension -Name "File"
    File.txt

    -------------------------- EXAMPLE 2 --------------------------

    PS> Add-Extension -Name "File" -Extension "doc"
    File.doc

    -------------------------- EXAMPLE 3 --------------------------

    PS> Add-Extension "File" "doc"
    File.doc

RELATED LINKS
    Online version: http://www.fabrikam.com/add-extension.html
    Set-Item

Example 2: Comment-based Help for a Script

<#
  .SYNOPSIS
  Performs monthly data updates.

  .DESCRIPTION
  The Update-Month.ps1 script updates the registry with new data generated



The following command gets the script Help. Because the script isn't in a directory that's
listed in the PATH environment variable, the Get-Help  command that gets the script
Help must specify the script path.

PowerShell

Output

  during the past month and generates a report.

  .PARAMETER InputPath
  Specifies the path to the CSV-based input file.

  .PARAMETER OutputPath
  Specifies the name and path for the CSV-based output file. By default,
  MonthlyUpdates.ps1 generates a name from the date and time it runs, and
  saves the output in the local directory.

  .INPUTS
  None. You can't pipe objects to Update-Month.ps1.

  .OUTPUTS
  None. Update-Month.ps1 doesn't generate any output.

  .EXAMPLE
  PS> .\Update-Month.ps1

  .EXAMPLE
  PS> .\Update-Month.ps1 -InputPath C:\Data\January.csv

  .EXAMPLE
  PS> .\Update-Month.ps1 -InputPath C:\Data\January.csv -OutputPath 
C:\Reports\2009\January.csv
#>

param ([string]$InputPath, [string]$OutputPath)

function Get-Data { }

PS> Get-Help C:\ps-test\update-month.ps1 -Full

NAME
    C:\ps-test\Update-Month.ps1

SYNOPSIS
    Performs monthly data updates.

SYNTAX
    C:\ps-test\Update-Month.ps1 [-InputPath] <String> [[-OutputPath]
    <String>] [<CommonParameters>]



DESCRIPTION
    The Update-Month.ps1 script updates the registry with new data
    generated during the past month and generates a report.

PARAMETERS
    -InputPath
        Specifies the path to the CSV-based input file.

        Required?                    true
        Position?                    0
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?

    -OutputPath
        Specifies the name and path for the CSV-based output file. By
        default, MonthlyUpdates.ps1 generates a name from the date
        and time it runs, and saves the output in the local directory.

        Required?                    false
        Position?                    1
        Default value
        Accept pipeline input?       false
        Accept wildcard characters?

    <CommonParameters>
        This cmdlet supports the common parameters: -Verbose, -Debug,
        -ErrorAction, -ErrorVariable, -WarningAction, -WarningVariable,
        -OutBuffer and -OutVariable. For more information, type,
        "Get-Help about_CommonParameters".

INPUTS
        None. You can't pipe objects to Update-Month.ps1.

OUTPUTS
        None. Update-Month.ps1 doesn't generate any output.

-------------------------- EXAMPLE 1 --------------------------

PS> .\Update-Month.ps1

-------------------------- EXAMPLE 2 --------------------------

PS> .\Update-Month.ps1 -InputPath C:\Data\January.csv

-------------------------- EXAMPLE 3 --------------------------

PS> .\Update-Month.ps1 -InputPath C:\Data\January.csv -OutputPath
C:\Reports\2009\January.csv

RELATED LINKS



This example shows how to insert parameter descriptions in the param  statement of a
function or script. This format is most useful when the parameter descriptions are brief.

PowerShell

The results are the same as the results for Example 1. Get-Help  interprets the parameter
descriptions as though they were accompanied by the .PARAMETER  keyword.

You can write XML-based Help topics for functions and scripts. Although comment-
based Help is easier to implement, XML-based Help is required if you want more precise
control over Help content or if you are translating Help topics into multiple
languages.The following example shows the first few lines of the Update-Month.ps1
script. The script uses the .EXTERNALHELP  keyword to specify the path to an XML-based
Help topic for the script.

PowerShell

Example 3: Parameter Descriptions in a param
Statement

function Add-Extension
{
    param
    (
        [string]
        # Specifies the file name.
        $Name,

        [string]
        # Specifies the file name extension. "Txt" is the default.
        $Extension = "txt"
    )
    $Name = $Name + "." + $Extension
    $Name

    <#
        .SYNOPSIS
        Adds a file name extension to a supplied name.
...
    #>
}

Example 4: Redirecting to an XML File

# .EXTERNALHELP C:\MyScripts\Update-Month-Help.xml



The following example shows the use of the .EXTERNALHELP  keyword in a function.

PowerShell

The following code is an excerpt from the beginning of the built-in help  function in
PowerShell, which displays one screen of Help text at a time. Because the Help topic for
the Get-Help cmdlet describes the Help function, the Help function uses the
.FORWARDHELPTARGETNAME  and .FORWARDHELPCATEGORY  keywords to redirect the user to the
Get-Help cmdlet Help topic.

PowerShell

The following command uses this feature. When a user types a Get-Help  command for
the help  function, Get-Help  displays the Help topic for the Get-Help  cmdlet.

    param ([string]$InputPath, [string]$OutputPath)

    function Get-Data { }

function Add-Extension
{
    param ([string]$Name, [string]$Extension = "txt")
    $Name = $Name + "." + $Extension
    $Name

    # .EXTERNALHELP C:\ps-test\Add-Extension.xml
}

Example 5: Redirecting to a Different Help
Topic

function help
{
    <#
      .FORWARDHELPTARGETNAME Get-Help
      .FORWARDHELPCATEGORY Cmdlet
    #>
    [CmdletBinding(DefaultParameterSetName='AllUsersView')]
    param(
            [Parameter(Position=0, ValueFromPipelineByPropertyName=$true)]
            [System.String]
            ${Name},
    ...
}



PowerShell

Output

PS> Get-Help help

NAME
    Get-Help

SYNOPSIS
    Displays information about Windows PowerShell cmdlets and concepts.
...



Writing Help for PowerShell Cmdlets
Article • 07/10/2023

PowerShell cmdlets can be useful, but unless your Help topics clearly explain what the
cmdlet does and how to use it, the cmdlet may not get used or, even worse, it might
frustrate users. The XML-based cmdlet Help file format enhances consistency, but great
help requires much more.

If you have never written cmdlet Help, review the following guidelines. The XML schema
required to author the cmdlet Help topic is described in the following section. Start with
Creating the Cmdlet Help File. That topic includes a description of the top-level XML
nodes.

Nothing replaces a well-written topic. If you aren't a professional writer, find a writer or
editor to help you. Another alternative is to copy your Help text into Microsoft Word
and use the grammar and spelling checks to improve your work.

Use simple words and phrases. Avoid jargon. Consider that many readers are equipped
only with a foreign-language dictionary and your Help topic.

Help for related cmdlets should be similar (for example, Get-Content  and Set-Content ).
Use the standard descriptions for standard parameters, like Force and InputObject.
(Copy them from Help for the core cmdlets.) Use standard terms. For example, use
"parameter", not "argument", and use "cmdlet" not "command" or "command-let."

The synopsis field informs the user what the cmdlet does, not what it's or how it works.
Verbs create a task-based statement that informs users if this cmdlet meets their
requirements. Use simple verbs like "get", "create", and "change." Avoid "set", which can
be vague and fancy words like "modify".

Writing Guidelines for Cmdlet Help

Write well

Write simply

Write consistently

Start the synopsis with a verb



Most "get" cmdlets display something, but their primary function is to get an object. In
your Help, focus on the object, so that users understand that the default display is one
of many, and that they can use the methods and properties of the object that you
retrieved for them in different ways.

Briefly list everything that the cmdlet can do in the detailed description. If the main
function is to change one property, but the cmdlet can change all properties, list this in
the detailed description.

Use the standard Backus-Naur format which is common for Windows and Unix
command-line Help.

The placeholders for parameter values (in the syntax and parameter descriptions) show
the .NET Framework types of the objects that the parameter will accept. The PowerShell
team developed this convention to help teach users about the .NET Framework.

Parameter descriptions must inform users of two things: what the parameter does (its
effect) and what they must type for the parameter values.

The examples should show how to use all of the parameters, but the most important
thing is to show how to use the cmdlet in real-world tasks. Start with a simple example
and write increasingly complex examples. In the final example, show how to use the
cmdlet in a pipeline.

Use the Notes field to explain concepts that users need to understand the cmdlet. You
can also use notes to help users avoid common errors. Avoid URLs as they change.

Focus on objects

Write detailed descriptions

Use conventional syntax

Use Microsoft .NET types for parameter values

Write complete parameter descriptions

Write practical examples

Use the Notes field



Instead, provide users terms to search for.

Test the Help just like you test your code. Have friends and colleagues read your Help
content and provide feedback. You can also solicit feedback from newsgroups.

How to Create the Cmdlet Help File
How to Add the Cmdlet Name and Synopsis to a Cmdlet Help Topic
How to Add the Detailed Description to a Cmdlet Help Topic
How to Add Syntax to a Cmdlet Help Topic
How to Add Parameters to a Cmdlet Help Topic
How to add Input Types to a Cmdlet Help Topic
How to Add Return Values to a Cmdlet Help Topic
How to Add Notes to a Cmdlet Help Topic
How to Add Examples to a Cmdlet Help Topic
How to Add Related Links to a Cmdlet Help Topic
Windows PowerShell SDK

Test your Help

See Also



How to create the cmdlet help file
Article • 07/10/2023

This section describes how to create a valid XML file that contains content for Windows
PowerShell cmdlet Help topics. This section discusses how to name the Help file, how to
add the appropriate XML headers, and how to add nodes that will contain the different
sections of the cmdlet Help content.

1. Create a text file and save it using UTF8 encoding. The filename must have the
following format so that Windows PowerShell can detect it as a cmdlet Help file.

<PSSnapInAssemblyName>.dll-Help.xml

2. Add the following XML headers to the text file. Be aware that the file will be
validated against the Microsoft Assistance Markup Language (MAML) schema.
Currently, PowerShell doesn't provide any tools to validate the file.

<?xml version="1.0" encoding="utf-8" ?> <helpItems xmlns="http://msh"

schema="maml">

3. Add a Command node to the cmdlet Help file for each cmdlet in the assembly.
Each node within the Command node relates to the different sections of the

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

７ Note

For a complete view of a Help file, open one of the dll-Help.xml  files located in the
Windows PowerShell installation directory. For example, the
Microsoft.PowerShell.Commands.Management.dll-Help.xml  file contains content for
several of the PowerShell cmdlets.

How to create a cmdlet help file

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


cmdlet Help topic.

The following table lists the XML element for each node, followed by a descriptions
of each node.

Node Description

<details> Adds content for the NAME and SYNOPSIS sections of the
cmdlet Help topic. For more information, see How to Add the
Cmdlet Name and Synopsis.

<maml:description> Adds content for the DESCRIPTION section of the cmdlet Help
topic. For more information, see How to Add the Detailed
Description to a Cmdlet Help Topic.

<command:syntax> Adds content for the SYNTAX section of the cmdlet Help topic.
For more information, see How to Add Syntax to a Cmdlet Help
Topic.

<command:parameters> Adds content for the PARAMETERS section of the cmdlet Help
topic. For more information, see How to Add Parameters to a
Cmdlet Help Topic.

<command:inputTypes> Adds content for the INPUTS section of the cmdlet Help topic.
For more information, see How to Add Input Types to a Cmdlet
Help Topic.

<command:returnValues> Adds content for the OUTPUTS section of the cmdlet Help topic.
For more information, see How to Add Return Values to a Cmdlet
Help Topic.

<maml:alertset> Adds content for the NOTES section of the cmdlet Help topic. For
more information, see How to add Notes to a Cmdlet Help Topic.

<command:examples> Adds content for the EXAMPLES section of the cmdlet Help topic.
For more information, see How to Add Examples to a Cmdlet
Help Topic.

<maml:relatedLinks> Adds content for the RELATED LINKS section of the cmdlet Help
topic. For more information, see How to Add Related Links to a
Cmdlet Help Topic.

Here is an example of a Command node that includes the nodes for the various sections
of the cmdlet Help topic.

ﾉ Expand table

Example



XML

How to Add the Cmdlet Name and Synopsis
How to Add the Detailed Description to a Cmdlet Help Topic
How to Add Syntax to a Cmdlet Help Topic
How to Add Parameters to a Cmdlet Help Topic
How to Add Input Types to a Cmdlet Help Topic
How to Add Return Values to a Cmdlet Help Topic
How to add Notes to a Cmdlet Help Topic
How to Add Examples to a Cmdlet Help Topic
How to Add Related Links to a Cmdlet Help Topic
Windows PowerShell SDK

<command:command
  xmlns:maml="http://schemas.microsoft.com/maml/2004/10"
  xmlns:command="http://schemas.microsoft.com/maml/dev/command/2004/10"
  xmlns:dev="http://schemas.microsoft.com/maml/dev/2004/10">
  <command:details>
    <!--Add name and synopsis here-->
  </command:details>
  <maml:description>
    <!--Add detailed description here-->
  </maml:description>
  <command:syntax>
    <!--Add syntax information here-->
  </command:syntax>
  <command:parameters>
    <!--Add parameter information here-->
  </command:parameters>
  <command:inputTypes>
    <!--Add input type information here-->
  </command:inputTypes>
  <command:returnValues>
    <!--Add return value information here-->
  </command:returnValues>
  <maml:alertSet>
    <!--Add Note information here-->
  </maml:alertSet>
  <command:examples>
    <!--Add cmdlet examples here-->
  </command:examples>
  <maml:relatedLinks>
    <!--Add links to related content here-->
  </maml:relatedLinks>
</command:command>

See also



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-create-the-cmdlet-help-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-create-the-cmdlet-help-file.md&documentVersionIndependentId=a199e319-9a89-6423-c5ac-2caf36f5d32b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b87296c9-6c6b-e7ed-c1c9-252158649573+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add the cmdlet name and
synopsis to a cmdlet help topic
Article • 07/10/2023

This section describes how to add content that's displayed in the NAME and SYNOPSIS
sections of the cmdlet help. In the Help file, this content is added to the Command node
for each cmdlet.

The cmdlet Help can display two descriptions for the cmdlet. The first description is
a short description that's referred to as the synopsis. The second description is a
more detailed description that's discussed in Adding the Detailed Description to a
Cmdlet Help Topic. Both these descriptions should be written as a single
paragraph.

In the synopsis don't repeat the cmdlet name. Informing the user that the Get-
Server  cmdlet gets a server is brief, but not informative. Instead, use synonyms
and add details to the description.

Example: "Gets an object that represents a local or remote computer."

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

７ Note

For a complete view of a Help file, open one of the dll-Help.xml  files located in the
PowerShell installation directory. For example, the
Microsoft.PowerShell.Commands.Management.dll-Help.xml  file contains content for
several of the PowerShell cmdlets.

To add the cmdlet name and a synopsis

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


Use simple verbs like "get", "create", and "change" in the synopsis. Avoid using
"set" because it is vague, and fancy words such as "modify."

Example: "Gets information about the Authenticode signature in a file."

Write in active voice. For example, "Use the TimeSpan object..." is much clearer
than "the TimeSpan object can be used to..."

Avoid the verb "display" when describing cmdlets that get objects. Although
Windows PowerShell displays cmdlet data, it's important to introduce users to the
concept that the cmdlet returns .NET Framework objects whose data may not be
displayed. If you emphasize the display, the user might not realize that the cmdlet
may have returned many other useful properties and methods that aren't
displayed.

Windows PowerShell SDK

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-the-cmdlet-name-and-synopsis-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-the-cmdlet-name-and-synopsis-to-a-cmdlet-help-topic.md&documentVersionIndependentId=e79af92c-2ee0-c64a-1aec-160bd0996bad&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bb503cba-0892-58a9-5188-54808b3fd4ab+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Add a Cmdlet Description
Article • 07/10/2023

This section describes how to add content that's displayed in the DESCRIPTION section
of the cmdlet Help. In the Help file, this content is added to the Command node for
each cmdlet.

Begin by explaining the basic features of the cmdlet in more detail. In many cases,
you can explain the terms used in the cmdlet name and illustrate unfamiliar
concepts with an example. For example, if the cmdlet appends data to a file,
explain that it adds data to the end of an existing file.

To find all of the features of the cmdlet, review the parameter list. Describe the
primary function of the cmdlet, and then include other functions and features. For
example, if the main function of the cmdlet is to change one property, but the
cmdlet can change all of the properties, say so in the detailed description. If the
cmdlet parameters let the users solicit information in different ways, explain it.

Include information on ways that users can use the cmdlet, in addition to the
obvious uses. For example, you can use the object that the Get-Host  cmdlet
retrieves to change the color of text in the Windows PowerShell command window.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

７ Note

For a complete view of a Help file, open one of the dll-Help.xml  files located in the
PowerShell installation directory. For example, the
Microsoft.PowerShell.Commands.Management.dll-Help.xml  file contains content for
several of the PowerShell cmdlets.

To Add a Description

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


Example: "The Get-Acl  cmdlet gets objects that represent the security descriptor
of a file or resource. The security descriptor contains the access control lists (ACLs)
of the resource. The ACL specifies the permissions that users and user groups have
to access the resource."

The detailed description should describe the cmdlet, but it shouldn't describe
concepts that the cmdlet uses. Place concept definitions in Additional Notes.

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-a-cmdlet-description%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-a-cmdlet-description.md&documentVersionIndependentId=6a53ba2b-19c2-ed23-16d2-eb77ee056ee2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+afb5473d-704d-70b3-f3c0-4c895eaebc3d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add syntax to a cmdlet help
topic
Article • 07/10/2023

Before you start to code the XML for the syntax diagram in the cmdlet Help file, read
this section to get a clear picture of the kind of data you need to provide, such as the
parameter attributes, and how that data is displayed in the syntax diagram..

Required
If true, the parameter must appear in all commands that use the parameter set.
If false, the parameter is optional in all commands that use the parameter set.

Position
If named, the parameter name is required.
If positional, the parameter name is optional. When it's omitted, the parameter
value must be in the specified position in the command. For example, if the
value is position="1", the parameter value must be the first or only unnamed
parameter value in the command.

Pipeline Input
If true (ByValue), you can pipe input to the parameter. The input is associated
with ("bound to") the parameter even if the property name and the object type
don't match the expected type. The PowerShell parameter binding components
try to convert the input to the correct type and fail the command only when the
type can't be converted. Only one parameter in a parameter set can be
associated by value.
If true (ByPropertyName), you can pipe input to the parameter. However, the
input is associated with the parameter only when the parameter name matches
the name of a property of the input object. For example, if the parameter name

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

Parameter attributes

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


is Path , objects piped to the cmdlet are associated with that parameter only
when the object has a property named path.
If true (ByValue, ByPropertyName), you can pipe input to the parameter either
by property name or by value. Only one parameter in a parameter set can be
associated by value.
If false, you can't pipe input to this parameter.

Globbing
If true, the text that the user types for the parameter value can include wildcard
characters.
If false, the text that the user types for the parameter value can't include
wildcard characters.

Required
If true, the specified value must be used whenever using the parameter in a
command.
If false, the parameter value is optional. Typically, a value is optional only when
it's one of several valid values for a parameter, such as in an enumerated type.

The Required attribute of a parameter value is different from the Required attribute of a
parameter.

The required attribute of a parameter indicates whether the parameter (and its value)
must be included when invoking the cmdlet. In contrast, the required attribute of a
parameter value is used only when the parameter is included in the command. It
indicates whether that particular value must be used with the parameter.

Typically, parameter values that are placeholders are required and parameter values that
are literal aren't required, because they're one of several values that might be used with
the parameter.

1. Start with the cmdlet name.

Parameter value attributes

Gathering syntax information

SYNTAX
    Get-Tech



2. List all the parameters of the cmdlet. Type a hyphen ( - ) before each parameter
name. Separate the parameters into parameter sets (some cmdlets may have only
one parameter set). In this example the Get-Tech cmdlet has two parameter sets.

Start each parameter set with the cmdlet name.

List the default parameter set first. The default parameter is specified by the cmdlet
class.

For each parameter set, list its unique parameter first, unless there are positional
parameters that must appear first. In the previous example, the Name and Id
parameters are unique parameters for the two parameter sets (each parameter set
must have one parameter that's unique to that parameter set). This makes it easier
for users to identify what parameter they need to supply for the parameter set.

List the parameters in the order that they should appear in the command. If the
order doesn't matter, list related parameters together, or list the most frequently
used parameters first.

Be sure to list the WhatIf and Confirm parameters if the cmdlet supports
ShouldProcess.

Don't list the common parameters (such as Verbose, Debug, and ErrorAction) in
your syntax diagram. The Get-Help  cmdlet adds that information for you when it
displays the Help topic.

3. Add the parameter values. In PowerShell, parameter values are represented by
their .NET type. However, the type name can be abbreviated, such as "string" for
System.String.

Abbreviate types as long as their meaning is clear, such as string for System.String
and int for System.Int32.

SYNTAX
    Get-Tech -Name -Type
    Get-Tech -Id -List -Type

SYNTAX
    Get-Tech -Name string -Type Basic Advanced
    Get-Tech -Id int -List -Type Basic Advanced



List all values of enumerations, such as the -Type  parameter in the previous
example, which can be set to basic or advanced.

Switch parameters, such as -List  in the previous example, don't have values.

4. Add angle brackets to parameters values that are placeholder, as compared to
parameter values that are literals.

5. Enclose optional parameters and their vales in square brackets.

6. Enclose optional parameters names (for positional parameters) in square brackets.
The name for parameters that are positional, such as the Name parameter in the
following example, don't have to be included in the command.

7. If a parameter value can contain multiple values, such as a list of names in the
Name parameter, add a pair of square brackets directly following the parameter
value.

8. If the user can choose from parameters or parameter values, such as the Type
parameter, enclose the choices in curly brackets and separate them with the
exclusive OR symbol(;).

SYNTAX
    Get-Tech -Name <string> -Type Basic Advanced
    Get-Tech -Id <int> -List -Type Basic Advanced

SYNTAX
    Get-Tech -Name <string> [-Type Basic Advanced]
    Get-Tech -Id <int> [-List] [-Type Basic Advanced]

SYNTAX
    Get-Tech [-Name] <string> [-Type Basic Advanced]
    Get-Tech -Id <int> [-List] [-Type Basic Advanced]

SYNTAX
    Get-Tech [-Name] <string[]> [-Type Basic Advanced]
    Get-Tech -Id <int[]> [-List] [-Type Basic Advanced]



9. If the parameter value must use specific formatting, such as quotation marks or
parentheses, show the format in the syntax.

The syntax node of the XML begins immediately after the description node, which ends
with the </maml:description>  tag. For information about gathering the data used in the
syntax diagram, see Gathering Syntax Information.

The syntax diagram displayed in the cmdlet Help topic is generated from the data in the
syntax node of the XML. The syntax node is enclosed in a pair of <command:syntax>  tags.
With each parameter set of the cmdlet enclosed in a pair of <command:syntaxitem>  tags.
There is no limit to the number of <command:syntaxitem>  tags that you can add.

The following example shows a syntax node that has syntax item nodes for two
parameter sets.

XML

SYNTAX
    Get-Tech [-Name] <string[]> [-Type {Basic | Advanced}]
    Get-Tech -Id <int[]> [-List] [-Type {Basic | Advanced}]

SYNTAX
    Get-Tech [-Name] <"string[]"> [-Type {Basic | Advanced}]
    Get-Tech -Id <int[]> [-List] [-Type {Basic | Advanced}]

Coding the syntax diagram XML

Adding a syntax node

<command:syntax>
  <command:syntaxItem>
    ...
    <!--Parameter Set 1 (default parameter set) parameters go here-->
    ...
  </command:syntaxItem>
  <command:syntaxItem>
    ...
    <!--Parameter Set 2 parameters go here-->
    ...



Each parameter set of the cmdlet is specified in a syntax item node. Each syntax item
node begins with a pair of <maml:name>  tags that include the name of the cmdlet.

The following example includes a syntax node that has syntax item nodes for two
parameter sets.

XML

Each parameter added to the syntax item node is specified within a pair of
<command:parameter>  tags. You need a pair of <command:parameter>  tags for each
parameter included in the parameter set, with the exception of the common parameters
that are provided by PowerShell.

The attributes of the opening <command:parameter>  tag determine how the parameter
appears in the syntax diagram. For information on parameter attributes, see Parameter
Attributes.

  </command:syntaxItem>
</command:syntax>

Adding the cmdlet name to the parameter set data

<command:syntax>
  <command:syntaxItem>
    <maml:name>Cmdlet-Name</maml:name>
  </command:syntaxItem>
  <command:syntaxItem>
    <maml:name>Cmdlet-Name</maml:name>
  </command:syntaxItem>
</command:syntax>

Adding parameters

７ Note

The <command:parameter>  tag supports a child element <maml:description>  whose
content is never displayed. The parameter descriptions are specified in the
parameter node of the XML. To avoid inconsistencies between the information in
the syntax item bodes and the parameter node, omit the ( <maml:description>  or
leave it empty.



The following example includes a syntax item node for a parameter set with two
parameters.

XML

<command:syntaxItem>
  <maml:name>Cmdlet-Name</maml:name>
  <command:parameter required="true" globbing="true"
    pipelineInput="true (ByValue)" position="1">
    <maml:name>ParameterName1</maml:name>
    <command:parameterValue required="true">
      string[]
    </command:parameterValue>
  </command:parameter>
  <command:parameter required="true" globbing="true"
    pipelineInput="true (ByPropertyName)">
    <maml:name>ParameterName2</maml:name>
    <command:parameterValue required="true">
      int32[]
    </command:parameterValue>
  </command:parameter>
</command:syntaxItem>



How to add parameter information
Article • 07/10/2023

This section describes how to add content that's displayed in the PARAMETERS section
of the cmdlet Help topic. The PARAMETERS section of the Help topic lists each of the
parameters of the cmdlet and provides a detailed description of each parameter.

The content of the PARAMETERS section should be consistent with the content of the
SYNTAX section of the Help topic. It's the responsibility of the Help author to make sure
that both the Syntax and Parameters node contain similar XML elements.

1. Open the cmdlet Help file and locate the Command node for the cmdlet you are
documenting. If you are adding a new cmdlet you will need to create a new
Command node. Your Help file will contain a Command node for each cmdlet that
you are providing Help content for. Here is an example of a blank Command node.

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

７ Note

For a complete view of a Help file, open one of the dll-Help.xml  files located in the
PowerShell installation directory. For example, the
Microsoft.PowerShell.Commands.Management.dll-Help.xml  file contains content for
several of the PowerShell cmdlets.

To add parameters

<command:command>
</command:command>

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


2. Within the Command node, locate the Description node and add a Parameters
node as shown below. Only one Parameters node is allowed, and it should
immediately follow the Syntax node.

XML

3. Within the Parameters node, add a Parameter node for each parameter of the
cmdlet as shown below.

In this example, a Parameter node is added for three parameters.

XML

Because these are the same XML tags that are used in the Syntax node, and
because the parameters specified here must match the parameters specified by the
Syntax node, you can copy the Parameter nodes from the Syntax node and paste
them into the Parameters node. However, be sure to copy only one instance of a
Parameter node, even if the parameter is specified in multiple parameter sets in
the syntax.

4. For each Parameter node, set the attribute values that define the characteristics of
each parameter. These attributes include the following: required, globbing,
pipelineinput, and position.

XML

<command:command>
  <command:details></command:details>
  <maml:description></maml:description>
  <command:syntax></command:syntax>
  <command:parameters>
  </command:parameters>
</command:command>

<command:parameters>
  <command:parameter></command:parameter>
  <command:parameter></command:parameter>
  <command:parameter></command:parameter>
</command:parameters>

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
  </command:parameter>
  <command:parameter required="false" globbing="false"
           pipelineInput="false" position="named">
  </command:parameter>



5. For each Parameter node, add the name of the parameter. Here is an example of
the parameter name added to the Parameter node.

XML

6. For each Parameter node, add the description of the parameter. Here is an
example of the parameter description added to the Parameter node.

XML

7. For each Parameter node, add the .NET type of the parameter. The parameter type
is displayed along with the parameter name.

Here is an example of the parameter .NET type added to the Parameter node.

XML

  <command:parameter required="false" globbing="false"
           pipelineInput="false" position="named" ></command:parameter>
</command:parameters>

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
    <maml:name> Add parameter name...  </maml:name>
  </command:parameter>
</command:parameters>

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
    <maml:name> Add parameter name...  </maml:name>
    <maml:description>
      <maml:para> Add parameter description... </maml:para>
    </maml:description>
  </command:parameter>
</command:parameters>

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
    <maml:name> Add parameter name...  </maml:name>
    <maml:description>
      <maml:para> Add parameter description... </maml:para>
    </maml:description>
    <dev:type> Add .NET Framework type... </dev:type>
  </command:parameter>
</command:parameters>



8. For each Parameter node, add the default value of the parameter. The following
sentence is added to the parameter description when the content is displayed:
DefaultValue is the default.

Here is an example of the parameter default value is added to the Parameter node.

XML

9. For each Parameter that has multiple values, add a possibleValues node.

Here is an example of the of a possibleValues node that defines two possible
values for the parameter

XML

Here are some things to remember when adding parameters.

The attributes of the parameter aren't displayed in all views of the cmdlet Help
topic. However, they're displayed in a table following the parameter description
when the user asks for the Full ( Get-Help <cmdletname> -Full ) or Parameter ( Get-
Help <cmdletname> -Parameter ) view of the topic.

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
    <maml:name> Add parameter name...  </maml:name>
    <maml:description>
      <maml:para> Add parameter description... </maml:para>
    </maml:description>
    <dev:type> Add .NET Framework type... </dev:type>
    <dev:defaultvalue> Add default value...</dev:defaultvalue>
  </command:parameter>
</command:parameters>

<dev:possibleValues>
  <dev:possibleValue>
    <dev:value>Unknown</dev:value>
    <maml:description>
      <maml:para></maml:para>
    </maml:description>
  </dev:possibleValue>
  <dev:possibleValue>
    <dev:value>String</dev:value>
    <maml:description>
      <maml:para></maml:para>
    </maml:description>
  </dev:possibleValue>
</dev:possibleValues>



The parameter description is one of the most important parts of a cmdlet Help
topic. The description should be brief, as well as thorough. Also, remember that if
the parameter description becomes too long, such as when two parameters
interact with each other, you can add more content in the NOTES section of the
cmdlet Help topic.

The parameter description provides two types of information.

What the cmdlet does when the parameter is used.

What a legal value is for the parameter.

Because the parameter values are expressed as .NET objects, users need more
information about these values than they would in a traditional command-line
Help. Tell the user what type of data the parameter is designed to accept, and
include examples.

The default value of the parameter is the value that's used if the parameter isn't
specified on the command line. Note that the default value is optional, and isn't needed
for some parameters, such as required parameters. However, you should specify a
default value for most optional parameters.

The default value helps the user to understand the effect of not using the parameter.
Describe the default value very specifically, such as the "Current directory" or the
"PowerShell installation directory ( $PSHOME )" for an optional path. You can also write a
sentence that describes the default, such as the following sentence used for the
PassThru parameter: "If PassThru isn't specified, the cmdlet doesn't pass objects down
the pipeline." Also, because the value is displayed opposite the field name Default
value, you don't need to include the term "default value" in the entry.

The default value of the parameter isn't displayed in all views of the cmdlet Help topic.
However, it's displayed in a table (along with the parameter attributes) following the
parameter description when the user asks for the Full ( Get-Help <cmdletname> -Full ) or
Parameter ( Get-Help <cmdletname> -Parameter ) view of the topic.

The following XML shows a pair of <dev:defaultValue>  tags added to the
<command:parameter>  node. Notice that the default value follows immediately after the
closing </command:parameterValue>  tag (when the parameter value is specified) or the
closing </maml:description>  tag of the parameter description. name.

XML

<command:parameters>
  <command:parameter required="true" globbing="true"



Add Values for Enumerated Types

If the parameter has multiple values or values of an enumerated type, you can use an
optional <dev:possibleValues>  node. This node allows you to specify a name and
description for multiple values.

Be aware that the descriptions of the enumerated values don't appear in any of the
default Help views displayed by the Get-Help  cmdlet, but other Help viewers may
display this content in their views.

The following XML shows a <dev:possibleValues>  node with two values specified.

XML

           pipelineInput="false" position="named">
    <maml:name> Parameter name </maml:name>
    <maml:description>
      <maml:para> Parameter Description </maml:para>
    </maml:description>
    <command:parameterValue required="true">
      Value
    </command:parameterValue>
    <dev:defaultValue> Default parameter value </dev:defaultValue>
  </command:parameter>
</command:parameters>

<command:parameters>
  <command:parameter required="true" globbing="true"
           pipelineInput="false" position="named">
    <maml:name> Parameter name </maml:name>
    <maml:description>
      <maml:para> Parameter Description </maml:para>
    </maml:description>
    <command:parameterValue required="true">
      Value
    </command:parameterValue>
    <dev:defaultValue> Default parameter value </dev:defaultValue>
    <dev:possibleValues>
      <dev:possibleValue>
        <dev:value> Value 1 </dev:value>
        <maml:description>
          <maml:para> Description 1 </maml:para>
        </maml:description>
      <dev:possibleValue>
      <dev:possibleValue>
        <dev:value> Value 2 </dev:value>
        <maml:description>
          <maml:para> Description 2 </maml:para>
        </maml:description>
      <dev:possibleValue>
    </dev:possibleValues>



  </command:parameter>
</command:parameters>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-parameter-information%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-parameter-information.md&documentVersionIndependentId=a608bb18-8758-e593-0342-c1b5c43b4f6e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c6badac5-9113-8cb9-fe1f-f3ffe3503629+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add input types to a cmdlet help
topic
Article • 07/10/2023

This section describes how to add an INPUTS section to a PowerShell cmdlet Help topic.
The INPUTS section lists the .NET classes of objects that the cmdlet accepts as input
from the pipeline, either by value or by property name.

There is no limit to the number of classes that you can add to an INPUTS section. The
input types are enclosed in a <command:inputTypes>  node, with each class enclosed in a
<command:inputType>  element.

The schema includes two <maml:description>  elements in each <command:inputType>
element. However, the Get-Help  cmdlet displays only the content of the
<command:inputType>/<maml:description>  element.

Beginning in PowerShell 3.0, the Get-Help  cmdlet displays the content of the
<maml:uri>  element. This element lets you direct users to topics that describe the .NET
class.

The following XML shows the <maml:inputTypes>  node.

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

<command:inputTypes>
  <command:inputType>
    <dev:type>
      <maml:name> Class name </maml:name>
      <maml:uri>  URI of a topic that describes the class </maml:uri>
      <maml:description/>
    </dev:type>
    <maml:description>
      <maml:para> Brief description </maml:para>
    </maml:description>

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


The following XML shows an example of using the <maml:inputTypes>  node to
document an input type.

XML

  </command:inputType>
</command:inputTypes>

<command:inputTypes>
  <command:inputType>
    <dev:type>
      <maml:name>System.DateTime</maml:name>
      
<maml:uri>https://learn.microsoft.com/dotnet/api/system.datetime</maml:uri>
      <maml:description/>
    </dev:type>
    <maml:description>
      <maml:para> You can pipe a date to the Set-Date cmdlet. <maml:para>
    <maml:description>
  </command:inputType>
</command:inputTypes>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-input-types-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-input-types-to-a-cmdlet-help-topic.md&documentVersionIndependentId=7bc875f5-3db0-5f44-c76b-1b42a4fa4c39&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+10cd19ad-3d4b-7d79-0b88-73844dfadcfb+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add return values to a cmdlet
help topic
Article • 07/10/2023

This section describes how to add an OUTPUTS section to a PowerShell cmdlet Help
topic. The OUTPUTS section lists the .NET classes of objects that the cmdlet returns or
passes down the pipeline.

There is no limit to the number of classes that you can add to the OUTPUTS section. The
return types of a cmdlet are enclosed in a <command:returnValues>  node, with each class
enclosed in a <command:returnValue>  element.

If a cmdlet doesn't generate any output, use this section to indicate that there is no
output. For example, in place of the class name, write None and provide a brief
explanation. If the cmdlet generates output conditionally, use this node to explain the
conditions and describe the conditional output.

The schema includes two <maml:description>  elements in each <command:returnValue>
element. However, the Get-Help  cmdlet displays only the content of the

<command:returnValue>/<maml:description>  element.

Beginning in PowerShell 3.0, the Get-Help  cmdlet displays the content of the
<maml:uri>  element. This element lets you direct users to topics that describe the .NET
class.

The following XML shows the <maml:returnValues>  node.

XML

<command:returnValues>
  <command:returnValue>
    <dev:type>
      <maml:name> Class Name </maml:name>
      <maml:uri>  URI of a topic that describes the class </maml:uri>
      <maml:description/>
    </dev:type>
    <maml:description>
       <maml:para> Brief description <maml:para>

</maml:description>
  </command: returnValue>
</command: returnValues>



The following XML shows an example of using the <maml:returnValues>  node to
document an output type.

XML

<command:returnValues>
  <command:returnValue>
    <dev:type>
      <maml:name> System.DateTime </maml:name>
      <maml:uri>  https://learn.microsoft.com/dotnet/api/system.datetime 
</maml:uri>
      <maml:description/>
    </dev:type>
    <maml:description>
      <maml:para> Get-Date returns a DateTime object. <maml:para>
    </maml:description>
  </command: returnValue>
</command: returnValues>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-return-values-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-return-values-to-a-cmdlet-help-topic.md&documentVersionIndependentId=47d5c3cc-a81b-d18c-6506-7b76524c11ad&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+35d11911-0457-2a8e-0662-1d8989b4eb60+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add notes to a cmdlet help topic
Article • 07/10/2023

This section describes how to add a NOTES section to a PowerShell cmdlet Help topic.
The NOTES section is used to explain details that don't fit easily into the other
structured sections, such as a more detailed explanation of a parameter. This content
could include comments on how the cmdlet works with a specific provider, some
unique, yet important, uses of the cmdlet, or ways to avoid possible error conditions.

The NOTES section is defined using a single <maml:alertset>  node. There are no limits
to the number of notes that you can add to a Notes section. For each note, add a pair of
<maml:alert>  tags to the <maml:alertset>  node. The content of each note is added
within a set of <maml:para>  tags. Use blank <maml:para>  tags for spacing.

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

<maml:alertSet>
  <maml:title>Optional title for Note</maml:title>
  <maml:alert>
    <maml:para>Note 1</maml:para>
    <maml:para>Note a</maml:para>
  </maml:alert>
  <maml:alert>
    <maml:para>Note 2</maml:para>
  </maml:alert>
</maml:alertSet>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-notes-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-notes-to-a-cmdlet-help-topic.md&documentVersionIndependentId=4375fee9-b612-ad07-7ebc-3329e8c1c63f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d699605f-1f1c-0e8b-49da-57a91cd654de+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add examples to a cmdlet help
topic
Article • 07/10/2023

List all of the parameter names in the command, even when the parameter names
are optional. This helps the user to interpret the command easily.

Avoid aliases and partial parameter names, even though they work in PowerShell.

In the example description, explain the rational for the construction of the
command. Explain why you chose particular parameters and values, and how you
use variables.

If the command uses expressions, explain them in detail.

If the command uses properties and methods of objects, especially properties that
don't appear in the default display, use the example as an opportunity tell the user
about the object.

Examples appear only in the Detailed and Full views of cmdlet Help.

The following XML shows how to add an Examples node that contains a single Example
node. Add additional example nodes for each examples you want to include in the topic.

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

Things to know about examples in cmdlet help

Help Views that Display Examples

Adding an examples node

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


The following XML shows how to add a title for the example. The title is used to set the
example apart from other examples. PowerShell uses a standard header that includes a
sequential example number.

XML

The following XML shows how to add characters, such as the Windows PowerShell
prompt, that are displayed immediately before the example command (without any
intervening spaces). PowerShell uses the Windows PowerShell prompt: C:\PS> .

XML

The following XML shows how to add the actual command of the example. When
adding the command, type the entire name (do not use alias) of cmdlets and
parameters. Also, use lowercase characters whenever possible.

<command:examples>
  <command:example>
  </command:example>
</command:examples>

Adding an example title

<command:examples>
  <command:example>
    <maml:title>----------  EXAMPLE 1  ----------</maml:title>
  </command:example>
</command:examples>

Adding preceding characters

<command:examples>
  <command:example>
    <maml:title>----------  EXAMPLE 1  ----------</maml:title>
    <maml:introduction>
      <maml:para>C:\PS></maml:para>
    </maml:introduction>
</command:example>
</command:examples>

Adding the command



XML

The following XML shows how to add a description for the example. PowerShell uses a
single set of <maml:para>  tags for the description, even though multiple <maml:para>
tags can be used.

XML

The following XML shows how to add the output of the command. The command
results information is optional, but in some cases it's helpful to demonstrate the effect
of using specific parameters. PowerShell uses two sets of blank <maml:para>  tags to
separate the command output from the command.

XML

<command:examples>
  <command:example>
    <maml:title>----------  EXAMPLE 1  ----------</maml:title>
    <maml:introduction>
      <maml:para>C:\PS></maml:para>
    </maml:introduction>
    <dev:code> command </dev:code>
</command:example>
</command:examples>

Adding a Description

<command:examples>
  <command:example>
    <maml:title>----------  EXAMPLE 1  ----------</maml:title>
    <maml:introduction>
      <maml:para>C:\PS></maml:para>
    </maml:introduction>
    <dev:code> command </dev:code>
    <dev:remarks>
      <maml:para> command description </maml:para>
    </dev:remarks>
</command:example>
</command:examples>

Adding example output

<command:examples>
  <command:example>
    <maml:title>----------  EXAMPLE 1  ----------</maml:title>
    <maml:introduction>



      <maml:para>C:\PS></maml:para>
    </maml:introduction>
    <dev:code> command </dev:code>
    <dev:remarks>
      <maml:para> command description </maml:para>
      <maml:para></maml:para>
      <maml:para></maml:para>
      <maml:para> command output </maml:para>
</dev:remarks>
</command:example>
</command:examples>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-examples-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-examples-to-a-cmdlet-help-topic.md&documentVersionIndependentId=45838d12-ba29-9589-5206-65c833f36c64&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a6e59985-b5f7-6302-bce9-42771b0b5a68+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to add related links to a cmdlet
help topic
Article • 07/10/2023

This section describes how to add references to other content that's related to a
PowerShell cmdlet Help topic. Because these references appear in a command window,
they don't link directly to the referenced content.

In the cmdlet Help topics that are included in PowerShell, these links reference other
cmdlets, conceptual content ( about_ ), and other documents and Help files that aren't
related to PowerShell.

The following XML shows how to add a RelatedLinks node that contains two references
to related topics.

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

<maml:relatedLinks>
  <maml:navigationLink>
    <maml:linkText>Topic-name</maml:linkText>
  </maml:navigationLink>
  <maml:navigationLink>
    <maml:linkText>Topic-name</maml:linkText>
  </maml:navigationLink>
</ maml:relatedLinks >

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-related-links-to-a-cmdlet-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-related-links-to-a-cmdlet-help-topic.md&documentVersionIndependentId=ca4d292a-ecf9-f5ac-3b34-f5b88ecd7938&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+22ae6e9f-515d-3e0e-da42-47b19524f779+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Writing Help for PowerShell Modules
Article • 07/10/2023

PowerShell modules can include Help topics about the module and about the module
members, such as cmdlets, providers, functions and scripts. The Get-Help  cmdlet
displays the module Help topics in the same format as it displays Help for other
PowerShell items, and users use standard Get-Help  commands to get the Help topics.

This document explains the format and correct placement of module Help topics, and it
suggests guidelines for module Help content.

A module can include the following types of Help.

Cmdlet Help. The Help topics that describe cmdlets in a module are XML files that
use the command help schema

Provider Help. The Help topics that describe providers in a module are XML files
that use the provider help schema.

Function Help. The Help topics that describe functions in a module can be XML
files that use the command help schema or comment-based Help topics within the
function, or the script or script module

Script Help. The Help topics that describe scripts in a module can be XML files that
use the command help schema or comment-based Help topics in the script or
script module.

Conceptual ("About") Help. You can use a conceptual ("about") Help topic to
describe the module and its members and to explain how the members can be
used together to perform tasks. Conceptual Help topics are text files with Unicode
(UTF-8) encoding. The filename must use the about_<name>.help.txt  format, such
as about_MyModule.help.txt . By default, PowerShell includes over 100 of these
conceptual About Help topics, and they're formatted like the following example.

Output

Types of Module Help

TOPIC
    about_<subject or module name>

SHORT DESCRIPTION
    A short, one-line description of the topic contents.



All the schema files can be found in the $PSHOME\Schemas\PSMaml  folder.

The Get-Help  cmdlet looks for module Help topic files in language-specific
subdirectories of the module directory.

For example, the following directory structure diagram shows the location of the Help
topics for the SampleModule module.

LONG DESCRIPTION
    A detailed, full description of the subject or purpose of the 
module.

EXAMPLES
    Examples of how to use the module or how the subject feature works 
in practice.

KEYWORDS
    Terms or titles on which you might expect your users to search for 
the information in this topic.

SEE ALSO
    Text-only references for further reading. Hyperlinks can't work in 
the PowerShell console.

Placement of Module Help

<ModulePath>
    \SampleModule
        \<en-US>
            \about_SampleModule.help.txt
            \SampleModule.dll-help.xml
            \SampleNestedModule.dll-help.xml
        \<fr-FR>
            \about_SampleModule.help.txt
            \SampleModule.dll-help.xml
            \SampleNestedModule.dll-help.xml

７ Note

In the example, the <ModulePath>  placeholder represents one of the paths in the
PSModulePath  environment variable, such as $HOME\Documents\Modules ,
$PSHOME\Modules , or a custom path that the user specifies.



When a user imports a module into a session, the Help topics for that module are
imported into the session along with the module. You can list the Help topic files in the
value of the FileList key in the module manifest, but Help topics aren't affected by the
Export-ModuleMember  cmdlet.

You can provide module Help topics in different languages. The Get-Help  cmdlet
automatically displays module Help topics in the language that's specified for the
current user in the Regional and Language Options item in Control Panel. In Windows
Vista and later versions of Windows, Get-Help  searches for the Help topics in language-
specific subdirectories of the module directory in accordance with the language fallback
standards established for Windows.

Beginning in PowerShell 3.0, running a Get-Help  command for a cmdlet or function
triggers automatic importing of the module. The Get-Help  cmdlet immediately displays
the contents of the help topics in the module.

If the module doesn't contain help topics and there are no help topics for the
commands in the module on the user's computer, Get-Help  displays auto-generated
help. The auto-generated help includes the command syntax, parameters, and input and
output types, but doesn't include any descriptions. The auto-generated help includes
text that directs the user to try to use the Update-Help  cmdlet to download help for the
command from the internet or a file share. It also recommends using the Online
parameter of the Get-Help  cmdlet to get the online version of the help topic.

Users of PowerShell 3.0 and later versions of PowerShell can download and install
updated help files for a module from the internet or from a local file share. The Update-
Help  and Save-Help  cmdlets hide the management details from the user. Users run the
Update-Help  cmdlet and then use the Get-Help  cmdlet to read the newest help files for
the module at the PowerShell command prompt. Users don't need to restart Windows
or PowerShell.

Users behind firewalls and those without internet access can use Updatable Help, as
well. Administrators with internet access use the Save-Help  cmdlet to download and
install the newest help files to a file share. Then, users use the Path parameter of the
Update-Help  cmdlet to get the newest help files from the file share.

Getting Module Help

Supporting Updatable Help



Module authors can include help files in the module and use Updatable Help to update
the help files, or omit help files from the module and use Updatable Help both to install
and to update them.

For more information about Updatable Help, see Supporting Updatable Help.

Users who can't or don't install updated help files on their computers often rely on the
online version of module help topics. The Online parameter of the Get-Help  cmdlet
opens the online version of a cmdlet or advanced function help topic for the user in
their default internet browser.

The Get-Help  cmdlet uses the value of the HelpUri property of the cmdlet or function to
find the online version of the help topic.

Beginning in PowerShell 3.0, you can help users find the online version of cmdlet and
function help topics by defining the HelpUri attribute on the cmdlet class or the HelpUri
property of the CmdletBinding attribute. The value of the attribute is the value of the
HelpUri property of the cmdlet or function.

For more information, see Supporting Online Help.

Writing a PowerShell Module
Supporting Updatable Help
Supporting Online Help

Supporting Online Help

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fwriting-help-for-windows-powershell-modules%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fwriting-help-for-windows-powershell-modules.md&documentVersionIndependentId=c84b5c58-e605-6056-c779-01ee1bf0510b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3f3a4141-3fb8-8df7-82e9-51df8f1e5840+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Naming Help files
Article • 03/24/2025

This topic explains how to name an XML-based help file so that the Get-Help cmdlet can
find it. The name requirements differ for each command type.

The help file for a C# cmdlet must be named for the assembly in which the cmdlet is
defined. Use the following filename format:

The assembly name format is required even when the assembly is a nested module.

For example, the Get-WinEvent cmdlet is defined in the
Microsoft.PowerShell.Diagnostics.dll assembly. The Get-Help  cmdlet looks for a help
topic for the Get-WinEvent  cmdlet only in the Microsoft.PowerShell.Diagnostics.dll-
help.xml  file in the module directory.

The help file for a PowerShell provider must be named for the assembly in which the
provider is defined. Use the following filename format:

<AssemblyName>.dll-help.xml

The assembly name format is required even when the assembly is a nested module.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

Cmdlet Help files

<AssemblyName>.dll-help.xml

Provider Help files

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Diagnostics/Get-WinEvent
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


For example, the Certificate provider is defined in the
Microsoft.PowerShell.Security.dll  assembly. The Get-Help  cmdlet looks for a help
topic for the Certificate provider only in the Microsoft.PowerShell.Security.dll-
help.xml  file in the module directory.

Functions can be documented using comment-based help or documented in an XML
help file. When the function is documented in an XML file, the function must have an
.EXTERNALHELP  comment keyword that associates the function with the XML file.
Otherwise, the Get-Help  cmdlet can't find the help file.

There are no technical requirements for the name of a function help file. However, a
best practice is to name the help file for the script module in which the function is
defined. For example, the following function is defined in the MyModule.psm1  file.

C#

The help file for a CIM command must be named for the CDXML file in which the CIM
command is defined. Use the following filename format:

<FileName>.cdxml-help.xml

CIM commands are defined in CDXML files that can be included in modules as nested
modules. When the CIM command is imported into the session as a function, PowerShell
adds an .EXTERNALHELP  comment keyword to the function definition that associates the
function with an XML help file that is named for the CDXML file in which the CIM
command is defined.

Script workflows that are included in modules can be documented in XML-based help
files. There are no technical requirements for the name of the help file. However, a best
practice is to name the help file for the script module in which the script workflow is
defined. For example:

Function Help files

#.EXTERNALHELP MyModule.psm1-help.xml
function Test-Function { ... }

CIM Command Help files

Script Workflow Help files

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_comment_based_help


<ScriptModule>.psm1-help.xml

Unlike other scripted commands, script workflows don't require an .EXTERNALHELP
comment keyword to associate them with a help file. Instead, PowerShell searches the
UI-Culture-specific subdirectories of the module directory for XML-based help files and
looks for help for the script workflow in all the files. .EXTERNALHELP  comment keyword
are ignored.

Because the .EXTERNALHELP  comment keyword is ignored, the Get-Help  cmdlet can find
help for script workflows only when they're included in modules.



Supporting Updatable Help
Article • 07/10/2023

The Windows PowerShell Updatable Help System, introduced in Windows PowerShell 3.0,
is designed to ensure that users always have the newest help topics at the command
prompt on their local computer. Along with Windows PowerShell online help, Updatable
Help provides a complete help solution for users. This section describes the Updatable
Help System and explains how module authors can support Updatable Help for their
modules.

This section includes the following topics.

Updatable Help Overview
Updatable Help Authoring: Step-by-Step
How Updatable Help Works
How to Create a HelpInfo XML File
How to Prepare Updatable Help CAB Files
How to Update Help Files
How to Test Updatable Help

Supporting Online Help
Updatable Help Status Table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/windows/deployment/deploy-whats-new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fsupporting-updatable-help%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fsupporting-updatable-help.md&documentVersionIndependentId=caa713d6-dcf5-7c46-2be4-a6a9ebb65337&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+eeda4a18-f067-95c4-c664-edd250865e0d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Updatable Help Overview
Article • 07/10/2023

This document provides a basic introduction to the design and operation of the
PowerShell Updatable Help feature. It's designed for module authors and others who
deliver Windows PowerShell help topics to users.

PowerShell help topics are an integral part of the PowerShell experience. Like PowerShell
modules, help topics are continually updated and improved by the authors and by the
contributions of the community of PowerShell users.

The Updatable Help feature, introduced in Windows PowerShell 3.0, ensures that users
have the newest versions of help topics at the command prompt, even for built-in
PowerShell commands, without downloading new modules or running Windows Update.
Updatable Help makes updating simple by providing cmdlets that download the newest
versions of help topics from the internet and install them in the correct subdirectories
on the user's local computer. Even users who are behind firewalls can use the new
cmdlets to get updated help from an internal file share.

Updatable Help is fully supported by all Windows PowerShell modules in Windows 8
and Windows Server 2012, and its features are available to all Windows PowerShell
module authors. Updatable Help supports only XML-based help files. It doesn't support
comment-based help.

Updatable Help includes the following features.

The Update-Help cmdlet, which determines whether users have the newest help
files for a module and, if not, downloads the newest help files from the internet,
unpacks them, and installs them in the correct module subdirectories on the user's
computer. Users can use the Get-Help cmdlet to view the newly-installed help
topics immediately. They don't need to restart PowerShell.

The Save-Help cmdlet, which downloads the newest help files from the internet
and saves them in a file system directory. Users can use the Update-Help  cmdlet to
get help files from the file system directory, and unpack and install them in the
module subdirectories on the user's computer. The Save-Help  cmdlet is designed
for users who have limited or no internet access and for enterprises who prefer to
limit internet access.

Introduction

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Save-Help


Help for a Module. Help files for a module are managed and delivered as a unit, so
users can get all of the help files for the modules they use. Updatable help is
supported only for modules, not for Windows PowerShell snap-ins.

Version support. Updatable Help uses standard four-position (N1.N2.N3.N4)
version numbers. Updatable Help downloads help files when the version number
of the help files on the user's computer (or in the Save-Help  directory) is lower
than the version number of the help files at the internet location.

Multi-language support. Updatable Help supports module help files in multiple UI
cultures. Updatable Help filenames include standard language codes, such as "en-
US" and "ja-JP", and the Update-Help  and Save-Help  cmdlets place the help files
into language-specific subdirectories of the module directory.

Auto-generated help. The Get-Help cmdlet displays basic help for commands that
don't have help files. The auto-generated help includes the command syntax and
aliases, and instructions for using online help and Updatable Help.

Enhanced Online help. Easy access to online help no longer requires help files. The
Online parameter of the Get-Help  cmdlet now gets the URL of an online help topic
from the value of the HelpUri property of any command, if it can't find the online
help URL in a help file. You can populate the HelpUri property by adding a HelpUri
attribute to the code of cmdlets, functions, and CIM commands, or using the
.LINK  comment-based help keyword in workflows and scripts.

To make our help files updatable, the Windows PowerShell modules in Windows
don't come with help files. Users can use Updatable Help to install help files and
update them. Authors of other modules can include help files in modules or omit
them. Support for Updatable Help is optional, but recommended.

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Help


Updatable Help Authoring: Step-by-
Step
Article • 07/10/2023

This article documents the steps required to publish Updatable Help.

Updatable Help is designed for end-users, but it also provides significant benefits to
module authors and help writers, including the ability to add content, fix errors, deliver
in multiple UI cultures, and respond to user comments and requests, long after the
module has shipped. This topic explains how you package and upload help files so that
users can download and install them using the Update-Help and Save-Help cmdlets.

The following steps provide an overview of the process of supporting Updatable Help.

The first step in creating updatable help is to find an internet location for your module's
help files. Actually, you can use two different locations. You can keep your module's help
information file (HelpInfo XML - described below) at one internet location and the help
content files (CAB and ZIP) at another internet location. All help content files for a
module must be in the same location. You can place help content files for different
modules in the same location.

Add a HelpInfoURI key to your module manifest. The value of the key is the Uniform
Resource Identifier (URI) of the location of the HelpInfo XML information file for your
module. For security, the address must begin with http:  or https: . The URI should
specify an internet location for the HelpInfo XML file. Don't include the HelpInfo XML
filename.

For example:

PowerShell

Authoring Updatable Help: Step-by-Step

Step 1: Find an internet site for your help files

Step 2: Add a HelpInfoURI key to your module manifest

@{
    RootModule = TestModule.psm1
    ModuleVersion = '2.0'

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/update-help?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/save-help?view=powershell-7.5


The HelpInfo XML information file contains the URI of the internet location of your help
files and the version numbers of the newest help files for your module in each
supported UI culture. Every PowerShell module has one HelpInfo XML file. When you
update your help files, you must update the HelpInfo XML file. For more information,
see How to Create a HelpInfo XML File.

PowerShell on Windows expects the help content files a module to be stored in a CAB
file. PowerShell on Linux or macOS expects the help content files a module to be stored
in a ZIP file. If your module runs across multiple platforms you must create both formats.

Use a tool, such as MakeCab.exe , to create a CAB file that contains the help files for your
module. Create a separate CAB file for the help files in each supported UI culture. For
more information, see How to Prepare Updatable Help CAB Files.

You can use the Compress-Archive cmdlet to create a ZIP file.

To publish new or updated help files, upload the help content files to the internet
location specified by the HelpContentUri element in the HelpInfo XML file. Then, upload
the HelpInfo XML file to the internet location specified by the value of the HelpInfoUri
key in the module manifest.

PlatyPS is a PowerShell module designed to help you create Help content for your
modules. You author the help content in Markdown files. PlatyPS can create Markdown

    HelpInfoURI = 'https://go.microsoft.com/fwlink/?LinkID=0123'
}

７ Note

The HelpInfoURI must end with a forward slash ( / ) character or redirect to a
location that ends with a forward slash ( / ).

Step 3: Create a HelpInfo XML file

Step 4: Create CAB and ZIP files

Step 5: Upload your files

Using PlatyPS to create help content

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.archive/compress-archive?view=powershell-7.5


templates for your cmdlet, convert the Markdown files to the XML help format (MAML),
create HelpInfo XML files, and package the MAML help content into CAB and ZIP files.

For more information, see Create XML-based help using PlatyPS.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fupdatable-help-authoring-step-by-step%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fupdatable-help-authoring-step-by-step.md&documentVersionIndependentId=acae405f-63a5-d88c-c135-3738ddac059f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4a3f9f64-7d70-b6b0-5fba-dc2bdf71c623+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How Updatable Help Works
Article • 07/10/2023

This topic explains how Updatable Help processes the HelpInfo XML file and CAB files
for each module, and installs updated help for users.

The following list describes the actions of the Update-Help cmdlet when a user runs a
command to update the help files for a module in a particular UI culture.

1. Update-Help  gets the remote HelpInfo XML file from the location specified by the
value of the HelpInfoURI key in the module manifest and validates the file against
the schema. (To view the schema, see HelpInfo XML Schema.) Then Update-Help
looks for a local HelpInfo XML file for the module in the module directory on the
user's computer.

2. Update-Help  compares the version number of the help files for the specified UI
culture in the remote and local HelpInfo XML files for the module. If the version
number on the remote file is greater than version number on the local file, or if the
there is no local HelpInfo XML file for the module, Update-Help  prepares to
download new help files.

3. Update-Help  selects the CAB file for the module from the location specified by the
HelpContentUri element in the remote HelpInfo XML file. It uses the module
name, module GUID, and UI culture to identify the CAB file.

4. Update-Help  downloads the CAB file, unpacks it, validates the help content files,
and saves the help content files in the language-specific subdirectory of the
module directory on the user's computer.

5. Update-Help  creates a local HelpInfo XML file by copying the remote HelpInfo XML
file. It edits the local HelpInfo XML file so that it includes elements only for the CAB
file that it installed. Then it saves the local HelpInfo XML file in the module
directory and concludes the update.

The following list describes the actions of the Save-Help and Update-Help cmdlets when
a user runs commands to update the help files in a file share, and then use those files to

The Update-Help Process

The Save-Help Process

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Save-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help


update the help files on the user's computer.

The Save-Help  cmdlet performs the following actions in response to a command to save
the help files for a module in a file share that's specified by the DestinationPath
parameter.

1. Save-Help  gets the remote HelpInfo XML file from the location specified by the
value of the HelpInfoURI key in the module manifest and validates the file against
the schema. (To view the schema, see HelpInfo XML Schema.) Then Save-Help
looks for a local HelpInfo XML file in the directory that's specified by the
DestinationPath parameter in the Save-Help  command.

2. Save-Help  compares the version number of the help files for the specified UI
culture in the remote and local HelpInfo XML files for the module. If the version
number on the remote file is greater than version number on the local file, or if the
there is no local HelpInfo XML file for the module in the DestinationPath directory,
Save-Help  prepares to download new help files.

3. Save-Help  selects the CAB file for the module from the location specified by the
HelpContentUri element in the remote HelpInfo XML file. It uses the module
name, module GUID, and UI culture to identify the CAB file.

4. Save-Help  downloads the CAB file and saves it in the DestinationPath directory. (It
does not create any language-specific subdirectories.)

5. Save-Help  creates a local HelpInfo XML file by copying the remote HelpInfo XML
file. It edits the local HelpInfo XML file so that it includes elements only for the CAB
file that it saved. Then it saves the local HelpInfo XML file in the DestinationPath
directory and concludes the update.

The Update-Help  cmdlet performs the following actions in response to a command
to update the help files on a user's computer from the files in a file share that's
specified by the SourcePath parameter.

6. Update-Help  gets the remote HelpInfo XML file from the SourcePath directory.
Then it looks for a local HelpInfo XML file in the module directory on the user's
computer.

7. Update-Help  compares the version number of the help files for the specified UI
culture in the remote and local HelpInfo XML files for the module. If the version
number on the remote file is greater than version number on the local file, or if the
there is no local HelpInfo XML file, Update-Help  prepares to install new help files.



8. Update-Help  selects the CAB file for the module from SourcePath directory. It uses
the module name, module GUID, and UI culture to identify the CAB file.

9. Update-Help  unpacks the CAB file, validates the help content files, and saves the
help content files in the language-specific subdirectory of the module directory on
the user's computer.

10. Update-Help  creates a local HelpInfo XML file by copying the remote HelpInfo XML
file. It edits the local HelpInfo XML file so that it includes elements only for the CAB
file that it installed. Then it saves the local HelpInfo XML file in the module
directory and concludes the update.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-updatable-help-works%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-updatable-help-works.md&documentVersionIndependentId=f5e238ef-3017-c52b-17be-bf2d4f49c06e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+4ff4b707-aca2-c772-dbe9-05854c47b81b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to create a HelpInfo XML file
Article • 07/10/2023

This topics in this section explains how to create and populate a help information file,
commonly known as a "HelpInfo XML file," for the PowerShell Updatable Help feature.

The HelpInfo XML file is the primary source of information about Updatable Help for the
module. It includes the location of the help files for the modules, the supported UI
cultures, and the version numbers that Updatable Help uses to determine whether the
user has the newest help files.

Each module has just one HelpInfo XML file, even if the module includes multiple help
files for multiple UI cultures. The module author creates the HelpInfo XML file and
places it in the internet location that's specified by the HelpInfoUri key in the module
manifest. When the module help files are updated and uploaded, the module author
updates the HelpInfo XML file and replaces the original HelpInfo XML file with the new
version.

It's critical that the HelpInfo XML file is carefully maintained. If you upload new files, but
forget to increment the version numbers, Updatable Help will not download the new
files to users' computers. if you add help files for a new UI culture, but don't update the
HelpInfo XML file or place it in the correct location, Updatable Help will not download
the new files.

This section includes the following topics.

HelpInfo XML Schema

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

HelpInfo XML file overview

In this section

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


HelpInfo XML Sample File
How to Name a HelpInfo XML File
How to Set HelpInfo XML Version Numbers

Supporting Updatable Help

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-create-a-helpinfo-xml-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-create-a-helpinfo-xml-file.md&documentVersionIndependentId=6b93042d-224e-7fe5-ecfa-c51fbec4e484&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5506415b-3992-6a4b-c76c-45c83db55015+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


HelpInfo XML Schema
Article • 07/10/2023

This topic contains the XML schema for Updatable Help Information files, commonly
known as "HelpInfo XML files."

HelpInfo XML files are based on the following XML schema.

XML

The HelpInfo XML file includes the following elements.

HelpInfo XML Schema

<?xml version="1.0" encoding="utf-8"?>
<schema elementFormDefault="qualified" 
targetNamespace="http://schemas.microsoft.com/powershell/help/2010/05" 
xmlns="http://www.w3.org/2001/XMLSchema">
  <element name="HelpInfo">
    <complexType>
      <sequence>
        <element name="HelpContentURI" type="anyURI" minOccurs="1" 
maxOccurs="1" />
        <element name="SupportedUICultures" minOccurs="1" maxOccurs="1">
          <complexType>
            <sequence>
              <element name="UICulture" minOccurs="1" maxOccurs="unbounded">
                <complexType>
                  <sequence>
                    <element name="UICultureName" type="language" 
minOccurs="1" maxOccurs="1" />
                    <element name="UICultureVersion" type="string" 
minOccurs="1" maxOccurs="1" />
                  </sequence>
                </complexType>
              </element>
            </sequence>
          </complexType>
        </element>
      </sequence>
    </complexType>
  </element>
</schema>

HelpInfo XML Elements



HelpContentURI - Contains the URI of the location of the help CAB files for the
module. The URI must begin with "http" or "https". The URI should specify an
internet location, but must not include the CAB filename. The HelpContentURI
value can be the same or different from the HelpInfoURI value.

SupportedUICultures - Represents the module help files in all UI cultures. Contains
UICulture elements, each of which represents a set of help files for the module in a
specified UI culture.

UICulture - Represents a set of help files for the module in a specified UI culture.
Add a UICulture element for each UI culture in which the help files are written.

UICultureName - Contains the language code for the UI culture in which the help
files are written.

UICultureVersion - Contains a 4-part version number in "N1.N2.N3.N4" format that
represents the version of the help CAB file in the UI culture. Increment this version
number whenever you upload new help CAB files in the UI culture that's specified
by UICultureName. For more information about this value, see Version Class.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.version
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhelpinfo-xml-schema%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhelpinfo-xml-schema.md&documentVersionIndependentId=8e6d75fc-4205-a960-dbb8-971d1eaa5dcc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+e0a63dd1-af7d-bd8b-dc5e-4f652445e98f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


HelpInfo XML Sample File
Article • 07/10/2023

This topic displays a sample of a well-formed Updatable Help Information file,
commonly known as "HelpInfo XML file." In this sample file, the UI culture elements are
arranged in alphabetical order by UI culture name. Alphabetical ordering is a best
practice, but it's not required.

XML

HelpInfo XML Sample File

<?xml version="1.0" encoding="utf-8"?>
<HelpInfo xmlns="http://schemas.microsoft.com/powershell/help/2010/05">
   <HelpContentURI>https://go.microsoft.com/fwlink/?
LinkID=141553</HelpContentURI>
   <SupportedUICultures>
    <UICulture>
      <UICultureName>de-DE</UICultureName>
      <UICultureVersion>2.15.0.10</UICultureVersion>
    </UICulture>
    <UICulture>
      <UICultureName>en-US</UICultureName>
      <UICultureVersion>3.2.0.7</UICultureVersion>
    </UICulture>
    <UICulture>
      <UICultureName>it-IT</UICultureName>
      <UICultureVersion>1.1.0.5</UICultureVersion>
    </UICulture>
    <UICulture>
      <UICultureName>ja-JP</UICultureName>
      <UICultureVersion>3.2.0.4</UICultureVersion>
    </UICulture>
   </SupportedUICultures>
</HelpInfo>

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhelpinfo-xml-sample-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhelpinfo-xml-sample-file.md&documentVersionIndependentId=90b6118c-0703-4e10-5caf-0f1d99c90312&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+923150fe-29f3-28c7-067e-0f96181a7466+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to name a HelpInfo XML file
Article • 07/10/2023

This topic explains the required name format for the Updatable Help Information files,
commonly known as HelpInfo XML files. A HelpInfo XML file must have a name with the
following format.

<ModuleName>_<ModuleGUID>_HelpInfo.xml

The elements of the name are as follows.

<ModuleName>  - The value of the Name property of the ModuleInfo object that the
Get-Module cmdlet returns.

<ModuleGUID>  - The value of the GUID key in the module manifest.

For example, if the module name is "TestModule" and the module GUID is 9cabb9ad-
f2ac-4914-a46b-bfc1bebf07f9, the name of the HelpInfo XML file for the module would
be:

TestModule_9cabb9ad-f2ac-4914-a46b-bfc1bebf07f9_HelpInfo.xml

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Module
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-name-a-helpinfo-xml-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-name-a-helpinfo-xml-file.md&documentVersionIndependentId=feed0d82-fcba-dee9-84cb-55e830a86a1d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+728f6007-1a29-bc15-13bb-e390f299ee73+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to set HelpInfo XML version
numbers
Article • 07/10/2023

The version numbers in a HelpInfo XML file are critical to the operation of Updatable
Help. The Update-Help and Save-Help cmdlets download new help files only when the
version number for a UI culture in the remote HelpInfo XML file is greater than the
version number for that UI culture in the local HelpInfo XML, or there is no local
HelpInfo XML file.

The HelpInfo XML file uses the 4-part version number that's defined in the
System.Version class of the Microsoft .NET Framework. The format is N1.N2.N3.N4 .
Module authors can use any version numbering scheme that's permitted by the
System.Version class. Updatable Help requires only that the version number for a UI
culture increase when a new version of the CAB file for that UI culture is uploaded to the
location that's specified by the HelpContentURI element in the HelpInfo XML file.

The following example shows the elements of the HelpInfo XML file for the German (de-
DE) UI culture when the version is 2.15.0.10.

XML

The version number for a UI culture reflects the version of the CAB file for that UI
culture. The version number applies to the entire CAB file. You can't set different version
numbers for different files in the CAB file. The version number for each UI culture is
evaluated independently and need not be related to the version numbers for other UI
cultures that the module supports.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

<UICulture>
  <UICultureName>de-DE</UICultureName>
  <UICultureVersion>2.15.0.10</UICultureVersion>
</UICulture>

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Save-Help
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-set-helpinfo-xml-version-numbers%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-set-helpinfo-xml-version-numbers.md&documentVersionIndependentId=e5f7c97e-9eac-87a9-c51c-1920e7e426ec&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+75b4d370-d714-4445-b735-502d6a73094c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to prepare Updatable Help CAB
files
Article • 07/10/2023

This topic explains the contents and use of cabinet files in Windows PowerShell
Updatable Help.

This section includes the following topics.

How to Create and Upload CAB Files
How to Name an Updatable Help CAB File
File Types Permitted in an Updatable Help CAB File

Supporting Updatable Help

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-prepare-updatable-help-cab-files%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-prepare-updatable-help-cab-files.md&documentVersionIndependentId=fe2cec12-20f0-fc89-2d87-a77718f727d6&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+c7f5872a-ed73-019c-2c4d-ee8b7346558a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to create and upload CAB files
Article • 07/10/2023

This topic explains how to create Updatable Help CAB files and upload them to the
location where the Updatable Help cmdlets can find them.

You can use the Updatable Help feature to deliver new or updated help files for a
module in multiple languages and cultures. An Updatable Help package for a module
consists of one HelpInfo XML file and one or more cabinet ( .CAB ) files. Each CAB file
contains help files for the module in one UI culture. Use the following procedure to
create CAB files for Updatable Help.

1. Organize the help files for the module by UI culture. Each Updatable Help CAB file
contains the help files for one module in one UI culture. You can deliver multiple
help CAB files for the module, each for a different UI culture.

2. Verify that help files include only the file types permitted for Updatable Help and
validate them against a help file schema. If the Update-Help  cmdlet encounters a
file that's invalid or is not a permitted type, it doesn't install the invalid file and
stops installing files from the CAB. For a list of permitted file types, see File Types
Permitted in an Updatable Help CAB File.

3. Include all the help files for the module in the UI culture, not only files that are new
or have changed. If the CAB file is incomplete, users who download help files for
the first time or do not download every update, won't have all the help files.

4. Use a utility that creates cabinet files, such as MakeCab.exe . PowerShell doesn't
include cmdlets that create CAB files.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

How to create and upload updatable help CAB
files

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


5. Name the CAB files. For more information, see How to Name an Updatable Help
CAB File.

6. Upload the CAB files for the module to the location that's specified by the
HelpContentUri element in the HelpInfo XML file for the module. Then upload the
HelpInfo XML file to the location that's specified by the HelpInfoUri key of the
module manifest. The HelpContentUri and HelpInfoUri can point to the same
location.

Ｕ Caution

The value of the HelpInfoUri key and the HelpContentUri element must begin with
http  or https . The value must a URL path pointing to the location (folder)
containing the updateable help. The URL must end with / . The URL must not
include a filename.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-create-and-upload-cab-files%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-create-and-upload-cab-files.md&documentVersionIndependentId=26f893f9-9e6c-727f-f973-9fd81dcefd05&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ef10be06-b951-e28c-e1ff-37965a2f7200+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to name an Updatable Help CAB
file
Article • 07/10/2023

An updatable cabinet ( .CAB ) file must have a name with the following format.

<ModuleName>_<ModuleGUID>_<UICulture>_HelpContent.cab

The elements of the name are as follows.

<ModuleName>  -The value of the Name property of the ModuleInfo object that the
Get-Module cmdlet returns.
<ModuleGUID>  - The value of the GUID key in the module manifest.

<UICulture>  - The UI culture of the help files in the CAB file. This value must match
the value of one of the UICulture elements in the HelpInfo XML file for the module.

For example, if the module name is "TestModule," the module GUID is 9cabb9ad-f2ac-
4914-a46b-bfc1bebf07f9, and the UI culture is en-US , the name of the CAB file would
be:

TestModule_9cabb9ad-f2ac-4914-a46b-bfc1bebf07f9_en-US_HelpContent.cab

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Get-Module
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-name-an-updatable-help-cab-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-name-an-updatable-help-cab-file.md&documentVersionIndependentId=43c646b7-2dda-485a-067c-b29c0b3a394a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ca7e535f-8476-248f-afbf-9c6122a608a1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


File Types Permitted in an Updatable
Help CAB File
Article • 07/10/2023

Uncompressed CAB file content is limited to 1 GB by default. To bypass this limit, users
have to use the Force parameter of the Update-Help and Save-Help cmdlets.

To assure the security of help files that are downloaded from the internet, an Updatable
Help CAB file can include only the file types listed below. The Update-Help cmdlet
validates all files against the help topic schemas. If the Update-Help  cmdlet encounters a
file that's invalid or is not a permitted type, it doesn't install the invalid file and stops
installing files from the CAB on the user's computer.

XML-based help topics for cmdlets.
XML-based help topics for scripts and functions.
XML-based help topics for PowerShell providers.
Text-based help topics, such as About topics.

The Update-Help verifies the CAB contents when it unpacks the CAB. If Update-Help
finds non-compliant file types in an Updatable Help CAB file, it generates a terminating
error and stops the operation. It doesn't install any help files from the CAB, even those
of compliant file types.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Save-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Ffile-types-permitted-in-an-updatable-help-cab-file%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Ffile-types-permitted-in-an-updatable-help-cab-file.md&documentVersionIndependentId=e408fc37-962d-ea3c-9138-f01df701199b&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+b88e9a6f-e338-2188-f8fe-387e09048a7c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


How to update help files
Article • 07/10/2023

There are many reasons to update help files, such as correcting errors, clarifying a
concept, answering a frequently asked question, adding new files, or adding new and
better examples.

To update a help file:

1. Change the files.
2. Translate the files into other UI cultures.
3. Collect all help files (new, changed, and unchanged) for the module in each UI

culture.
4. Validate the files against the XML schema.
5. Rebuild the CAB files for each UI culture.
6. In the HelpInfo XML file, increment the version numbers of the CAB file for each UI

culture.
7. Upload the new CAB files to the location that's specified by the value of the

HelpContentUri element in the HelpInfo XML file. Replace the older CAB files with
the new CAB files.

8. Upload the updated HelpInfo XML file to the location that's specified by the
HelpInfoUri key in the module manifest. Replace the older HelpInfo XML file with
the new file.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-update-help-files%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-update-help-files.md&documentVersionIndependentId=c5639d67-bd67-4de5-cc80-25c7d4763400&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3dd9cdee-7439-9a19-0f05-790045161c63+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


How to test Updatable Help
Article • 07/10/2023

This topic describes approaches to testing Updatable Help for a module.

After uploading the HelpInfo XML file and CAB files for your module, test the files by
running an Update-Help command with the Verbose parameter. The Verbose parameter
directs Update-Help  to report the critical steps in its actions, from reading the
HelpInfoUri key in the module manifest to validating the file types in the unpacked CAB
file and placing the files in the language-specific module directory.

When all verbose messages are resolved, run an Update-Help  command with the Debug
parameter. This parameter should detect any remaining problems with the Updatable
Help files.

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

Using verbose to detect errors

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/module/Microsoft.PowerShell.Core/Update-Help
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-test-updatable-help%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-test-updatable-help.md&documentVersionIndependentId=009da535-ea4e-b92f-4a52-49c3dafa57f2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6a556c2c-770d-1216-76a6-1eb4814db760+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Supporting Online Help
Article • 07/10/2023

Beginning in PowerShell 3.0, there are two ways to support the Get-Help  Online feature
for PowerShell commands. This topic explains how to implement this feature for
different command types.

Online help has always been a vital part of PowerShell. Although the Get-Help  cmdlet
displays help topics at the command prompt, many users prefer the experience of
reading online, including color-coding, hyperlinks, and sharing ideas in Community
Content and wiki-based documents. Most importantly, before the advent of Updatable
Help, online help provided the most up-to-date version of the help files.

With the advent of Updatable Help in PowerShell 3.0, online help still plays a vital role.
In addition to the flexible user experience, online help provides help to users who don't
or can't use Updatable Help to download help topics.

To help users find the online help topics for commands, the Get-Help  command has an
Online parameter that opens the online version of help topic for a command in the
user's default internet browser.

For example, the following command opens the online help topic for the Invoke-
Command  cmdlet.

PowerShell

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

About Online Help

How Get-Help -Online Works

Get-Help Invoke-Command -Online

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps
https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


To implement Get-Help -Online , the Get-Help  cmdlet looks for a Uniform Resource
Identifier (URI) for the online version help topic in the following locations.

The first link in the Related Links section of the help topic for the command. The
help topic must be installed on the user's computer. This feature was introduced in
PowerShell 2.0.

The HelpUri property of any command. The HelpUri property is accessible even
when the help topic for the command isn't installed on the user's computer. This
feature was introduced in PowerShell 3.0.

Get-Help  looks for a URI in the first entry in the Related Links section before
getting the HelpUri property value. If the property value is incorrect or has
changed, you can override it by entering a different value in the first related link.
However, the first related link works only when the help topics are installed on the
user's computer.

You can support Get-Help -Online  for any command by adding a valid URI to the first
entry in the Related Links section of the XML-based help topic for the command. This
option is valid only in XML-based help topics and works only when the help topic is
installed on the user's computer. When the help topic is installed and the URI is
populated, this value takes precedence over the HelpUri property of the command.

To support this feature, the URI must appear in the maml:uri  element under the first
maml:relatedLinks/maml:navigationLink  element in the maml:relatedLinks  element.

The following XML shows the correct placement of the URI. The Online version:  text in
the maml:linkText  element is a best practice, but it's not required.

XML

Adding a URI to the first related link of a
command help topic

<maml:relatedLinks>
    <maml:navigationLink>
        <maml:linkText>Online version:</maml:linkText>
        <maml:uri>https://go.microsoft.com/fwlink/?LinkID=113279</maml:uri>
    </maml:navigationLink>
    <maml:navigationLink>
        <maml:linkText>about_History</maml:linkText>
        <maml:uri/>



This section shows how to add the HelpUri property to commands of different types.

For cmdlets written in C#, add a HelpUri attribute to the Cmdlet class. The value of the
attribute must be a URI that begins with http  or https .

The following code shows the HelpUri attribute of the Get-History  cmdlet class.

C#

For advanced functions, add a HelpUri property to the CmdletBinding attribute. The
value of the property must be a URI that begins with "http" or "https".

The following code shows the HelpUri attribute of the New-Calendar  function

PowerShell

For CIM commands, add a HelpUri attribute to the CmdletMetadata element in the
CDXML file. The value of the attribute must be a URI that begins with http  or https .

The following code shows the HelpUri attribute of the Start-Debug  CIM command

XML

    </maml:navigationLink>
</maml:relatedLinks>

Adding the HelpUri property to a command

Adding a HelpUri Property to a Cmdlet

[Cmdlet(VerbsCommon.Get, "History", HelpUri = 
"https://go.microsoft.com/fwlink/?LinkID=001122")]

Adding a HelpUri property to an advanced function

function New-Calendar {
    [CmdletBinding(SupportsShouldProcess=$true,
    HelpUri="https://go.microsoft.com/fwlink/?LinkID=01122")]

Adding a HelpUri attribute to a cim command



For workflows that are written in the PowerShell language, add an .EXTERNALHELP
comment keyword to the workflow code. The value of the keyword must be a URI that
begins with http  or https .

The following code shows the .EXTERNALHELP  keyword in a workflow file.

PowerShell

<CmdletMetadata Verb="Debug" HelpUri="https://go.microsoft.com/fwlink/?
LinkID=001122"/>

Adding a HelpUri attribute to a workflow

７ Note

The HelpUri property isn't supported for XAML-based workflows in PowerShell.

# .EXTERNALHELP "https://go.microsoft.com/fwlink/?LinkID=138338"



How to add dynamic parameters to a
provider help topic
Article • 07/10/2023

This section explains how to populate the DYNAMIC PARAMETERS section of a provider
help topic.

Dynamic parameters are parameters of a cmdlet or function that are available only
under specified conditions.

The dynamic parameters that are documented in a provider help topic are the dynamic
parameters that the provider adds to the cmdlet or function when the cmdlet or
function is used in the provider drive.

Dynamic parameters can also be documented in custom cmdlet help for a provider.
When writing both provider help and custom cmdlet help for a provider, include the
dynamic parameter documentation in both documents.

If a provider doesn't implement any dynamic parameters, the provider help topic
contains an empty DynamicParameters  element.

1. In the <AssemblyName>.dll-help.xml  file, within the providerHelp  element, add a

DynamicParameters  element. The DynamicParameters  element should appear after
the Tasks  element and before the RelatedLinks  element.

For example:

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

To add dynamic parameters

<providerHelp>
    <Tasks>

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


If the provider doesn't implement any dynamic parameters, the DynamicParameters
element can be empty.

2. Within the DynamicParameters  element, for each dynamic parameter, add a
DynamicParameter  element.

For example:

XML

3. In each DynamicParameter  element, add a Name  and CmdletSupported  element.

Name - Specifies the parameter name
CmdletSupported - Specifies the cmdlets in which the parameter is valid.
Type a comma-separated list of cmdlet names.

For example, the following XML documents the Encoding  dynamic parameter that
the Windows PowerShell FileSystem provider adds to the Add-Content , Get-
Content , Set-Content  cmdlets.

XML

4. In each DynamicParameter  element, add a Type  element. The Type  element is a
container for the Name  element which contains the .NET type of the value of the
dynamic parameter.

    </Tasks>
    <DynamicParameters>
    </DynamicParameters>
    <RelatedLinks>
    </RelatedLinks>
</providerHelp>

<DynamicParameters/>
    <DynamicParameter>
    </DynamicParameter>
</DynamicParameters>

<DynamicParameters/>
    <DynamicParameter>
        <Name> Encoding </Name>
        <CmdletSupported> Add-Content, Get-Content, Set-Content 
</CmdletSupported>
</DynamicParameters>



For example, the following XML shows that the .NET type of the Encoding  dynamic
parameter is the FileSystemCmdletProviderEncoding enumeration.

XML

5. Add the Description  element, which contains a brief description of the dynamic
parameter. When composing the description, use the guidelines prescribed for all
cmdlet parameters in How to Add Parameter Information.

For example, the following XML includes the description of the Encoding  dynamic
parameter.

XML

6. Add the PossibleValues  element and its child elements. Together, these elements
describe the values of the dynamic parameter. This element is designed for
enumerated values. If the dynamic parameter doesn't take a value, such as is the
case with a switch parameter, or the values can't be enumerated, add an empty
PossibleValues  element.

<DynamicParameters/>
    <DynamicParameter>
        <Name> Encoding </Name>
        <CmdletSupported> Add-Content, Get-Content, Set-Content 
</CmdletSupported>
        <Type>
            <Name> 
Microsoft.PowerShell.Commands.FileSystemCmdletProviderEncoding </Name>
        <Type>
...
</DynamicParameters>

<DynamicParameters/>
    <DynamicParameter>
        <Name> Encoding </Name>
        <CmdletSupported> Add-Content, Get-Content, Set-Content 
</CmdletSupported>
        <Type>
            <Name> 
Microsoft.PowerShell.Commands.FileSystemCmdletProviderEncoding </Name>
        <Type>
        <Description> Specifies the encoding of the output file that 
contains the content. </Description>
...
</DynamicParameters>

https://learn.microsoft.com/en-us/dotnet/api/microsoft.powershell.commands.filesystemcmdletproviderencoding


The following table lists and describes the PossibleValues  element and its child
elements.

PossibleValues - This element is a container. Its child elements are described
below. Add one PossibleValues  element to each provider help topic. The
element can be empty.
PossibleValue - This element is a container. Its child elements are described
below. Add one PossibleValue  element for each value of the dynamic
parameter.
Value - Specifies the value name.
Description - This element contains a Para  element. The text in the Para
element describes the value that's named in the Value  element.

For example, the following XML shows one PossibleValue  element of the
Encoding  dynamic parameter.

XML

The following example shows the DynamicParameters  element of the Encoding  dynamic
parameter.

XML

<DynamicParameters/>
    <DynamicParameter>
...
        <Description> Specifies the encoding of the output file that 
contains the content. </Description>
        <PossibleValues>
            <PossibleValue>
                <Value> ASCII </Value>
                <Description>
                    <para> Uses the encoding for the ASCII (7-bit) 
character set. </para>
                </Description>
            </PossibleValue>
...
        </PossibleValues>
</DynamicParameters>

Example

<DynamicParameters/>
    <DynamicParameter>
        <Name> Encoding </Name>
        <CmdletSupported> Add-Content, Get-Content, Set-Content 



</CmdletSupported>
        <Type>
            <Name> 
Microsoft.PowerShell.Commands.FileSystemCmdletProviderEncoding </Name>
        <Type>
        <Description> Specifies the encoding of the output file that 
contains the content. </Description>
        <PossibleValues>
            <PossibleValue>
                <Value> ASCII </Value>
                <Description>
                    <para> Uses the encoding for the ASCII (7-bit) character 
set. </para>
                </Description>
            </PossibleValue>
            <PossibleValue>
                <Value> Unicode </Value>
                <Description>
                    <para> Encodes in UTF-16 format using the little-endian 
byte order. </para>
                </Description>
            </PossibleValue>
        </PossibleValues>
</DynamicParameters>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-dynamic-parameters-to-a-provider-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-dynamic-parameters-to-a-provider-help-topic.md&documentVersionIndependentId=8dc590c6-25e7-2c7e-9954-19f897c27e3d&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f1990d27-a007-ccdd-ec3f-a24d84f21ba4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


How to Add a See Also Section to a
Provider Help Topic
Article • 07/10/2023

This section explains how to populate the SEE ALSO section of a provider help topic.

The SEE ALSO section consists of a list of topics that are related to the provider or might
help the user better understand and use the provider. The topic list can include cmdlet
help, provider help and conceptual ("about") help topics in Windows PowerShell. It can
also include references to books, paper, and online topics, including an online version of
the current provider help topic.

When you refer to online topics, provide the URI or a search term in plain text. The Get-
Help  cmdlet doesn't link or redirect to any of the topics in the list. Also, the Online
parameter of the Get-Help  cmdlet doesn't work with provider help.

The See Also section is created from the RelatedLinks  element and the tags that it
contains. The following XML shows how to add the tags.

1. In the <AssemblyName>.dll-help.xml  file, within the providerHelp  element, add a
RelatedLinks  element. The RelatedLinks  element should be the last element in
the providerHelp  element. Only one RelatedLinks  element is permitted in each
provider help topic.

For example:

XML

７ Note

Manual authoring of XML-based help is very difficult. The PlatyPS module allows
you to write help in Markdown and then convert it to XML-based help. This makes
it much easier to write and maintain help. PlatyPS can also create the Updateable
Help packages for you. For more information, see Create XML-based help using
PlatyPS.

To Add SEE ALSO Topics

<providerHelp>
    <RelatedLinks>

https://learn.microsoft.com/en-us/powershell/utility-modules/platyps/create-help-using-platyps


2. For each topic in the SEE ALSO section, within the RelatedLinks  element, add a
navigationLink  element. Then, within each navigationLink  element, add one
linkText  element and one uri  element. If you aren't using the uri  element, you
can add it as an empty element (<uri/>).

For example:

XML

3. Type the topic name between the linkText  tags. If you are providing a URI, type it
between the uri  tags. To indicate the online version of the current provider help
topic, between the linkText  tags, type "Online version:" instead of the topic name.
Typically, the "Online version:" link is the first topic in the SEE ALSO topic list.

The following example include three SEE ALSO topics. The first refer to the online
version of the current topic. The second refers to a Windows PowerShell cmdlet
help topic. The third refers to another online topic.

XML

    </RelatedLinks>
</providerHelp>

<providerHelp>
    <RelatedLinks>
        <navigationLink>
            <linkText> </linkText>
            <uri> </uri>
        </navigationLink>
    </RelatedLinks>
</providerHelp>

<providerHelp>
    <RelatedLinks>
        <navigationLink>
            <linkText> Online version: </linkText>
            <uri>http://www.fabrikam.com/help/myFunction.htm</uri>
        </navigationLink>
        <navigationLink>
            <linkText> about_functions </linkText>
            <uri/>
        </navigationLink>
        <navigationLink>
            <linkText> Windows PowerShell Getting Started Guide 
</linkText>
            <uri>https://go.microsoft.com/fwlink/?LinkID=89597<uri/>
        </navigationLink>



    </RelatedLinks>
</providerHelp>

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fhelp%2Fhow-to-add-a-see-also-section-to-a-provider-help-topic%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fhelp%2Fhow-to-add-a-see-also-section-to-a-provider-help-topic.md&documentVersionIndependentId=db9d5624-37bd-bbef-527b-17f4b900707e&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+68be8057-b080-69c5-8090-e4d98fb2aebd+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Extended Type System Overview
Article • 12/18/2023

PowerShell uses its PSObject object to extend the types of objects in two ways. First, the
PSObject object provides a way to show different views of specific object types. This is
referred to as showing an adapted view of an object. Second, the PSObject object
provides a way to add members to existing object. Together, by wrapping an existing
object, referred to as the base object, the PSObject object provides an extended type
system (ETS) that script and cmdlet developers can use to manipulate .NET objects
within the shell.

ETS resolves two fundamental issues:

First, some .NET Objects do not have the necessary default behavior for acting as the
data between cmdlets.

Some .NET objects are "meta" objects (for example: WMI Objects, ADO objects,
and XML objects) whose members describe the data they contain. However, in a
scripting environment it is the contained data that is most interesting, not the
description of the contained data. ETS resolves this issue by introducing the notion
of Adapters that adapt the underlying .NET object to have the expected default
semantics.
Some .NET Object members are inconsistently named, provide an insufficient set of
public members, or provide insufficient capability. ETS resolves this issue by
introducing the ability to extend the .NET object with additional members.

Second, the PowerShell scripting language is typeless in that a variable does not need to
be declared of a particular type. That is, the variables a script developer creates are by
nature typeless. However, the PowerShell system is "type-driven" in that it depends on
having a type name to operate against for basic operations such as outputting results or
sorting.

Therefore a script developer must have the ability to state the type of one of their
variables and build up their own set of dynamically typed "objects" that contain
properties and methods and can participate in the type-driven system. ETS solves this
problem by providing a common object for the scripting language that has the ability to
state its type dynamically and to add members dynamically.

Cmdlet and Script Development Issues



Fundamentally, ETS resolves the issue mentioned previously by providing the PSObject
object, which acts as the basis of all object access from the scripting language and
provides a standard abstraction for the cmdlet developer.

For the cmdlet developers, ETS provides the following support:

The abstractions to work against objects in a generic way using the PSObject
object. ETS also provides the ability to drill past these abstractions if required.
The mechanisms to create a default behavior for formatting, sorting, serialization,
and other system manipulations of their object type using a well-known set of
extended members.
The means to operate against any object using the same semantics as the script
language using a LanguagePrimitives object.
The means to dynamically "type" a hash table so that the rest of the system can
operate against it effectively.

For the script developers, ETS provides the following support:

The ability to reference any underlying object type using the same syntax ( $a.x ).
The ability to access beyond the abstraction provided by the PSObject object (such
as accessing only adapted members, or accessing the base object itself).
The ability to define well-known members that control the formatting, sorting,
serialization, and other manipulations of an object instance or type.
The means to name an object as a specific type and thus control the inheritance of
its type-based members.
The ability to add, remove, and modify extended members.
The ability to manipulate the PSObject object itself if required.

The PSObject object is the basis of all object access from the scripting language and
provides a standard abstraction for the cmdlet developer. It contains a base-object (a
.NET object) and any instance members (members, specifically extended members, that
are present on a particular object instance while not necessarily on other objects of the
same type). Depending on the type of the base-object, the PSObject object might also
provide implicit and explicit access to adapted members as well as any type-based
extended members.

Cmdlet Developers

Script Developers

The PSObject class



The PSObject object provides the following mechanisms:

The ability to construct a PSObject with or without a base-object.
The ability to access of all members of each constructed PSObject object through
a common lookup algorithm and the ability to override that algorithm when
required.
The ability to get and set the type-names of the constructed PSObject objects so
that scripts and cmdlets can reference similar PSObject objects by the same type-
name, regardless of the type of their base-object.

The following list describes ways to create a PSObject object:

Calling the PSObject .#ctor constructor creates a new PSObject object with a base-
object of PSCustomObject. A base-object of this type indicates that the PSObject
object has no meaningful base-object. However, a PSObject object with this type
of base-object does provide a property bag that cmdlet developers can find
helpful by adding extended-members.

Developers can also specify the object type-name, which allows this object to share its
extended-members with other PSObject objects of the same type-name.

Calling the PSObject .#ctor(System.Object) constructor creates a new PSObject
object with a base-object of type System.Object.

In this case, the type-name for the created object is a collection of the derivation
hierarchy of the base-object. For example, the type-name for the PSObject that
contains a ProcessInfo base-object would include the following names:

System.Diagnostics.Process
System.ComponentModel.Component
System.MarshalByRefObject
System.Object

Calling the PSObject .AsPSObject(System.Object) method creates a new PSObject
object based on a supplied object.

If the supplied object is of type System.Object, the supplied object is used as the
base-object for the new PSObject object. If the supplied object is already a
PSObject object, the supplied object is returned as is.

How to Construct a PSObject

Base, adapted, and extended members



Conceptually, ETS uses the following terms to show the relationship between the
original members of the base-object and those members added by PowerShell. For
more information about the specific types of members that are used by the PSObject
object, see PSObject class.

If the base-object is specified when constructing the PSObject objects, then the
members of the base-object are made available through the Members property.

When a base-object is a meta-object, one that contains data in a generic fashion whose
properties "describe" their contained data, ETS adapts those objects to a view that
allows for direct access to the data through adapted members of the PSObject object.
Adapted members and base-object members are accessed through the Members
property.

In addition to the members made available from the base-object or those adapted
members created by PowerShell, a PSObject may also define extended members that
extend the original base-object with additional information that is useful in the scripting
environment.

For example, all the core cmdlets provided by PowerShell, such as the Get-Content and
Set-Content cmdlets, take a Path parameter. To ensure that these cmdlets, and others,
can work against objects of different types, a Path member can be added to those
objects so that they all state their information in a common way. This extended Path
member ensures that the cmdlets can work against all those types even though there
base class might not have a Path member.

Extended members, adapted members, and base-object members are all accessed
through the Members property.

Base-object members

Adapted members

Extended members

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psobject


Extended Type System class members
Article • 09/17/2021

ETS refers to a number of different kinds of members whose types are defined by the
PSMemberTypes enumeration. These member types include properties, methods,
members, and member sets that are each defined by their own CLR type. For example, a
NoteProperty is defined by its own PSNoteProperty type. These individual CLR types
have both their own unique properties and common properties that are inherited from
the PSMemberInfo class.

The PSMemberInfo class serves as a base class for all ETS member types. This class
provides the following base properties to all member CLR types.

Name property: The name of the member. This name can be defined by the base-
object or defined by PowerShell when adapted members or extended members are
exposed.
Value property: The value returned from the particular member. Each member type
defines how it handles its member value.
TypeNameOfValue property: This is the name of the CLR type of the value that is
returned by the Value property.

Collections of members can be accessed through the Members, Methods, and
Properties properties of the PSObject object.

ETS properties are members that can be treated as a property. Essentially, they can
appear on the left-hand side of an expression. They include alias properties, code
properties, PowerShell properties, note properties, and script properties. For more
information about these types of properties, see ETS properties.

ETS methods are members that can take arguments, may return results, and cannot
appear on the left-hand side of an expression. They include code methods, PowerShell

The PSMemberInfo class

Accessing members

ETS properties

ETS methods

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberinfo


methods, and script methods. For more information about these types of methods, see
ETS methods.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fets%2Fmembers%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fets%2Fmembers.md&documentVersionIndependentId=b815fe5d-b956-899b-e95d-b057873c12b2&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cd28260f-a32e-b4a1-4876-eef630f597d9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ETS member sets
Article • 12/18/2023

Member sets allow you to partition the members of the PSObject object into two
subsets so that the members of the subsets can be referenced together by their subset
name. The two types of subsets include property sets and member sets. For example of
how PowerShell uses member sets, there is a specific property set named
DefaultDisplayPropertySet that is used to determine, at runtime, which properties to
display for a given PSObject object.

Property sets can include any number of properties of a PSObject type. In general, a
property set can be used whenever a collection of properties (of the same type) is
needed. The property set is created by calling the
PSPropertySet(System.String,System.Collections.Generic.IEnumerable{System.String})

constructor with the name of the property set and the names of the referenced
properties. The created PSPropertySet object can then be used as an alias that points to
the properties in the set. The PSPropertySet class has the following properties and
methods.

IsInstance property: Gets a Boolean value that indicates the source of the
property.
MemberType property: Gets the type of properties in the property set.
Name property: Gets the name of the property set.
ReferencedPropertyNames property: Gets the names of the properties in the
property set.
TypeNameOfValue property: Gets a PropertySet enumeration constant that
defines this set as a property set.
Value property: Gets or sets the PSPropertySet object.
PSPropertySet.Copy  method: Makes an exact copy of the PSPropertySet object.
PSMemberSet.ToString  method: Converts the PSPropertySet object to a string.

Member sets can include any number of extended members of any type. The member
set is created by calling the
PSMemberSet(System.String,System.Collections.Generic.IEnumerable{System.Management.

Automation.PSMemberInfo})  constructor with the name of the member set and the names

Property Sets

Member Sets

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pspropertyset


of the referenced members. The created PSPropertySet object can then be used as an
alias that points to the members in the set. The PSMemberSet class has the following
properties and methods.

IsInstance property: Gets a Boolean value that indicates the source of the member.
Members property: Gets all the members of the member set.
MemberType property: Gets a MemberSet enumeration constant that defines this
set as a member set.
Methods property: Gets the methods included in the member set.
Properties property: Gets the properties included in the member set.
TypeNameOfValue property: Gets a MemberSet enumeration constant that
defines this set as a member set.
Value property: Gets the PSMemberSet object.
PSMemberSet.Copy  method: Makes an exact copy of the PSMemberSet object.
PSMemberSet.ToString  method: Converts the PSMemberSet object to a string.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psmemberset
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fets%2Fmembersets%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fets%2Fmembersets.md&documentVersionIndependentId=978c959d-b583-a284-6b5d-6a601e94b2e4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a164572b-553f-e713-d8e7-3452abae4b4d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ETS properties
Article • 09/17/2021

Properties are members that can be treated as a property. Essentially, they can appear
on the left-hand side of an expression. The properties that are available include alias,
code, note, and script properties.

An alias property is a property that references another property that the PSObject
object contains. It is used primarily to rename the referenced property. However, it may
also be used to convert the referenced property's value to another type. With respect to
ETS, this type of property is always an extended-member and is defined by the
PSAliasProperty class. The class includes the following properties.

ConversionType property: The CLR type used to convert the referenced member's
value.
IsGettable property: Indicates whether the value of the referenced property can be
retrieved. This property is dynamically determined by examining the IsGettable
property of the referenced property.
IsSettable property: Indicates whether the value of the referenced property can be
set. This property is dynamically determined by examining the IsSettable property
of the referenced property.
MemberType property: An AliasProperty enumeration constant that defines this
property as an alias property.
ReferencedMemberName property: The name of the referenced property that this
alias refers to.
TypeNameOfValue property: The full name of the CLR type of the referenced
property's value.
Value property: The value of the referenced property.

A code property is a property that is a getter and setter that is defined in a CLR
language. In order for a code property to become available, a developer must write the
property in some CLR language, compile, and ship the resultant assembly. This assembly
must be available in the runspace where the code property is desired. With respect to
ETS, this type of property is always an extended-member and is defined by the
PSCodeProperty class. The class includes the following properties.

Alias Property

Code Property

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psaliasproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodeproperty


GetterCodeReference property: The method used to get the value of the code
property.
IsGettable property: Indicates whether the value of the code property can be
retrieved, that the SetterCodeReference property: The method used to set the
value of the code property.
IsSettable property: Indicates whether the value of the code property can be set,
that the SetterCodeReference property is not null.
MemberType property: A CodeProperty enumeration constant that defines this
property as a code property.
SetterCodeReference property: The method used to get the value of the code
property.
TypeNameOfValue property: The CLR type of the code property value that is
returned by the properties get operation.
Value property: The value of the code property. When this property is retrieved,
the getter code in the GetterCodeReference property is invoked, passing the
current PSObject object and returning the value returned by the invocation. When
this property is set, the setter code in the SetterCodeReference property is
invoked, passing the current PSObject object as the first argument and the object
used to set the value as the second argument.

A Note property is a property that has a name/value pairing. With respect to ETS, this
type of property is always an extended-member and is defined by the PSNoteProperty
class. The class includes the following properties.

IsGettable property: Indicates whether the value of the note property can be
retrieved.
IsSettable property: Indicates whether the value of the note property can be set.
MemberType property: A NoteProperty enumeration constant that defines this
property as a note property.
TypeNameOfValue property: The fully-qualified type name of the object returned
by the note property's get operation.
Value: The value of the note property.

A PowerShell property is a property defined on the base object or a property that is
made available through an adapter. It can refer to both CLR fields as well as CLR
properties. With respect to ETS, this type of property can be either a base-member or an

Note Property

PowerShell property

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psnoteproperty


adapter-member and is defined by the PSProperty class. The class includes the following
properties.

IsGettable property: Indicates whether the value of the base or adapted property
can be retrieved.
IsSettable property: Indicates whether the value of the base or adapted property
can be set.
MemberType property: A Property enumeration constant that defines this property
as a PowerShell property.
TypeNameOfValue property: The fully-qualified name of the property value type.
For example, for a property whose value is a string, its property value type is
System.String.
Value property: The value of the property. If the get or set operation is called on a
property that does not support that operation, a GetValueException or
SetValueException exception is thrown

A Script property is a property that has getter and setter scripts. With respect to ETS, this
type of property is always an extended-member and is defined by the PSScriptProperty
class. The class includes the following properties.

GetterScript property: The script used to retrieve the script property value.
IsGettable property: Indicates whether the GetterScript property exposes a script
block.
IsSettable property: Indicates whether the SetterScript property exposes a script
block.
MemberType property: A ScriptProperty enumeration constant that identifies this
property as a script property.
SetterScript property: The script used to set the script property value.
TypeNameOfValue property: The fully-qualified type name of the object returned
by the getter script. In this case System.Object is always returned.
Value property: The value of the script property. A get invokes the getter script and
returns the value provided. A set invokes the setter script.

PowerShell Script property

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psproperty
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptproperty


can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fets%2Fproperties%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fets%2Fproperties.md&documentVersionIndependentId=a1ec8171-86e8-b821-4d3b-66d8546568f4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2b10d273-b145-53e1-781f-55ddffd9ec7d+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ETS class methods
Article • 09/17/2021

ETS methods are members that can take arguments, may return results, and cannot
appear on the left-hand side of an expression. The methods that are available within ETS
include code, Windows PowerShell, and script methods.

A code method is an extended member that is defined in a CLR language. It provides
similar functionality to a method defined on a base object; however, a code method
may be added dynamically to an PSObject object. In order for a code method to
become available, a developer must write the property in some CLR language, compile,
and ship the resultant assembly. This assembly must be available in the runspace where
the code method is desired. Be aware that a code method implementation must be
thread safe. Access to these methods is done through PSCodeMethod objects that
provides the following public methods and properties.

PSCodeMethod.Copy  method: Makes an exact copy of the PSCodeMethod object.
PSCodeMethod.Invoke(System.Object[])  method: Invokes the underlying code
method.
PSCodeMethod.ToString  method: Converts the PSCodeMethod object to a string.

PSCodeMethod.CodeReference  property: Gets the underlying method that the code
method is based on.
PSMemberInfo.IsInstance property: Gets a Boolean value that indicates the source
of the member.
PSCodeMethod.MemberType property: Gets an PSMemberTypes.CodeMethod
enumeration constant that identifies this method as a code method.
PSMemberInfo.Name property: Gets the name of the underlying code method.
PSCodeMethod.OverloadDefinitions property: Gets a definition of all the
overloads of the underlying code method.
PSCodeMethod.TypeNameOfValue property: Gets the full name of the code
method.
PSMemberInfo.Value property: Gets the PSCodeMethod object.

７ Note

From scripts, methods are accessed using the same syntax as other members with
the addition of parenthesis at the end of the method name.

Code Methods

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pscodemethod


A PowerShell method is a CLR method defined on the base object or is made accessible
through an adapter. Access to these methods is done through PSMethod objects that
provides the following public methods and properties.

PSMethod.Copy  method: Makes an exact copy of the PSMethod object.

PSMethod.Invoke(System.Object[])  method: Invokes the underlying method.
PSMethod.ToString  method: Converts the PSMethod object to a string.
PSMemberInfo.IsInstance property: Gets a Boolean value that indicates the source
of the member.
PSMethod.MemberType property: Gets an PSMemberTypes.Method enumeration
constant that identifies this method as a PowerShell method.
PSMemberInfo.Name property: Gets the name of the underlying method.
PSMethod.OverloadDefinitions property: Gets the definitions of all the overloads
of the underlying method.
PSMethod.TypeNameOfValue property: Gets the ETS type of this method.
PSMemberInfo.Value property: Gets the PSMethod object.

A script method is an extended member that is defined in the PowerShell language. It
provides similar functionality to a method defined on a base object; however, a script
method may be added dynamically to an PSObject object. Access to these methods is
done through PSScriptMethod objects that provides the following public methods and
properties.

PSScriptMethod.Copy  method: Makes an exact copy of the PSScriptMethod object.
PSScriptMethod.Invoke(System.Object[])  method: Invokes the underlying script
method.
PSScriptMethod.ToString  method: Converts the PSScriptMethod object to a string.
PSMemberInfo.IsInstance property: Gets a Boolean value that indicates the source
of the member.
PSScriptMethod.MemberType property: Gets a PSMemberTypes.ScriptMethod
enumeration constant that identifies this method as a script method.
PSMemberInfo.Name property: Gets the name of the underlying code method.
PSScriptMethod.OverloadDefinitions property: Gets the definitions of all the
overloads of the underlying script method.
PSScriptMethod.TypeNameOfValue property: Gets the ETS type of this method.
PSScriptMethod.Script property: Gets the script used to invoke the method.

Windows PowerShell Methods

Script Methods

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.psscriptmethod


PSMemberInfo.Value property: Gets the PSScriptMethod object.

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fets%2Fmethods%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fets%2Fmethods.md&documentVersionIndependentId=0ec359e2-bb7d-41af-9617-6f55fa564d4f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+39bf0115-9a20-509c-8cf9-8a74bdd166cc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


ETS type converters
Article • 09/17/2021

ETS uses two basic types of type converters when a call is made to the
LanguagePrimitives.ConvertTo(System.Object, System.Type)  method. When this method
is called, PowerShell attempts to perform the type conversion using its standard
PowerShell language converters or a custom converter. If PowerShell cannot perform the
conversion, it throws an PSInvalidCastException exception.

These standard conversions are checked before any custom conversions and cannot be
overridden. The following table lists the type conversions performed by PowerShell
when the ConvertTo(System.Object, System.Type)  method is called. Be aware that
references to the valueToConvert and resultType parameters refer to parameters of the
ConvertTo(System.Object,System.Type)  method.

From
(valueToConvert)

To
(resultType)

Returns

Null String ""

Null Char '\0'

Null Numeric 0  of the type specified in the resultType parameter.

Null Boolean Results of call to the IsTrue(System.Object)(Null)  method.

Null PSObject New object of type PSObject.

Null Non-value-
type

Null.

Null Nullable<T> Null.

Derived Class Base class valueToConvert

Anything Void AutomationNull.Value

Anything String Calls ToString  mechanism.

Anything Boolean IsTrue(System.Object) (valueToConvert)

Standard Windows PowerShell Language
Converters

ﾉ Expand table



From
(valueToConvert)

To
(resultType)

Returns
Anything PSObject Results of call to the AsPSObject(System.Object)

(valueToConvert)  method.

Anything Xml
Document

Converts valueToConvert to string, then calls
XMLDocument constructor.

Array Array Attempts to convert each element of the array.

Singleton Array Array[0]  equals valueToConvert that is converted to the
element type of the array.

IDictionary Hash table Results of call to Hashtable(valueToConvert).

String Char[] valueToConvert.ToCharArray

String RegEx Results of call to Regx(valueToConvert) .

String Type Returns the appropriate type using the valueToConvert
parameter to search RunspaceConfiguration.Assemblies.

String Numeric If valueToConvert is "", returns 0  of the resultType.
Otherwise the culture "culture invariant" is used to produce
a numeric value.

Integer System.Enum Converts the integer to the constant if the integer is
defined by the enumeration. If the integer is not defined an
PSInvalidCastException exception is thrown.

If PowerShell cannot convert the type using a standard PowerShell language converter,
it then checks for custom converters. PowerShell looks for several types of custom
converters in the order described in this section. Be aware that references to the
valueToConvert and resultType parameters refer to parameters of the
ConvertTo(System.Object, System.Type)  method. If a custom converter throws an
exception, then no further attempt is made to convert the object and that exception is
wrapped in a PSInvalidCastException exception which is then thrown.

PowerShell type converters are used to convert a single type or a family of types, such as
all types that derive from the System.Enum class. To create a PowerShell type converter
you must implement an PSTypeConverter class and associate that implementation with
the target class. There are two ways of associating the PowerShell type converter with its
target class.

Custom conversions

PowerShell type converter



Through the type configuration file
By applying the TypeConverterAttribute attribute to the target class

PowerShell type converters, derived from the PSTypeConverter abstract class, provide
methods for converting an object to a specific type or from a specific type. If the
valueToConvert parameter contains an object that has a PowerShell Type converter
associated with it, PowerShell calls the PSTypeConverter.ConvertTo(System.Object,
System.Type,System.IFormatProvider, System.Boolean)  method of the associated
converter to convert the object to the type specified by the resultType parameter. If the
resultType parameter references a type that has a PowerShell type converter associated
with it, PowerShell calls the PSTypeConverter.ConvertFrom(System.Object,System.Type,
System.IFormatProvider, System.Boolean)  method of the associated converter to
convert the object from the type specified by the resultType parameter.

System type converters are used to convert a specific target class. This type of converter
cannot be used to convert a family of classes. To create an system type converter you
must implement an TypeConverter class and associate that implementation with the
target class. There are two ways of associating the system type converter with its target
class.

Through the type configuration file
By applying the TypeConverterAttribute attribute to the target class

If the valueToConvert parameter is a string, and the object type of the resultType
parameter has a Parse  method, then the Parse  method is called to convert the string.

If the object type of the resultType parameter has a constructor that has a single
parameter that is the same type as the object of the valueToConvert parameter, then
this constructor is called.

System type converter

Parse converter

Constructor converter

Implicit cast operator converter

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.pstypeconverter
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.typedata.typeconverter#System_Management_Automation_Runspaces_TypeData_TypeConverter


If the valueToConvert parameter has an implicit cast operator that converts to
resultType, then its cast operator is called. If the resultType parameter has an implicit
cast operator that converts from valueToConvert, then its cast operator is called.

If the valueToConvert parameter has an explicit cast operator that converts to
resultType, then its cast operator is called. If the resultType parameter has an explicit
cast operator that converts from valueToConvert, then its cast operator is called.

Explicit cast operator converter

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fets%2Ftypeconverters%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fets%2Ftypeconverters.md&documentVersionIndependentId=097a72e2-1d19-3742-68cf-884c88f77b4a&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a2b485b1-da15-8bb5-694a-a37378f054ce+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Errors and exceptions in the Extended
Type System
Article • 09/17/2021

Errors can occur in ETS during the initialization of type data and when accessing a
member of an PSObject object or using one of the utility classes such as
LanguagePrimitives.

With one exception, when casting, all exceptions thrown from ETS during runtime are
either an ExtendedTypeSystemException exception or an exception derived from the
ExtendedTypeSystemException class. This allows script developers to trap these
exceptions using the trap  statement in their script.

All errors that occur when getting the value of an ETS member (property, method, or
parameterized property) cause a GetValueException or GetValueInvocationException
exception to be thrown. When ETS recognizes that an error occurred a
GetValueException exception is thrown. When the underlying getter of a referenced
member recognizes that an error occurred, a GetValueInvocationException exception is
thrown that may or may not include the inner exception that caused the get invocation
error.

All errors that occur when setting the value of an ETS property cause a
SetValueException or SetValueInvocationException exception to be thrown. When ETS
recognizes that an error occurred a SetValueException exception is thrown. When the
underlying setter of a referenced property recognizes that an error occurred, a
SetValueInvocationException exception is thrown that may or may not include the inner
exception that caused the set invocation error.

Runtime errors

Errors getting member values

Errors setting member values

Errors invoking a method



All errors that occur when invoking an ETS method cause a MethodException or
MethodInvocationException exception to be thrown. When ETS recognizes that an
error occurred a MethodException exception is thrown. When the referenced method
recognizes that an error occurred, a MethodInvocationException exception is thrown
that may or may not include the inner exception that caused the invocation error.

When an invalid cast is attempted, an PSInvalidCastException is thrown. Because this
exception derives from System.InvalidCastException, it is not able to be directly trapped
from script. Be aware that the entity attempting the cast would need to wrap
PSInvalidCastException in an PSRuntimeException for this to be trappable by scripts. If
an attempt is made to set the value of an PSPropertySet, PSMemberSet,
PSMethodInfo, or a member of the ReadOnlyPSMemberInfoCollection`1, a
NotSupportedException is thrown.

Any other common runtime errors that occur are of type
ExtendedTypeSystemException exception with no additional specific exception types.

Errors may occur when initializing types.ps1xml . Typically, these errors are displayed
when the PowerShell runtime starts. However, they can also be displayed when a
module is loaded.

Casting errors

Common runtime errors

Initialization errors



Windows PowerShell Programmer's
Guide
Article • 09/17/2021

This programmer's guide is targeted at developers who are interested in providing a
command-line management environment for system administrators. Windows
PowerShell provides a simple way for you to build management commands that expose
.NET objects, while allowing Windows PowerShell to do most of the work for you.

In traditional command development, you are required to write a parameter parser, a
parameter binder, filters, and all other functionality exposed by each command.
Windows PowerShell provides the following to make it easy for you to write commands:

A powerful Windows PowerShell runtime (execution engine) with its own parser
and a mechanism for automatically binding command parameters.

Utilities for formatting and displaying command results using a command line
interpreter (CLI).

Support for high levels of functionality (through Windows PowerShell providers)
that make it easy to access stored data.

At little cost, you can represent a .NET object by a rich command or set of
commands that will offer a complete command-line experience to the
administrator.

The next section covers the key Windows PowerShell concepts and terms.
Familiarize yourself with these concepts and terms before starting development.

Windows PowerShell defines several types of commands that you can use in
development. These commands include: functions, filters, scripts, aliases, and
executables (applications). The main command type discussed in this guide is a simple,
small command called a "cmdlet". Windows PowerShell furnishes a set of cmdlets and
fully supports cmdlet customization to suit your environment. The Windows PowerShell
runtime processes all command types just as it does cmdlets, using pipelines.

In addition to commands, Windows PowerShell supports various customizable Windows
PowerShell providers that make available specific sets of cmdlets. The shell operates
within the Windows PowerShell-provided host application ( powershell.exe ), but it is

About Windows PowerShell



equally accessible from a custom host application that you can develop to meet specific
requirements. For more information, see How Windows PowerShell Works .

A cmdlet is a lightweight command that is used in the Windows PowerShell
environment. The Windows PowerShell runtime invokes these cmdlets within the context
of automation scripts that are provided at the command line, and the Windows
PowerShell runtime also invokes them programmatically through Windows PowerShell
APIs.

For more information about cmdlets, see Writing a Windows PowerShell Cmdlet.

In performing administrative tasks, the user may need to examine data stored in a data
store (for example, the file system, the Windows Registry, or a certificate store). To make
these operations easier, Windows PowerShell defines a module called a Windows
PowerShell provider that can be used to access a specific data store, such as the
Windows Registry. Each provider supports a set of related cmdlets to give the user a
symmetrical view of the data in the store.

Windows PowerShell provides several default Windows PowerShell providers. For
example, the Registry provider supports navigation and manipulation of the Windows
Registry. Registry keys are represented as items, and registry values are treated as
properties.

If you expose a data store that the user will need to access, you might need to write
your own Windows PowerShell provider, as described in Creating Windows PowerShell
Providers. For more information aboutWindows PowerShell providers, see How
Windows PowerShell Works .

Windows PowerShell includes the default host application powershell.exe, which is a
console application that interacts with the user and hosts the Windows PowerShell
runtime using a console window.

Only rarely will you need to write your own host application for Windows PowerShell,
although customization is supported. One case in which you might need your own
application is when you have a requirement for a GUI interface that is richer than the
interface provided by the default host application. You might also want a custom

Windows PowerShell Cmdlets

Windows PowerShell Providers

Host Application

https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)


application when you are basing your GUI on the command line. For more information,
see How to Create a Windows PowerShell Host Application.

The Windows PowerShell runtime is the execution engine that implements command
processing. It includes the classes that provide the interface between the host
application and Windows PowerShell commands and providers. The Windows
PowerShell runtime is implemented as a runspace object for the current Windows
PowerShell session, which is the operational environment in which the shell and the
commands execute. For operational details, see How Windows PowerShell Works .

The Windows PowerShell language provides scripting functions and mechanisms to
invoke commands. For complete scripting information, see the Windows PowerShell
Language Reference shipped with Windows PowerShell.

Windows PowerShell provides access to a variety of different objects, such as .NET and
XML objects. As a consequence, to present a common abstraction for all object types
the shell uses its extended type system (ETS). Most ETS functionality is transparent to the
user, but the script or .NET developer uses it for the following purposes:

Viewing a subset of the members of specific objects. Windows PowerShell provides
an "adapted" view of several specific object types.

Adding members to existing objects.

Access to serialized objects.

Writing customized objects.

Using ETS, you can create flexible new "types" that are compatible with the
Windows PowerShell language. If you are a .NET developer, you are able to work
with objects using the same semantics as the Windows PowerShell language
applies to scripting, for example, to determine if an object evaluates to true .

For more information about ETS and how Windows PowerShell uses objects, see
Windows PowerShell Object Concepts.

Windows PowerShell Runtime

Windows PowerShell Language

Extended Type System (ETS)

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/learn/understanding-important-powershell-concepts


Windows PowerShell defines its code for commands, providers, and other program
modules using the .NET Framework. You are not confined to the use of Microsoft Visual
Studio in creating customized modules for Windows PowerShell, although the samples
provided in this guide are known to run in this tool. You can use any .NET language that
supports class inheritance and the use of attributes. In some cases, Windows PowerShell
APIs require the programming language to be able to access generic types.

For reference when developing for Windows PowerShell, see the Windows PowerShell
SDK.

For more information about starting to use the Windows PowerShell shell, see the
Getting Started with Windows PowerShell shipped with Windows PowerShell. A Quick
Reference tri-fold document is also supplied as a primer for cmdlet use.

Topic Definition

How to Create a Windows
PowerShell Provider

This section describes how to build a Windows PowerShell provider
for Windows PowerShell.

How to Create a Windows
PowerShell Host
Application

This section describes how to write a host application that
manipulates a runspace and how to write a host application that
implements its own custom host.

How to Create a Windows
PowerShell Snap-in

This section describes how to create a snap-in that is used to
register all cmdlets and providers in an assembly and how to create
a custom snap-in.

How to Create a Console
Shell

This section describes how to create a console shell that is not
extensible.

Windows PowerShell
Concepts

This section contains conceptual information that will help you
understand Windows PowerShell from the viewpoint of a
developer.

Programming for Windows PowerShell

Programmer's Reference

Getting Started Using Windows PowerShell

Contents of This Guide

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/prog-guide/how-to-create-a-console-shell?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/prog-guide/how-to-create-a-console-shell?view=powershell-7.5


Windows PowerShell SDK

See Also



How to Create a Windows PowerShell
Provider
Article • 09/17/2021

This section describes how to build a Windows PowerShell provider. A Windows
PowerShell provider can be considered in two ways. To the user, the provider represents
a set of stored data. For example, the stored data can be the Internet Information
Services (IIS) Metabase, the Microsoft Windows Registry, the Windows file system, Active
Directory, and the variable and alias data stored by Windows PowerShell.

To the developer, the Windows PowerShell provider is the interface between the user
and the data that the user needs to access. From this perspective, each type of provider
described in this section supports a set of specific base classes and interfaces that allow
the Windows PowerShell runtime to expose certain cmdlets to the user in a common
way.

Windows PowerShell provides several providers (such as the FileSystem provider,
Registry provider, and Alias provider) that are used to access known data stores. For
more information about the providers supplied by Windows PowerShell, use the
following command to access online Help:

PS>Get-Help about_Providers

Windows PowerShell providers are accessible to the Windows PowerShell runtime and
to commands programmatically through the use of Windows PowerShell paths. Most of
the time, these paths are used to directly access the data through the provider.
However, some paths can be resolved to provider-internal paths that allow a cmdlet to
use non-Windows PowerShell application programming interfaces (APIs) to access the
data. For more information about how Windows PowerShell providers operate within
Windows PowerShell, see How Windows PowerShell Works.

Providers Provided by Windows PowerShell

Accessing the Stored Data Using Windows
PowerShell Paths

https://learn.microsoft.com/en-us/previous-versions/ms714658(v=vs.85)


A Windows PowerShell provider exposes its supported cmdlets using virtual Windows
PowerShell drives. Windows PowerShell applies the following rules for a Windows
PowerShell drive:

The name of a drive can be any alphanumeric sequence.
A drive can be specified at any valid point on a path, called a "root".
A drive can be implemented for any stored data, not just the file system.
Each drive keeps its own current working location, allowing the user to retain
context when shifting between drives.

The following table lists topics that include code examples that build on each other.
Starting with the second topic, the basic Windows PowerShell provider can be initialized
and uninitialized by the Windows PowerShell runtime, the next topic adds functionality
for accessing the data, the next topic adds functionality for manipulating the data (the
items in the stored data), and so on.

Topic Definition

Designing Your
Windows PowerShell
Provider

This topic discusses things you should consider before implementing a
Windows PowerShell provider. It summarizes the Windows PowerShell
provider base classes and interfaces that are used.

Creating a Basic
Windows PowerShell
Provider

This topic shows how to create a Windows PowerShell provider that
allows the Windows PowerShell runtime to initialize and uninitialize the
provider.

Creating a Windows
PowerShell Drive
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to access a data store through a Windows PowerShell
drive.

Creating a Windows
PowerShell Item
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to manipulate the items in a data store.

Creating a Windows
PowerShell Container
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to work on multilayer data stores.

Exposing Provider Cmdlets Using Windows
PowerShell Drives

In This Section

ﾉ Expand table



Topic Definition

Creating a Windows
PowerShell Navigation
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to navigate the items of a data store in a hierarchical
manner.

Creating a Windows
PowerShell Content
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to manipulate the content of items in a data store.

Creating a Windows
PowerShell Property
Provider

This topic shows how to create a Windows PowerShell provider that
allows the user to manipulate the properties of items in a data store.

How Windows PowerShell Works

Windows PowerShell SDK

Windows PowerShell Programmer's Guide

See Also

https://learn.microsoft.com/en-us/previous-versions/ms714658(v=vs.85)


Designing Your Windows PowerShell
Provider
Article • 03/24/2025

You should implement a Windows PowerShell provider if your product or configuration
exposes a set of stored data, such as a database that the user will want to navigate or
browse. Additionally, if your product provides a container, even if it is not a multilevel
container, it makes sense to implement a Windows PowerShell provider. For example,
you might want to implement a Windows PowerShell container provider if the cmdlet
verb Copy, Move, Rename, New, or Remove makes sense as an operation on your
product or configuration data.

The Windows PowerShell runtime uses Windows PowerShell paths to access the
appropriate Windows PowerShell provider. When a cmdlet specifies one of these paths,
the runtime knows which provider to use to access the associated data store. These
paths include drive-qualified paths, provider-qualified paths, provider-direct paths, and
provider-internal paths. Each Windows PowerShell provider must support one or more
of these paths.

For more information about Windows PowerShell paths, see How Windows PowerShell
Works.

To allow the user to access data located at a physical drive, your Windows PowerShell
provider must support a drive-qualified path. This path starts with the drive name
followed by a colon (:), for example, mydrive:\abc\bar.

To allow the Windows PowerShell runtime to initialize and uninitialize the provider, your
Windows PowerShell provider must support a provider-qualified path. For example,
FileSystem::\\uncshare\abc\bar is the provider-qualified path for the FileSystem provider
furnished by Windows PowerShell.

Windows PowerShell Paths Identify Your
Provider

Defining a Drive-Qualified Path

Defining a Provider-Qualified Path



To allow remote access to your Windows PowerShell provider, it should support a
provider-direct path to pass directly to the Windows PowerShell provider for the current
location. For example, the registry Windows PowerShell provider can use
\\server\regkeypath as a provider-direct path.

To allow the provider cmdlet to access data using non-Windows PowerShell application
programming interfaces (APIs), your Windows PowerShell provider should support a
provider-internal path. This path is indicated after the "::" in the provider-qualified path.
For example, the provider-internal path for the FileSystem Windows PowerShell provider
is \\uncshare\abc\bar.

When overriding methods that modify the underlying data store, always call the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject* method
with the most up-to-date version of the item changed by that method. The provider
infrastructure determines if the item object needs to be passed to the pipeline, such as
when the user specifies the -PassThru parameter. If retrieving the most up-to-date item
is a costly operation (performance-wise,) you can test the Context.PassThru property to
determine if you actually need to write the resulting item.

Windows PowerShell provides a number of base classes that you can use to implement
your own Windows PowerShell provider. When designing a provider, choose the base
class, described in this section, that is most suited to your requirements.

Each Windows PowerShell provider base class makes available a set of cmdlets. This
section describes the cmdlets, but it does not describe their parameters.

Using the session state, the Windows PowerShell runtime makes several location
cmdlets available to certain Windows PowerShell providers, such as the Get-Location ,
Set-Location , Pop-Location , and Push-Location  cmdlets. You can use the Get-Help
cmdlet to obtain information about these location cmdlets.

Defining a Provider-Direct Path

Defining a Provider-Internal Path

Changing Stored Data

Choose a Base Class for Your Provider

CmdletProvider Base Class

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject


The System.Management.Automation.Provider.CmdletProvider class defines a basic
Windows PowerShell provider. This class supports the provider declaration and supplies
a number of properties and methods that are available to all Windows PowerShell
providers. The class is invoked by the Get-PSProvider  cmdlet to list all available
providers for a session. The implementation of this cmdlet is furnished by the session
state.

The System.Management.Automation.Provider.DriveCmdletProvider class defines a
Windows PowerShell drive provider that supports operations for adding new drives,
removing existing drives, and initializing default drives. For example, the FileSystem
provider provided by Windows PowerShell initializes drives for all volumes that are
mounted, such as hard drives and CD/DVD device drives.

This class derives from the System.Management.Automation.Provider.CmdletProvider
base class. The following table lists the cmdlets exposed by this class. In addition to
those listed, the Get-PSDrive  cmdlet (exposed by session state) is a related cmdlet that
is used to retrieve available drives.

Cmdlet Definition

New-PSDrive Creates a new drive for the session, and streams drive information.

Remove-PSDrive Removes a drive from the session.

The System.Management.Automation.Provider.ItemCmdletProvider class defines a
Windows PowerShell item provider that performs operations on the individual items of
the data store, and it does not assume any container or navigation capabilities. This
class derives from the System.Management.Automation.Provider.DriveCmdletProvider
base class. The following table lists the cmdlets exposed by this class.

７ Note

Windows PowerShell providers are available to all Windows PowerShell language
scopes.

DriveCmdletProvider Base Class

ﾉ Expand table

ItemCmdletProvider Base Class

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider


Cmdlet Definition

Clear-

Item

Clears the current content of items at the specified location, and replaces it with the
"clear" value specified by the provider. This cmdlet does not pass an output object
through the pipeline unless its PassThru  parameter is specified.

Get-

Item

Retrieves items from the specified location, and streams the resultant objects.

Invoke-

Item

Invokes the default action for the item at the specified path.

Set-

Item

Sets an item at the specified location with the indicated value. This cmdlet does not
pass an output object through the pipeline unless its PassThru  parameter is specified.

Resolve-

Path

Resolves the wildcards for a Windows PowerShell path, and streams path information.

Test-

Path

Tests for the specified path, and returns true  if it exists and false  otherwise. This
cmdlet is implemented to support the IsContainer  parameter for the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject* method.

The System.Management.Automation.Provider.ContainerCmdletProvider class defines a
Windows PowerShell container provider that exposes a container, for data store items,
to the user. Be aware that a Windows PowerShell container provider can be used only
when there is one container (no nested containers) with items in it. If there are nested
containers, then you must implement a Windows PowerShell navigation provider .

This class derives from the
System.Management.Automation.Provider.ItemCmdletProvider base class. The following
table defines the cmdlets implemented by this class.

Cmdlet Definition

Copy-Item Copies items from one location to another. This cmdlet does not pass an output
object through the pipeline unless its PassThru  parameter is specified.

Get-

ChildItem

Retrieves the child items at the specified location, and streams them as objects.

New-Item Creates new items at the specified location, and streams the resultant object.

ﾉ Expand table

ContainerCmdletProvider Base Class

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider


Cmdlet Definition

Remove-

Item

Removes items from the specified location.

Rename-

Item

Renames an item at the specified location. This cmdlet does not pass an output
object through the pipeline unless its PassThru  parameter is specified.

The System.Management.Automation.Provider.NavigationCmdletProvider class defines a
Windows PowerShell navigation provider that performs operations for items that use
more than one container. This class derives from the
System.Management.Automation.Provider.ContainerCmdletProvider base class. The
following table list the cmdlets exposed by this class.

Cmdlet Definition

Combine-

Path

Combines two paths into a single path, using a provider-specific delimiter between
paths. This cmdlet streams strings.

Move-Item Moves items to the specified location. This cmdlet does not pass an output object
through the pipeline unless its PassThru  parameter is specified.

A related cmdlet is the basic Parse-Path cmdlet furnished by Windows PowerShell. This
cmdlet can be used to parse a Windows PowerShell path to support the Parent
parameter. It streams the parent path string.

In addition to deriving from one of the Windows PowerShell base classes, your Windows
PowerShell provider can support other functionality by deriving from one or more of the
following provider interfaces. This section defines those interfaces and the cmdlets
supported by each. It does not describe the parameters for the interface-supported
cmdlets. Cmdlet parameter information is available online using the Get-Command  and
Get-Help  cmdlets.

NavigationCmdletProvider Base Class

ﾉ Expand table

Select Provider Interfaces to Support

IContentCmdletProvider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider


The System.Management.Automation.Provider.IContentCmdletProvider interface defines
a content provider that performs operations on the content of a data item. The
following table lists the cmdlets exposed by this interface.

Cmdlet Definition

Add-

Content

Appends the indicated value lengths to the contents of the specified item. This
cmdlet does not pass an output object through the pipeline unless its PassThru
parameter is specified.

Clear-

Content

Sets the content of the specified item to the "clear" value. This cmdlet does not pass
an output object through the pipeline unless its PassThru  parameter is specified.

Get-

Content

Retrieves the contents of the specified items and streams the resultant objects.

Set-

Content

Replaces the existing content for the specified items. This cmdlet does not pass an
output object through the pipeline unless its PassThru  parameter is specified.

The System.Management.Automation.Provider.IPropertyCmdletProvider interface
defines a property Windows PowerShell provider that performs operations on the
properties of items in the data store. The following table lists the cmdlets exposed by
this interface.

Cmdlet Definition

Clear-

ItemProperty

Sets properties of the specified items to the "clear" value. This cmdlet does not
pass an output object through the pipeline unless its PassThru  parameter is
specified.

Get-

ItemProperty

Retrieves properties from the specified items and streams the resultant objects.

ﾉ Expand table

IPropertyCmdletProvider

７ Note

The Path  parameter on these cmdlets indicates a path to an item instead of
identifying a property.

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider


Cmdlet Definition

Set-

ItemProperty

Sets properties of the specified items with the indicated values. This cmdlet
does not pass an output object through the pipeline unless its PassThru
parameter is specified.

The System.Management.Automation.Provider.IDynamicPropertyCmdletProvider
interface, derived from
System.Management.Automation.Provider.IPropertyCmdletProvider, defines a provider
that specifies dynamic parameters for its supported cmdlets. This type of provider
handles operations for which properties can be defined at run time, for example, a new
property operation. Such operations are not possible on items having statically defined
properties. The following table lists the cmdlets exposed by this interface.

Cmdlet Definition

Copy-

ItemProperty

Copies a property from the specified item to another item. This cmdlet does
not pass an output object through the pipeline unless its PassThru  parameter
is specified.

Move-

ItemProperty

Moves a property from the specified item to another item. This cmdlet does
not pass an output object through the pipeline unless its PassThru  parameter
is specified.

New-

ItemProperty

Creates a property on the specified items and streams the resultant objects.

Remove-

ItemProperty

Removes a property for the specified items.

Rename-

ItemProperty

Renames a property of the specified items. This cmdlet does not pass an
output object through the pipeline unless its PassThru  parameter is specified.

The System.Management.Automation.Provider.ISecurityDescriptorCmdletProvider
interface adds security descriptor functionality to a provider. This interface allows the
user to get and set security descriptor information for an item in the data store. The
following table lists the cmdlets exposed by this interface.

IDynamicPropertyCmdletProvider

ﾉ Expand table

ISecurityDescriptorCmdletProvider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IDynamicPropertyCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ISecurityDescriptorCmdletProvider


Cmdlet Definition

Get-

Acl

Retrieves the information contained in an access control list (ACL), which is part of a
security descriptor used to guard operating system resources, for example, a file or an
object.

Set-

Acl

Sets the information for an ACL. It is in the form of an instance of
System.Security.AccessControl.ObjectSecurity on the item(s) designated for the
specified path. This cmdlet can set information about files, keys, and subkeys in the
registry, or any other provider item, if the Windows PowerShell provider supports the
setting of security information.

Creating Windows PowerShell Providers

How Windows PowerShell Works

Windows PowerShell SDK

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Security.AccessControl.ObjectSecurity
https://learn.microsoft.com/en-us/previous-versions/ms714658(v=vs.85)


Creating a Basic Windows PowerShell
Provider
Article • 09/17/2021

This topic is the starting point for learning how to create a Windows PowerShell
provider. The basic provider described here provides methods for starting and stopping
the provider, and although this provider does not provide a means to access a data
store or to get or set the data in the data store, it does provide the basic functionality
that is required by all providers.

As mentioned previously, the basic provider described here implements methods for
starting and stopping the provider. The Windows PowerShell runtime calls these
methods to initialize and uninitialize the provider.

The first step in creating a Windows PowerShell provider is to define its .NET class. This
basic provider defines a class called AccessDBProvider  that derives from the
System.Management.Automation.Provider.CmdletProvider base class.

It is recommended that you place your provider classes in a Providers  namespace of
your API namespace, for example, xxx.PowerShell.Providers. This provider uses the
Microsoft.Samples.PowerShell.Provider  namespace, in which all Windows PowerShell
provider samples run.

Here is the class definition for this basic provider:

７ Note

You can find a sample of this provider in the AccessDBSampleProvider01.cs file
provided by Windows PowerShell.

Defining the Windows PowerShell Provider
Class

７ Note

The class for a Windows PowerShell provider must be explicitly marked as public.
Classes not marked as public will default to internal and will not be found by the
Windows PowerShell runtime.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider


C#

Right before the class definition, you must declare the
System.Management.Automation.Provider.CmdletProviderAttribute attribute, with the
syntax [CmdletProvider()].

You can set attribute keywords to further declare the class if necessary. Notice that the
System.Management.Automation.Provider.CmdletProviderAttribute attribute declared
here includes two parameters. The first attribute parameter specifies the default-friendly
name for the provider, which the user can modify later. The second parameter specifies
the Windows PowerShell-defined capabilities that the provider exposes to the Windows
PowerShell runtime during command processing. The possible values for the provider
capabilities are defined by the
System.Management.Automation.Provider.ProviderCapabilities enumeration. Because
this is a base provider, it supports no capabilities.

The System.Management.Automation.Provider.CmdletProvider base class and all derived
classes are considered stateless because the Windows PowerShell runtime creates
provider instances only as required. Therefore, if your provider requires full control and
state maintenance for provider-specific data, it must derive a class from the
System.Management.Automation.ProviderInfo class. Your derived class should define the
members necessary to maintain the state so that the provider-specific data can be
accessed when the Windows PowerShell runtime calls the
System.Management.Automation.Provider.CmdletProvider.Start* method to initialize the
provider.

A Windows PowerShell provider can also maintain connection-based state. For more
information about maintaining connection state, see Creating a PowerShell Drive
Provider.

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
public class AccessDBProvider : CmdletProvider

７ Note

The fully qualified name of the Windows PowerShell provider includes the assembly
name and other attributes determined by Windows PowerShell upon registration of
the provider.

Defining Provider-Specific State Information

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start


To initialize the provider, the Windows PowerShell runtime calls the
System.Management.Automation.Provider.CmdletProvider.Start* method when
Windows PowerShell is started. For the most part, your provider can use the default
implementation of this method, which simply returns the
System.Management.Automation.ProviderInfo object that describes your provider.
However, in the case where you want to add additional initialization information, you
should implement your own
System.Management.Automation.Provider.CmdletProvider.Start* method that returns a
modified version of the System.Management.Automation.ProviderInfo object that is
passed to your provider. In general, this method should return the provided
System.Management.Automation.ProviderInfo object passed to it or a modified
System.Management.Automation.ProviderInfo object that contains other initialization
information.

This basic provider does not override this method. However, the following code shows
the default implementation of this method:

The provider can maintain the state of provider-specific information as described in
Defining Provider-specific Data State. In this case, your implementation must override
the System.Management.Automation.Provider.CmdletProvider.Start* method to return
an instance of the derived class.

Your provider implementation of the
System.Management.Automation.Provider.CmdletProvider.Start* method might require
additional parameters. In this case, the provider should override the
System.Management.Automation.Provider.CmdletProvider.StartDynamicParameters*
method and return an object that has properties and fields with parsing attributes
similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object.

This basic provider does not override this method. However, the following code shows
the default implementation of this method:

To free resources that the Windows PowerShell provider uses, your provider should
implement its own System.Management.Automation.Provider.CmdletProvider.Stop*

Initializing the Provider

Start Dynamic Parameters

Uninitializing the Provider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.ProviderInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.StartDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Stop


method. This method is called by the Windows PowerShell runtime to uninitialize the
provider at the close of a session.

This basic provider does not override this method. However, the following code shows
the default implementation of this method:

For complete sample code, see AccessDbProviderSample01 Code Sample.

Once your Windows PowerShell provider has been registered with Windows PowerShell,
you can test it by running the supported cmdlets on the command line. For this basic
provider, run the new shell and use the Get-PSProvider  cmdlet to retrieve the list of
providers and ensure that the AccessDb provider is present.

PowerShell

The following output appears:

Output

Creating Windows PowerShell Providers

Designing Your Windows PowerShell Provider

Code Sample

Testing the Windows PowerShell Provider

Get-PSProvider

Name                 Capabilities                  Drives
----                 ------------                  ------
AccessDb             None                          {}
Alias                ShouldProcess                 {Alias}
Environment          ShouldProcess                 {Env}
FileSystem           Filter, ShouldProcess         {C, Z}
Function             ShouldProcess                 {function}
Registry             ShouldProcess                 {HKLM, HKCU}

See Also



Creating a Windows PowerShell Drive
Provider
Article • 03/24/2025

This topic describes how to create a Windows PowerShell drive provider that provides a
way to access a data store through a Windows PowerShell drive. This type of provider is
also referred to as Windows PowerShell drive providers. The Windows PowerShell drives
used by the provider provide the means to connect to the data store.

The Windows PowerShell drive provider described here provides access to a Microsoft
Access database. For this provider, the Windows PowerShell drive represents the
database (it is possible to add any number of drives to a drive provider), the top-level
containers of the drive represent the tables in the database, and the items of the
containers represent the rows in the tables.

Your drive provider must define a .NET class that derives from the
System.Management.Automation.Provider.DriveCmdletProvider base class. Here is the
class definition for this drive provider:

C#

Notice that in this example, the
System.Management.Automation.Provider.CmdletProviderAttribute attribute specifies a
user-friendly name for the provider and the Windows PowerShell specific capabilities
that the provider exposes to the Windows PowerShell runtime during command
processing. The possible values for the provider capabilities are defined by the
System.Management.Automation.Provider.ProviderCapabilities enumeration. This drive
provider does not support any of these capabilities.

As described in Design Your Windows PowerShell Provider, the
System.Management.Automation.Provider.DriveCmdletProvider class derives from the

Defining the Windows PowerShell Provider
Class

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
public class AccessDBProvider : DriveCmdletProvider

Defining Base Functionality

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider


System.Management.Automation.Provider.CmdletProvider base class that defines the
methods needed for initializing and uninitializing the provider. To implement
functionality for adding session-specific initialization information and for releasing
resources that are used by the provider, see Creating a Basic Windows PowerShell
Provider. However, most providers (including the provider described here) can use the
default implementation of this functionality that is provided by Windows PowerShell.

All Windows PowerShell providers are considered stateless, which means that your drive
provider needs to create any state information that is needed by the Windows
PowerShell runtime when it calls your provider.

For this drive provider, state information includes the connection to the database that is
kept as part of the drive information. Here is code that shows how this information is
stored in the System.Management.Automation.PSDriveinfo object that describes the
drive:

C#

Creating Drive State Information

internal class AccessDBPSDriveInfo : PSDriveInfo
{
    private OdbcConnection connection;

    /// <summary>
    /// ODBC connection information.
    /// </summary>
    public OdbcConnection Connection
    {
        get { return connection; }
        set { connection = value; }
    }

    /// <summary>
    /// Constructor that takes one argument
    /// </summary>
    /// <param name="driveInfo">Drive provided by this provider</param>
    public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
        : base(driveInfo)
    { }

} // class AccessDBPSDriveInfo

Creating a Drive

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSDriveInfo


To allow the Windows PowerShell runtime to create a drive, the drive provider must
implement the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* method. The
following code shows the implementation of the
System.Management.Automation.Provider.DriveCmdletProvider.NewDrive* method for
this drive provider:

C#

      protected override PSDriveInfo NewDrive(PSDriveInfo drive)
      {
          // check if drive object is null
          if (drive == null)
          {
              WriteError(new ErrorRecord(
                  new ArgumentNullException("drive"), 
                  "NullDrive",
                  ErrorCategory.InvalidArgument, 
                  null)
              );
           
              return null;
          }
       
          // check if drive root is not null or empty
          // and if its an existing file
          if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
          {
              WriteError(new ErrorRecord(
                  new ArgumentException("drive.Root"), 
                  "NoRoot",
                  ErrorCategory.InvalidArgument, 
                  drive)
              );

              return null;
          }

          // create a new drive and create an ODBC connection to the new 
drive
          AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

          OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

          builder.Driver = "Microsoft Access Driver (*.mdb)";
          builder.Add("DBQ", drive.Root);
         
          OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDrive


Your override of this method should do the following:

Verify that the System.Management.Automation.PSDriveinfo.Root* member exists
and that a connection to the data store can be made.

Create a drive and populate the connection member, in support of the New-
PSDrive  cmdlet.

Validate the System.Management.Automation.PSDriveinfo object for the proposed
drive.

Modify the System.Management.Automation.PSDriveinfo object that describes the
drive with any required performance or reliability information, or provide extra
data for callers using the drive.

Handle failures using the
System.Management.Automation.Provider.CmdletProvider.WriteError method and
then return null .

This method returns either the drive information that was passed to the method or
a provider-specific version of it.

The New-PSDrive  cmdlet supported by your drive provider might require additional
parameters. To attach these dynamic parameters to the cmdlet, the provider implements
the
System.Management.Automation.Provider.DriveCmdletProvider.NewDriveDynamicPara
meters* method. This method returns an object that has properties and fields with
parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object.

This drive provider does not override this method. However, the following code shows
the default implementation of this method:

          conn.Open();
          accessDBPSDriveInfo.Connection = conn;

          return accessDBPSDriveInfo;
      } // NewDrive

Attaching Dynamic Parameters to NewDrive

Removing a Drive

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSDriveInfo.Root
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSDriveInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSDriveInfo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDriveDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.NewDriveDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


To close the database connection, the drive provider must implement the
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* method.
This method closes the connection to the drive after cleaning up any provider-specific
information.

The following code shows the implementation of the
System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive* method
for this drive provider:

C#

If the drive can be removed, the method should return the information passed to the
method through the drive  parameter. If the drive cannot be removed, the method
should write an exception and then return null . If your provider does not override this
method, the default implementation of this method just returns the drive information
passed as input.

protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
{
    // check if drive object is null
    if (drive == null)
    {
        WriteError(new ErrorRecord(
            new ArgumentNullException("drive"), 
            "NullDrive",
            ErrorCategory.InvalidArgument, 
            drive)
        );

       return null;
    }

    // close ODBC connection to the drive
    AccessDBPSDriveInfo accessDBPSDriveInfo = drive as AccessDBPSDriveInfo;

    if (accessDBPSDriveInfo == null)
    {
        return null;
    }
    accessDBPSDriveInfo.Connection.Close();
  
    return accessDBPSDriveInfo;
} // RemoveDrive

Initializing Default Drives

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.RemoveDrive


Your drive provider implements the
System.Management.Automation.Provider.DriveCmdletProvider.InitializeDefaultDrives*
method to mount drives. For example, the Active Directory provider might mount a
drive for the default naming context if the computer is joined to a domain.

This method returns a collection of drive information about the initialized drives, or an
empty collection. The call to this method is made after the Windows PowerShell runtime
calls the System.Management.Automation.Provider.CmdletProvider.Start* method to
initialize the provider.

This drive provider does not override the
System.Management.Automation.Provider.DriveCmdletProvider.InitializeDefaultDrives*
method. However, the following code shows the default implementation, which returns
an empty drive collection:

All drive providers should mount a root drive to help the user with discoverability. The
root drive might list locations that serve as roots for other mounted drives. For example,
the Active Directory provider might create a drive that lists the naming contexts found in
the namingContext  attributes on the root Distributed System Environment (DSE). This
helps users discover mount points for other drives.

For complete sample code, see AccessDbProviderSample02 Code Sample.

When your Windows PowerShell provider has been registered with Windows PowerShell,
you can test it by running the supported cmdlets on the command line, including any
cmdlets made available by derivation. Let's test the sample drive provider.

1. Run the Get-PSProvider  cmdlet to retrieve the list of providers to ensure that the
AccessDB drive provider is present:

PS> Get-PSProvider

The following output appears:

Output

Things to Remember About Implementing InitializeDefaultDrives

Code Sample

Testing the Windows PowerShell Drive Provider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.InitializeDefaultDrives
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Start
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider.InitializeDefaultDrives


2. Ensure that a database server name (DSN) exists for the database by accessing the
Data Sources portion of the Administrative Tools for the operating system. In the
User DSN table, double-click MS Access Database and add the drive path
C:\ps\northwind.mdb .

3. Create a new drive using the sample drive provider:

PowerShell

The following output appears:

Output

4. Validate the connection. Because the connection is defined as a member of the
drive, you can check it using the Get-PDDrive cmdlet.

PS> (Get-PSDrive mydb).Connection

The following output appears:

Output

Name                 Capabilities                  Drives
----                 ------------                  ------
AccessDB             None                          {}
Alias                ShouldProcess                 {Alias}
Environment          ShouldProcess                 {Env}
FileSystem           Filter, ShouldProcess         {C, Z}
Function             ShouldProcess                 {function}
Registry             ShouldProcess                 {HKLM, HKCU}

New-PSDrive -Name mydb -Root C:\ps\northwind.mdb -PSProvider AccessDb`

Name     Provider     Root                   CurrentLocation
----     --------     ----                   ---------------
mydb     AccessDB     C:\ps\northwind.mdb

７ Note

The user cannot yet interact with the provider as a drive, as the provider
needs container functionality for that interaction. For more information, see
Creating a Windows PowerShell Container Provider.



5. Remove the drive and exit the shell:

PowerShell

Creating Windows PowerShell Providers

Design Your Windows PowerShell Provider

Creating a Basic Windows PowerShell Provider

ConnectionString  : Driver={Microsoft Access Driver 
(*.mdb)};DBQ=C:\ps\northwind.mdb
ConnectionTimeout : 15
Database          : C:\ps\northwind
DataSource        : ACCESS
ServerVersion     : 04.00.0000
Driver            : odbcjt32.dll
State             : Open
Site              :
Container         :

PS> Remove-PSDrive mydb
PS> exit

See Also



Creating a Windows PowerShell item
provider
Article • 05/12/2022

This topic describes how to create a Windows PowerShell provider that can manipulate
the data in a data store. In this topic, the elements of data in the store are referred to as
the "items" of the data store. As a consequence, a provider that can manipulate the data
in the store is referred to as a Windows PowerShell item provider.

The Windows PowerShell item provider described in this topic gets items of data from
an Access database. In this case, an "item" is either a table in the Access database or a
row in a table.

A Windows PowerShell item provider must define a .NET class that derives from the
System.Management.Automation.Provider.ItemCmdletProvider base class. The following
is the class definition for the item provider described in this section.

C#

Note that in this class definition, the
System.Management.Automation.Provider.CmdletProviderAttribute attribute includes
two parameters. The first parameter specifies a user-friendly name for the provider that

７ Note

You can download the C# source file ( AccessDBSampleProvider03.cs ) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the PowerShell Samples
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Defining the Windows PowerShell item
provider class

[CmdletProvider("AccessDB", ProviderCapabilities.None)]

public class AccessDBProvider : ItemCmdletProvider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


is used by Windows PowerShell. The second parameter specifies the Windows
PowerShell specific capabilities that the provider exposes to the Windows PowerShell
runtime during command processing. For this provider, there are no added Windows
PowerShell specific capabilities.

As described in Design Your Windows PowerShell Provider, the
System.Management.Automation.Provider.DriveCmdletProvider class derives from
several other classes that provided different provider functionality. A Windows
PowerShell item provider, therefore, must define all of the functionality provided by
those classes.

For more information about how to implement functionality for adding session-specific
initialization information and for releasing resources used by the provider, see Creating
a Basic Windows PowerShell Provider. However, most providers, including the provider
described here, can use the default implementation of this functionality that is provided
by Windows PowerShell.

Before the Windows PowerShell item provider can manipulate the items in the store, it
must implement the methods of the
System.Management.Automation.Provider.DriveCmdletProvider base class to access to
the data store. For more information about implementing this class, see Creating a
Windows PowerShell Drive Provider.

When looking for an item of data, the Windows PowerShell runtime furnishes a
Windows PowerShell path to the provider, as defined in the "PSPath Concepts" section
of How Windows PowerShell Works. A Windows PowerShell item provider must verify
the syntactic and semantic validity of any path passed to it by implementing the
System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath method. This
method returns true  if the path is valid, and false  otherwise. Be aware that the
implementation of this method should not verify the existence of the item at the path,
but only that the path is syntactically and semantically correct.

Here is the implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath method for
this provider. Note that this implementation calls a NormalizePath helper method to
convert all separators in the path to a uniform one.

Defining base functionality

Checking for path validity

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/previous-versions/ms714658(v=vs.85)
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.IsValidPath


C#

After verifying the path, the Windows PowerShell runtime must determine if an item of
data exists at that path. To support this type of query, the Windows PowerShell item
provider implements the
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists method. This
method returns true  an item is found at the specified path and false  (default)
otherwise.

Here is the implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists method for
this provider. Note that this method calls the PathIsDrive, ChunkPath, and GetTable
helper methods, and uses a provider defined DatabaseTableInfo object.

C#

protected override bool IsValidPath(string path)
{
    bool result = true;

    // check if the path is null or empty
    if (String.IsNullOrEmpty(path))
    {
        result = false;
    }

    // convert all separators in the path to a uniform one
    path = NormalizePath(path);

    // split the path into individual chunks
    string[] pathChunks = path.Split(pathSeparator.ToCharArray());

    foreach (string pathChunk in pathChunks)
    {
        if (pathChunk.Length == 0)
        {
            result = false;
        }
    }
    return result;
} // IsValidPath

Determining if an item exists

protected override bool ItemExists(string path)
{
    // check if the path represented is a drive
    if (PathIsDrive(path))

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists


The following conditions may apply to your implementation of
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists:

When defining the provider class, a Windows PowerShell item provider might
declare provider capabilities of ExpandWildcards , Filter , Include , or Exclude ,
from the System.Management.Automation.Provider.ProviderCapabilities
enumeration. In these cases, the implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists method
must ensure that the path passed to the method meets the requirements of the
specified capabilities. To do this, the method should access the appropriate
property, for example, the

    {
        return true;
    }

    // Obtain type, table name and row number from path
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

    DatabaseTableInfo table = GetTable(tableName);

    if (type == PathType.Table)
    {
        // if specified path represents a table then DatabaseTableInfo
        // object for the same should exist
        if (table != null)
        {
            return true;
        }
    }
    else if (type == PathType.Row)
    {
        // if specified path represents a row then DatabaseTableInfo should
        // exist for the table and then specified row number must be within
        // the maximum row count in the table
        if (table != null && rowNumber < table.RowCount)
        {
            return true;
        }
    }

    return false;

} // ItemExists

Things to remember about implementing ItemExists

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists


System.Management.Automation.Provider.CmdletProvider.Exclude and
System.Management.Automation.Provider.CmdletProvider.Include properties.
The implementation of this method should handle any form of access to the item
that might make the item visible to the user. For example, if a user has write access
to a file through the FileSystem provider (supplied by Windows PowerShell), but
not read access, the file still exists and
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists returns
true . Your implementation might require checking a parent item to see if the child
item can be enumerated.

Sometimes the Test-Path  cmdlet that calls
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists requires
additional parameters that are specified dynamically at runtime. To provide these
dynamic parameters the Windows PowerShell item provider must implement the
System.Management.Automation.Provider.ItemCmdletProvider.ItemExistsDynamicParam
eters method. This method retrieves the dynamic parameters for the item at the
indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Test-Path  cmdlet.

This Windows PowerShell item provider does not implement this method. However, the
following code is the default implementation of this method.

To retrieve an item, the Windows PowerShell item provider must override
System.Management.Automation.Provider.ItemCmdletProvider.GetItem method to
support calls from the Get-Item  cmdlet. This method writes the item using the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject method.

Here is the implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem method for this
provider. Note that this method uses the GetTable and GetRow helper methods to
retrieve items that are either tables in the Access database or rows in a data table.

Attaching dynamic parameters to the Test-Path
cmdlet

Retrieving an item

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExistsDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem


C#

The following conditions may apply to an implementation of
System.Management.Automation.Provider.ItemCmdletProvider.GetItem:

When defining the provider class, a Windows PowerShell item provider might
declare provider capabilities of ExpandWildcards , Filter , Include , or Exclude ,
from the System.Management.Automation.Provider.ProviderCapabilities
enumeration. In these cases, the implementation of
System.Management.Automation.Provider.ItemCmdletProvider.GetItem must
ensure that the path passed to the method meets those requirements. To do this,
the method should access the appropriate property, for example, the

protected override void GetItem(string path)
{
    // check if the path represented is a drive
    if (PathIsDrive(path))
    {
        WriteItemObject(this.PSDriveInfo, path, true);
        return;
    }// if (PathIsDrive...

     // Get table name and row information from the path and do 
     // necessary actions
     string tableName;
     int rowNumber;

     PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

     if (type == PathType.Table)
     {
         DatabaseTableInfo table = GetTable(tableName);
         WriteItemObject(table, path, true);
     }
     else if (type == PathType.Row)
     {
         DatabaseRowInfo row = GetRow(tableName, rowNumber);
         WriteItemObject(row, path, false);
     }
     else
     {
         ThrowTerminatingInvalidPathException(path);
     }

 } // GetItem

Things to remember about implementing GetItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem


System.Management.Automation.Provider.CmdletProvider.Exclude and
System.Management.Automation.Provider.CmdletProvider.Include properties.

By default, overrides of this method should not retrieve objects that are generally
hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force property is set to
true . For example, the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem method
for the FileSystem provider checks the
System.Management.Automation.Provider.CmdletProvider.Force property before it
attempts to call
System.Management.Automation.Provider.CmdletProvider.WriteItemObject for
hidden or system files.

Sometimes the Get-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters the Windows PowerShell
item provider must implement the
System.Management.Automation.Provider.ItemCmdletProvider.GetItemDynamicParamet
ers method. This method retrieves the dynamic parameters for the item at the indicated
path and returns an object that has properties and fields with parsing attributes similar
to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Get-Item  cmdlet.

This provider does not implement this method. However, the following code is the
default implementation of this method.

To set an item, the Windows PowerShell item provider must override the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem method to
support calls from the Set-Item  cmdlet. This method sets the value of the item at the
specified path.

This provider does not provide an override for the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem method.

Attaching dynamic parameters to the Get-Item
cmdlet

Setting an item

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem


However, the following is the default implementation of this method.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.ItemCmdletProvider.SetItem:

When defining the provider class, a Windows PowerShell item provider might
declare provider capabilities of ExpandWildcards , Filter , Include , or Exclude ,
from the System.Management.Automation.Provider.ProviderCapabilities
enumeration. In these cases, the implementation of
System.Management.Automation.Provider.ItemCmdletProvider.SetItem must
ensure that the path passed to the method meets those requirements. To do this,
the method should access the appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude and
System.Management.Automation.Provider.CmdletProvider.Include properties.

By default, overrides of this method should not set or write objects that are hidden
from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force property is set to
true . An error should be sent to the
System.Management.Automation.Provider.CmdletProvider.WriteError method if
the path represents a hidden item and
System.Management.Automation.Provider.CmdletProvider.Force is set to false .

Your implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem method
should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
verify its return value before making any changes to the data store. This method is
used to confirm execution of an operation when a change is made to the data
store, for example, deleting files. The
System.Management.Automation.Provider.CmdletProvider.ShouldProcess method
sends the name of the resource to be changed to the user, with the Windows
PowerShell runtime taking into account any command-line settings or preference
variables in determining what should be displayed.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns
true , the System.Management.Automation.Provider.ItemCmdletProvider.SetItem
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue

Things to remember about implementing SetItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue


method. This method sends a message to the user to allow feedback to verify if
the operation should be continued. The call to
System.Management.Automation.Provider.CmdletProvider.ShouldContinue allows
an additional check for potentially dangerous system modifications.

Sometimes the Set-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters the Windows PowerShell
item provider must implement the
System.Management.Automation.Provider.ItemCmdletProvider.SetItemDynamicParamet
ers method. This method retrieves the dynamic parameters for the item at the indicated
path and returns an object that has properties and fields with parsing attributes similar
to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Set-Item  cmdlet.

This provider does not implement this method. However, the following code is the
default implementation of this method.

To clear an item, the Windows PowerShell item provider implements the
System.Management.Automation.Provider.ItemCmdletProvider.ClearItem method to
support calls from the Clear-Item  cmdlet. This method erases the data item at the
specified path.

This provider does not implement this method. However, the following code is the
default implementation of this method.

The following conditions may apply to an implementation of
System.Management.Automation.Provider.ItemCmdletProvider.ClearItem:

When defining the provider class, a Windows PowerShell item provider might
declare provider capabilities of ExpandWildcards , Filter , Include , or Exclude ,
from the System.Management.Automation.Provider.ProviderCapabilities
enumeration. In these cases, the implementation of
System.Management.Automation.Provider.ItemCmdletProvider.ClearItem must

Retrieving dynamic parameters for SetItem

Clearing an item

Things to remember about implementing ClearItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItem


ensure that the path passed to the method meets those requirements. To do this,
the method should access the appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude and
System.Management.Automation.Provider.CmdletProvider.Include properties.

By default, overrides of this method should not set or write objects that are hidden
from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force property is set to
true . An error should be sent to the
System.Management.Automation.Provider.CmdletProvider.WriteError method if
the path represents an item that is hidden from the user and
System.Management.Automation.Provider.CmdletProvider.Force is set to false .

Your implementation of the
System.Management.Automation.Provider.ItemCmdletProvider.SetItem method
should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
verify its return value before making any changes to the data store. This method is
used to confirm execution of an operation when a change is made to the data
store, for example, deleting files. The
System.Management.Automation.Provider.CmdletProvider.ShouldProcess method
sends the name of the resource to be changed to the user, with the Windows
PowerShell runtime and handle any command-line settings or preference variables
in determining what should be displayed.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns
true , the System.Management.Automation.Provider.ItemCmdletProvider.SetItem
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method. This method sends a message to the user to allow feedback to verify if
the operation should be continued. The call to
System.Management.Automation.Provider.CmdletProvider.ShouldContinue allows
an additional check for potentially dangerous system modifications.

Sometimes the Clear-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters the Windows PowerShell
item provider must implement the
System.Management.Automation.Provider.ItemCmdletProvider.ClearItemDynamicParam

Retrieve dynamic parameters for ClearItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteError
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.SetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItemDynamicParameters


eters method. This method retrieves the dynamic parameters for the item at the
indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Clear-Item  cmdlet.

This item provider does not implement this method. However, the following code is the
default implementation of this method.

A Windows PowerShell item provider can implement the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
method to support calls from the Invoke-Item  cmdlet, which allows the provider to
perform a default action for the item at the specified path. For example, the FileSystem
provider might use this method to call ShellExecute for a specific item.

This provider does not implement this method. However, the following code is the
default implementation of this method.

The following conditions may apply to an implementation of
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction:

When defining the provider class, a Windows PowerShell item provider might
declare provider capabilities of ExpandWildcards , Filter , Include , or Exclude ,
from the System.Management.Automation.Provider.ProviderCapabilities
enumeration. In these cases, the implementation of
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultActio
n must ensure that the path passed to the method meets those requirements. To
do this, the method should access the appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude and
System.Management.Automation.Provider.CmdletProvider.Include properties.

By default, overrides of this method should not set or write objects hidden from
the user unless the
System.Management.Automation.Provider.CmdletProvider.Force property is set to
true . An error should be sent to the
System.Management.Automation.Provider.CmdletProvider.WriteError method if

Performing a default action for an item

Things to remember about implementing InvokeDefaultAction

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ClearItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultAction
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteError


the path represents an item that is hidden from the user and
System.Management.Automation.Provider.CmdletProvider.Force is set to false .

Sometimes the Invoke-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters the Windows PowerShell
item provider must implement the
System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultActionDyn
amicParameters method. This method retrieves the dynamic parameters for the item at
the indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the dynamic parameters
to the Invoke-Item  cmdlet.

This item provider does not implement this method. However, the following code is the
default implementation of this method.

This item provider implements several helper methods and classes that are used by the
public override methods defined by Windows PowerShell. The code for these helper
methods and classes are shown in the Code Sample section.

This item provider implements a NormalizePath helper method to ensure that the path
has a consistent format. The format specified uses a backslash ( \ ) as a separator.

This item provider implements a PathIsDrive helper method to determine if the
specified path is actually the drive name.

Retrieve dynamic parameters for
InvokeDefaultAction

Implementing helper methods and classes

NormalizePath method

PathIsDrive method

ChunkPath method

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.InvokeDefaultActionDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


This item provider implements a ChunkPath helper method that breaks up the specified
path so that the provider can identify its individual elements. It returns an array
composed of the path elements.

This item provider implements the GetTables helper method that returns a
DatabaseTableInfo object that represents information about the table specified in the
call.

The System.Management.Automation.Provider.ItemCmdletProvider.GetItem method of
this item provider calls the GetRows helper method. This helper method retrieves a
DatabaseRowInfo object that represents information about the specified row in the
table.

This item provider defines a DatabaseTableInfo class that represents a collection of
information in a data table in the database. This class is similar to the
System.IO.Directoryinfo class.

The sample item provider defines a DatabaseTableInfo.GetTables method that returns a
collection of table information objects defining the tables in the database. This method
includes a try/catch block to ensure that any database error shows up as a row with zero
entries.

This item provider defines the DatabaseRowInfo helper class that represents a row in a
table of the database. This class is similar to the System.IO.FileInfo class.

The sample provider defines a DatabaseRowInfo.GetRows method to return a collection
of row information objects for the specified table. This method includes a try/catch
block to trap exceptions. Any errors will result in no row information.

For complete sample code, see AccessDbProviderSample03 Code Sample.

GetTable method

GetRow method

DatabaseTableInfo class

DatabaseRowInfo class

Code sample

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.IO.DirectoryInfo
https://learn.microsoft.com/en-us/dotnet/api/System.IO.FileInfo


When writing a provider, it may be necessary to add members to existing objects or
define new objects. When finished, create a Types file that Windows PowerShell can use
to identify the members of the object and a Format file that defines how the object is
displayed. For more information, see Extending Object Types and Formatting.

See How to Register Cmdlets, Providers, and Host Applications.

When this Windows PowerShell item provider is registered with Windows PowerShell,
you can only test the basic and drive functionality of the provider. To test the
manipulation of items, you must also implement container functionality described in
Implementing a Container Windows PowerShell Provider.

Windows PowerShell SDK
Windows PowerShell Programmer's Guide
Creating Windows PowerShell Providers
Designing Your Windows PowerShell provider
Extending Object Types and Formatting
How Windows PowerShell Works
Creating a Container Windows PowerShell provider
Creating a Drive Windows PowerShell provider
How to Register Cmdlets, Providers, and Host Applications

Defining object types and formatting

Building the Windows PowerShell provider

Testing the Windows PowerShell provider

See also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fcreating-a-windows-powershell-item-provider%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fcreating-a-windows-powershell-item-provider.md&documentVersionIndependentId=ea6b498a-7da6-8c38-9b9a-6b009231b1b0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+88e761a5-f4e7-0aa5-c7af-e415ff0f3af4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


Creating a Windows PowerShell
Container Provider
Article • 03/24/2025

This topic describes how to create a Windows PowerShell provider that can work on
multi-layer data stores. For this type of data store, the top level of the store contains the
root items and each subsequent level is referred to as a node of child items. By allowing
the user to work on these child nodes, a user can interact hierarchically through the data
store.

Providers that can work on multi-level data stores are referred to as Windows
PowerShell container providers. However, be aware that a Windows PowerShell
container provider can be used only when there is one container (no nested containers)
with items in it. If there are nested containers, then you must implement a Windows
PowerShell navigation provider. For more information about implementing Windows
PowerShell navigation provider, see Creating a Windows PowerShell Navigation
Provider.

The Windows PowerShell container provider described here defines the database as its
single container, with the tables and rows of the database defined as items of the
container.

７ Note

You can download the C# source file (AccessDBSampleProvider04.cs) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the <PowerShell Samples>
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Ｕ Caution

Be aware that this design assumes a database that has a field with the name ID, and
that the type of the field is LongInteger.

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


A Windows PowerShell container provider must define a .NET class that derives from the
System.Management.Automation.Provider.ContainerCmdletProvider base class. Here is
the class definition for the Windows PowerShell container provider described in this
section.

C#

Notice that in this class definition, the
System.Management.Automation.Provider.CmdletProviderAttribute attribute includes
two parameters. The first parameter specifies a user-friendly name for the provider that
is used by Windows PowerShell. The second parameter specifies the Windows
PowerShell specific capabilities that the provider exposes to the Windows PowerShell
runtime during command processing. For this provider, there are no Windows
PowerShell specific capabilities that are added.

As described in Designing Your Windows PowerShell Provider, the
System.Management.Automation.Provider.ContainerCmdletProvider class derives from
several other classes that provided different provider functionality. A Windows
PowerShell container provider, therefore, needs to define all of the functionality
provided by those classes.

To implement functionality for adding session-specific initialization information and for
releasing resources that are used by the provider, see Creating a Basic Windows
PowerShell Provider. However, most providers (including the provider described here)
can use the default implementation of this functionality that is provided by Windows
PowerShell.

To get access to the data store, the provider must implement the methods of the
System.Management.Automation.Provider.DriveCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Drive Provider.

Defining a Windows PowerShell Container
Provider Class

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
public class AccessDBProvider : ContainerCmdletProvider

Defining Base Functionality

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider


To manipulate the items of a data store, such as getting, setting, and clearing items, the
provider must implement the methods provided by the
System.Management.Automation.Provider.ItemCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Item Provider.

To retrieve a child item, the Windows PowerShell container provider must override the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
method to support calls from the Get-ChildItem  cmdlet. This method retrieves child
items from the data store and writes them to the pipeline as objects. If the recurse
parameter of the cmdlet is specified, the method retrieves all children regardless of what
level they are at. If the recurse  parameter is not specified, the method retrieves only a
single level of children.

Here is the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
method for this provider. Notice that this method retrieves the child items in all
database tables when the path indicates the Access database, and retrieves the child
items from the rows of that table if the path indicates a data table.

C#

Retrieving Child Items

protected override void GetChildItems(string path, bool recurse)
{
    // If path represented is a drive then the children in the path are 
    // tables. Hence all tables in the drive represented will have to be
    // returned
    if (PathIsDrive(path))
    {
        foreach (DatabaseTableInfo table in GetTables())
        {
            WriteItemObject(table, path, true);

            // if the specified item exists and recurse has been set then 
            // all child items within it have to be obtained as well
            if (ItemExists(path) && recurse)
            {
                GetChildItems(path + pathSeparator + table.Name, recurse);
            }
        } // foreach (DatabaseTableInfo...
    } // if (PathIsDrive...
    else
    {
        // Get the table name, row number and type of path from the
        // path specified

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems


The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*:

When defining the provider class, a Windows PowerShell container provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

        string tableName;
        int rowNumber;

        PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

        if (type == PathType.Table)
        {
            // Obtain all the rows within the table
            foreach (DatabaseRowInfo row in GetRows(tableName))
            {
                WriteItemObject(row, path + pathSeparator + row.RowNumber,
                        false);
            } // foreach (DatabaseRowInfo...
        }
        else if (type == PathType.Row)
        {
            // In this case the user has directly specified a row, hence
            // just give that particular row
            DatabaseRowInfo row = GetRow(tableName, rowNumber);
            WriteItemObject(row, path + pathSeparator + row.RowNumber,
                        false);
        }
        else
        {
            // In this case, the path specified is not valid
            ThrowTerminatingInvalidPathException(path);
        }
    } // else
} // GetChildItems

Things to Remember About Implementing GetChildItems

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include


The implementation of this method should take into account any form of access to
the item that might make the item visible to the user. For example, if a user has
write access to a file through the FileSystem provider (supplied by Windows
PowerShell), but not read access, the file still exists and
System.Management.Automation.Provider.ItemCmdletProvider.ItemExists* returns
true . Your implementation might require the checking of a parent item to see if
the child can be enumerated.

When writing multiple items, the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method can take some time. You can design your provider to write the items
using the
System.Management.Automation.Provider.CmdletProvider.WriteItemObject*
method one at a time. Using this technique will present the items to the user in a
stream.

Your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* is responsible for preventing infinite recursion when there are circular links, and
the like. An appropriate terminating exception should be thrown to reflect such a
condition.

Sometimes the Get-ChildItem  cmdlet that calls
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*
requires additional parameters that are specified dynamically at runtime. To provide
these dynamic parameters, the Windows PowerShell container provider must implement
the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItemsDyna
micParameters* method. This method retrieves dynamic parameters for the item at the
indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Get-ChildItem  cmdlet.

This Windows PowerShell container provider does not implement this method. However,
the following code is the default implementation of this method.

Attaching Dynamic Parameters to the Get-
ChildItem Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.ItemExists
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WriteItemObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItemsDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItemsDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


To retrieve the names of child items, the Windows PowerShell container provider must
override the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames*
method to support calls from the Get-ChildItem  cmdlet when its Name  parameter is
specified. This method retrieves the names of the child items for the specified path or
child item names for all containers if the returnAllContainers  parameter of the cmdlet
is specified. A child name is the leaf portion of a path. For example, the child name for
the path C:\windows\system32\abc.dll is "abc.dll". The child name for the directory
C:\windows\system32 is "system32".

Here is the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames*
method for this provider. Notice that the method retrieves table names if the specified
path indicates the Access database (drive) and row numbers if the path indicates a table.

C#

Retrieving Child Item Names

protected override void GetChildNames(string path,
                              ReturnContainers returnContainers)
{
    // If the path represented is a drive, then the child items are
    // tables. get the names of all the tables in the drive.
    if (PathIsDrive(path))
    {
        foreach (DatabaseTableInfo table in GetTables())
        {
            WriteItemObject(table.Name, path, true);
        } // foreach (DatabaseTableInfo...
    } // if (PathIsDrive...
    else
    {
        // Get type, table name and row number from path specified
        string tableName;
        int rowNumber;

        PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

        if (type == PathType.Table)
        {
            // Get all the rows in the table and then write out the 
            // row numbers.
            foreach (DatabaseRowInfo row in GetRows(tableName))
            {
                WriteItemObject(row.RowNumber, path, false);
            } // foreach (DatabaseRowInfo...
        }

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames


The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems*:

When defining the provider class, a Windows PowerShell container provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve names of objects that are
generally hidden from the user unless the

        else if (type == PathType.Row)
        {
            // In this case the user has directly specified a row, hence
            // just give that particular row
            DatabaseRowInfo row = GetRow(tableName, rowNumber);

            WriteItemObject(row.RowNumber, path, false);
        }
        else
        {
            ThrowTerminatingInvalidPathException(path);
        }
    } // else
} // GetChildNames

Things to Remember About Implementing GetChildNames

７ Note

An exception to this rule occurs when the returnAllContainers  parameter of
the cmdlet is specified. In this case, the method should retrieve any child
name for a container, even if it does not match the values of the
System.Management.Automation.Provider.CmdletProvider.Filter*,
System.Management.Automation.Provider.CmdletProvider.Include*, or
System.Management.Automation.Provider.CmdletProvider.Exclude*
properties.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Filter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude


System.Management.Automation.Provider.CmdletProvider.Force* property is
specified. If the specified path indicates a container, the
System.Management.Automation.Provider.CmdletProvider.Force* property is not
required.

Your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildName
s* is responsible for preventing infinite recursion when there are circular links, and
the like. An appropriate terminating exception should be thrown to reflect such a
condition.

Sometimes the Get-ChildItem  cmdlet (with the Name  parameter) requires additional
parameters that are specified dynamically at runtime. To provide these dynamic
parameters, the Windows PowerShell container provider must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNamesDyn
amicParameters* method. This method retrieves the dynamic parameters for the item at
the indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Get-ChildItem  cmdlet.

This provider does not implement this method. However, the following code is the
default implementation of this method.

To rename an item, a Windows PowerShell container provider must override the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method to support calls from the Rename-Item  cmdlet. This method changes the name
of the item at the specified path to the new name provided. The new name must always
be relative to the parent item (container).

This provider does not override the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method. However, the following is the default implementation.

Attaching Dynamic Parameters to the Get-
ChildItem Cmdlet (Name)

Renaming Items

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNames
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNamesDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildNamesDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem


The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*:

When defining the provider class, a Windows PowerShell container provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

The
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method is intended for the modification of the name of an item only, and not for
move operations. Your implementation of the method should write an error if the
newName  parameter contains path separators, or might otherwise cause the item to
change its parent location.

By default, overrides of this method should not rename objects unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is
specified. If the specified path indicates a container, the
System.Management.Automation.Provider.CmdletProvider.Force* property is not
required.

Your implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
check its return value before making any changes to the data store. This method is
used to confirm execution of an operation when a change is made to system state,
for example, renaming files.
System.Management.Automation.Provider.CmdletProvider.ShouldProcess sends
the name of the resource to be changed to the user, with the Windows PowerShell
runtime taking into account any command line settings or preference variables in
determining what should be displayed.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns

Things to Remember About Implementing RenameItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess


true , the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method. This method sends a message a confirmation message to the user to
allow additional feedback to say if the operation should be continued. A provider
should call
System.Management.Automation.Provider.CmdletProvider.ShouldContinue as an
additional check for potentially dangerous system modifications.

Sometimes the Rename-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, Windows PowerShell
container provider must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.RenameItemDynam
icParameters* method. This method retrieves the parameters for the item at the
indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Rename-Item  cmdlet.

This container provider does not implement this method. However, the following code is
the default implementation of this method.

To create new items, a container provider must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem* method
to support calls from the New-Item  cmdlet. This method creates a data item located at
the specified path. The type  parameter of the cmdlet contains the provider-defined
type for the new item. For example, the FileSystem provider uses a type  parameter with
a value of "file" or "directory". The newItemValue  parameter of the cmdlet specifies a
provider-specific value for the new item.

Here is the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem* method
for this provider.

Attaching Dynamic Parameters to the Rename-
Item Cmdlet

Creating New Items

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RenameItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem


C#

C#

The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*:

The System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method should perform a case-insensitive comparison of the string passed in the
type  parameter. It should also allow for least ambiguous matches. For example, for
the types "file" and "directory", only the first letter is required to disambiguate. If

protected override void NewItem( string path, string type, object 
newItemValue )
{
    // Create the new item here after
    // performing necessary validations
    //
    // WriteItemObject(newItemValue, path, false);

    // Example
    //
    // if (ShouldProcess(path, "new item"))
    // {
    //      // Create a new item and then call WriteObject
    //      WriteObject(newItemValue, path, false);
    // }

} // NewItem

{
    case 1:
        {
            string name = pathChunks[0];

            if (TableNameIsValid(name))
            {
                tableName = name;
                retVal = PathType.Table;
            }
        }
        break;

    case 2:
        {
            string name = pathChunks[0];

Things to Remember About Implementing NewItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem


the type  parameter indicates a type your provider cannot create, the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method should write an ArgumentException with a message indicating the types
the provider can create.

For the newItemValue  parameter, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method is recommended to accept strings at a minimum. It should also accept the
type of object that is retrieved by the
System.Management.Automation.Provider.ItemCmdletProvider.GetItem* method
for the same path. The
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method can use the
System.Management.Automation.LanguagePrimitives.ConvertTo* method to
convert types to the desired type.

Your implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
check its return value before making any changes to the data store. After the call
to System.Management.Automation.Provider.CmdletProvider.ShouldProcess
returns true, the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method as an additional check for potentially dangerous system modifications.

Sometimes the New-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the container provider
must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.NewItemDynamicPa
rameters* method. This method retrieves the parameters for the item at the indicated
path and returns an object that has properties and fields with parsing attributes similar
to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The

Attaching Dynamic Parameters to the New-
Item Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider.GetItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.LanguagePrimitives.ConvertTo
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


Windows PowerShell runtime uses the returned object to add the parameters to the
New-Item  cmdlet.

This provider does not implement this method. However, the following code is the
default implementation of this method.

To remove items, the Windows PowerShell provider must override the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method to support calls from the Remove-Item  cmdlet. This method deletes an item
from the data store at the specified path. If the recurse  parameter of the Remove-Item
cmdlet is set to true , the method removes all child items regardless of their level. If the
parameter is set to false , the method removes only a single item at the specified path.

This provider does not support item removal. However, the following code is the default
implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.NewItem*:

When defining the provider class, a Windows PowerShell container provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not remove objects unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true. If the specified path indicates a container, the
System.Management.Automation.Provider.CmdletProvider.Force* property is not
required.

Removing Items

Things to Remember About Implementing RemoveItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.NewItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force


Your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
is responsible for preventing infinite recursion when there are circular links, and
the like. An appropriate terminating exception should be thrown to reflect such a
condition.

Your implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
check its return value before making any changes to the data store. After the call
to System.Management.Automation.Provider.CmdletProvider.ShouldProcess
returns true , the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method as an additional check for potentially dangerous system modifications.

Sometimes the Remove-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the container provider
must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynam
icParameters* method to handle these parameters. This method retrieves the dynamic
parameters for the item at the indicated path and returns an object that has properties
and fields with parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Remove-Item  cmdlet.

This container provider does not implement this method. However, the following code is
the default implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynam
icParameters*.

Attaching Dynamic Parameters to the Remove-
Item Cmdlet

Querying for Child Items

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.RemoveItemDynamicParameters


To check to see if child items exist at the specified path, the Windows PowerShell
container provider must override the
System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems*
method. This method returns true  if the item has children, and false  otherwise. For a
null or empty path, the method considers any items in the data store to be children and
returns true .

Here is the override for the
System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems*
method. If there are more than two path parts created by the ChunkPath helper method,
the method returns false , since only a database container and a table container are
defined. For more information about this helper method, see the ChunkPath method is
discussed in Creating a Windows PowerShell Item Provider.

C#

C#

The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems*:

If the container provider exposes a root that contains interesting mount points, the
implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems
* method should return true  when a null or an empty string is passed in for the
path.

protected override bool HasChildItems( string path )
{
    return false;
} // HasChildItems

        ErrorCategory.InvalidOperation, tableName));
}

return results;

Things to Remember About Implementing HasChildItems

Copying Items

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.HasChildItems


To copy items, the container provider must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem method
to support calls from the Copy-Item  cmdlet. This method copies a data item from the
location indicated by the path  parameter of the cmdlet to the location indicated by the
copyPath  parameter. If the recurse  parameter is specified, the method copies all sub-
containers. If the parameter is not specified, the method copies only a single level of
items.

This provider does not implement this method. However, the following code is the
default implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem:

When defining the provider class, a Windows PowerShell container provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
* method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not copy objects over existing objects
unless the System.Management.Automation.Provider.CmdletProvider.Force*
property is set to true . For example, the FileSystem provider will not copy
C:\temp\abc.txt over an existing C:\abc.txt file unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . If the path specified in the copyPath  parameter exists and indicates a
container, the System.Management.Automation.Provider.CmdletProvider.Force*
property is not required. In this case,
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
should copy the item indicated by the path  parameter to the container indicated
by the copyPath  parameter as a child.

Things to Remember About Implementing CopyItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.GetChildItems
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem


Your implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem is
responsible for preventing infinite recursion when there are circular links, and the
like. An appropriate terminating exception should be thrown to reflect such a
condition.

Your implementation of the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
check its return value before making any changes to the data store. After the call
to System.Management.Automation.Provider.CmdletProvider.ShouldProcess
returns true, the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method as an additional check for potentially dangerous system modifications. For
more information about calling these methods, see Rename Items.

Sometimes the Copy-Item  cmdlet requires additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the Windows PowerShell
container provider must implement the
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicP
arameters* method to handle these parameters. This method retrieves the parameters
for the item at the indicated path and returns an object that has properties and fields
with parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
Copy-Item  cmdlet.

This provider does not implement this method. However, the following code is the
default implementation of
System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicP
arameters*.

Attaching Dynamic Parameters to the Copy-
Item Cmdlet

Code Sample

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider.CopyItemDynamicParameters


For complete sample code, see AccessDbProviderSample04 Code Sample.

See How to Register Cmdlets, Providers, and Host Applications.

When your Windows PowerShell provider has been registered with Windows PowerShell,
you can test it by running the supported cmdlets on the command line. Be aware that
the following example output uses a fictitious Access database.

1. Run the Get-ChildItem  cmdlet to retrieve the list of child items from a Customers
table in the Access database.

PowerShell

The following output appears.

Output

2. Run the Get-ChildItem  cmdlet again to retrieve the data of a table.

PowerShell

The following output appears.

Output

Building the Windows PowerShell Provider

Testing the Windows PowerShell Provider

Get-ChildItem mydb:customers

PSPath        : AccessDB::customers
PSDrive       : mydb
PSProvider    : System.Management.Automation.ProviderInfo
PSIsContainer : True
Data          : System.Data.DataRow
Name          : Customers
RowCount      : 91
Columns       :

(Get-ChildItem mydb:customers).Data

TABLE_CAT   : C:\PS\northwind
TABLE_SCHEM :

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


3. Now use the Get-Item  cmdlet to retrieve the items at row 0 in the data table.

PowerShell

The following output appears.

Output

4. Reuse Get-Item  to retrieve the data for the items in row 0.

PowerShell

The following output appears.

Output

5. Now use the New-Item  cmdlet to add a row to an existing table. The Path
parameter specifies the full path to the row, and must indicate a row number that
is greater than the existing number of rows in the table. The Type  parameter

TABLE_NAME  : Customers
TABLE_TYPE  : TABLE
REMARKS     :

Get-Item mydb:\customers\0

PSPath        : AccessDB::customers\0
PSDrive       : mydb
PSProvider    : System.Management.Automation.ProviderInfo
PSIsContainer : False
Data          : System.Data.DataRow
RowNumber     : 0

(Get-Item mydb:\customers\0).Data

CustomerID   : 1234
CompanyName  : Fabrikam
ContactName  : Eric Gruber
ContactTitle : President
Address      : 4567 Main Street
City         : Buffalo
Region       : NY
PostalCode   : 98052
Country      : USA
Phone        : (425) 555-0100
Fax          : (425) 555-0101



indicates Row  to specify that type of item to add. Finally, the Value  parameter
specifies a comma-delimited list of column values for the row.

PowerShell

6. Verify the correctness of the new item operation as follows.

none

The following output appears.

Output

Creating Windows PowerShell Providers

Designing Your Windows PowerShell Provider

Implementing an Item Windows PowerShell Provider

Implementing a Navigation Windows PowerShell Provider

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell SDK

New-Item -Path mydb:\Customers\3 -ItemType "Row" -Value 
"3,CustomerFirstName,CustomerLastName,CustomerEmailAddress,CustomerTitl
e,CustomerCompany,CustomerPhone, 
CustomerAddress,CustomerCity,CustomerState,CustomerZip,CustomerCountry"

PS mydb:\> cd Customers
PS mydb:\Customers> (Get-Item 3).Data

ID        : 3
FirstName : Eric
LastName  : Gruber
Email     : ericgruber@fabrikam.com
Title     : President
Company   : Fabrikam
WorkPhone : (425) 555-0100
Address   : 4567 Main Street
City      : Buffalo
State     : NY
Zip       : 98052
Country   : USA

See Also

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Windows PowerShell Programmer's Guide



Creating a Windows PowerShell
Navigation Provider
Article • 03/24/2025

This topic describes how to create a Windows PowerShell navigation provider that can
navigate the data store. This type of provider supports recursive commands, nested
containers, and relative paths.

The provider described here enables the user handle an Access database as a drive so
that the user can navigate to the data tables in the database. When creating your own
navigation provider, you can implement methods that can make drive-qualified paths
required for navigation, normalize relative paths, move items of the data store, as well as
methods that get child names, get the parent path of an item, and test to identify if an
item is a container.

A Windows PowerShell navigation provider must create a .NET class that derives from
the System.Management.Automation.Provider.NavigationCmdletProvider base class.
Here is the class definition for the navigation provider described in this section.

C#

７ Note

You can download the C# source file (AccessDBSampleProvider05.cs) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the <PowerShell Samples>
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Ｕ Caution

Be aware that this design assumes a database that has a field with the name ID, and
that the type of the field is LongInteger.

Define the Windows PowerShell provider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


Note that in this provider, the
System.Management.Automation.Provider.CmdletProviderAttribute attribute includes
two parameters. The first parameter specifies a user-friendly name for the provider that
is used by Windows PowerShell. The second parameter specifies the Windows
PowerShell specific capabilities that the provider exposes to the Windows PowerShell
runtime during command processing. For this provider, there are no Windows
PowerShell specific capabilities that are added.

As described in Design Your PS Provider, the
System.Management.Automation.Provider.NavigationCmdletProvider base class derives
from several other classes that provided different provider functionality. A Windows
PowerShell navigation provider, therefore, must define all of the functionality provided
by those classes.

To implement functionality for adding session-specific initialization information and for
releasing resources that are used by the provider, see Creating a Basic PS Provider.
However, most providers (including the provider described here) can use the default
implementation of this functionality provided by Windows PowerShell.

To get access to the data store through a Windows PowerShell drive, you must
implement the methods of the
System.Management.Automation.Provider.DriveCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Drive Provider.

To manipulate the items of a data store, such as getting, setting, and clearing items, the
provider must implement the methods provided by the
System.Management.Automation.Provider.ItemCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Item Provider.

To get to the child items, or their names, of the data store, as well as methods that
create, copy, rename, and remove items, you must implement the methods provided by
the System.Management.Automation.Provider.ContainerCmdletProvider base class. For
more information about implementing these methods, see Creating a Windows
PowerShell Container Provider.

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
public class AccessDBProvider : NavigationCmdletProvider

Defining Base Functionality

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider


Windows PowerShell navigation provider use a provider-internal Windows PowerShell
path to navigate the items of the data store. To create a provider-internal path the
provider must implement the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*
method to supports calls from the Combine-Path cmdlet. This method combines a
parent and child path into a provider-internal path, using a provider-specific path
separator between the parent and child paths.

The default implementation takes paths with "/" or "\" as the path separator, normalizes
the path separator to "\", combines the parent and child path parts with the separator
between them, and then returns a string that contains the combined paths.

This navigation provider does not implement this method. However, the following code
is the default implementation of the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*
method.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*:

Your implementation of the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*
method should not validate the path as a legal fully-qualified path in the provider
namespace. Be aware that each parameter can only represent a part of a path, and
the combined parts might not generate a fully-qualified path. For example, the
System.Management.Automation.Provider.NavigationCmdletProvider.MakePath*
method for the FileSystem provider might receive "windows\system32" in the
parent  parameter and "abc.dll" in the child  parameter. The method joins these
values with the "\" separator and returns "windows\system32\abc.dll", which is not
a fully-qualified file system path.

Creating a Windows PowerShell Path

Things to Remember About Implementing MakePath

） Important

The path parts provided in the call to
System.Management.Automation.Provider.NavigationCmdletProvider.Make
Path* might contain characters not allowed in the provider namespace. These

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MakePath


Windows PowerShell navigation providers implement the
System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath*
method to retrieve the parent part of the indicated full or partial provider-specific path.
The method removes the child part of the path and returns the parent path part. The
root  parameter specifies the fully-qualified path to the root of a drive. This parameter
can be null or empty if a mounted drive is not in use for the retrieval operation. If a root
is specified, the method must return a path to a container in the same tree as the root.

The sample navigation provider does not override this method, but uses the default
implementation. It accepts paths that use both "/" and "\" as path separators. It first
normalizes the path to have only "\" separators, then splits the parent path off at the last
"\" and returns the parent path.

Your implementation of the
System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath*
method should split the path lexically on the path separator for the provider namespace.
For example, the FileSystem provider uses this method to look for the last "\" and
returns everything to the left of the separator.

Your navigation provider implements the
System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName*
method to retrieve the name (leaf element) of the child of the item located at the
indicated full or partial provider-specific path.

The sample navigation provider does not override this method. The default
implementation is shown below. It accepts paths that use both "/" and "\" as path
separators. It first normalizes the path to have only "\" separators, then splits the parent
path off at the last "\" and returns the name of the child path part.

characters are most likely used for wildcard expansion and the
implementation of this method should not remove them.

Retrieving the Parent Path

To Remember About Implementing GetParentPath

Retrieve the Child Path Name

Things to Remember About Implementing GetChildName

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetParentPath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName


Your implementation of the
System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName*
method should split the path lexically on the path separator. If the supplied path
contains no path separators, the method should return the path unmodified.

The navigation provider can implement the
System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer*
method to determine if the specified path indicates a container. It returns true if the
path represents a container, and false otherwise. The user needs this method to be able
to use the Test-Path  cmdlet for the supplied path.

The following code shows the
System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer*
implementation in our sample navigation provider. The method verifies that the
specified path is correct and if the table exists, and returns true if the path indicates a
container.

C#

） Important

The path provided in the call to this method might contain characters that are
illegal in the provider namespace. These characters are most likely used for
wildcard expansion or regular expression matching, and the implementation of this
method should not remove them.

Determining if an Item is a Container

protected override bool IsItemContainer(string path)
{
   if (PathIsDrive(path)) 
   { 
       return true; 
   }
   
   string[] pathChunks = ChunkPath(path);
   string tableName;
   int rowNumber;

   PathType type = GetNamesFromPath(path, out tableName, out rowNumber);
   
   if (type == PathType.Table)
   {
      foreach (DatabaseTableInfo ti in GetTables())
      {

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.GetChildName
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer


Your navigation provider .NET class might declare provider capabilities of
ExpandWildcards, Filter, Include, or Exclude, from the
System.Management.Automation.Provider.ProviderCapabilities enumeration. In this
case, the implementation of
System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer*
needs to ensure that the path passed meets requirements. To do this, the method
should access the appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* property.

In support of the Move-Item  cmdlet, your navigation provider implements the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method. This method moves the item specified by the path  parameter to the container
at the path supplied in the destination  parameter.

The sample navigation provider does not override the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method. The following is the default implementation.

Your navigation provider .NET class might declare provider capabilities of
ExpandWildcards, Filter, Include, or Exclude, from the
System.Management.Automation.Provider.ProviderCapabilities enumeration. In this
case, the implementation of
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem* must
ensure that the path passed meets requirements. To do this, the method should access
the appropriate property, for example, the CmdletProvider.Exclude property.

          if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
          {
              return true;
          }
      } // foreach (DatabaseTableInfo...
   } // if (pathChunks...

   return false;
} // IsItemContainer

Things to Remember About Implementing IsItemContainer

Moving an Item

Things to Remember About Implementing MoveItem

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.IsItemContainer
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem


By default, overrides of this method should not move objects over existing objects
unless the System.Management.Automation.Provider.CmdletProvider.Force* property is
set to true . For example, the FileSystem provider will not copy C:\temp\abc.txt over an
existing C:\bar.txt file unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . If the path specified in the destination  parameter exists and is a container, the
System.Management.Automation.Provider.CmdletProvider.Force* property is not
required. In this case,
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem* should
move the item indicated by the path  parameter to the container indicated by the

destination  parameter as a child.

Your implementation of the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and check its
return value before making any changes to the data store. This method is used to
confirm execution of an operation when a change is made to system state, for example,
deleting files. System.Management.Automation.Provider.CmdletProvider.ShouldProcess
sends the name of the resource to be changed to the user, with the Windows
PowerShell runtime taking into account any command line settings or preference
variables in determining what should be displayed to the user.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns true ,
the System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue method. This
method sends a message to the user to allow feedback to say if the operation should be
continued. Your provider should call
System.Management.Automation.Provider.CmdletProvider.ShouldContinue as an
additional check for potentially dangerous system modifications.

Sometimes the Move-Item  cmdlet requires additional parameters that are provided
dynamically at runtime. To provide these dynamic parameters, the navigation provider
must implement the
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamic

Attaching Dynamic Parameters to the Move-
Item Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItem
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamicParameters


Parameters* method to get the required parameter values from the item at the
indicated path, and return an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object.

This navigation provider does not implement this method. However, the following code
is the default implementation of
System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamic
Parameters*.

Your navigation provider implements the
System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelative
Path* method to normalize the fully-qualified path indicated in the path  parameter as
being relative to the path specified by the basePath  parameter. The method returns a
string representation of the normalized path. It writes an error if the path  parameter
specifies a nonexistent path.

The sample navigation provider does not override this method. The following is the
default implementation.

Your implementation of
System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelative
Path* should parse the path  parameter, but it does not have to use purely syntactical
parsing. You are encouraged to design this method to use the path to look up the path
information in the data store and create a path that matches the casing and
standardized path syntax.

For complete sample code, see AccessDbProviderSample05 Code Sample.

It is possible for a provider to add members to existing objects or define new objects.
For more information, seeExtending Object Types and Formatting.

Normalizing a Relative Path

Things to Remember About Implementing NormalizeRelativePath

Code Sample

Defining Object Types and Formatting

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.MoveItemDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider.NormalizeRelativePath
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)


For more information, see How to Register Cmdlets, Providers, and Host Applications.

When your Windows PowerShell provider has been registered with Windows PowerShell,
you can test it by running the supported cmdlets on the command line, including
cmdlets made available by derivation. This example will test the sample navigation
provider.

1. Run your new shell and use the Set-Location  cmdlet to set the path to indicate
the Access database.

PowerShell

2. Now run the Get-ChildItem  cmdlet to retrieve a list of the database items, which
are the available database tables. For each table, this cmdlet also retrieves the
number of table rows.

PowerShell

Output

Building the Windows PowerShell provider

Testing the Windows PowerShell provider

Set-Location mydb:

Get-ChildItem | Format-Table RowCount, Name -AutoSize

RowCount   Name
--------   ----
     180   MSysAccessObjects
       0   MSysACEs
       1   MSysCmdbars
       0   MSysIMEXColumns
       0   MSysIMEXSpecs
       0   MSysObjects
       0   MSysQueries
       7   MSysRelationships
       8   Categories
      91   Customers
       9   Employees
    2155   Order Details
     830   Orders
      77   Products

https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


3. Use the Set-Location  cmdlet again to set the location of the Employees data table.

PowerShell

4. Let's now use the Get-Location  cmdlet to retrieve the path to the Employees table.

PowerShell

Output

5. Now use the Get-ChildItem  cmdlet piped to the Format-Table  cmdlet. This set of
cmdlets retrieves the items for the Employees data table, which are the table rows.
They are formatted as specified by the Format-Table  cmdlet.

PowerShell

Output

6. You can now run the Get-Item  cmdlet to retrieve the items for row 0 of the
Employees data table.

       3   Shippers
      29   Suppliers

Set-Location Employees

Get-Location

Path
----
mydb:\Employees

Get-ChildItem | Format-Table RowNumber, PSIsContainer, Data -AutoSize

RowNumber   PSIsContainer   Data
---------   --------------   ----
0           False            System.Data.DataRow
1           False            System.Data.DataRow
2           False            System.Data.DataRow
3           False            System.Data.DataRow
4           False            System.Data.DataRow
5           False            System.Data.DataRow
6           False            System.Data.DataRow
7           False            System.Data.DataRow
8           False            System.Data.DataRow



PowerShell

Output

7. Use the Get-Item  cmdlet again to retrieve the employee data for the items in row
0.

PowerShell

Output

Get-Item 0

PSPath        : AccessDB::C:\PS\Northwind.mdb\Employees\0
PSParentPath  : AccessDB::C:\PS\Northwind.mdb\Employees
PSChildName   : 0
PSDrive       : mydb
PSProvider    : System.Management.Automation.ProviderInfo
PSIsContainer : False
Data           : System.Data.DataRow
RowNumber      : 0

(Get-Item 0).Data

EmployeeID      : 1
LastName        : Davis
FirstName       : Sara
Title           : Sales Representative
TitleOfCourtesy : Ms.
BirthDate       : 12/8/1968 12:00:00 AM
HireDate        : 5/1/1992 12:00:00 AM
Address         : 4567 Main Street
                  Apt. 2A
City            : Buffalo
Region          : NY
PostalCode      : 98052
Country         : USA
HomePhone       : (206) 555-9857
Extension       : 5467
Photo           : EmpID1.bmp
Notes           : Education includes a BA in psychology from
                  Colorado State University. She also completed "The
                  Art of the Cold Call."  Nancy is a member of
                  Toastmasters International.
ReportsTo       : 2

See Also



Creating Windows PowerShell providers

Design Your Windows PowerShell provider

Extending Object Types and Formatting

Implement a Container Windows PowerShell provider

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Creating a Windows PowerShell Content
Provider
Article • 03/24/2025

This topic describes how to create a Windows PowerShell provider that enables the user
to manipulate the contents of the items in a data store. As a consequence, a provider
that can manipulate the contents of items is referred to as a Windows PowerShell
content provider.

A Windows PowerShell content provider must create a .NET class that supports the
System.Management.Automation.Provider.IContentCmdletProvider interface. Here is the
class definition for the item provider described in this section.

C#

Note that in this class definition, the
System.Management.Automation.Provider.CmdletProviderAttribute attribute includes
two parameters. The first parameter specifies a user-friendly name for the provider that
is used by Windows PowerShell. The second parameter specifies the Windows
PowerShell specific capabilities that the provider exposes to the Windows PowerShell

７ Note

You can download the C# source file (AccessDBSampleProvider06.cs) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the <PowerShell Samples>
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Define the Windows PowerShell Content
Provider Class

[CmdletProvider("AccessDB", ProviderCapabilities.None)]
public class AccessDBProvider : NavigationCmdletProvider, 
IContentCmdletProvider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProviderAttribute
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


runtime during command processing. For this provider, there are no added Windows
PowerShell specific capabilities.

As described in Design Your Windows PowerShell Provider, the
System.Management.Automation.Provider.NavigationCmdletProvider class derives from
several other classes that provided different provider functionality. A Windows
PowerShell content provider, therefore, typically defines all of the functionality provided
by those classes.

For more information about how to implement functionality for adding session-specific
initialization information and for releasing resources that are used by the provider, see
Creating a Basic Windows PowerShell Provider. However, most providers, including the
provider described here, can use the default implementation of this functionality that is
provided by Windows PowerShell.

To access the data store, the provider must implement the methods of the
System.Management.Automation.Provider.DriveCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Drive Provider.

To manipulate the items of a data store, such as getting, setting, and clearing items, the
provider must implement the methods provided by the
System.Management.Automation.Provider.ItemCmdletProvider base class. For more
information about implementing these methods, see Creating a Windows PowerShell
Item Provider.

To work on multi-layer data stores, the provider must implement the methods provided
by the System.Management.Automation.Provider.ContainerCmdletProvider base class.
For more information about implementing these methods, see Creating a Windows
PowerShell Container Provider.

To support recursive commands, nested containers, and relative paths, the provider
must implement the
System.Management.Automation.Provider.NavigationCmdletProvider base class. In
addition, this Windows PowerShell content provider can attaches
System.Management.Automation.Provider.IContentCmdletProvider interface to the
System.Management.Automation.Provider.NavigationCmdletProvider base class, and
must therefore implement the methods provided by that class. For more information,
see implementing those methods, see Implement a Navigation Windows PowerShell
Provider.

Define Functionality of Base Class

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ItemCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ContainerCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.NavigationCmdletProvider


To read content from an item, a provider must implements a content reader class that
derives from System.Management.Automation.Provider.IContentReader. The content
reader for this provider allows access to the contents of a row in a data table. The
content reader class defines a Read method that retrieves the data from the indicated
row and returns a list representing that data, a Seek method that moves the content
reader, a Close method that closes the content reader, and a Dispose method.

C#

Implementing a Content Reader

public class AccessDBContentReader : IContentReader
{
    // A provider instance is required so as to get "content"
    private AccessDBProvider provider;
    private string path;
    private long currentOffset;

    internal AccessDBContentReader(string path, AccessDBProvider provider)
    {
        this.path = path;
        this.provider = provider;
    }

    /// <summary>
    /// Read the specified number of rows from the source.
    /// </summary>
    /// <param name="readCount">The number of items to 
    /// return.</param>
    /// <returns>An array of elements read.</returns>
    public IList Read(long readCount)
    {
        // Read the number of rows specified by readCount and increment
        // offset
        string tableName;
        int rowNumber;
        PathType type = provider.GetNamesFromPath(path, out tableName, out 
rowNumber);

        Collection<DatabaseRowInfo> rows =
            provider.GetRows(tableName);
        Collection<DataRow> results = new Collection<DataRow>();

        if (currentOffset < 0 || currentOffset >= rows.Count)
        {
            return null;
        }

        int rowsRead = 0;

        while (rowsRead < readCount && currentOffset < rows.Count)

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentReader


        {
            results.Add(rows[(int)currentOffset].Data);
            rowsRead++;
            currentOffset++;
        }

        return results;
    } // Read

    /// <summary>
    /// Moves the content reader specified number of rows from the 
    /// origin
    /// </summary>
    /// <param name="offset">Number of rows to offset</param>
    /// <param name="origin">Starting row from which to offset</param>
    public void Seek(long offset, System.IO.SeekOrigin origin)
    {
        // get the number of rows in the table which will help in
        // calculating current position
        string tableName;
        int rowNumber;

        PathType type = provider.GetNamesFromPath(path, out tableName, out 
rowNumber);

        if (type == PathType.Invalid)
        {
            throw new ArgumentException("Path specified must represent a 
table or a row :" + path);
        }

        if (type == PathType.Table)
        {
            Collection<DatabaseRowInfo> rows = provider.GetRows(tableName);

            int numRows = rows.Count;

            if (offset > rows.Count)
            {
                throw new
                       ArgumentException(
                           "Offset cannot be greater than the number of rows 
available"
                                        );
            }

            if (origin == System.IO.SeekOrigin.Begin)
            {
                // starting from Beginning with an index 0, the current 
offset
                // has to be advanced to offset - 1
                currentOffset = offset - 1;
            }
            else if (origin == System.IO.SeekOrigin.End)
            {



To write content to an item, a provider must implement a content writer class derives
from System.Management.Automation.Provider.IContentWriter. The content writer class
defines a Write method that writes the specified row content, a Seek method that
moves the content writer, a Close method that closes the content writer, and a Dispose
method.

C#

                // starting from the end which is numRows - 1, the current
                // offset is so much less than numRows - 1
                currentOffset = numRows - 1 - offset;
            }
            else
            {
                // calculate from the previous value of current offset
                // advancing forward always
                currentOffset += offset;
            }
        } // if (type...
        else
        {
            // for row, the offset will always be set to 0
            currentOffset = 0;
        }

    } // Seek

    /// <summary>
    /// Closes the content reader, so all members are reset
    /// </summary>
    public void Close()
    {
        Dispose();
    } // Close

    /// <summary>
    /// Dispose any resources being used
    /// </summary>
    public void Dispose()
    {
        Seek(0, System.IO.SeekOrigin.Begin);
        
        GC.SuppressFinalize(this);
    } // Dispose
} // AccessDBContentReader

Implementing a Content Writer

public class AccessDBContentWriter : IContentWriter
{

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentWriter


    // A provider instance is required so as to get "content"
    private AccessDBProvider provider;
    private string path;
    private long currentOffset;

    internal AccessDBContentWriter(string path, AccessDBProvider provider)
    {
        this.path = path;
        this.provider = provider;
    }

    /// <summary>
    /// Write the specified row contents in the source
    /// </summary>
    /// <param name="content"> The contents to be written to the source.
    /// </param>
    /// <returns>An array of elements which were successfully written to 
    /// the source</returns>
    /// 
    public IList Write(IList content)
    {
        if (content == null)
        {
            return null;
        }

        // Get the total number of rows currently available it will 
        // determine how much to overwrite and how much to append at
        // the end
        string tableName;
        int rowNumber;
        PathType type = provider.GetNamesFromPath(path, out tableName, out 
rowNumber);

        if (type == PathType.Table)
        {
            OdbcDataAdapter da = provider.GetAdapterForTable(tableName);
            if (da == null)
            {
                return null;
            }

            DataSet ds = provider.GetDataSetForTable(da, tableName);
            DataTable table = provider.GetDataTable(ds, tableName);

            string[] colValues = (content[0] as string).Split(',');

            // set the specified row
            DataRow row = table.NewRow();

            for (int i = 0; i < colValues.Length; i++)
            {
                if (!String.IsNullOrEmpty(colValues[i]))
                {
                    row[i] = colValues[i];



                }
            }

            //table.Rows.InsertAt(row, rowNumber);
            // Update the table
            table.Rows.Add(row);
            da.Update(ds, tableName);
            
        }
        else 
        {
            throw new InvalidOperationException("Operation not supported. 
Content can be added only for tables");
        }

        return null;
    } // Write

    /// <summary>
    /// Moves the content reader specified number of rows from the 
    /// origin
    /// </summary>
    /// <param name="offset">Number of rows to offset</param>
    /// <param name="origin">Starting row from which to offset</param>
    public void Seek(long offset, System.IO.SeekOrigin origin)
    {
        // get the number of rows in the table which will help in
        // calculating current position
        string tableName;
        int rowNumber;

        PathType type = provider.GetNamesFromPath(path, out tableName, out 
rowNumber);

        if (type == PathType.Invalid)
        {
            throw new ArgumentException("Path specified should represent 
either a table or a row : " + path);
        }

        Collection<DatabaseRowInfo> rows =
               provider.GetRows(tableName);

        int numRows = rows.Count;

        if (offset > rows.Count)
        {
            throw new
                   ArgumentException(
                       "Offset cannot be greater than the number of rows 
available"
                                           );
        }

        if (origin == System.IO.SeekOrigin.Begin)



To get content from an item, the provider must implement the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader*
to support the Get-Content  cmdlet. This method returns the content reader for the item
located at the specified path. The reader object can then be opened to read the content.

Here is the implementation of
System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader*
for this method for this provider.

        {
            // starting from Beginning with an index 0, the current offset
            // has to be advanced to offset - 1
            currentOffset = offset - 1;
        }
        else if (origin == System.IO.SeekOrigin.End)
        {
            // starting from the end which is numRows - 1, the current
            // offset is so much less than numRows - 1
            currentOffset = numRows - 1 - offset;
        }
        else
        {
            // calculate from the previous value of current offset
            // advancing forward always
            currentOffset += offset;
        }

    } // Seek

    /// <summary>
    /// Closes the content reader, so all members are reset
    /// </summary>
    public void Close()
    {
        Dispose();
    } // Close

    /// <summary>
    /// Dispose any resources being used
    /// </summary>
    public void Dispose()
    {
        Seek(0, System.IO.SeekOrigin.Begin);

        GC.SuppressFinalize(this);
    } // Dispose
} // AccessDBContentWriter

Retrieving the Content Reader

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader


C#

C#

The following conditions may apply to an implementation of
System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader*:

public IContentReader GetContentReader(string path)
{
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

    if (type == PathType.Invalid)
    {
        ThrowTerminatingInvalidPathException(path);
    }
    else if (type == PathType.Row)
    {
        throw new InvalidOperationException("contents can be obtained only 
for tables");
    }

    return new AccessDBContentReader(path, this);
} // GetContentReader

public IContentReader GetContentReader(string path)
{
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

    if (type == PathType.Invalid)
    {
        ThrowTerminatingInvalidPathException(path);
    }
    else if (type == PathType.Row)
    {
        throw new InvalidOperationException("contents can be obtained only 
for tables");
    }

    return new AccessDBContentReader(path, this);
} // GetContentReader

Things to Remember About Implementing GetContentReader

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader


When defining the provider class, a Windows PowerShell content provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentRea
der* method must ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve a reader for objects that
are hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

The Get-Content  cmdlet might require additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the Windows PowerShell
content provider must implement the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentReaderdy
namicparameters* method. This method retrieves dynamic parameters for the item at
the indicated path and returns an object that has properties and fields with parsing
attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
cmdlet.

This Windows PowerShell container provider does not implement this method. However,
the following code is the default implementation of this method.

C#

Attaching Dynamic Parameters to the Get-
Content Cmdlet

public object GetContentReaderDynamicParameters(string path)
{
    return null;
}

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReader
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReaderDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentReaderDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


C#

To write content to an item, the provider must implement the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter*
to support the Set-Content  and Add-Content  cmdlets. This method returns the content
writer for the item located at the specified path.

Here is the implementation of
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter*
for this method.

C#

C#

public object GetContentReaderDynamicParameters(string path)
{
    return null;
}

Retrieving the Content Writer

public IContentWriter GetContentWriter(string path)
{
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

    if (type == PathType.Invalid)
    {
        ThrowTerminatingInvalidPathException(path);
    }
    else if (type == PathType.Row)
    {
        throw new InvalidOperationException("contents can be added only to 
tables");
    }

    return new AccessDBContentWriter(path, this);
}

public IContentWriter GetContentWriter(string path)
{
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter


The following conditions may apply to your implementation of
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter*:

When defining the provider class, a Windows PowerShell content provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IContentCmdletProvider.GetContentWrit
er* method must ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve a writer for objects that are
hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

The Add-Content  and Set-Content  cmdlets might require additional dynamic parameters
that are added a runtime. To provide these dynamic parameters, the Windows
PowerShell content provider must implement the

    if (type == PathType.Invalid)
    {
        ThrowTerminatingInvalidPathException(path);
    }
    else if (type == PathType.Row)
    {
        throw new InvalidOperationException("contents can be added only to 
tables");
    }

    return new AccessDBContentWriter(path, this);
}

Things to Remember About Implementing GetContentWriter

Attaching Dynamic Parameters to the Add-
Content and Set-Content Cmdlets

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force


System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriterDy
namicParameters* method to handle these parameters. This method retrieves dynamic
parameters for the item at the indicated path and returns an object that has properties
and fields with parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
cmdlets.

This Windows PowerShell container provider does not implement this method. However,
the following code is the default implementation of this method.

C#

Your content provider implements the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method in support of the Clear-Content  cmdlet. This method removes the contents of
the item at the specified path, but leaves the item intact.

Here is the implementation of the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method for this provider.

C#

public object GetContentWriterDynamicParameters(string path)
{
    return null;
}

Clearing Content

public void ClearContent(string path)
{
    string tableName;
    int rowNumber;

    PathType type = GetNamesFromPath(path, out tableName, out rowNumber);

    if (type != PathType.Table)
    {
        WriteError(new ErrorRecord(
            new InvalidOperationException("Operation not supported. Content 
can be cleared only for table"),
                "NotValidRow", ErrorCategory.InvalidArgument,
                    path));
        return;

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriterDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.GetContentWriterDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent


The following conditions may apply to an implementation of
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*:

When defining the provider class, a Windows PowerShell content provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method must ensure that the path passed to the method meets the requirements
of the specified capabilities. To do this, the method should access the appropriate
property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not clear the contents of objects that
are hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

    }

    OdbcDataAdapter da = GetAdapterForTable(tableName);

    if (da == null)
    {
        return;
    }

    DataSet ds = GetDataSetForTable(da, tableName);
    DataTable table = GetDataTable(ds, tableName);

    // Clear contents at the specified location
    for (int i = 0; i < table.Rows.Count; i++)
    {
        table.Rows[i].Delete();
    }

    if (ShouldProcess(path, "ClearContent"))
    {
        da.Update(ds, tableName);
    }

} // ClearContent

Things to Remember About Implementing ClearContent

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force


Your implementation of the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
verify its return value before making any changes to the data store. This method is
used to confirm execution of an operation when a change is made to the data
store, such as clearing content. The
System.Management.Automation.Provider.CmdletProvider.ShouldProcess method
sends the name of the resource to be changed to the user, with the Windows
PowerShell runtime handling any command-line settings or preference variables in
determining what should be displayed.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns
true , the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContent*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method. This method sends a message to the user to allow feedback to verify if
the operation should be continued. The call to
System.Management.Automation.Provider.CmdletProvider.ShouldContinue allows
an additional check for potentially dangerous system modifications.

The Clear-Content  cmdlet might require additional dynamic parameters that are added
at runtime. To provide these dynamic parameters, the Windows PowerShell content
provider must implement the
System.Management.Automation.Provider.IContentCmdletProvider.ClearContentDynami
cParameters* method to handle these parameters. This method retrieves the parameters
for the item at the indicated path. This method retrieves dynamic parameters for the
item at the indicated path and returns an object that has properties and fields with
parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
cmdlet.

This Windows PowerShell container provider does not implement this method. However,
the following code is the default implementation of this method.

Attaching Dynamic Parameters to the Clear-
Content Cmdlet

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContent
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContentDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IContentCmdletProvider.ClearContentDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary


C#

C#

For complete sample code, see AccessDbProviderSample06 Code Sample.

When writing a provider, it may be necessary to add members to existing objects or
define new objects. When this is done, you must create a Types file that Windows
PowerShell can use to identify the members of the object and a Format file that defines
how the object is displayed. For more information, see Extending Object Types and
Formatting.

See How to Register Cmdlets, Providers, and Host Applications.

When your Windows PowerShell provider has been registered with Windows PowerShell,
you can test it by running the supported cmdlets on the command line. For example,
test the sample content provider.

Use the Get-Content  cmdlet to retrieve the contents of specified item in the database
table at the path specified by the Path  parameter. The ReadCount  parameter specifies
the number of items for the defined content reader to read (default 1). With the
following command entry, the cmdlet retrieves two rows (items) from the table and

public object ClearContentDynamicParameters(string path)
{
    return null;
}

public object ClearContentDynamicParameters(string path)
{
    return null;
}

Code Sample

Defining Object Types and Formatting

Building the Windows PowerShell Provider

Testing the Windows PowerShell Provider

https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


displays their contents. Note that the following example output uses a fictitious Access
database.

PowerShell

Output

Creating Windows PowerShell providers

Design Your Windows PowerShell provider

Extending Object Types and Formatting

Implement a Navigation Windows PowerShell provider

How to Register Cmdlets, Providers, and Host Applications

Windows PowerShell SDK

Get-Content -Path mydb:\Customers -ReadCount 2

ID        : 1
FirstName : Eric
LastName  : Gruber
Email     : ericgruber@fabrikam.com
Title     : President
Company   : Fabrikam
WorkPhone : (425) 555-0100
Address   : 4567 Main Street
City      : Buffalo
State     : NY
Zip       : 98052
Country   : USA
ID        : 2
FirstName : Eva
LastName  : Corets
Email     : evacorets@cohowinery.com
Title     : Sales Representative
Company   : Coho Winery
WorkPhone : (360) 555-0100
Address   : 8910 Main Street
City      : Cabmerlot
State     : WA
Zip       : 98089
Country   : USA

See Also

https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ms714644(v=vs.85)


Windows PowerShell Programmer's Guide



Creating a Windows PowerShell
Property Provider
Article • 03/24/2025

This topic describes how to create a provider that enables the user to manipulate the
properties of items in a data store. As a consequence, this type of provider is referred to
as a Windows PowerShell property provider. For example, the Registry provider provided
by Windows PowerShell handles registry key values as properties of the registry key
item. This type of provider must add the
System.Management.Automation.Provider.IPropertyCmdletProvider interface to the
implementation of the .NET class.

A property provider must create a .NET class that supports the
System.Management.Automation.Provider.IPropertyCmdletProvider interface. Here is
the default class declaration from the TemplateProvider.cs file provided by Windows
PowerShell.

７ Note

Windows PowerShell provides a template file that you can use to develop a
Windows PowerShell provider. The TemplateProvider.cs file is available on the
Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded template is available in the <PowerShell Samples> directory. You
should make a copy of this file and use the copy for creating a new Windows
PowerShell provider, removing any functionality that you do not need. For more
information about other Windows PowerShell provider implementations, see
Designing Your Windows PowerShell Provider.

Ｕ Caution

The methods of your property provider should write any objects using the
System.Management.Automation.Provider.CmdletProvider.Writepropertyobject*
method.

Defining the Windows PowerShell provider

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.WritePropertyObject


The System.Management.Automation.Provider.IPropertyCmdletProvider interface can be
attached to any of the provider base classes, with the exception of the
System.Management.Automation.Provider.DriveCmdletProvider class. Add the base
functionality that is required by the base class you are using. For more information
about base classes, see Designing Your Windows PowerShell Provider.

To retrieve properties, the provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty*
method to support calls from the Get-ItemProperty  cmdlet. This method retrieves the
properties of the item located at the specified provider-internal path (fully-qualified).

The providerSpecificPickList  parameter indicates which properties to retrieve. If this
parameter is null  or empty, the method should retrieve all properties. In addition,
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty* writes
an instance of a System.Management.Automation.PSObject object that represents a
property bag of the retrieved properties. The method should return nothing.

It is recommended that the implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty*
supports the wildcard expansion of property names for each element in the pick list. To
do this, use the System.Management.Automation.WildcardPattern class to perform the
wildcard pattern matching.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty* from
the TemplateProvider.cs file provided by Windows PowerShell.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty*:

When defining the provider class, a Windows PowerShell property provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty*

Defining Base Functionality

Retrieving Properties

Things to Remember About Implementing GetProperty

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.DriveCmdletProvider
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.WildcardPattern
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetProperty


method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve a reader for objects that
are hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

The Get-ItemProperty  cmdlet might require additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the Windows PowerShell
property provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynami
cParameters* method. The path  parameter indicates a fully-qualified provider-internal
path, while the providerSpecificPickList  parameter specifies the provider-specific
properties entered on the command line. This parameter might be null  or empty if the
properties are piped to the cmdlet. In this case, this method returns an object that has
properties and fields with parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The
Windows PowerShell runtime uses the returned object to add the parameters to the
cmdlet.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynami
cParameters* from the TemplateProvider.cs file provided by Windows PowerShell.

To set properties, the Windows PowerShell property provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*
method to support calls from the Set-ItemProperty  cmdlet. This method sets one or
more properties of the item at the specified path, and overwrites the supplied properties
as required.

Attaching Dynamic Parameters to the Get-
ItemProperty Cmdlet

Setting Properties

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty


System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty* also
writes an instance of a System.Management.Automation.PSObject object that represents
a property bag of the updated properties.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty* from
the TemplateProvider.cs file provided by Windows PowerShell.

The following conditions may apply to an implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*:

When defining the provider class, a Windows PowerShell property provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*
method must ensure that the path passed to the method meets the requirements
of the specified capabilities. To do this, the method should access the appropriate
property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve a reader for objects that
are hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

Your implementation of the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
verify its return value before making any changes to the data store. This method is
used to confirm execution of an operation when a change is made to system state,
for example, renaming files.
System.Management.Automation.Provider.CmdletProvider.ShouldProcess sends
the name of the resource to be changed to the user, with the Windows PowerShell
runtime and handling any command-line settings or preference variables in
determining what should be displayed.

Things to Remember About Implementing Set-ItemProperty

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.PSObject
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess


After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns
true , if potentially dangerous system modifications can be made, the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method. This method sends a confirmation message to the user to allow additional
feedback to indicate that the operation should be continued.

The Set-ItemProperty  cmdlet might require additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the Windows PowerShell
property provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.SetPropertyDynamic
Parameters* method. This method returns an object that has properties and fields with
parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The null
value can be returned if no dynamic parameters are to be added.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynami
cParameters* from the TemplateProvider.cs file provided by Windows PowerShell.

To clear properties, the Windows PowerShell property provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*
method to support calls from the Clear-ItemProperty  cmdlet. This method sets one or
more properties for the item located at the specified path.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty* from
the TemplateProvider.cs file provided by Windows PowerShell.

The following conditions may apply to your implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*:

Attaching Dynamic Parameters for the Set-
ItemProperty Cmdlet

Clearing Properties

Thing to Remember About Implementing ClearProperty

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.SetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.GetPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty


When defining the provider class, a Windows PowerShell property provider might
declare provider capabilities of ExpandWildcards, Filter, Include, or Exclude, from
the System.Management.Automation.Provider.ProviderCapabilities enumeration. In
these cases, the implementation of the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*
method needs to ensure that the path passed to the method meets the
requirements of the specified capabilities. To do this, the method should access the
appropriate property, for example, the
System.Management.Automation.Provider.CmdletProvider.Exclude* and
System.Management.Automation.Provider.CmdletProvider.Include* properties.

By default, overrides of this method should not retrieve a reader for objects that
are hidden from the user unless the
System.Management.Automation.Provider.CmdletProvider.Force* property is set to
true . An error should be written if the path represents an item that is hidden from
the user and System.Management.Automation.Provider.CmdletProvider.Force* is
set to false .

Your implementation of the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*
method should call
System.Management.Automation.Provider.CmdletProvider.ShouldProcess and
verify its return value before making any changes to the data store. This method is
used to confirm execution of an operation before a change is made to system
state, such as clearing content.
System.Management.Automation.Provider.CmdletProvider.ShouldProcess sends
the name of the resource to be changed to the user, with the Windows PowerShell
runtime taking into account any command line settings or preference variables in
determining what should be displayed.

After the call to
System.Management.Automation.Provider.CmdletProvider.ShouldProcess returns
true , if potentially dangerous system modifications can be made, the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty*
method should call the
System.Management.Automation.Provider.CmdletProvider.ShouldContinue
method. This method sends a confirmation message to the user to allow additional
feedback to indicate that the potentially dangerous operation should be
continued.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.ProviderCapabilities
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Exclude
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Include
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.Force
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldProcess
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearProperty
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.CmdletProvider.ShouldContinue


The Clear-ItemProperty  cmdlet might require additional parameters that are specified
dynamically at runtime. To provide these dynamic parameters, the Windows PowerShell
property provider must implement the
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDyna
micParameters* method. This method returns an object that has properties and fields
with parsing attributes similar to a cmdlet class or a
System.Management.Automation.RuntimeDefinedParameterDictionary object. The null
value can be returned if no dynamic parameters are to be added.

Here is the default implementation of
System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDyna
micParameters* from the TemplateProvider.cs file provided by Windows PowerShell.

See How to Register Cmdlets, Providers, and Host Applications .

Windows PowerShell provider

Design Your Windows PowerShell provider

Extending Object Types and Formatting

How to Register Cmdlets, Providers, and Host Applications

Attaching Dynamic Parameters to the Clear-
ItemProperty Cmdlet

Building the Windows PowerShell provider

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RuntimeDefinedParameterDictionary
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDynamicParameters
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Provider.IPropertyCmdletProvider.ClearPropertyDynamicParameters
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714665(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714644(v=vs.85)


Windows PowerShell Programmer's
Guide
Article • 09/17/2021

This programmer's guide is targeted at developers who are interested in providing a
command-line management environment for system administrators. Windows
PowerShell provides a simple way for you to build management commands that expose
.NET objects, while allowing Windows PowerShell to do most of the work for you.

In traditional command development, you are required to write a parameter parser, a
parameter binder, filters, and all other functionality exposed by each command.
Windows PowerShell provides the following to make it easy for you to write commands:

A powerful Windows PowerShell runtime (execution engine) with its own parser
and a mechanism for automatically binding command parameters.

Utilities for formatting and displaying command results using a command line
interpreter (CLI).

Support for high levels of functionality (through Windows PowerShell providers)
that make it easy to access stored data.

At little cost, you can represent a .NET object by a rich command or set of
commands that will offer a complete command-line experience to the
administrator.

The next section covers the key Windows PowerShell concepts and terms.
Familiarize yourself with these concepts and terms before starting development.

Windows PowerShell defines several types of commands that you can use in
development. These commands include: functions, filters, scripts, aliases, and
executables (applications). The main command type discussed in this guide is a simple,
small command called a "cmdlet". Windows PowerShell furnishes a set of cmdlets and
fully supports cmdlet customization to suit your environment. The Windows PowerShell
runtime processes all command types just as it does cmdlets, using pipelines.

In addition to commands, Windows PowerShell supports various customizable Windows
PowerShell providers that make available specific sets of cmdlets. The shell operates
within the Windows PowerShell-provided host application ( powershell.exe ), but it is

About Windows PowerShell



equally accessible from a custom host application that you can develop to meet specific
requirements. For more information, see How Windows PowerShell Works .

A cmdlet is a lightweight command that is used in the Windows PowerShell
environment. The Windows PowerShell runtime invokes these cmdlets within the context
of automation scripts that are provided at the command line, and the Windows
PowerShell runtime also invokes them programmatically through Windows PowerShell
APIs.

For more information about cmdlets, see Writing a Windows PowerShell Cmdlet.

In performing administrative tasks, the user may need to examine data stored in a data
store (for example, the file system, the Windows Registry, or a certificate store). To make
these operations easier, Windows PowerShell defines a module called a Windows
PowerShell provider that can be used to access a specific data store, such as the
Windows Registry. Each provider supports a set of related cmdlets to give the user a
symmetrical view of the data in the store.

Windows PowerShell provides several default Windows PowerShell providers. For
example, the Registry provider supports navigation and manipulation of the Windows
Registry. Registry keys are represented as items, and registry values are treated as
properties.

If you expose a data store that the user will need to access, you might need to write
your own Windows PowerShell provider, as described in Creating Windows PowerShell
Providers. For more information aboutWindows PowerShell providers, see How
Windows PowerShell Works .

Windows PowerShell includes the default host application powershell.exe, which is a
console application that interacts with the user and hosts the Windows PowerShell
runtime using a console window.

Only rarely will you need to write your own host application for Windows PowerShell,
although customization is supported. One case in which you might need your own
application is when you have a requirement for a GUI interface that is richer than the
interface provided by the default host application. You might also want a custom

Windows PowerShell Cmdlets

Windows PowerShell Providers

Host Application

https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/writing-a-windows-powershell-cmdlet?view=powershell-7.5
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)


application when you are basing your GUI on the command line. For more information,
see How to Create a Windows PowerShell Host Application.

The Windows PowerShell runtime is the execution engine that implements command
processing. It includes the classes that provide the interface between the host
application and Windows PowerShell commands and providers. The Windows
PowerShell runtime is implemented as a runspace object for the current Windows
PowerShell session, which is the operational environment in which the shell and the
commands execute. For operational details, see How Windows PowerShell Works .

The Windows PowerShell language provides scripting functions and mechanisms to
invoke commands. For complete scripting information, see the Windows PowerShell
Language Reference shipped with Windows PowerShell.

Windows PowerShell provides access to a variety of different objects, such as .NET and
XML objects. As a consequence, to present a common abstraction for all object types
the shell uses its extended type system (ETS). Most ETS functionality is transparent to the
user, but the script or .NET developer uses it for the following purposes:

Viewing a subset of the members of specific objects. Windows PowerShell provides
an "adapted" view of several specific object types.

Adding members to existing objects.

Access to serialized objects.

Writing customized objects.

Using ETS, you can create flexible new "types" that are compatible with the
Windows PowerShell language. If you are a .NET developer, you are able to work
with objects using the same semantics as the Windows PowerShell language
applies to scripting, for example, to determine if an object evaluates to true .

For more information about ETS and how Windows PowerShell uses objects, see
Windows PowerShell Object Concepts.

Windows PowerShell Runtime

Windows PowerShell Language

Extended Type System (ETS)

https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions//ms714658(v=vs.85)
https://learn.microsoft.com/en-us/powershell/scripting/learn/understanding-important-powershell-concepts


Windows PowerShell defines its code for commands, providers, and other program
modules using the .NET Framework. You are not confined to the use of Microsoft Visual
Studio in creating customized modules for Windows PowerShell, although the samples
provided in this guide are known to run in this tool. You can use any .NET language that
supports class inheritance and the use of attributes. In some cases, Windows PowerShell
APIs require the programming language to be able to access generic types.

For reference when developing for Windows PowerShell, see the Windows PowerShell
SDK.

For more information about starting to use the Windows PowerShell shell, see the
Getting Started with Windows PowerShell shipped with Windows PowerShell. A Quick
Reference tri-fold document is also supplied as a primer for cmdlet use.

Topic Definition

How to Create a Windows
PowerShell Provider

This section describes how to build a Windows PowerShell provider
for Windows PowerShell.

How to Create a Windows
PowerShell Host
Application

This section describes how to write a host application that
manipulates a runspace and how to write a host application that
implements its own custom host.

How to Create a Windows
PowerShell Snap-in

This section describes how to create a snap-in that is used to
register all cmdlets and providers in an assembly and how to create
a custom snap-in.

How to Create a Console
Shell

This section describes how to create a console shell that is not
extensible.

Windows PowerShell
Concepts

This section contains conceptual information that will help you
understand Windows PowerShell from the viewpoint of a
developer.

Programming for Windows PowerShell

Programmer's Reference

Getting Started Using Windows PowerShell

Contents of This Guide

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-powershell
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/hosting/writing-a-windows-powershell-host-application
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/how-to-create-a-windows-powershell-snap-in?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/prog-guide/how-to-create-a-console-shell?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/prog-guide/how-to-create-a-console-shell?view=powershell-7.5


Windows PowerShell SDK

See Also



Windows PowerShell Concepts
Article • 10/22/2021

This section contains conceptual information that will help you understand PowerShell
from a developer's viewpoint.

Topic Name Description

about_Objects Description of PowerShell objects. For more information,
see About Object Creation

Creating Runspaces The operating environments where commands are
processed. For more information, see Runspace Class.

Extending Output Objects How to extend PowerShell objects. For more
information, see About Types.ps1xml

Registering Cmdlets How to make modules and snap-ins available in
PowerShell. For more information, see Modules and
Snap-ins.

Requesting Confirmation from
Cmdlets

How cmdlets and providers request feedback from the
user before an action is taken.

RuntimeDefinedParameter Class Runtime parameter declarations.

System.Management.Automation
Namespace

Overview of PowerShell API namespaces.

Windows PowerShell Provider
Overview

Overview about PowerShell providers that are used to
access data stores.

Writing Help for PowerShell Cmdlets How to write PowerShell cmdlet Help.

PowerShell Class

PowerShell API Reference

Windows PowerShell Programmer's Guide

Writing Help for Windows PowerShell Modules

Writing a Windows PowerShell Provider

ﾉ Expand table

See also

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_objects
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_object_creation
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runspaces.runspace
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_types.ps1xml
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/registering-cmdlets?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/cmdlet/modules-and-snap-ins?view=powershell-7.5
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.runtimedefinedparameter
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation
https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.powershell
https://learn.microsoft.com/en-us/dotnet/api/
https://learn.microsoft.com/en-us/powershell/scripting/developer/module/writing-help-for-windows-powershell-modules?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/developer/provider/writing-a-windows-powershell-provider?view=powershell-7.5


Windows PowerShell API Reference

Windows PowerShell Reference

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/?view=powershellsdk-1.1.0&preserve-view=true
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fwindows-powershell-concepts%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fwindows-powershell-concepts.md&documentVersionIndependentId=72b01ad5-8eb2-b970-abd7-5b20d6672fca&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+f5410378-cf2b-59a5-14c7-87b9dd142983+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Windows PowerShell Sample Code
Article • 09/15/2023

Windows PowerShell samples are available through the Windows SDK. This section
contains the sample code that is contained in the Windows SDK samples.

Sample Code Description

AccessDbProviderSample01
Code Sample

This is the provider described in Creating a Basic Windows
PowerShell Provider.

AccessDbProviderSample02
Code Sample

This is the provider described in Creating a Windows PowerShell
Drive Provider.

AccessDbProviderSample03
Code Sample

This is the provider described in Creating a Windows PowerShell
Item Provider.

AccessDbProviderSample04
Code Sample

This is the provider described in Creating a Windows PowerShell
Container Provider.

AccessDbProviderSample05
Code Sample

This is the provider described in Creating a Windows PowerShell
Navigation Provider.

AccessDbProviderSample06
Code Sample

This is the provider described in Creating a Windows PowerShell
Content Provider.

GetProc01 Code Samples This is the basic Get-Process  cmdlet sample described in Creating
Your First Cmdlet.

GetProc02 Code Samples This is the Get-Process  cmdlet sample described in Adding
Parameters that Process Command-Line Input.

７ Note

When the Windows SDK is installed, a Samples directory is created in which all the
Windows PowerShell samples are made available. A typical installation directory is
C:\Program Files\Microsoft SDKs\Windows\v6.0. Start Windows PowerShell and
type "cd Samples\SysMgmt\PowerShell" to locate the samples' directory. In this
document, the Windows PowerShell Samples directory is referred to as
<PowerShell Samples>.

Sample Code Listing

ﾉ Expand table



Sample Code Description

GetProc03 Code Samples This is the Get-Process  cmdlet sample described in Adding
Parameters that Process Pipeline Input.

GetProc04 Code Samples This is the Get-Process  cmdlet sample described in Adding Non-
terminating Error Reporting to Your Cmdlet.

GetProc05 Code Samples This Get-Process  cmdlet is similar to the cmdlet described in
Adding Non-terminating Error Reporting to Your Cmdlet.

StopProc01 Code Samples This is the Stop-Process  cmdlet sample described in Creating a
Cmdlet That Modifies the System.

StopProcessSample04
Code Samples

This is the Stop-Process  cmdlet sample described in Adding
Parameter Sets to a Cmdlet.

Runspace01 Code Samples These are the code samples for the runspace described in Creating
a Console Application That Runs a Specified Command.

Runspace02 Code Samples This sample uses the
System.Management.Automation.RunspaceInvoke class to execute
the Get-Process  cmdlet synchronously.

RunSpace03 Code Samples These are the code samples for the runspace described in "Creating
a Console Application That Runs a Specified Script".

RunSpace04 Code Samples This is a code sample for a runspace that uses the
System.Management.Automation.RunspaceInvoke class to execute a
script that generates a terminating error.

RunSpace05 Code Sample

RunSpace06 Code Sample

RunSpace07 Code Sample

RunSpace08 Code Sample

RunSpace09 Code Sample

RunSpace10 Code Sample This is the source code for the Runspace10 sample, which adds a
cmdlet to
System.Management.Automation.Runspaces.RunspaceConfiguration
and then uses the modified configuration information to create the
runspace.

Windows PowerShell Programmer's Guide

See Also

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConfiguration


Windows PowerShell SDK



AccessDbProviderSample01 Code
Sample
Article • 09/17/2021

The following code shows the implementation of the Windows PowerShell provider
described in Creating a Basic Windows PowerShell Provider. This implementation
provides methods for starting and stopping the provider, and although it does not
provide a means to access a data store or to get or set the data in the data store, it does
provide the basic functionality that is required by all providers.

C#

７ Note

You can download the C# source file (AccessDBSampleProvider01.cs) for this
provider by using the Windows Software Development Kit for Windows Vista and
Microsoft .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the <PowerShell Samples>
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Code Sample

using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// Simple provider.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : CmdletProvider
   {

   }

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


Windows PowerShell Programmer's Guide

Windows PowerShell SDK

   #endregion AccessDBProvider
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample01-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample01-code-sample.md&documentVersionIndependentId=e01105b1-5546-6b48-e7dd-a690435af8ff&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6d49b908-1caf-462c-225b-30dd344553af+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AccessDbProviderSample02 Code
Sample
Article • 09/17/2021

The following code shows the implementation of the Windows PowerShell provider
described in Creating a Windows PowerShell Drive Provider. This implementation
creates a path, makes a connection to an Access database, and then removes the drive.

C#

７ Note

You can download the C# source file (AccessDBSampleProvider02.cs) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and Microsoft .NET Framework 3.0 Runtime Components. For download
instructions, see How to Install Windows PowerShell and Download the Windows
PowerShell SDK. The downloaded source files are available in the <PowerShell
Samples> directory. For more information about other Windows PowerShell
provider implementations, see Designing Your Windows PowerShell Provider.

Code Sample

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// A PowerShell Provider which acts upon a access data store.
   /// </summary>
   /// <remarks>
   /// This example only demonstrates the drive overrides
   /// </remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : DriveCmdletProvider
   {
       #region Drive Manipulation

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"), 
                   "NullDrive",
                   ErrorCategory.InvalidArgument, 
                   null)
               );
            
               return null;
           }
        
           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"), 
                   "NoRoot",
                   ErrorCategory.InvalidArgument, 
                   drive)
               );
 
               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);
          
           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;



           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"), 
                   "NullDrive",
                   ErrorCategory.InvalidArgument, 
                   drive)
               );

              return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();
         
           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

   } // AccessDBProvider

   #endregion AccessDBProvider

   #region AccessDBPSDriveInfo

   /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample02-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample02-code-sample.md&documentVersionIndependentId=d3d8cf7a-4981-e205-58b0-0a54af68ae2f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8746caba-616a-082f-1305-06790133cb2b+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AccessDbProviderSample03 Code
Sample
Article • 11/05/2021

The following code shows the implementation of the Windows PowerShell provider
described in Creating a Windows PowerShell Item Provider. This provider that can
manipulate the data in a data store.

C#

７ Note

You can download the C# source file (AccessDBSampleProvider03.cs) for this
provider using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK. The downloaded source files are available in the <PowerShell Samples>
directory. For more information about other Windows PowerShell provider
implementations, see Designing Your Windows PowerShell Provider.

Code Sample

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Collections.ObjectModel;
using System.Text;
using System.Diagnostics;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
    /// A PowerShell Provider which acts upon a access database.
    /// </summary>
    /// <remarks>
    /// This example implements the item overloads.

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


    /// </remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]

   public class AccessDBProvider : ItemCmdletProvider
   {
      #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";



           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString); 
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

       #region Item Methods

      /// <summary>
      /// Retrieves an item using the specified path.
      /// </summary>
      /// <param name="path">The path to the item to return.</param>
      protected override void GetItem(string path)
      {
          // check if the path represented is a drive
          if (PathIsDrive(path))



          {
              WriteItemObject(this.PSDriveInfo, path, true);
              return;
          }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }



           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);



           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {



                   result = false;
               }
           }
           return result;
       } // IsValidPath

       #endregion Item Overloads

      #region Helper Methods

      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

             )
          {
              return true;
          }
          else
          {
              return false;
          }
      } // PathIsDrive

      /// <summary>
      /// Breaks up the path into individual elements.
      /// </summary>
      /// <param name="path">The path to split.</param>
      /// <returns>An array of path segments.</returns>
      private string[] ChunkPath(string path)
      {
          // Normalize the path before splitting
          string normalPath = NormalizePath(path);

          // Return the path with the drive name and first path 
          // separator character removed, split by the path separator.
          string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                         + pathSeparator, "");

          return pathNoDrive.Split(pathSeparator.ToCharArray());
      } // ChunkPath



      /// <summary>
      /// Adapts the path, making sure the correct path separator
      /// character is used.
      /// </summary>
      /// <param name="path"></param>
      /// <returns></returns>
      private string NormalizePath(string path)
      {
          string result = path;

          if (!String.IsNullOrEmpty(path))
          {
              result = path.Replace("/", pathSeparator);
          }

          return result;
      } // NormalizePath

      /// <summary>
      /// Chunks the path and returns the table name and the row number 
      /// from the path
      /// </summary>
      /// <param name="path">Path to chunk and obtain information</param>
      /// <param name="tableName">Name of the table as represented in the 
      /// path</param>
      /// <param name="rowNumber">Row number obtained from the path</param>
      /// <returns>what the path represents</returns>
      private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
      {
          PathType retVal = PathType.Invalid;
          rowNumber = -1;
          tableName = null;

          // Check if the path specified is a drive
          if (PathIsDrive(path))
          {
              return PathType.Database;
          }

          // chunk the path into parts
          string[] pathChunks = ChunkPath(path);

          switch (pathChunks.Length)
          {
              case 1:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                          retVal = PathType.Table;
                      }



                  }
                  break;

              case 2:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                      }

                      int number = SafeConvertRowNumber(pathChunks[1]);

                      if (number >= 0)
                      {
                          rowNumber = number;
                          retVal = PathType.Row;
                      }
                      else
                      {
                          WriteError(new ErrorRecord(
                              new ArgumentException("Row number is not 
valid"),
                              "RowNumberNotValid",
                              ErrorCategory.InvalidArgument,
                              path));
                      }
                  }
                  break;

              default:
                  {
                      WriteError(new ErrorRecord(
                          new ArgumentException("The path supplied has too 
many segments"),
                          "PathNotValid",
                          ErrorCategory.InvalidArgument,
                          path));
                  }
                  break;
          } // switch(pathChunks...

          return retVal;
      } // GetNamesFromPath

      /// <summary>
      /// Throws an argument exception stating that the specified path does
      /// not represent either a table or a row
      /// </summary>
      /// <param name="path">path which is invalid</param>
      private void ThrowTerminatingInvalidPathException(string path)
      {
          StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");



          message.Append(path);

          throw new ArgumentException(message.ToString());
      }

      /// <summary>
      /// Retrieve the list of tables from the database.
      /// </summary>
      /// <returns>
      /// Collection of DatabaseTableInfo objects, each object representing
      /// information about one database table
      /// </returns>
      private Collection<DatabaseTableInfo> GetTables()
      {
          Collection<DatabaseTableInfo> results =
                  new Collection<DatabaseTableInfo>();

          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null)
          {
              return null;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");
          int count;

          // iterate through all rows in the schema and create 
DatabaseTableInfo
          // objects which represents a table
          foreach (DataRow dr in dt.Rows)
          {
              String tableName = dr["TABLE_NAME"] as String;
              DataColumnCollection columns = null;

              // find the number of rows in the table
              try
              {
                  String cmd = "Select count(*) from \"" + tableName + "\"";
                  OdbcCommand command = new OdbcCommand(cmd, connection);

                  count = (Int32)command.ExecuteScalar();
              }
              catch
              {
                  count = 0;
              }

              // create DatabaseTableInfo object representing the table
              DatabaseTableInfo table =
                      new DatabaseTableInfo(dr, tableName, count, columns);



              results.Add(table);
          } // foreach (DataRow...

          return results;
      } // GetTables

      /// <summary>
      /// Return row information from a specified table.
      /// </summary>
      /// <param name="tableName">The name of the database table from 
      /// which to retrieve rows.</param>
      /// <returns>Collection of row information objects.</returns>
      private Collection<DatabaseRowInfo> GetRows(string tableName)
      {
          Collection<DatabaseRowInfo> results =
                      new Collection<DatabaseRowInfo>();

          // Obtain rows in the table and add it to the collection
          try
          {
              OdbcDataAdapter da = GetAdapterForTable(tableName);

              if (da == null)
              {
                  return null;
              }

              DataSet ds = GetDataSetForTable(da, tableName);
              DataTable table = GetDataTable(ds, tableName);

              int i = 0;
              foreach (DataRow row in table.Rows)
              {
                  results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                  i++;
              } // foreach (DataRow...
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                  ErrorCategory.InvalidOperation, tableName));
          }

          return results;

      } // GetRows

      /// <summary>
      /// Retrieve information about a single table.
      /// </summary>
      /// <param name="tableName">The table for which to retrieve 
      /// data.</param>
      /// <returns>Table information.</returns>
      private DatabaseTableInfo GetTable(string tableName)



      {
          foreach (DatabaseTableInfo table in GetTables())
          {
              if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
              {
                  return table;
              }
          }

          return null;
      } // GetTable

      /// <summary>
      /// Obtain a data adapter for the specified Table
      /// </summary>
      /// <param name="tableName">Name of the table to obtain the 
      /// adapter for</param>
      /// <returns>Adapter object for the specified table</returns>
      /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
      /// representation of table) and the data source</remarks>
      private OdbcDataAdapter GetAdapterForTable(string tableName)
      {
          OdbcDataAdapter da = null;
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
          {
              return null;
          }

          OdbcConnection connection = di.Connection;

          try
          {
              // Create a odbc data adpater. This can be sued to update the
              // data source with the records that will be created here
              // using data sets
              string sql = "Select * from " + tableName;
              da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

              // Create a odbc command builder object. This will create sql
              // commands automatically for a single table, thus
              // eliminating the need to create new sql statements for 
              // every operation to be done.
              OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

              // Open the connection if its not already open                 
              if (connection.State != ConnectionState.Open)
              {
                  connection.Open();
              }
          }



          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                ErrorCategory.InvalidOperation, tableName));
          }

          return da;
      } // GetAdapterForTable

      /// <summary>
      /// Gets the DataSet (in memory representation) for the table
      /// for the specified adapter
      /// </summary>
      /// <param name="adapter">Adapter to be used for obtaining 
      /// the table</param>
      /// <param name="tableName">Name of the table for which a 
      /// DataSet is required</param>
      /// <returns>The DataSet with the filled in schema</returns>
      private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
      {
          Debug.Assert(adapter != null);

          // Create a dataset object which will provide an in-memory
          // representation of the data being worked upon in the 
          // data source. 
          DataSet ds = new DataSet();

          // Create a table named "Table" which will contain the same
          // schema as in the data source.
          //adapter.FillSchema(ds, SchemaType.Source);
          adapter.Fill(ds, tableName);
          ds.Locale = CultureInfo.InvariantCulture;

          return ds;
      } //GetDataSetForTable

      /// <summary>
      /// Get the DataTable object which can be used to operate on
      /// for the specified table in the data source
      /// </summary>
      /// <param name="ds">DataSet object which contains the tables
      /// schema</param>
      /// <param name="tableName">Name of the table</param>
      /// <returns>Corresponding DataTable object representing 
      /// the table</returns>
      /// 
      private DataTable GetDataTable(DataSet ds, string tableName)
      {
          Debug.Assert(ds != null);
          Debug.Assert(tableName != null);

          DataTable table = ds.Tables[tableName];
          table.Locale = CultureInfo.InvariantCulture;



          return table;
      } // GetDataTable

      /// <summary>
      /// Retrieves a single row from the named table.
      /// </summary>
      /// <param name="tableName">The table that contains the 
      /// numbered row.</param>
      /// <param name="row">The index of the row to return.</param>
      /// <returns>The specified table row.</returns>
      private DatabaseRowInfo GetRow(string tableName, int row)
      {
          Collection<DatabaseRowInfo> di = GetRows(tableName);

          // if the row is invalid write an appropriate error else return 
the 
          // corresponding row information
          if (row < di.Count && row >= 0)
          {
              return di[row];
          }
          else
          {
              WriteError(new ErrorRecord(
                 new ItemNotFoundException(),
                 "RowNotFound",
                 ErrorCategory.ObjectNotFound,
                 row.ToString(CultureInfo.CurrentCulture))
              );
          }

          return null;
      } // GetRow

      /// <summary>
      /// Method to safely convert a string representation of a row number 
      /// into its Int32 equivalent
      /// </summary>
      /// <param name="rowNumberAsStr">String representation of the row 
      /// number</param>
      /// <remarks>If there is an exception, -1 is returned</remarks>
      private int SafeConvertRowNumber(string rowNumberAsStr)
      {
          int rowNumber = -1;
          try
          {
              rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
          }
          catch (FormatException fe)
          {
              WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }
          catch (OverflowException oe)



          {
              WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }

          return rowNumber;
      } // SafeConvertRowNumber

      /// <summary>
      /// Check if a table name is valid
      /// </summary>
      /// <param name="tableName">Table name to validate</param>
      /// <remarks>Helps to check for SQL injection attacks</remarks>
      private bool TableNameIsValid(string tableName)
      {
          Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

          if (exp.IsMatch(tableName))
          {
              return true;
          }
          WriteError(new ErrorRecord(
              new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
          return false;
      } // TableNameIsValid

      /// <summary>
      /// Checks to see if the specified table is present in the
      /// database
      /// </summary>
      /// <param name="tableName">Name of the table to check</param>
      /// <returns>true, if table is present, false otherwise</returns>
      private bool TableIsPresent(string tableName)
      {
          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
          if (di == null)
          {
              return false;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");

          // check if the specified tableName is available
          // in the list of tables present in the database
          foreach (DataRow dr in dt.Rows)
          {
              string name = dr["TABLE_NAME"] as string;
              if (name.Equals(tableName, 



StringComparison.OrdinalIgnoreCase))
              {
                  return true;
              }
          }

          WriteError(new ErrorRecord(
              new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                   ErrorCategory.InvalidArgument, tableName));

          return false;
      }// TableIsPresent

      #endregion Helper Methods

      #region Private Properties

      private string pathSeparator = "\\";
      private static string pattern = @"^[a-z]+[0-9]*_*$";

      private enum PathType { Database, Table, Row, Invalid };

      #endregion Private Properties
  }

   #endregion AccessDBProvider

   #region Helper Classes

  #region AccessDBPSDriveInfo

  /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)



       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo

   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;
           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount
       {
           get
           {
               return rowCount;
           }



           set
           {
               rowCount = value;
           }
       }
       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo
   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {
       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data
       {



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample03-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample03-code-sample.md&documentVersionIndependentId=3b9a56e9-0f0c-d43a-ce4c-c06a614d4f85&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cbcbf7c6-2e6d-b5b8-1aac-9958984e416e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AccessDbProviderSample04 Code
Sample
Article • 09/17/2021

The following code shows the implementation of the Windows PowerShell provider
described in Creating a Windows PowerShell Container Provider. This provider works on
multi-layer data stores. For this type of data store, the top level of the store contains the
root items and each subsequent level is referred to as a node of child items. By allowing
the user to work on these child nodes, a user can interact hierarchically through the data
store.

C#

Code Sample

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Data.OleDb;
using System.Diagnostics;
using System.Collections.ObjectModel;
using System.Text;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// A PowerShell Provider which acts upon an Access database
   /// </summary>
   /// <remarks>
   /// This example implements the container overloads</remarks>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : ContainerCmdletProvider
   {      

       #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set



       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>
       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive



       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>
       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

       #region Item Methods

       /// <summary>
       /// Retrieves an item using the specified path.
       /// </summary>
       /// <param name="path">The path to the item to return.</param>
       protected override void GetItem(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               WriteItemObject(this.PSDriveInfo, path, true);
               return;
           }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;



           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }

           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);



           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 
available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)



               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {
               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {
                   result = false;
               }
           }
           return result;
       } // IsValidPath

       #endregion Item Overloads

       #region Container Overloads



       /// <summary>
       /// Return either the tables in the database or the datarows
       /// </summary>
       /// <param name="path">The path to the parent</param>
       /// <param name="recurse">True to return all child items recursively.
       /// </param>
       protected override void GetChildItems(string path, bool recurse)
       {
           // If path represented is a drive then the children in the path 
are 
           // tables. Hence all tables in the drive represented will have to 
be
           // returned
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table, path, true);

                   // if the specified item exists and recurse has been set 
then 
                   // all child items within it have to be obtained as well
                   if (ItemExists(path) && recurse)
                   {
                       GetChildItems(path + pathSeparator + table.Name, 
recurse);
                   }
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get the table name, row number and type of path from the
               // path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Obtain all the rows within the table
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row



                   DatabaseRowInfo row = GetRow(tableName, rowNumber);
                   WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
               }
               else
               {
                   // In this case, the path specified is not valid
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildItems

       /// <summary>
       /// Return the names of all child items.
       /// </summary>
       /// <param name="path">The root path.</param>
       /// <param name="returnContainers">Not used.</param>
       protected override void GetChildNames(string path,
                                     ReturnContainers returnContainers)
       {
           // If the path represented is a drive, then the child items are
           // tables. get the names of all the tables in the drive.
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table.Name, path, true);
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get type, table name and row number from path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Get all the rows in the table and then write out the 
                   // row numbers.
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row.RowNumber, path, false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);



                   WriteItemObject(row.RowNumber, path, false);
               }
               else
               {
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildNames

       /// <summary>
       /// Determines if the specified path has child items.
       /// </summary>
       /// <param name="path">The path to examine.</param>
       /// <returns>
       /// True if the specified path has child items.
       /// </returns>
       protected override bool HasChildItems(string path)
       {
           if (PathIsDrive(path))
           {
               return true;
           }

           return (ChunkPath(path).Length == 1);
       } // HasChildItems

       /// <summary>
       /// Creates a new item at the specified path.
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the new item.
       /// </param>
       /// 
       /// <param name="type">
       /// Type for the object to create. "Table" for creating a new table 
and
       /// "Row" for creating a new row in a table.
       /// </param>
       /// 
       /// <param name="newItemValue">
       /// Object for creating new instance of a type at the specified path. 
For
       /// creating a "Table" the object parameter is ignored and for 
creating
       /// a "Row" the object must be of type string which will contain 
comma 
       /// separated values of the rows to insert.
       /// </param>
       protected override void NewItem(string path, string type,
                                   object newItemValue)
       {
           string tableName;
           int rowNumber;



           PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (pt == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           // Check if type is either "table" or "row", if not throw an 
           // exception
           if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
               && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
           {
               WriteError(new ErrorRecord
                                 (new ArgumentException("Type must be either 
a table or row"),
                                     "CannotCreateSpecifiedObject",
                                        ErrorCategory.InvalidArgument,
                                             path
                                  )
                         );

               throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
           }

           // Path type is the type of path of the container. So if a drive
           // is specified, then a table can be created under it and if a 
table
           // is specified, then a row can be created under it. For the sake 
of 
           // completeness, if a row is specified, then if the row specified 
by
           // the path does not exist, a new row is created. However, the 
row 
           // number may not match as the row numbers only get incremented 
based 
           // on the number of rows

           if (PathIsDrive(path))
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   // Execute command using ODBC connection to create a 
table
                   try
                   {
                       // create the table using an sql statement
                       string newTableName = newItemValue.ToString();

                       if (!TableNameIsValid(newTableName))
                       {



                           return;
                       }
                       string sql = "create table " + newTableName 
                                            + " (ID INT)";

                       // Create the table using the Odbc connection from 
the 
                       // drive.
                       AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                       if (di == null)
                       {
                           return;
                       }
                       OdbcConnection connection = di.Connection;

                       if (ShouldProcess(newTableName, "create"))
                       {
                           OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                           cmd.ExecuteScalar();
                       }
                   }
                   catch (Exception ex)
                   {
                       WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                 ErrorCategory.InvalidOperation, path)
                                 );
                   }
               } // if (String...
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   throw new
                       ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
               }
           }// if (PathIsDrive...
           else
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   if (rowNumber < 0)
                   {
                       throw new
                           ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                   }
                   else
                   {
                       throw new
                           ArgumentException("A table cannot be created 



inside a row, specify a path that represents a database");
                   }
               } //if (String.Equals....
               // if path specified is a row, create a new row
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   // The user is required to specify the values to be 
inserted 
                   // into the table in a single string separated by commas
                   string value = newItemValue as string;

                   if (String.IsNullOrEmpty(value))
                   {
                       throw new
                           ArgumentException("Value argument must have comma 
separated values of each column in a row");
                   }
                   string[] rowValues = value.Split(',');

                   OdbcDataAdapter da = GetAdapterForTable(tableName);

                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   if (rowValues.Length != table.Columns.Count)
                   {
                       string message =
                            String.Format(CultureInfo.CurrentCulture,
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                       throw new ArgumentException(message);
                   }

                   if (!Force && (rowNumber >=0 && rowNumber < 
table.Rows.Count))
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                                        "The row {0} already 
exists. To create a new row specify row number as {1}, or specify path to a 
table, or use the -Force parameter",
                                                            rowNumber, 
table.Rows.Count);

                       throw new ArgumentException(message);
                   }
                   



                   if (rowNumber > table.Rows.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture,
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   // Create a new row and update the row with the input
                   // provided by the user
                   DataRow row = table.NewRow();
                   for (int i = 0; i < rowValues.Length; i++)
                   {
                       row[i] = rowValues[i];
                   }
                   table.Rows.Add(row);

                   if (ShouldProcess(tableName, "update rows"))
                   {
                       // Update the table from memory back to the data 
source
                       da.Update(ds, tableName);
                   }

               }// else if (String...
           }// else ...

       } // NewItem

       /// <summary>
       /// Copies an item at the specified path to the location specified
       /// </summary>
       /// 
       /// <param name="path">
       /// Path of the item to copy
       /// </param>
       /// 
       /// <param name="copyPath">
       /// Path of the item to copy to
       /// </param>
       /// 
       /// <param name="recurse">
       /// Tells the provider to recurse subcontainers when copying
       /// </param>
       /// 
       protected override void CopyItem(string path, string copyPath, bool 
recurse)
       {
           string tableName, copyTableName;
           int rowNumber, copyRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 



rowNumber);
           PathType copyType = GetNamesFromPath(copyPath, out copyTableName, 
out copyRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(copyPath);
           }

           // Get the table and the table to copy to 
           OdbcDataAdapter da = GetAdapterForTable(tableName);
           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);
           
           OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
           if (cda == null)
           {
               return;
           }

           DataSet cds = GetDataSetForTable(cda, copyTableName);
           DataTable copyTable = GetDataTable(cds, copyTableName);

           // if source represents a table
           if (type == PathType.Table)
           {
               // if copyPath does not represent a table
               if (copyType != PathType.Table)
               {
                   ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                   WriteError(new ErrorRecord(e, "PathNotValid",
                       ErrorCategory.InvalidArgument, copyPath));

                   throw e;
               }

               // if table already exists then force parameter should be set 
               // to force a copy
               if (!Force && GetTable(copyTableName) != null)
               {
                   throw new ArgumentException("Specified path already 
exists");
               }



               for (int i = 0; i < table.Rows.Count; i++)
               {
                   DataRow row = table.Rows[i];
                   DataRow copyRow = copyTable.NewRow();

                   copyRow.ItemArray = row.ItemArray;
                   copyTable.Rows.Add(copyRow);
               }
           } // if (type == ...
           // if source represents a row
           else
           {
               if (copyType == PathType.Row)
               {
                   if (!Force && (copyRowNumber < copyTable.Rows.Count))
                   {
                       throw new ArgumentException("Specified path already 
exists.");
                   }

                   DataRow row = table.Rows[rowNumber];
                   DataRow copyRow = null;

                   if (copyRowNumber < copyTable.Rows.Count)
                   {
                       // copy to an existing row
                       copyRow = copyTable.Rows[copyRowNumber];
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                   }
                   else if (copyRowNumber == copyTable.Rows.Count)
                   {
                       // copy to the next row in the table that will 
                       // be created
                       copyRow = copyTable.NewRow();
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                       copyTable.Rows.Add(copyRow);
                   }
                   else
                   {
                       // attempting to copy to a nonexistent row or a row
                       // that cannot be created now - throw an exception
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                             "The item cannot be specified 
to the copied row. Specify row number as {0}, or specify a path to the 
table.",
                                                    table.Rows.Count);

                       throw new ArgumentException(message);
                   }
               }
               else



               {
                   // destination path specified represents a table, 
                   // create a new row and copy the item
                   DataRow copyRow = copyTable.NewRow();
                   copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                   copyRow[0] = GetNextID(copyTable);
                   copyTable.Rows.Add(copyRow);
               }
           } 

           if (ShouldProcess(copyTableName, "CopyItems"))
           {
               cda.Update(cds, copyTableName);
           }

       } //CopyItem

       /// <summary>
       /// Removes (deletes) the item at the specified path
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to remove.
       /// </param>
       /// 
       /// <param name="recurse">
       /// True if all children in a subtree should be removed, false if 
only
       /// the item at the specified path should be removed. Is applicable
       /// only for container (table) items. Its ignored otherwise (even if
       /// specified).
       /// </param>
       /// 
       /// <remarks>
       /// There are no elements in this store which are hidden from the 
user.
       /// Hence this method will not check for the presence of the Force
       /// parameter
       /// </remarks>
       /// 
       protected override void RemoveItem(string path, bool recurse)
       {
           string tableName;
           int rowNumber = 0;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           
           if (type == PathType.Table)
           {
               // if recurse flag has been specified, delete all the rows as 
well
               if (recurse)
               {
                   OdbcDataAdapter da = GetAdapterForTable(tableName);



                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   for (int i = 0; i < table.Rows.Count; i++)
                   {
                       table.Rows[i].Delete();
                   }

                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       da.Update(ds, tableName);
                       RemoveTable(tableName);
                   }
               }//if (recurse...
               else
               {
                   // Remove the table
                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       RemoveTable(tableName);
                   }
               }
           }
           else if (type == PathType.Row)
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               table.Rows[rowNumber].Delete();

               if (ShouldProcess(path, "RemoveItem"))
               {
                   da.Update(ds, tableName);                   
               }
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // RemoveItem

       #endregion Container Overloads



       #region Helper Methods

      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

              )
           {
               return true;
           }
           else
           {
               return false;
           }
       } // PathIsDrive

       /// <summary>
       /// Breaks up the path into individual elements.
       /// </summary>
       /// <param name="path">The path to split.</param>
       /// <returns>An array of path segments.</returns>
       private string[] ChunkPath(string path)
       {
           // Normalize the path before splitting
           string normalPath = NormalizePath(path);

           // Return the path with the drive name and first path 
           // separator character removed, split by the path separator.
           string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                          + pathSeparator, "");

           return pathNoDrive.Split(pathSeparator.ToCharArray());
       } // ChunkPath

       /// <summary>
       /// Adapts the path, making sure the correct path separator
       /// character is used.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       private string NormalizePath(string path)



       {
           string result = path;

           if (!String.IsNullOrEmpty(path))
           {
               result = path.Replace("/", pathSeparator);
           }

           return result;
       } // NormalizePath

       /// <summary>
       /// Chunks the path and returns the table name and the row number 
       /// from the path
       /// </summary>
       /// <param name="path">Path to chunk and obtain information</param>
       /// <param name="tableName">Name of the table as represented in the 
       /// path</param>
       /// <param name="rowNumber">Row number obtained from the path</param>
       /// <returns>what the path represents</returns>
       private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
       {
           PathType retVal = PathType.Invalid;
           rowNumber = -1;
           tableName = null;

           // Check if the path specified is a drive
           if (PathIsDrive(path))
           {
               return PathType.Database;
           }

           // chunk the path into parts
           string[] pathChunks = ChunkPath(path);

           switch (pathChunks.Length)
           {
               case 1:
                   {
                       string name = pathChunks[0];

                       if (TableNameIsValid(name))
                       {
                           tableName = name;
                           retVal = PathType.Table;
                       }
                   }
                   break;

               case 2:
                   {
                       string name = pathChunks[0];

                       if (TableNameIsValid(name))



                       {
                           tableName = name;
                       }

                       int number = SafeConvertRowNumber(pathChunks[1]);

                       if (number >= 0)
                       {
                           rowNumber = number;
                           retVal = PathType.Row;
                       }
                       else
                       {
                           WriteError(new ErrorRecord(
                               new ArgumentException("Row number is not 
valid"),
                               "RowNumberNotValid",
                               ErrorCategory.InvalidArgument,
                               path));
                       }
                   }
                   break;

               default:
                   {
                       WriteError(new ErrorRecord(
                           new ArgumentException("The path supplied has too 
many segments"),
                           "PathNotValid",
                           ErrorCategory.InvalidArgument,
                           path));
                   }
                   break;
           } // switch(pathChunks...

           return retVal;
       } // GetNamesFromPath

       /// <summary>
       /// Throws an argument exception stating that the specified path does
       /// not represent either a table or a row
       /// </summary>
       /// <param name="path">path which is invalid</param>
       private void ThrowTerminatingInvalidPathException(string path)
       {
           StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
           message.Append(path);

           throw new ArgumentException(message.ToString());
       }

       /// <summary>
       /// Retrieve the list of tables from the database.
       /// </summary>



       /// <returns>
       /// Collection of DatabaseTableInfo objects, each object representing
       /// information about one database table
       /// </returns>
       private Collection<DatabaseTableInfo> GetTables()
       {
           Collection<DatabaseTableInfo> results =
                   new Collection<DatabaseTableInfo>();

           // using ODBC connection to the database and get the schema of 
tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

           if (di == null)
           {
               return null;
           }

           OdbcConnection connection = di.Connection;
           DataTable dt = connection.GetSchema("Tables");
           int count;

           // iterate through all rows in the schema and create 
DatabaseTableInfo
           // objects which represents a table
           foreach (DataRow dr in dt.Rows)
           {
               String tableName = dr["TABLE_NAME"] as String;
               DataColumnCollection columns = null;

               // find the number of rows in the table
               try
               {
                   String cmd = "Select count(*) from \"" + tableName + 
"\"";
                   OdbcCommand command = new OdbcCommand(cmd, connection);

                   count = (Int32)command.ExecuteScalar();
               }
               catch
               {
                   count = 0;
               }

               // create DatabaseTableInfo object representing the table
               DatabaseTableInfo table =
                       new DatabaseTableInfo(dr, tableName, count, columns);

               results.Add(table);
           } // foreach (DataRow...

           return results;
       } // GetTables

       /// <summary>



       /// Return row information from a specified table.
       /// </summary>
       /// <param name="tableName">The name of the database table from 
       /// which to retrieve rows.</param>
       /// <returns>Collection of row information objects.</returns>
       private Collection<DatabaseRowInfo> GetRows(string tableName)
       {
           Collection<DatabaseRowInfo> results =
                       new Collection<DatabaseRowInfo>();

           // Obtain rows in the table and add it to the collection
           try
           {               
               OdbcDataAdapter da = GetAdapterForTable(tableName);

               if (da == null)
               {
                   return null;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               int i = 0;
               foreach (DataRow row in table.Rows)
               {
                   results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                   i++;
               } // foreach (DataRow...
           }
           catch (Exception e)
           {
               WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                   ErrorCategory.InvalidOperation, tableName));
           }

           return results;

       } // GetRows

       /// <summary>
       /// Retrieve information about a single table.
       /// </summary>
       /// <param name="tableName">The table for which to retrieve 
       /// data.</param>
       /// <returns>Table information.</returns>
       private DatabaseTableInfo GetTable(string tableName)
       {
           foreach (DatabaseTableInfo table in GetTables())
           {
               if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
               {
                   return table;



               }
           }

           return null;
       } // GetTable

       /// <summary>
       /// Removes the specified table from the database
       /// </summary>
       /// <param name="tableName">Name of the table to remove</param>
       private void RemoveTable(string tableName)
       {
           // validate if tablename is valid and if table is present
           if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
           {
               return;
           }

           // Execute command using ODBC connection to remove a table
           try
           {
               // delete the table using an sql statement
               string sql = "drop table " + tableName;

               AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

               if (di == null)
               {
                   return;
               }
               OdbcConnection connection = di.Connection;

               OdbcCommand cmd = new OdbcCommand(sql, connection);
               cmd.ExecuteScalar();
           }
           catch (Exception ex)
           {
               WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                         ErrorCategory.InvalidOperation, null)
                         );
           }

       } // RemoveTable

       /// <summary>
       /// Obtain a data adapter for the specified Table
       /// </summary>
       /// <param name="tableName">Name of the table to obtain the 
       /// adapter for</param>
       /// <returns>Adapter object for the specified table</returns>
       /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
       /// representation of table) and the data source</remarks>



       private OdbcDataAdapter GetAdapterForTable(string tableName)
       {
           OdbcDataAdapter da = null;
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

           if (di == null || !TableNameIsValid(tableName) 
||!TableIsPresent(tableName))
           {
               return null;
           }

           OdbcConnection connection = di.Connection;

           try
           {
               // Create a odbc data adpater. This can be sued to update the
               // data source with the records that will be created here
               // using data sets
               string sql = "Select * from " + tableName;
               da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

               // Create a odbc command builder object. This will create sql
               // commands automatically for a single table, thus
               // eliminating the need to create new sql statements for 
               // every operation to be done.
               OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

               // Set the delete cmd for the table here
               sql = "Delete from " + tableName + " where ID = ?";
               da.DeleteCommand = new OdbcCommand(sql, connection);

               // Specify a DeleteCommand parameter based on the "ID" 
               // column
               da.DeleteCommand.Parameters.Add(new OdbcParameter());
               da.DeleteCommand.Parameters[0].SourceColumn = "ID";

               // Create an InsertCommand based on the sql string
               // Insert into "tablename" values (?,?,?)" where
               // ? represents a column in the table. Note that 
               // the number of ? will be equal to the number of 
               // columnds
               DataSet ds = new DataSet();

               da.FillSchema(ds, SchemaType.Source);
               ds.Locale = CultureInfo.InvariantCulture;

               sql = "Insert into " + tableName + " values ( ";
               for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
               {
                   sql += "?, ";
               }
               sql = sql.Substring(0, sql.Length - 2);
               sql += ")";
               da.InsertCommand = new OdbcCommand(sql, connection);



               // Create parameters for the InsertCommand based on the
               // captions of each column
               for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
               {
                   da.InsertCommand.Parameters.Add(new OdbcParameter());
                   da.InsertCommand.Parameters[i].SourceColumn = 
                                    ds.Tables["Table"].Columns[i].Caption;
                
               }

               // Open the connection if its not already open                 
               if (connection.State != ConnectionState.Open)
               {
                   connection.Open();
               }
           }
           catch (Exception e)
           {
               WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                 ErrorCategory.InvalidOperation, tableName));
           }

           return da;
       } // GetAdapterForTable

       /// <summary>
       /// Gets the DataSet (in memory representation) for the table
       /// for the specified adapter
       /// </summary>
       /// <param name="adapter">Adapter to be used for obtaining 
       /// the table</param>
       /// <param name="tableName">Name of the table for which a 
       /// DataSet is required</param>
       /// <returns>The DataSet with the filled in schema</returns>
       private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
       {
           Debug.Assert(adapter != null);

           // Create a dataset object which will provide an in-memory
           // representation of the data being worked upon in the 
           // data source. 
           DataSet ds = new DataSet();

           // Create a table named "Table" which will contain the same
           // schema as in the data source.
           //adapter.FillSchema(ds, SchemaType.Source);
           adapter.Fill(ds, tableName);
           ds.Locale = CultureInfo.InvariantCulture;

           return ds;
       } //GetDataSetForTable

       /// <summary>
       /// Get the DataTable object which can be used to operate on



       /// for the specified table in the data source
       /// </summary>
       /// <param name="ds">DataSet object which contains the tables
       /// schema</param>
       /// <param name="tableName">Name of the table</param>
       /// <returns>Corresponding DataTable object representing 
       /// the table</returns>
       /// 
       private DataTable GetDataTable(DataSet ds, string tableName)
       {
           Debug.Assert(ds != null);
           Debug.Assert(tableName != null);

           DataTable table = ds.Tables[tableName];
           table.Locale = CultureInfo.InvariantCulture;

           return table;
       } // GetDataTable

       /// <summary>
       /// Retrieves a single row from the named table.
       /// </summary>
       /// <param name="tableName">The table that contains the 
       /// numbered row.</param>
       /// <param name="row">The index of the row to return.</param>
       /// <returns>The specified table row.</returns>
       private DatabaseRowInfo GetRow(string tableName, int row)
       {
           Collection<DatabaseRowInfo> di = GetRows(tableName);

           // if the row is invalid write an appropriate error else return 
the 
           // corresponding row information
           if (row < di.Count && row >= 0)
           {
               return di[row];
           }
           else
           {
               WriteError(new ErrorRecord(
                  new ItemNotFoundException(),
                  "RowNotFound",
                  ErrorCategory.ObjectNotFound,
                  row.ToString(CultureInfo.CurrentCulture))
               );
           }

           return null;
       } // GetRow

       /// <summary>
       /// Method to safely convert a string representation of a row number 
       /// into its Int32 equivalent
       /// </summary>
       /// <param name="rowNumberAsStr">String representation of the row 



       /// number</param>
       /// <remarks>If there is an exception, -1 is returned</remarks>
       private int SafeConvertRowNumber(string rowNumberAsStr)
       {
           int rowNumber = -1;
           try
           {
               rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
           }
           catch (FormatException fe)
           {
               WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                   ErrorCategory.InvalidData, rowNumberAsStr));
           }
           catch (OverflowException oe)
           {
               WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                   ErrorCategory.InvalidData, rowNumberAsStr));
           }

           return rowNumber;
       } // SafeConvertRowNumber

       /// <summary>
       /// Check if a table name is valid
       /// </summary>
       /// <param name="tableName">Table name to validate</param>
       /// <remarks>Helps to check for SQL injection attacks</remarks>
       private bool TableNameIsValid(string tableName)
       {
           Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

           if (exp.IsMatch(tableName))
           {
               return true;
           }
           WriteError(new ErrorRecord(
               new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                    ErrorCategory.InvalidArgument, tableName));
           return false;
       } // TableNameIsValid

       /// <summary>
       /// Checks to see if the specified table is present in the
       /// database
       /// </summary>
       /// <param name="tableName">Name of the table to check</param>
       /// <returns>true, if table is present, false otherwise</returns>
       private bool TableIsPresent(string tableName)
       {
           // using ODBC connection to the database and get the schema of 



tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
           if (di == null)
           {
               return false;
           }

           OdbcConnection connection = di.Connection;
           DataTable dt = connection.GetSchema("Tables");

           // check if the specified tableName is available
           // in the list of tables present in the database
           foreach (DataRow dr in dt.Rows)
           {
               string name = dr["TABLE_NAME"] as string;
               if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
               {
                   return true;
               }
           }

           WriteError(new ErrorRecord(
               new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                    ErrorCategory.InvalidArgument, tableName));

           return false;
       }// TableIsPresent

       /// <summary>
       /// Gets the next available ID in the table
       /// </summary>
       /// <param name="table">DataTable object representing the table to 
       /// search for ID</param>
       /// <returns>next available id</returns>
       private int GetNextID(DataTable table)
       {
           int big = 0;
           int id = 0;

           for (int i = 0; i < table.Rows.Count; i++)
           {
               DataRow row = table.Rows[i];

               object o = row["ID"];

               if (o.GetType().Name.Equals("Int16"))
               {
                   id = (int)(short)o;
               }
               else
               {
                   id = (int)o;
               }



               if (big < id)
               {
                   big = id;
               }
           }

           big++;
           return big;
       }

       #endregion Helper Methods

       #region Private Properties

       private string pathSeparator = "\\";
       private static string pattern = @"^[a-z]+[0-9]*_*$";

       private enum PathType { Database, Table, Row, Invalid };

       #endregion Private Properties
   }

   #endregion AccessDBProvider

   #region Helper Classes

  #region AccessDBPSDriveInfo

  /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>
       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo



   #endregion AccessDBPSDriveInfo

   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;
           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount
       {
           get
           {
               return rowCount;
           }
           set
           {
               rowCount = value;



           }
       }
       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo
   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {
       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;



Windows PowerShell SDK

           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also

６  Collaborate with us on
GitHub

PowerShell feedback
PowerShell is an open source
project. Select a link to provide



The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample04-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample04-code-sample.md&documentVersionIndependentId=fdf5222a-8a11-2ec5-b50b-926064da09a4&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+d2844dfc-7c04-b14c-e98e-e5e0cf1598cc+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AccessDbProviderSample05 Code
Sample
Article • 09/17/2021

The following code shows the implementation of the Windows PowerShell navigation
provider described in Creating a Windows PowerShell Navigation Provider. This provider
supports recursive commands, nested containers, and relative paths that allow it to
navigate the data store.

C#

Code Sample

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Diagnostics;
using System.Collections.ObjectModel;
using System.Text;
using System.Text.RegularExpressions;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

    /// <summary>
   /// This example implements the navigation methods.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]
   public class AccessDBProvider : NavigationCmdletProvider
   {

      #region Drive Manipulation

       /// <summary>
       /// Create a new drive.  Create a connection to the database file and 
set
       /// the Connection property in the PSDriveInfo.
       /// </summary>
       /// <param name="drive">
       /// Information describing the drive to add.
       /// </param>
       /// <returns>The added drive.</returns>



       protected override PSDriveInfo NewDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   null)
               );

               return null;
           }

           // check if drive root is not null or empty
           // and if its an existing file
           if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
           {
               WriteError(new ErrorRecord(
                   new ArgumentException("drive.Root"),
                   "NoRoot",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // create a new drive and create an ODBC connection to the new 
drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

           OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

           builder.Driver = "Microsoft Access Driver (*.mdb)";
           builder.Add("DBQ", drive.Root);

           OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
           conn.Open();
           accessDBPSDriveInfo.Connection = conn;

           return accessDBPSDriveInfo;
       } // NewDrive

       /// <summary>
       /// Removes a drive from the provider.
       /// </summary>
       /// <param name="drive">The drive to remove.</param>
       /// <returns>The drive removed.</returns>



       protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
       {
           // check if drive object is null
           if (drive == null)
           {
               WriteError(new ErrorRecord(
                   new ArgumentNullException("drive"),
                   "NullDrive",
                   ErrorCategory.InvalidArgument,
                   drive)
               );

               return null;
           }

           // close ODBC connection to the drive
           AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

           if (accessDBPSDriveInfo == null)
           {
               return null;
           }
           accessDBPSDriveInfo.Connection.Close();

           return accessDBPSDriveInfo;
       } // RemoveDrive

       #endregion Drive Manipulation

      #region Item Methods

       /// <summary>
       /// Retrieves an item using the specified path.
       /// </summary>
       /// <param name="path">The path to the item to return.</param>
       protected override void GetItem(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               WriteItemObject(this.PSDriveInfo, path, true);
               return;
           }// if (PathIsDrive...

           // Get table name and row information from the path and do 
           // necessary actions
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {



               DatabaseTableInfo table = GetTable(tableName);
               WriteItemObject(table, path, true);
           }
           else if (type == PathType.Row)
           {
               DatabaseRowInfo row = GetRow(tableName, rowNumber);
               WriteItemObject(row, path, false);
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // GetItem

       /// <summary>
       /// Set the content of a row of data specified by the supplied path
       /// parameter.
       /// </summary>
       /// <param name="path">Specifies the path to the row whose columns
       /// will be updated.</param>
       /// <param name="values">Comma separated string of values</param>
       protected override void SetItem(string path, object values)
       {
           // Get type, table name and row number from the path specified
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Row)
           {
               WriteError(new ErrorRecord(new NotSupportedException(
                     "SetNotSupported"), "",
                  ErrorCategory.InvalidOperation, path));

               return;
           }

           // Get in-memory representation of table
           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }
           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           if (rowNumber >= table.Rows.Count)
           {
               // The specified row number has to be available. If not
               // NewItem has to be used to add a new row
               throw new ArgumentException("Row specified is not 



available");
           } // if (rowNum...

           string[] colValues = (values as string).Split(',');

           // set the specified row
           DataRow row = table.Rows[rowNumber];

           for (int i = 0; i < colValues.Length; i++)
           {
               row[i] = colValues[i];
           }

           // Update the table
           if (ShouldProcess(path, "SetItem"))
           {
               da.Update(ds, tableName);
           }

       } // SetItem

       /// <summary>
       /// Test to see if the specified item exists.
       /// </summary>
       /// <param name="path">The path to the item to verify.</param>
       /// <returns>True if the item is found.</returns>
       protected override bool ItemExists(string path)
       {
           // check if the path represented is a drive
           if (PathIsDrive(path))
           {
               return true;
           }

           // Obtain type, table name and row number from path
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           DatabaseTableInfo table = GetTable(tableName);

           if (type == PathType.Table)
           {
               // if specified path represents a table then 
DatabaseTableInfo
               // object for the same should exist
               if (table != null)
               {
                   return true;
               }
           }
           else if (type == PathType.Row)
           {



               // if specified path represents a row then DatabaseTableInfo 
should
               // exist for the table and then specified row number must be 
within
               // the maximum row count in the table
               if (table != null && rowNumber < table.RowCount)
               {
                   return true;
               }
           }

           return false;

       } // ItemExists

       /// <summary>
       /// Test to see if the specified path is syntactically valid.
       /// </summary>
       /// <param name="path">The path to validate.</param>
       /// <returns>True if the specified path is valid.</returns>
       protected override bool IsValidPath(string path)
       {
           bool result = true;

           // check if the path is null or empty
           if (String.IsNullOrEmpty(path))
           {
               result = false;
           }

           // convert all separators in the path to a uniform one
           path = NormalizePath(path);

           // split the path into individual chunks
           string[] pathChunks = path.Split(pathSeparator.ToCharArray());

           foreach (string pathChunk in pathChunks)
           {
               if (pathChunk.Length == 0)
               {
                   result = false;
               }
           }
           return result;
       } // IsValidPath

       #endregion Item Overloads

      #region Container Overloads

       /// <summary>
       /// Return either the tables in the database or the datarows
       /// </summary>
       /// <param name="path">The path to the parent</param>
       /// <param name="recurse">True to return all child items recursively.



       /// </param>
       protected override void GetChildItems(string path, bool recurse)
       {
           // If path represented is a drive then the children in the path 
are 
           // tables. Hence all tables in the drive represented will have to 
be
           // returned
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table, path, true);

                   // if the specified item exists and recurse has been set 
then 
                   // all child items within it have to be obtained as well
                   if (ItemExists(path) && recurse)
                   {
                       GetChildItems(path + pathSeparator + table.Name, 
recurse);
                   }
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get the table name, row number and type of path from the
               // path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Obtain all the rows within the table
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);
                   WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                               false);
               }
               else



               {
                   // In this case, the path specified is not valid
                   ThrowTerminatingInvalidPathException(path);
               }
           } // else
       } // GetChildItems

       /// <summary>
       /// Return the names of all child items.
       /// </summary>
       /// <param name="path">The root path.</param>
       /// <param name="returnContainers">Not used.</param>
       protected override void GetChildNames(string path,
                                     ReturnContainers returnContainers)
       {
           // If the path represented is a drive, then the child items are
           // tables. get the names of all the tables in the drive.
           if (PathIsDrive(path))
           {
               foreach (DatabaseTableInfo table in GetTables())
               {
                   WriteItemObject(table.Name, path, true);
               } // foreach (DatabaseTableInfo...
           } // if (PathIsDrive...
           else
           {
               // Get type, table name and row number from path specified
               string tableName;
               int rowNumber;

               PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

               if (type == PathType.Table)
               {
                   // Get all the rows in the table and then write out the 
                   // row numbers.
                   foreach (DatabaseRowInfo row in GetRows(tableName))
                   {
                       WriteItemObject(row.RowNumber, path, false);
                   } // foreach (DatabaseRowInfo...
               }
               else if (type == PathType.Row)
               {
                   // In this case the user has directly specified a row, 
hence
                   // just give that particular row
                   DatabaseRowInfo row = GetRow(tableName, rowNumber);

                   WriteItemObject(row.RowNumber, path, false);
               }
               else
               {
                   ThrowTerminatingInvalidPathException(path);
               }



           } // else
       } // GetChildNames

       /// <summary>
       /// Determines if the specified path has child items.
       /// </summary>
       /// <param name="path">The path to examine.</param>
       /// <returns>
       /// True if the specified path has child items.
       /// </returns>
       protected override bool HasChildItems(string path)
       {
           if (PathIsDrive(path))
           {
               return true;
           }

           return (ChunkPath(path).Length == 1);
       } // HasChildItems

       /// <summary>
       /// Creates a new item at the specified path.
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the new item.
       /// </param>
       /// 
       /// <param name="type">
       /// Type for the object to create. "Table" for creating a new table 
and
       /// "Row" for creating a new row in a table.
       /// </param>
       /// 
       /// <param name="newItemValue">
       /// Object for creating new instance of a type at the specified path. 
For
       /// creating a "Table" the object parameter is ignored and for 
creating
       /// a "Row" the object must be of type string which will contain 
comma 
       /// separated values of the rows to insert.
       /// </param>
       protected override void NewItem(string path, string type,
                                   object newItemValue)
       {
           string tableName;
           int rowNumber;

           PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (pt == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);



           }

           // Check if type is either "table" or "row", if not throw an 
           // exception
           if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
               && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
           {
               WriteError(new ErrorRecord
                                 (new ArgumentException("Type must be either 
a table or row"),
                                     "CannotCreateSpecifiedObject",
                                        ErrorCategory.InvalidArgument,
                                             path
                                  )
                         );

               throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
           }

           // Path type is the type of path of the container. So if a drive
           // is specified, then a table can be created under it and if a 
table
           // is specified, then a row can be created under it. For the sake 
of 
           // completeness, if a row is specified, then if the row specified 
by
           // the path does not exist, a new row is created. However, the 
row 
           // number may not match as the row numbers only get incremented 
based 
           // on the number of rows

           if (PathIsDrive(path))
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   // Execute command using ODBC connection to create a 
table
                   try
                   {
                       // create the table using an sql statement
                       string newTableName = newItemValue.ToString();
                       string sql = "create table " + newTableName
                                            + " (ID INT)";

                       // Create the table using the Odbc connection from 
the 
                       // drive.
                       AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;



                       if (di == null)
                       {
                           return;
                       }
                       OdbcConnection connection = di.Connection;

                       if (ShouldProcess(newTableName, "create"))
                       {
                           OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                           cmd.ExecuteScalar();
                       }
                   }
                   catch (Exception ex)
                   {
                       WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                 ErrorCategory.InvalidOperation, path)
                                 );
                   }
               } // if (String...
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   throw new
                       ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
               }
           }// if (PathIsDrive...
           else
           {
               if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
               {
                   if (rowNumber < 0)
                   {
                       throw new
                           ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                   }
                   else
                   {
                       throw new
                           ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                   }
               } //if (String.Equals....
               // if path specified is a row, create a new row
               else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
               {
                   // The user is required to specify the values to be 
inserted 
                   // into the table in a single string separated by commas
                   string value = newItemValue as string;



                   if (String.IsNullOrEmpty(value))
                   {
                       throw new
                           ArgumentException("Value argument must have comma 
separated values of each column in a row");
                   }
                   string[] rowValues = value.Split(',');

                   OdbcDataAdapter da = GetAdapterForTable(tableName);

                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   if (rowValues.Length != table.Columns.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                       throw new ArgumentException(message);
                   }

                   if (!Force && (rowNumber >= 0 && rowNumber < 
table.Rows.Count))
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The row {0} already exists. To 
create a new row specify row number as {1}, or specify path to a table, or 
use the -Force parameter",
                                                rowNumber, 
table.Rows.Count);

                       throw new ArgumentException(message);
                   }

                   if (rowNumber > table.Rows.Count)
                   {
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }



                   // Create a new row and update the row with the input
                   // provided by the user
                   DataRow row = table.NewRow();
                   for (int i = 0; i < rowValues.Length; i++)
                   {
                       row[i] = rowValues[i];
                   }
                   table.Rows.Add(row);

                   if (ShouldProcess(tableName, "update rows"))
                   {
                       // Update the table from memory back to the data 
source
                       da.Update(ds, tableName);
                   }

               }// else if (String...
           }// else ...

       } // NewItem

       /// <summary>
       /// Copies an item at the specified path to the location specified
       /// </summary>
       /// 
       /// <param name="path">
       /// Path of the item to copy
       /// </param>
       /// 
       /// <param name="copyPath">
       /// Path of the item to copy to
       /// </param>
       /// 
       /// <param name="recurse">
       /// Tells the provider to recurse subcontainers when copying
       /// </param>
       /// 
       protected override void CopyItem(string path, string copyPath, bool 
recurse)
       {
           string tableName, copyTableName;
           int rowNumber, copyRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
           PathType copyType = GetNamesFromPath(copyPath, out copyTableName, 
out copyRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (type == PathType.Invalid)
           {



               ThrowTerminatingInvalidPathException(copyPath);
           }

           // Get the table and the table to copy to 
           OdbcDataAdapter da = GetAdapterForTable(tableName);
           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
           if (cda == null)
           {
               return;
           }

           DataSet cds = GetDataSetForTable(cda, copyTableName);
           DataTable copyTable = GetDataTable(cds, copyTableName);

           // if source represents a table
           if (type == PathType.Table)
           {
               // if copyPath does not represent a table
               if (copyType != PathType.Table)
               {
                   ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                   WriteError(new ErrorRecord(e, "PathNotValid",
                       ErrorCategory.InvalidArgument, copyPath));

                   throw e;
               }

               // if table already exists then force parameter should be set 
               // to force a copy
               if (!Force && GetTable(copyTableName) != null)
               {
                   throw new ArgumentException("Specified path already 
exists");
               }

               for (int i = 0; i < table.Rows.Count; i++)
               {
                   DataRow row = table.Rows[i];
                   DataRow copyRow = copyTable.NewRow();

                   copyRow.ItemArray = row.ItemArray;
                   copyTable.Rows.Add(copyRow);
               }
           } // if (type == ...
           // if source represents a row



           else
           {
               if (copyType == PathType.Row)
               {
                   if (!Force && (copyRowNumber < copyTable.Rows.Count))
                   {
                       throw new ArgumentException("Specified path already 
exists.");
                   }

                   DataRow row = table.Rows[rowNumber];
                   DataRow copyRow = null;

                   if (copyRowNumber < copyTable.Rows.Count)
                   {
                       // copy to an existing row
                       copyRow = copyTable.Rows[copyRowNumber];
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                   }
                   else if (copyRowNumber == copyTable.Rows.Count)
                   {
                       // copy to the next row in the table that will 
                       // be created
                       copyRow = copyTable.NewRow();
                       copyRow.ItemArray = row.ItemArray;
                       copyRow[0] = GetNextID(copyTable);
                       copyTable.Rows.Add(copyRow);
                   }
                   else
                   {
                       // attempting to copy to a nonexistent row or a row
                       // that cannot be created now - throw an exception
                       string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The item cannot be specified to 
the copied row. Specify row number as {0}, or specify a path to the table.",
                                                table.Rows.Count);

                       throw new ArgumentException(message);
                   }
               }
               else
               {
                   // destination path specified represents a table, 
                   // create a new row and copy the item
                   DataRow copyRow = copyTable.NewRow();
                   copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                   copyRow[0] = GetNextID(copyTable);
                   copyTable.Rows.Add(copyRow);
               }
           }

           if (ShouldProcess(copyTableName, "CopyItems"))
           {



               cda.Update(cds, copyTableName);
           }

       } //CopyItem

       /// <summary>
       /// Removes (deletes) the item at the specified path
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to remove.
       /// </param>
       /// 
       /// <param name="recurse">
       /// True if all children in a subtree should be removed, false if 
only
       /// the item at the specified path should be removed. Is applicable
       /// only for container (table) items. Its ignored otherwise (even if
       /// specified).
       /// </param>
       /// 
       /// <remarks>
       /// There are no elements in this store which are hidden from the 
user.
       /// Hence this method will not check for the presence of the Force
       /// parameter
       /// </remarks>
       /// 
       protected override void RemoveItem(string path, bool recurse)
       {
           string tableName;
           int rowNumber = 0;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               // if recurse flag has been specified, delete all the rows as 
well
               if (recurse)
               {
                   OdbcDataAdapter da = GetAdapterForTable(tableName);
                   if (da == null)
                   {
                       return;
                   }

                   DataSet ds = GetDataSetForTable(da, tableName);
                   DataTable table = GetDataTable(ds, tableName);

                   for (int i = 0; i < table.Rows.Count; i++)
                   {
                       table.Rows[i].Delete();
                   }



                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       da.Update(ds, tableName);
                       RemoveTable(tableName);
                   }
               }//if (recurse...
               else
               {
                   // Remove the table
                   if (ShouldProcess(path, "RemoveItem"))
                   {
                       RemoveTable(tableName);
                   }
               }
           }
           else if (type == PathType.Row)
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }

               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               table.Rows[rowNumber].Delete();

               if (ShouldProcess(path, "RemoveItem"))
               {
                   da.Update(ds, tableName);
               }
           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

       } // RemoveItem

       #endregion Container Overloads

      #region Navigation

      /// <summary>
      /// Determine if the path specified is that of a container.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>True if the path specifies a container.</returns>
      protected override bool IsItemContainer(string path)
      {
         if (PathIsDrive(path)) 
         { 
             return true; 



         }
         
         string[] pathChunks = ChunkPath(path);
         string tableName;
         int rowNumber;

         PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
         
         if (type == PathType.Table)
         {
            foreach (DatabaseTableInfo ti in GetTables())
            {
                if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
                {
                    return true;
                }
            } // foreach (DatabaseTableInfo...
         } // if (pathChunks...

         return false;
      } // IsItemContainer

       /// <summary>
       /// Get the name of the leaf element in the specified path        
       /// </summary>
       /// 
       /// <param name="path">
       /// The full or partial provider specific path
       /// </param>
       /// 
       /// <returns>
       /// The leaf element in the path
       /// </returns>
       protected override string GetChildName(string path)
       {
           if (PathIsDrive(path))
           {
               return path;
           }

           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Table)
           {
               return tableName;
           }
           else if (type == PathType.Row)
           {
               return rowNumber.ToString(CultureInfo.CurrentCulture);



           }
           else
           {
               ThrowTerminatingInvalidPathException(path);
           }

           return null;
       }

       /// <summary>
       /// Removes the child segment of the path and returns the remaining
       /// parent portion
       /// </summary>
       /// 
       /// <param name="path">
       /// A full or partial provider specific path. The path may be to an
       /// item that may or may not exist.
       /// </param>
       /// 
       /// <param name="root">
       /// The fully qualified path to the root of a drive. This parameter
       /// may be null or empty if a mounted drive is not in use for this
       /// operation.  If this parameter is not null or empty the result
       /// of the method should not be a path to a container that is a
       /// parent or in a different tree than the root.
       /// </param>
       /// 
       /// <returns></returns>

       protected override string GetParentPath(string path, string root)
       {
           // If root is specified then the path has to contain
           // the root. If not nothing should be returned
           if (!String.IsNullOrEmpty(root))
           {
               if (!path.Contains(root))
               {
                   return null;
               }
           }

           return path.Substring(0, path.LastIndexOf(pathSeparator, 
StringComparison.OrdinalIgnoreCase));
       }

       /// <summary>
       /// Joins two strings with a provider specific path separator.
       /// </summary>
       /// 
       /// <param name="parent">
       /// The parent segment of a path to be joined with the child.
       /// </param>
       /// 
       /// <param name="child">
       /// The child segment of a path to be joined with the parent.



       /// </param>
       /// 
       /// <returns>
       /// A string that represents the parent and child segments of the 
path
       /// joined by a path separator.
       /// </returns>

       protected override string MakePath(string parent, string child)
       {
           string result;

           string normalParent = NormalizePath(parent);
           normalParent = RemoveDriveFromPath(normalParent);
           string normalChild = NormalizePath(child);
           normalChild = RemoveDriveFromPath(normalChild);

           if (String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               result = String.Empty;
           }
           else if (String.IsNullOrEmpty(normalParent) && 
!String.IsNullOrEmpty(normalChild))
           {
               result = normalChild;
           }
           else if (!String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
           {
               if (normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent;
               }
               else
               {
                   result = normalParent + pathSeparator;
               }
           } // else if (!String...
           else
           {
               if (!normalParent.Equals(String.Empty) &&
                   !normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
               {
                   result = normalParent + pathSeparator;
               }
               else
               {
                   result = normalParent;
               }

               if (normalChild.StartsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))



               {
                   result += normalChild.Substring(1);
               }
               else
               {
                   result += normalChild;
               }
           } // else

           return result;
       } // MakePath

       /// <summary>
       /// Normalizes the path that was passed in and returns the normalized
       /// path as a relative path to the basePath that was passed.
       /// </summary>
       /// 
       /// <param name="path">
       /// A fully qualified provider specific path to an item.  The item
       /// should exist or the provider should write out an error.
       /// </param>
       /// 
       /// <param name="basepath">
       /// The path that the return value should be relative to.
       /// </param>
       /// 
       /// <returns>
       /// A normalized path that is relative to the basePath that was
       /// passed.  The provider should parse the path parameter, normalize
       /// the path, and then return the normalized path relative to the
       /// basePath.
       /// </returns>

       protected override string NormalizeRelativePath(string path,
                                                            string basepath)
       {
           // Normalize the paths first
           string normalPath = NormalizePath(path);
           normalPath = RemoveDriveFromPath(normalPath);
           string normalBasePath = NormalizePath(basepath);
           normalBasePath = RemoveDriveFromPath(normalBasePath);

           if (String.IsNullOrEmpty(normalBasePath))
           {
               return normalPath;
           }
           else
           {
               if (!normalPath.Contains(normalBasePath))
               {
                   return null;
               }

               return normalPath.Substring(normalBasePath.Length + 
pathSeparator.Length);



           }
       }

       /// <summary>
       /// Moves the item specified by the path to the specified destination
       /// </summary>
       /// 
       /// <param name="path">
       /// The path to the item to be moved
       /// </param>
       /// 
       /// <param name="destination">
       /// The path of the destination container
       /// </param>
       
       protected override void MoveItem(string path, string destination)
       {
           // Get type, table name and rowNumber from the path
           string tableName, destTableName;
           int rowNumber, destRowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           PathType destType = GetNamesFromPath(destination, out 
destTableName,
                                    out destRowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }

           if (destType == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(destination);
           }

           if (type == PathType.Table)
           {
               ArgumentException e = new ArgumentException("Move not 
supported for tables");

               WriteError(new ErrorRecord(e, "MoveNotSupported", 
                   ErrorCategory.InvalidArgument, path));

               throw e;
           }
           else
           {
               OdbcDataAdapter da = GetAdapterForTable(tableName);
               if (da == null)
               {
                   return;
               }



               DataSet ds = GetDataSetForTable(da, tableName);
               DataTable table = GetDataTable(ds, tableName);

               OdbcDataAdapter dda = GetAdapterForTable(destTableName);
               if (dda == null)
               {
                   return;
               }

               DataSet dds = GetDataSetForTable(dda, destTableName);
               DataTable destTable = GetDataTable(dds, destTableName);
               DataRow row = table.Rows[rowNumber];

               if (destType == PathType.Table)
               {
                   DataRow destRow = destTable.NewRow();

                   destRow.ItemArray = row.ItemArray;
               }
               else
               {
                   DataRow destRow = destTable.Rows[destRowNumber];

                   destRow.ItemArray = row.ItemArray;
               }

               // Update the changes
               if (ShouldProcess(path, "MoveItem"))
               {
                   WriteItemObject(row, path, false);
                   dda.Update(dds, destTableName);
               }
           }
       }

      #endregion Navigation

      #region Helper Methods

      /// <summary>
      /// Checks if a given path is actually a drive name.
      /// </summary>
      /// <param name="path">The path to check.</param>
      /// <returns>
      /// True if the path given represents a drive, false otherwise.
      /// </returns>
      private bool PathIsDrive(string path)
      {
          // Remove the drive name and first path separator.  If the 
          // path is reduced to nothing, it is a drive. Also if its
          // just a drive then there wont be any path separators
          if (String.IsNullOrEmpty(
                      path.Replace(this.PSDriveInfo.Root, "")) ||
              String.IsNullOrEmpty(



                      path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

             )
          {
              return true;
          }
          else
          {
              return false;
          }
      } // PathIsDrive

      /// <summary>
      /// Breaks up the path into individual elements.
      /// </summary>
      /// <param name="path">The path to split.</param>
      /// <returns>An array of path segments.</returns>
      private string[] ChunkPath(string path)
      {
          // Normalize the path before splitting
          string normalPath = NormalizePath(path);

          // Return the path with the drive name and first path 
          // separator character removed, split by the path separator.
          string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                         + pathSeparator, "");

          return pathNoDrive.Split(pathSeparator.ToCharArray());
      } // ChunkPath

      /// <summary>
      /// Adapts the path, making sure the correct path separator
      /// character is used.
      /// </summary>
      /// <param name="path"></param>
      /// <returns></returns>
      private string NormalizePath(string path)
      {
          string result = path;

          if (!String.IsNullOrEmpty(path))
          {
              result = path.Replace("/", pathSeparator);
          }

          return result;
      } // NormalizePath

      /// <summary>
      /// Ensures that the drive is removed from the specified path
      /// </summary>
      /// 
      /// <param name="path">Path from which drive needs to be 
removed</param>



      /// <returns>Path with drive information removed</returns>
      private string RemoveDriveFromPath(string path)
      {
          string result = path;
          string root;

          if (this.PSDriveInfo == null)
          {
              root = String.Empty;
          }
          else
          {
              root = this.PSDriveInfo.Root;
          }

          if (result == null)
          {
              result = String.Empty;
          }

          if (result.Contains(root))
          {
              result = result.Substring(result.IndexOf(root, 
StringComparison.OrdinalIgnoreCase) + root.Length);
          }

          return result;
      }

      /// <summary>
      /// Chunks the path and returns the table name and the row number 
      /// from the path
      /// </summary>
      /// <param name="path">Path to chunk and obtain information</param>
      /// <param name="tableName">Name of the table as represented in the 
      /// path</param>
      /// <param name="rowNumber">Row number obtained from the path</param>
      /// <returns>what the path represents</returns>
      private PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
      {
          PathType retVal = PathType.Invalid;
          rowNumber = -1;
          tableName = null;

          // Check if the path specified is a drive
          if (PathIsDrive(path))
          {
              return PathType.Database;
          }

          // chunk the path into parts
          string[] pathChunks = ChunkPath(path);

          switch (pathChunks.Length)



          {
              case 1:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                          retVal = PathType.Table;
                      }
                  }
                  break;

              case 2:
                  {
                      string name = pathChunks[0];

                      if (TableNameIsValid(name))
                      {
                          tableName = name;
                      }

                      int number = SafeConvertRowNumber(pathChunks[1]);

                      if (number >= 0)
                      {
                          rowNumber = number;
                          retVal = PathType.Row;
                      }
                      else
                      {
                          WriteError(new ErrorRecord(
                              new ArgumentException("Row number is not 
valid"),
                              "RowNumberNotValid",
                              ErrorCategory.InvalidArgument,
                              path));
                      }
                  }
                  break;

              default:
                  {
                      WriteError(new ErrorRecord(
                          new ArgumentException("The path supplied has too 
many segments"),
                          "PathNotValid",
                          ErrorCategory.InvalidArgument,
                          path));
                  }
                  break;
          } // switch(pathChunks...

          return retVal;
      } // GetNamesFromPath



      /// <summary>
      /// Throws an argument exception stating that the specified path does
      /// not represent either a table or a row
      /// </summary>
      /// <param name="path">path which is invalid</param>
      private void ThrowTerminatingInvalidPathException(string path)
      {
          StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
          message.Append(path);

          throw new ArgumentException(message.ToString());
      }

      /// <summary>
      /// Retrieve the list of tables from the database.
      /// </summary>
      /// <returns>
      /// Collection of DatabaseTableInfo objects, each object representing
      /// information about one database table
      /// </returns>
      private Collection<DatabaseTableInfo> GetTables()
      {
          Collection<DatabaseTableInfo> results =
                  new Collection<DatabaseTableInfo>();

          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null)
          {
              return null;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");
          int count;

          // iterate through all rows in the schema and create 
DatabaseTableInfo
          // objects which represents a table
          foreach (DataRow dr in dt.Rows)
          {
              String tableName = dr["TABLE_NAME"] as String;
              DataColumnCollection columns = null;

              // find the number of rows in the table
              try
              {
                  String cmd = "Select count(*) from \"" + tableName + "\"";
                  OdbcCommand command = new OdbcCommand(cmd, connection);

                  count = (Int32)command.ExecuteScalar();



              }
              catch 
              {
                  count = 0;
              }

              // create DatabaseTableInfo object representing the table
              DatabaseTableInfo table =
                      new DatabaseTableInfo(dr, tableName, count, columns);

              results.Add(table);
          } // foreach (DataRow...

          return results;
      } // GetTables

      /// <summary>
      /// Return row information from a specified table.
      /// </summary>
      /// <param name="tableName">The name of the database table from 
      /// which to retrieve rows.</param>
      /// <returns>Collection of row information objects.</returns>
      private Collection<DatabaseRowInfo> GetRows(string tableName)
      {             
          Collection<DatabaseRowInfo> results =
                      new Collection<DatabaseRowInfo>();

          // Obtain rows in the table and add it to the collection
          try
          {
              OdbcDataAdapter da = GetAdapterForTable(tableName);

              if (da == null)
              {
                  return null;
              }

              DataSet ds = GetDataSetForTable(da, tableName);
              DataTable table = GetDataTable(ds, tableName);

              int i = 0;
              foreach (DataRow row in table.Rows)
              {
                  results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                  i++;
              } // foreach (DataRow...
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                  ErrorCategory.InvalidOperation, tableName));
          }

          return results;



      } // GetRows

      /// <summary>
      /// Retrieve information about a single table.
      /// </summary>
      /// <param name="tableName">The table for which to retrieve 
      /// data.</param>
      /// <returns>Table information.</returns>
      private DatabaseTableInfo GetTable(string tableName)
      {
          foreach (DatabaseTableInfo table in GetTables())
          {
              if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
              {
                  return table;
              }
          }

          return null;
      } // GetTable

      /// <summary>
      /// Removes the specified table from the database
      /// </summary>
      /// <param name="tableName">Name of the table to remove</param>
      private void RemoveTable(string tableName)
      {
          // validate if tablename is valid and if table is present
          if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
          {
              return;
          }

          // Execute command using ODBC connection to remove a table
          try
          {
              // delete the table using an sql statement
              string sql = "drop table " + tableName;

              AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

              if (di == null)
              {
                  return;
              }
              OdbcConnection connection = di.Connection;

              OdbcCommand cmd = new OdbcCommand(sql, connection);
              cmd.ExecuteScalar();
          }
          catch (Exception ex)



          {
              WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                        ErrorCategory.InvalidOperation, null)
                        );
          }

      } // RemoveTable

      /// <summary>
      /// Obtain a data adapter for the specified Table
      /// </summary>
      /// <param name="tableName">Name of the table to obtain the 
      /// adapter for</param>
      /// <returns>Adapter object for the specified table</returns>
      /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
      /// representation of table) and the data source</remarks>
      private OdbcDataAdapter GetAdapterForTable(string tableName)
      {
          OdbcDataAdapter da = null;
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;

          if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
          {
              return null;
          }

          OdbcConnection connection = di.Connection;

          try
          {
              // Create a odbc data adpater. This can be sued to update the
              // data source with the records that will be created here
              // using data sets
              string sql = "Select * from " + tableName;
              da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

              // Create a odbc command builder object. This will create sql
              // commands automatically for a single table, thus
              // eliminating the need to create new sql statements for 
              // every operation to be done.
              OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

              // Set the delete cmd for the table here
              sql = "Delete from " + tableName + " where ID = ?";
              da.DeleteCommand = new OdbcCommand(sql, connection);

              // Specify a DeleteCommand parameter based on the "ID" 
              // column
              da.DeleteCommand.Parameters.Add(new OdbcParameter());
              da.DeleteCommand.Parameters[0].SourceColumn = "ID";

              // Create an InsertCommand based on the sql string
              // Insert into "tablename" values (?,?,?)" where



              // ? represents a column in the table. Note that 
              // the number of ? will be equal to the number of 
              // columnds
              DataSet ds = new DataSet();

              da.FillSchema(ds, SchemaType.Source);
              ds.Locale = CultureInfo.InvariantCulture;

              sql = "Insert into " + tableName + " values ( ";
              for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
              {
                  sql += "?, ";
              }
              sql = sql.Substring(0, sql.Length - 2);
              sql += ")";
              da.InsertCommand = new OdbcCommand(sql, connection);

              // Create parameters for the InsertCommand based on the
              // captions of each column
              for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
              {
                  da.InsertCommand.Parameters.Add(new OdbcParameter());
                  da.InsertCommand.Parameters[i].SourceColumn =
                                   ds.Tables["Table"].Columns[i].Caption;

              }

              // Open the connection if its not already open                 
              if (connection.State != ConnectionState.Open)
              {
                  connection.Open();
              }
          }
          catch (Exception e)
          {
              WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                ErrorCategory.InvalidOperation, tableName));
          }

          return da;
      } // GetAdapterForTable

      /// <summary>
      /// Gets the DataSet (in memory representation) for the table
      /// for the specified adapter
      /// </summary>
      /// <param name="adapter">Adapter to be used for obtaining 
      /// the table</param>
      /// <param name="tableName">Name of the table for which a 
      /// DataSet is required</param>
      /// <returns>The DataSet with the filled in schema</returns>
      private DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
      {
          Debug.Assert(adapter != null);



          // Create a dataset object which will provide an in-memory
          // representation of the data being worked upon in the 
          // data source. 
          DataSet ds = new DataSet();

          // Create a table named "Table" which will contain the same
          // schema as in the data source.
          //adapter.FillSchema(ds, SchemaType.Source);
          adapter.Fill(ds, tableName);
          ds.Locale = CultureInfo.InvariantCulture;

          return ds;
      } //GetDataSetForTable

      /// <summary>
      /// Get the DataTable object which can be used to operate on
      /// for the specified table in the data source
      /// </summary>
      /// <param name="ds">DataSet object which contains the tables
      /// schema</param>
      /// <param name="tableName">Name of the table</param>
      /// <returns>Corresponding DataTable object representing 
      /// the table</returns>
      /// 
      private DataTable GetDataTable(DataSet ds, string tableName)
      {
          Debug.Assert(ds != null);
          Debug.Assert(tableName != null);

          DataTable table = ds.Tables[tableName];
          table.Locale = CultureInfo.InvariantCulture;

          return table;
      } // GetDataTable

      /// <summary>
      /// Retrieves a single row from the named table.
      /// </summary>
      /// <param name="tableName">The table that contains the 
      /// numbered row.</param>
      /// <param name="row">The index of the row to return.</param>
      /// <returns>The specified table row.</returns>
      private DatabaseRowInfo GetRow(string tableName, int row)
      {
          Collection<DatabaseRowInfo> di = GetRows(tableName);

          // if the row is invalid write an appropriate error else return 
the 
          // corresponding row information
          if (row < di.Count && row >= 0)
          {
              return di[row];
          }
          else



          {
              WriteError(new ErrorRecord(
                 new ItemNotFoundException(),
                 "RowNotFound",
                 ErrorCategory.ObjectNotFound,
                 row.ToString(CultureInfo.CurrentCulture))
              );
          }

          return null;
      } // GetRow

      /// <summary>
      /// Method to safely convert a string representation of a row number 
      /// into its Int32 equivalent
      /// </summary>
      /// <param name="rowNumberAsStr">String representation of the row 
      /// number</param>
      /// <remarks>If there is an exception, -1 is returned</remarks>
      private int SafeConvertRowNumber(string rowNumberAsStr)
      {
          int rowNumber = -1;
          try
          {
              rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);
          }
          catch (FormatException fe)
          {
              WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }
          catch (OverflowException oe)
          {
              WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                  ErrorCategory.InvalidData, rowNumberAsStr));
          }

          return rowNumber;
      } // SafeConvertRowNumber

      /// <summary>
      /// Check if a table name is valid
      /// </summary>
      /// <param name="tableName">Table name to validate</param>
      /// <remarks>Helps to check for SQL injection attacks</remarks>
      private bool TableNameIsValid(string tableName)
      {
          Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

          if (exp.IsMatch(tableName))
          {
              return true;



          }
          WriteError(new ErrorRecord(
              new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
          return false;
      } // TableNameIsValid

      /// <summary>
      /// Checks to see if the specified table is present in the
      /// database
      /// </summary>
      /// <param name="tableName">Name of the table to check</param>
      /// <returns>true, if table is present, false otherwise</returns>
      private bool TableIsPresent(string tableName)
      {
          // using ODBC connection to the database and get the schema of 
tables
          AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
          if (di == null)
          {
              return false;
          }

          OdbcConnection connection = di.Connection;
          DataTable dt = connection.GetSchema("Tables");

          // check if the specified tableName is available
          // in the list of tables present in the database
          foreach (DataRow dr in dt.Rows)
          {
              string name = dr["TABLE_NAME"] as string;
              if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
              {
                  return true;
              }
          }

          WriteError(new ErrorRecord(
              new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                   ErrorCategory.InvalidArgument, tableName));

          return false;
      }// TableIsPresent

      /// <summary>
      /// Gets the next available ID in the table
      /// </summary>
      /// <param name="table">DataTable object representing the table to 
      /// search for ID</param>
      /// <returns>next available id</returns>
      private int GetNextID(DataTable table)
      {



          int big = 0;

          for (int i = 0; i < table.Rows.Count; i++)
          {
              DataRow row = table.Rows[i];

              int id = (int)row["ID"];

              if (big < id)
              {
                  big = id;
              }
          }

          big++;
          return big;
      }

      #endregion Helper Methods

      #region Private Properties

      private string pathSeparator = "\\";
      private static string pattern = @"^[a-z]+[0-9]*_*$";

       private enum PathType { Database, Table, Row, Invalid };

      #endregion Private Properties

   } // AccessDBProvider

    #endregion AccessDBProvider

   #region Helper Classes

   #region AccessDBPSDriveInfo

   /// <summary>
   /// Any state associated with the drive should be held here.
   /// In this case, it's the connection to the database.
   /// </summary>
   internal class AccessDBPSDriveInfo : PSDriveInfo
   {
       private OdbcConnection connection;

       /// <summary>
       /// ODBC connection information.
       /// </summary>
       public OdbcConnection Connection
       {
           get { return connection; }
           set { connection = value; }
       }

       /// <summary>



       /// Constructor that takes one argument
       /// </summary>
       /// <param name="driveInfo">Drive provided by this provider</param>
       public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
           : base(driveInfo)
       { }

   } // class AccessDBPSDriveInfo

   #endregion AccessDBPSDriveInfo

   #region DatabaseTableInfo

   /// <summary>
   /// Contains information specific to the database table.
   /// Similar to the DirectoryInfo class.
   /// </summary>
   public class DatabaseTableInfo
   {
       /// <summary>
       /// Row from the "tables" schema
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The table name.
       /// </summary>
       public string Name
       {
           get
           {
               return name;
           }
           set
           {
               name = value;
           }
       }
       private String name;

       /// <summary>
       /// The number of rows in the table.
       /// </summary>
       public int RowCount



       {
           get
           {
               return rowCount;
           }
           set
           {
               rowCount = value;
           }
       }
       private int rowCount;

       /// <summary>
       /// The column definitions for the table.
       /// </summary>
       public DataColumnCollection Columns
       {
           get
           {
               return columns;
           }
           set
           {
               columns = value;
           }
       }
       private DataColumnCollection columns;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row definition.</param>
       /// <param name="name">The table name.</param>
       /// <param name="rowCount">The number of rows in the table.</param>
       /// <param name="columns">Information on the column tables.</param>
       public DatabaseTableInfo(DataRow row, string name, int rowCount,
                      DataColumnCollection columns)
       {
           Name = name;
           Data = row;
           RowCount = rowCount;
           Columns = columns;
       } // DatabaseTableInfo
   } // class DatabaseTableInfo

   #endregion DatabaseTableInfo

   #region DatabaseRowInfo

   /// <summary>
   /// Contains information specific to an individual table row.
   /// Analogous to the FileInfo class.
   /// </summary>
   public class DatabaseRowInfo
   {



Windows PowerShell SDK

       /// <summary>
       /// Row data information.
       /// </summary>
       public DataRow Data
       {
           get
           {
               return data;
           }
           set
           {
               data = value;
           }
       }
       private DataRow data;

       /// <summary>
       /// The row index.
       /// </summary>
       public string RowNumber
       {
           get
           {
               return rowNumber;
           }
           set
           {
               rowNumber = value;
           }
       }
       private string rowNumber;

       /// <summary>
       /// Constructor.
       /// </summary>
       /// <param name="row">The row information.</param>
       /// <param name="name">The row index.</param>
       public DatabaseRowInfo(DataRow row, string name)
       {
           RowNumber = name;
           Data = row;
       } // DatabaseRowInfo
   } // class DatabaseRowInfo

   #endregion DatabaseRowInfo

   #endregion Helper Classes
}

See Also



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample05-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample05-code-sample.md&documentVersionIndependentId=381b4413-8c02-47cf-f390-b51319c49793&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+fc9a9516-b3b0-d759-20d0-791ca4f88b40+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


AccessDbProviderSample06 Code
Sample
Article • 09/17/2021

The following code shows the implementation of the Windows PowerShell content
provider described in Creating a Windows PowerShell Content Provider. This provider
enables the user to manipulate the contents of the items in a data store.

C#

７ Note

You can download the C# source file (AccessDBSampleProvider06.cs) for this
provider by using the Microsoft Windows Software Development Kit for Windows
Vista and Microsoft .NET Framework 3.0 Runtime Components. For download
instructions, see How to Install Windows PowerShell and Download the Windows
PowerShell SDK. The downloaded source files are available in the <PowerShell
Samples> directory. For more information about other Windows PowerShell
provider implementations, see Designing Your Windows PowerShell Provider.

Code Sample

using System;
using System.IO;
using System.Data;
using System.Data.Odbc;
using System.Diagnostics;
using System.Collections;
using System.Collections.ObjectModel;
using System.Management.Automation;
using System.Management.Automation.Provider;
using System.Text;
using System.Text.RegularExpressions;
using System.ComponentModel;
using System.Globalization;

namespace Microsoft.Samples.PowerShell.Providers
{
   #region AccessDBProvider

   /// <summary>
   /// This example implements the content methods.
   /// </summary>
   [CmdletProvider("AccessDB", ProviderCapabilities.None)]

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


   public class AccessDBProvider : NavigationCmdletProvider, 
IContentCmdletProvider
   {

       #region Drive Manipulation

        /// <summary>
        /// Create a new drive.  Create a connection to the database file 
and set
        /// the Connection property in the PSDriveInfo.
        /// </summary>
        /// <param name="drive">
        /// Information describing the drive to add.
        /// </param>
        /// <returns>The added drive.</returns>
        protected override PSDriveInfo NewDrive(PSDriveInfo drive)
        {
            // check if drive object is null
            if (drive == null)
            {
                WriteError(new ErrorRecord(
                    new ArgumentNullException("drive"),
                    "NullDrive",
                    ErrorCategory.InvalidArgument,
                    null)
                );

                return null;
            }

            // check if drive root is not null or empty
            // and if its an existing file
            if (String.IsNullOrEmpty(drive.Root) || (File.Exists(drive.Root) 
== false))
            {
                WriteError(new ErrorRecord(
                    new ArgumentException("drive.Root"),
                    "NoRoot",
                    ErrorCategory.InvalidArgument,
                    drive)
                );

                return null;
            }

            // create a new drive and create an ODBC connection to the new 
drive
            AccessDBPSDriveInfo accessDBPSDriveInfo = new 
AccessDBPSDriveInfo(drive);

            OdbcConnectionStringBuilder builder = new 
OdbcConnectionStringBuilder();

            builder.Driver = "Microsoft Access Driver (*.mdb)";
            builder.Add("DBQ", drive.Root);



            OdbcConnection conn = new 
OdbcConnection(builder.ConnectionString);
            conn.Open();
            accessDBPSDriveInfo.Connection = conn;

            return accessDBPSDriveInfo;
        } // NewDrive

        /// <summary>
        /// Removes a drive from the provider.
        /// </summary>
        /// <param name="drive">The drive to remove.</param>
        /// <returns>The drive removed.</returns>
        protected override PSDriveInfo RemoveDrive(PSDriveInfo drive)
        {
            // check if drive object is null
            if (drive == null)
            {
                WriteError(new ErrorRecord(
                    new ArgumentNullException("drive"),
                    "NullDrive",
                    ErrorCategory.InvalidArgument,
                    drive)
                );

                return null;
            }

            // close ODBC connection to the drive
            AccessDBPSDriveInfo accessDBPSDriveInfo = drive as 
AccessDBPSDriveInfo;

            if (accessDBPSDriveInfo == null)
            {
                return null;
            }
            accessDBPSDriveInfo.Connection.Close();

            return accessDBPSDriveInfo;
        } // RemoveDrive

        #endregion Drive Manipulation

       #region Item Methods

        /// <summary>
        /// Retrieves an item using the specified path.
        /// </summary>
        /// <param name="path">The path to the item to return.</param>
        protected override void GetItem(string path)
        {
            // check if the path represented is a drive
            if (PathIsDrive(path))
            {



                WriteItemObject(this.PSDriveInfo, path, true);
                return;
            }// if (PathIsDrive...

            // Get table name and row information from the path and do 
            // necessary actions
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                DatabaseTableInfo table = GetTable(tableName);
                WriteItemObject(table, path, true);
            }
            else if (type == PathType.Row)
            {
                DatabaseRowInfo row = GetRow(tableName, rowNumber);
                WriteItemObject(row, path, false);
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }

        } // GetItem

        /// <summary>
        /// Set the content of a row of data specified by the supplied path
        /// parameter.
        /// </summary>
        /// <param name="path">Specifies the path to the row whose columns
        /// will be updated.</param>
        /// <param name="values">Comma separated string of values</param>
        protected override void SetItem(string path, object values)
        {
            // Get type, table name and row number from the path specified
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type != PathType.Row)
            {
                WriteError(new ErrorRecord(new NotSupportedException(
                      "SetNotSupported"), "",
                   ErrorCategory.InvalidOperation, path));

                return;
            }

            // Get in-memory representation of table



            OdbcDataAdapter da = GetAdapterForTable(tableName);

            if (da == null)
            {
                return;
            }
            DataSet ds = GetDataSetForTable(da, tableName);
            DataTable table = GetDataTable(ds, tableName);

            if (rowNumber >= table.Rows.Count)
            {
                // The specified row number has to be available. If not
                // NewItem has to be used to add a new row
                throw new ArgumentException("Row specified is not 
available");
            } // if (rowNum...

            string[] colValues = (values as string).Split(',');

            // set the specified row
            DataRow row = table.Rows[rowNumber];

            for (int i = 0; i < colValues.Length; i++)
            {
                row[i] = colValues[i];
            }

            // Update the table
            if (ShouldProcess(path, "SetItem"))
            {
                da.Update(ds, tableName);
            }

        } // SetItem

        /// <summary>
        /// Test to see if the specified item exists.
        /// </summary>
        /// <param name="path">The path to the item to verify.</param>
        /// <returns>True if the item is found.</returns>
        protected override bool ItemExists(string path)
        {
            // check if the path represented is a drive
            if (PathIsDrive(path))
            {
                return true;
            }

            // Obtain type, table name and row number from path
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);



            DatabaseTableInfo table = GetTable(tableName);

            if (type == PathType.Table)
            {
                // if specified path represents a table then 
DatabaseTableInfo
                // object for the same should exist
                if (table != null)
                {
                    return true;
                }
            }
            else if (type == PathType.Row)
            {
                // if specified path represents a row then DatabaseTableInfo 
should
                // exist for the table and then specified row number must be 
within
                // the maximum row count in the table
                if (table != null && rowNumber < table.RowCount)
                {
                    return true;
                }
            }

            return false;

        } // ItemExists

        /// <summary>
        /// Test to see if the specified path is syntactically valid.
        /// </summary>
        /// <param name="path">The path to validate.</param>
        /// <returns>True if the specified path is valid.</returns>
        protected override bool IsValidPath(string path)
        {
            bool result = true;

            // check if the path is null or empty
            if (String.IsNullOrEmpty(path))
            {
                result = false;
            }

            // convert all separators in the path to a uniform one
            path = NormalizePath(path);

            // split the path into individual chunks
            string[] pathChunks = path.Split(pathSeparator.ToCharArray());

            foreach (string pathChunk in pathChunks)
            {
                if (pathChunk.Length == 0)
                {
                    result = false;



                }
            }
            return result;
        } // IsValidPath

        #endregion Item Overloads

       #region Container Overloads

        /// <summary>
        /// Return either the tables in the database or the datarows
        /// </summary>
        /// <param name="path">The path to the parent</param>
        /// <param name="recurse">True to return all child items 
recursively.
        /// </param>
        protected override void GetChildItems(string path, bool recurse)
        {
            // If path represented is a drive then the children in the path 
are 
            // tables. Hence all tables in the drive represented will have 
to be
            // returned
            if (PathIsDrive(path))
            {
                foreach (DatabaseTableInfo table in GetTables())
                {
                    WriteItemObject(table, path, true);

                    // if the specified item exists and recurse has been set 
then 
                    // all child items within it have to be obtained as well
                    if (ItemExists(path) && recurse)
                    {
                        GetChildItems(path + pathSeparator + table.Name, 
recurse);
                    }
                } // foreach (DatabaseTableInfo...
            } // if (PathIsDrive...
            else
            {
                // Get the table name, row number and type of path from the
                // path specified
                string tableName;
                int rowNumber;

                PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

                if (type == PathType.Table)
                {
                    // Obtain all the rows within the table
                    foreach (DatabaseRowInfo row in GetRows(tableName))
                    {
                        WriteItemObject(row, path + pathSeparator + 



row.RowNumber,
                                false);
                    } // foreach (DatabaseRowInfo...
                }
                else if (type == PathType.Row)
                {
                    // In this case the user has directly specified a row, 
hence
                    // just give that particular row
                    DatabaseRowInfo row = GetRow(tableName, rowNumber);
                    WriteItemObject(row, path + pathSeparator + 
row.RowNumber,
                                false);
                }
                else
                {
                    // In this case, the path specified is not valid
                    ThrowTerminatingInvalidPathException(path);
                }
            } // else
        } // GetChildItems

        /// <summary>
        /// Return the names of all child items.
        /// </summary>
        /// <param name="path">The root path.</param>
        /// <param name="returnContainers">Not used.</param>
        protected override void GetChildNames(string path,
                                      ReturnContainers returnContainers)
        {
            // If the path represented is a drive, then the child items are
            // tables. get the names of all the tables in the drive.
            if (PathIsDrive(path))
            {
                foreach (DatabaseTableInfo table in GetTables())
                {
                    WriteItemObject(table.Name, path, true);
                } // foreach (DatabaseTableInfo...
            } // if (PathIsDrive...
            else
            {
                // Get type, table name and row number from path specified
                string tableName;
                int rowNumber;

                PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

                if (type == PathType.Table)
                {
                    // Get all the rows in the table and then write out the 
                    // row numbers.
                    foreach (DatabaseRowInfo row in GetRows(tableName))
                    {
                        WriteItemObject(row.RowNumber, path, false);



                    } // foreach (DatabaseRowInfo...
                }
                else if (type == PathType.Row)
                {
                    // In this case the user has directly specified a row, 
hence
                    // just give that particular row
                    DatabaseRowInfo row = GetRow(tableName, rowNumber);

                    WriteItemObject(row.RowNumber, path, false);
                }
                else
                {
                    ThrowTerminatingInvalidPathException(path);
                }
            } // else
        } // GetChildNames

        /// <summary>
        /// Determines if the specified path has child items.
        /// </summary>
        /// <param name="path">The path to examine.</param>
        /// <returns>
        /// True if the specified path has child items.
        /// </returns>
        protected override bool HasChildItems(string path)
        {
            if (PathIsDrive(path))
            {
                return true;
            }

            return (ChunkPath(path).Length == 1);
        } // HasChildItems

        /// <summary>
        /// Creates a new item at the specified path.
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the new item.
        /// </param>
        /// 
        /// <param name="type">
        /// Type for the object to create. "Table" for creating a new table 
and
        /// "Row" for creating a new row in a table.
        /// </param>
        /// 
        /// <param name="newItemValue">
        /// Object for creating new instance of a type at the specified 
path. For
        /// creating a "Table" the object parameter is ignored and for 
creating
        /// a "Row" the object must be of type string which will contain 



comma 
        /// separated values of the rows to insert.
        /// </param>
        protected override void NewItem(string path, string type,
                                    object newItemValue)
        {
            string tableName;
            int rowNumber;

            PathType pt = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (pt == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            // Check if type is either "table" or "row", if not throw an 
            // exception
            if (!String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase)
                && !String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
            {
                WriteError(new ErrorRecord
                                  (new ArgumentException("Type must be 
either a table or row"),
                                      "CannotCreateSpecifiedObject",
                                         ErrorCategory.InvalidArgument,
                                              path
                                   )
                          );

                throw new ArgumentException("This provider can only create 
items of type \"table\" or \"row\"");
            }

            // Path type is the type of path of the container. So if a drive
            // is specified, then a table can be created under it and if a 
table
            // is specified, then a row can be created under it. For the 
sake of 
            // completeness, if a row is specified, then if the row 
specified by
            // the path does not exist, a new row is created. However, the 
row 
            // number may not match as the row numbers only get incremented 
based 
            // on the number of rows

            if (PathIsDrive(path))
            {
                if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
                {



                    // Execute command using ODBC connection to create a 
table
                    try
                    {
                        // create the table using an sql statement
                        string newTableName = newItemValue.ToString();
                        string sql = "create table " + newTableName
                                             + " (ID INT)";

                        // Create the table using the Odbc connection from 
the 
                        // drive.
                        AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                        if (di == null)
                        {
                            return;
                        }
                        OdbcConnection connection = di.Connection;

                        if (ShouldProcess(newTableName, "create"))
                        {
                            OdbcCommand cmd = new OdbcCommand(sql, 
connection);
                            cmd.ExecuteScalar();
                        }
                    }
                    catch (Exception ex)
                    {
                        WriteError(new ErrorRecord(ex, 
"CannotCreateSpecifiedTable",
                                  ErrorCategory.InvalidOperation, path)
                                  );
                    }
                } // if (String...
                else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
                {
                    throw new
                        ArgumentException("A row cannot be created under a 
database, specify a path that represents a Table");
                }
            }// if (PathIsDrive...
            else
            {
                if (String.Equals(type, "table", 
StringComparison.OrdinalIgnoreCase))
                {
                    if (rowNumber < 0)
                    {
                        throw new
                            ArgumentException("A table cannot be created 
within another table, specify a path that represents a database");
                    }



                    else
                    {
                        throw new
                            ArgumentException("A table cannot be created 
inside a row, specify a path that represents a database");
                    }
                } //if (String.Equals....
                // if path specified is a row, create a new row
                else if (String.Equals(type, "row", 
StringComparison.OrdinalIgnoreCase))
                {
                    // The user is required to specify the values to be 
inserted 
                    // into the table in a single string separated by commas
                    string value = newItemValue as string;

                    if (String.IsNullOrEmpty(value))
                    {
                        throw new
                            ArgumentException("Value argument must have 
comma separated values of each column in a row");
                    }
                    string[] rowValues = value.Split(',');

                    OdbcDataAdapter da = GetAdapterForTable(tableName);

                    if (da == null)
                    {
                        return;
                    }

                    DataSet ds = GetDataSetForTable(da, tableName);
                    DataTable table = GetDataTable(ds, tableName);

                    if (rowValues.Length != table.Columns.Count)
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture,
                                            "The table has {0} columns and 
the value specified must have so many comma separated values",
                                                table.Columns.Count);

                        throw new ArgumentException(message);
                    }

                    if (!Force && (rowNumber >= 0 && rowNumber < 
table.Rows.Count))
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The row {0} already exists. To 
create a new row specify row number as {1}, or specify path to a table, or 
use the -Force parameter",
                                                rowNumber, 
table.Rows.Count);



                        throw new ArgumentException(message);
                    }

                    if (rowNumber > table.Rows.Count)
                    {
                        string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "To create a new row specify row 
number as {0}, or specify path to a table",
                                                 table.Rows.Count);

                        throw new ArgumentException(message);
                    }

                    // Create a new row and update the row with the input
                    // provided by the user
                    DataRow row = table.NewRow();
                    for (int i = 0; i < rowValues.Length; i++)
                    {
                        row[i] = rowValues[i];
                    }
                    table.Rows.Add(row);

                    if (ShouldProcess(tableName, "update rows"))
                    {
                        // Update the table from memory back to the data 
source
                        da.Update(ds, tableName);
                    }

                }// else if (String...
            }// else ...

        } // NewItem

        /// <summary>
        /// Copies an item at the specified path to the location specified
        /// </summary>
        /// 
        /// <param name="path">
        /// Path of the item to copy
        /// </param>
        /// 
        /// <param name="copyPath">
        /// Path of the item to copy to
        /// </param>
        /// 
        /// <param name="recurse">
        /// Tells the provider to recurse subcontainers when copying
        /// </param>
        /// 
        protected override void CopyItem(string path, string copyPath, bool 
recurse)
        {



            string tableName, copyTableName;
            int rowNumber, copyRowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);
            PathType copyType = GetNamesFromPath(copyPath, out 
copyTableName, out copyRowNumber);

            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(copyPath);
            }

            // Get the table and the table to copy to 
            OdbcDataAdapter da = GetAdapterForTable(tableName);
            if (da == null)
            {
                return;
            }

            DataSet ds = GetDataSetForTable(da, tableName);
            DataTable table = GetDataTable(ds, tableName);

            OdbcDataAdapter cda = GetAdapterForTable(copyTableName);
            if (cda == null)
            {
                return;
            }

            DataSet cds = GetDataSetForTable(cda, copyTableName);
            DataTable copyTable = GetDataTable(cds, copyTableName);

            // if source represents a table
            if (type == PathType.Table)
            {
                // if copyPath does not represent a table
                if (copyType != PathType.Table)
                {
                    ArgumentException e = new ArgumentException("Table can 
only be copied on to another table location");

                    WriteError(new ErrorRecord(e, "PathNotValid",
                        ErrorCategory.InvalidArgument, copyPath));

                    throw e;
                }

                // if table already exists then force parameter should be 
set 
                // to force a copy



                if (!Force && GetTable(copyTableName) != null)
                {
                    throw new ArgumentException("Specified path already 
exists");
                }

                for (int i = 0; i < table.Rows.Count; i++)
                {
                    DataRow row = table.Rows[i];
                    DataRow copyRow = copyTable.NewRow();

                    copyRow.ItemArray = row.ItemArray;
                    copyTable.Rows.Add(copyRow);
                }
            } // if (type == ...
            // if source represents a row
            else
            {
                if (copyType == PathType.Row)
                {
                    if (!Force && (copyRowNumber < copyTable.Rows.Count))
                    {
                        throw new ArgumentException("Specified path already 
exists.");
                    }

                    DataRow row = table.Rows[rowNumber];
                    DataRow copyRow = null;

                    if (copyRowNumber < copyTable.Rows.Count)
                    {
                        // copy to an existing row
                        copyRow = copyTable.Rows[copyRowNumber];
                        copyRow.ItemArray = row.ItemArray;
                        copyRow[0] = GetNextID(copyTable);
                    }
                    else if (copyRowNumber == copyTable.Rows.Count)
                    {
                        // copy to the next row in the table that will 
                        // be created
                        copyRow = copyTable.NewRow();
                        copyRow.ItemArray = row.ItemArray;
                        copyRow[0] = GetNextID(copyTable);
                        copyTable.Rows.Add(copyRow);
                    }
                    else
                    {
                        // attempting to copy to a nonexistent row or a row
                        // that cannot be created now - throw an exception
                        string message = 
String.Format(CultureInfo.CurrentCulture, 
                                            "The item cannot be specified to 
the copied row. Specify row number as {0}, or specify a path to the table.",
                                                table.Rows.Count);



                        throw new ArgumentException(message);
                    }
                }
                else
                {
                    // destination path specified represents a table, 
                    // create a new row and copy the item
                    DataRow copyRow = copyTable.NewRow();
                    copyRow.ItemArray = table.Rows[rowNumber].ItemArray;
                    copyRow[0] = GetNextID(copyTable);
                    copyTable.Rows.Add(copyRow);
                }
            }

            if (ShouldProcess(copyTableName, "CopyItems"))
            {
                cda.Update(cds, copyTableName);
            }

        } //CopyItem

        /// <summary>
        /// Removes (deletes) the item at the specified path
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the item to remove.
        /// </param>
        /// 
        /// <param name="recurse">
        /// True if all children in a subtree should be removed, false if 
only
        /// the item at the specified path should be removed. Is applicable
        /// only for container (table) items. Its ignored otherwise (even if
        /// specified).
        /// </param>
        /// 
        /// <remarks>
        /// There are no elements in this store which are hidden from the 
user.
        /// Hence this method will not check for the presence of the Force
        /// parameter
        /// </remarks>
        /// 
        protected override void RemoveItem(string path, bool recurse)
        {
            string tableName;
            int rowNumber = 0;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                // if recurse flag has been specified, delete all the rows 



as well
                if (recurse)
                {
                    OdbcDataAdapter da = GetAdapterForTable(tableName);
                    if (da == null)
                    {
                        return;
                    }

                    DataSet ds = GetDataSetForTable(da, tableName);
                    DataTable table = GetDataTable(ds, tableName);

                    for (int i = 0; i < table.Rows.Count; i++)
                    {
                        table.Rows[i].Delete();
                    }

                    if (ShouldProcess(path, "RemoveItem"))
                    {
                        da.Update(ds, tableName);
                        RemoveTable(tableName);
                    }
                }//if (recurse...
                else
                {
                    // Remove the table
                    if (ShouldProcess(path, "RemoveItem"))
                    {
                        RemoveTable(tableName);
                    }
                }
            }
            else if (type == PathType.Row)
            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);
                if (da == null)
                {
                    return;
                }

                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                table.Rows[rowNumber].Delete();

                if (ShouldProcess(path, "RemoveItem"))
                {
                    da.Update(ds, tableName);
                }
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }



        } // RemoveItem

        #endregion Container Overloads

       #region Navigation

        /// <summary>
        /// Determine if the path specified is that of a container.
        /// </summary>
        /// <param name="path">The path to check.</param>
        /// <returns>True if the path specifies a container.</returns>
        protected override bool IsItemContainer(string path)
        {
            if (PathIsDrive(path))
            {
                return true;
            }

            string[] pathChunks = ChunkPath(path);
            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                foreach (DatabaseTableInfo ti in GetTables())
                {
                    if (string.Equals(ti.Name, tableName, 
StringComparison.OrdinalIgnoreCase))
                    {
                        return true;
                    }
                } // foreach (DatabaseTableInfo...
            } // if (pathChunks...

            return false;
        } // IsItemContainer

        /// <summary>
        /// Get the name of the leaf element in the specified path        
        /// </summary>
        /// 
        /// <param name="path">
        /// The full or partial provider specific path
        /// </param>
        /// 
        /// <returns>
        /// The leaf element in the path
        /// </returns>
        protected override string GetChildName(string path)
        {
            if (PathIsDrive(path))
            {



                return path;
            }

            string tableName;
            int rowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            if (type == PathType.Table)
            {
                return tableName;
            }
            else if (type == PathType.Row)
            {
                return rowNumber.ToString(CultureInfo.CurrentCulture);
            }
            else
            {
                ThrowTerminatingInvalidPathException(path);
            }

            return null;
        }

        /// <summary>
        /// Removes the child segment of the path and returns the remaining
        /// parent portion
        /// </summary>
        /// 
        /// <param name="path">
        /// A full or partial provider specific path. The path may be to an
        /// item that may or may not exist.
        /// </param>
        /// 
        /// <param name="root">
        /// The fully qualified path to the root of a drive. This parameter
        /// may be null or empty if a mounted drive is not in use for this
        /// operation.  If this parameter is not null or empty the result
        /// of the method should not be a path to a container that is a
        /// parent or in a different tree than the root.
        /// </param>
        /// 
        /// <returns></returns>

        protected override string GetParentPath(string path, string root)
        {
            // If root is specified then the path has to contain
            // the root. If not nothing should be returned
            if (!String.IsNullOrEmpty(root))
            {
                if (!path.Contains(root))
                {
                    return null;
                }



            }

            return path.Substring(0, path.LastIndexOf(pathSeparator, 
StringComparison.OrdinalIgnoreCase));
        }

        /// <summary>
        /// Joins two strings with a provider specific path separator.
        /// </summary>
        /// 
        /// <param name="parent">
        /// The parent segment of a path to be joined with the child.
        /// </param>
        /// 
        /// <param name="child">
        /// The child segment of a path to be joined with the parent.
        /// </param>
        /// 
        /// <returns>
        /// A string that represents the parent and child segments of the 
path
        /// joined by a path separator.
        /// </returns>

        protected override string MakePath(string parent, string child)
        {
            string result;

            string normalParent = NormalizePath(parent);
            normalParent = RemoveDriveFromPath(normalParent);
            string normalChild = NormalizePath(child);
            normalChild = RemoveDriveFromPath(normalChild);

            if (String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
            {
                result = String.Empty;
            }
            else if (String.IsNullOrEmpty(normalParent) && 
!String.IsNullOrEmpty(normalChild))
            {
                result = normalChild;
            }
            else if (!String.IsNullOrEmpty(normalParent) && 
String.IsNullOrEmpty(normalChild))
            {
                if (normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {
                    result = normalParent;
                }
                else
                {
                    result = normalParent + pathSeparator;
                }



            } // else if (!String...
            else
            {
                if (!normalParent.Equals(String.Empty, 
StringComparison.OrdinalIgnoreCase) && 
                    !normalParent.EndsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {
                    result = normalParent + pathSeparator;
                }
                else
                {
                    result = normalParent;
                }

                if (normalChild.StartsWith(pathSeparator, 
StringComparison.OrdinalIgnoreCase))
                {
                    result += normalChild.Substring(1);
                }
                else
                {
                    result += normalChild;
                }
            } // else

            return result;
        } // MakePath

        /// <summary>
        /// Normalizes the path that was passed in and returns the 
normalized
        /// path as a relative path to the basePath that was passed.
        /// </summary>
        /// 
        /// <param name="path">
        /// A fully qualified provider specific path to an item.  The item
        /// should exist or the provider should write out an error.
        /// </param>
        /// 
        /// <param name="basepath">
        /// The path that the return value should be relative to.
        /// </param>
        /// 
        /// <returns>
        /// A normalized path that is relative to the basePath that was
        /// passed.  The provider should parse the path parameter, normalize
        /// the path, and then return the normalized path relative to the
        /// basePath.
        /// </returns>

        protected override string NormalizeRelativePath(string path,
                                                             string 
basepath)
        {



            // Normalize the paths first
            string normalPath = NormalizePath(path);
            normalPath = RemoveDriveFromPath(normalPath);
            string normalBasePath = NormalizePath(basepath);
            normalBasePath = RemoveDriveFromPath(normalBasePath);

            if (String.IsNullOrEmpty(normalBasePath))
            {
                return normalPath;
            }
            else
            {
                if (!normalPath.Contains(normalBasePath))
                {
                    return null;
                }

                return normalPath.Substring(normalBasePath.Length + 
pathSeparator.Length);
            }
        }

        /// <summary>
        /// Moves the item specified by the path to the specified 
destination
        /// </summary>
        /// 
        /// <param name="path">
        /// The path to the item to be moved
        /// </param>
        /// 
        /// <param name="destination">
        /// The path of the destination container
        /// </param>

        protected override void MoveItem(string path, string destination)
        {
            // Get type, table name and rowNumber from the path
            string tableName, destTableName;
            int rowNumber, destRowNumber;

            PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

            PathType destType = GetNamesFromPath(destination, out 
destTableName,
                                     out destRowNumber);

            if (type == PathType.Invalid)
            {
                ThrowTerminatingInvalidPathException(path);
            }

            if (destType == PathType.Invalid)
            {



                ThrowTerminatingInvalidPathException(destination);
            }

            if (type == PathType.Table)
            {
                ArgumentException e = new ArgumentException("Move not 
supported for tables");

                WriteError(new ErrorRecord(e, "MoveNotSupported",
                    ErrorCategory.InvalidArgument, path));

                throw e;
            }
            else
            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);
                if (da == null)
                {
                    return;
                }

                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                OdbcDataAdapter dda = GetAdapterForTable(destTableName);
                if (dda == null)
                {
                    return;
                }

                DataSet dds = GetDataSetForTable(dda, destTableName);
                DataTable destTable = GetDataTable(dds, destTableName);
                DataRow row = table.Rows[rowNumber];

                if (destType == PathType.Table)
                {
                    DataRow destRow = destTable.NewRow();

                    destRow.ItemArray = row.ItemArray;
                }
                else
                {
                    DataRow destRow = destTable.Rows[destRowNumber];

                    destRow.ItemArray = row.ItemArray;
                }

                // Update the changes
                if (ShouldProcess(path, "MoveItem"))
                {
                    WriteItemObject(row, path, false);
                    dda.Update(dds, destTableName);
                }
            }
        }



        #endregion Navigation

       #region Helper Methods

        /// <summary>
        /// Checks if a given path is actually a drive name.
        /// </summary>
        /// <param name="path">The path to check.</param>
        /// <returns>
        /// True if the path given represents a drive, false otherwise.
        /// </returns>
        private bool PathIsDrive(string path)
        {
            // Remove the drive name and first path separator.  If the 
            // path is reduced to nothing, it is a drive. Also if its
            // just a drive then there wont be any path separators
            if (String.IsNullOrEmpty(
                        path.Replace(this.PSDriveInfo.Root, "")) ||
                String.IsNullOrEmpty(
                        path.Replace(this.PSDriveInfo.Root + pathSeparator, 
""))

               )
            {
                return true;
            }
            else
            {
                return false;
            }
        } // PathIsDrive

        /// <summary>
        /// Breaks up the path into individual elements.
        /// </summary>
        /// <param name="path">The path to split.</param>
        /// <returns>An array of path segments.</returns>
        private string[] ChunkPath(string path)
        {
            // Normalize the path before splitting
            string normalPath = NormalizePath(path);

            // Return the path with the drive name and first path 
            // separator character removed, split by the path separator.
            string pathNoDrive = normalPath.Replace(this.PSDriveInfo.Root
                                           + pathSeparator, "");

            return pathNoDrive.Split(pathSeparator.ToCharArray());
        } // ChunkPath

        /// <summary>
        /// Adapts the path, making sure the correct path separator
        /// character is used.
        /// </summary>



        /// <param name="path"></param>
        /// <returns></returns>
        private string NormalizePath(string path)
        {
            string result = path;

            if (!String.IsNullOrEmpty(path))
            {
                result = path.Replace("/", pathSeparator);
            }

            return result;
        } // NormalizePath

        /// <summary>
        /// Ensures that the drive is removed from the specified path
        /// </summary>
        /// 
        /// <param name="path">Path from which drive needs to be 
removed</param>
        /// <returns>Path with drive information removed</returns>
        private string RemoveDriveFromPath(string path)
        {
            string result = path;
            string root;

            if (this.PSDriveInfo == null)
            {
                root = String.Empty;
            }
            else
            {
                root = this.PSDriveInfo.Root;
            }

            if (result == null)
            {
                result = String.Empty;
            }

            if (result.Contains(root))
            {
                result = result.Substring(result.IndexOf(root, 
StringComparison.OrdinalIgnoreCase) + root.Length);
            }

            return result;
        }

        /// <summary>
        /// Chunks the path and returns the table name and the row number 
        /// from the path
        /// </summary>
        /// <param name="path">Path to chunk and obtain information</param>
        /// <param name="tableName">Name of the table as represented in the 



        /// path</param>
        /// <param name="rowNumber">Row number obtained from the 
path</param>
        /// <returns>what the path represents</returns>
        public PathType GetNamesFromPath(string path, out string tableName, 
out int rowNumber)
        {
            PathType retVal = PathType.Invalid;
            rowNumber = -1;
            tableName = null;

            // Check if the path specified is a drive
            if (PathIsDrive(path))
            {
                return PathType.Database;
            }

            // chunk the path into parts
            string[] pathChunks = ChunkPath(path);

            switch (pathChunks.Length)
            {
                case 1:
                    {
                        string name = pathChunks[0];

                        if (TableNameIsValid(name))
                        {
                            tableName = name;
                            retVal = PathType.Table;
                        }
                    }
                    break;

                case 2:
                    {
                        string name = pathChunks[0];

                        if (TableNameIsValid(name))
                        {
                            tableName = name;
                        }

                        int number = SafeConvertRowNumber(pathChunks[1]);

                        if (number >= 0)
                        {
                            rowNumber = number;
                            retVal = PathType.Row;
                        }
                        else
                        {
                            WriteError(new ErrorRecord(
                                new ArgumentException("Row number is not 
valid"),



                                "RowNumberNotValid",
                                ErrorCategory.InvalidArgument,
                                path));
                        }
                    }
                    break;

                default:
                    {
                        WriteError(new ErrorRecord(
                            new ArgumentException("The path supplied has too 
many segments"),
                            "PathNotValid",
                            ErrorCategory.InvalidArgument,
                            path));
                    }
                    break;
            } // switch(pathChunks...

            return retVal;
        } // GetNamesFromPath

        /// <summary>
        /// Throws an argument exception stating that the specified path 
does
        /// not represent either a table or a row
        /// </summary>
        /// <param name="path">path which is invalid</param>
        private void ThrowTerminatingInvalidPathException(string path)
        {
            StringBuilder message = new StringBuilder("Path must represent 
either a table or a row :");
            message.Append(path);

            throw new ArgumentException(message.ToString());
        }

        /// <summary>
        /// Retrieve the list of tables from the database.
        /// </summary>
        /// <returns>
        /// Collection of DatabaseTableInfo objects, each object 
representing
        /// information about one database table
        /// </returns>
        internal Collection<DatabaseTableInfo> GetTables()
        {
            Collection<DatabaseTableInfo> results =
                    new Collection<DatabaseTableInfo>();

            // using ODBC connection to the database and get the schema of 
tables
            AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;



            if (di == null)
            {
                return null;
            }

            OdbcConnection connection = di.Connection;
            DataTable dt = connection.GetSchema("Tables");
            int count;

            // iterate through all rows in the schema and create 
DatabaseTableInfo
            // objects which represents a table
            foreach (DataRow dr in dt.Rows)
            {
                String tableName = dr["TABLE_NAME"] as String;
                DataColumnCollection columns = null;

                // find the number of rows in the table
                try
                {
                    String cmd = "Select count(*) from \"" + tableName + 
"\"";
                    OdbcCommand command = new OdbcCommand(cmd, connection);

                    count = (Int32)command.ExecuteScalar();
                }
                catch
                {
                    count = 0;
                }

                // create DatabaseTableInfo object representing the table
                DatabaseTableInfo table =
                        new DatabaseTableInfo(dr, tableName, count, 
columns);

                results.Add(table);
            } // foreach (DataRow...

            return results;
        } // GetTables

        /// <summary>
        /// Return row information from a specified table.
        /// </summary>
        /// <param name="tableName">The name of the database table from 
        /// which to retrieve rows.</param>
        /// <returns>Collection of row information objects.</returns>
        public Collection<DatabaseRowInfo> GetRows(string tableName)
        {
            Collection<DatabaseRowInfo> results =
                        new Collection<DatabaseRowInfo>();

            // Obtain rows in the table and add it to the collection
            try



            {
                OdbcDataAdapter da = GetAdapterForTable(tableName);

                if (da == null)
                {
                    return null;
                }

                DataSet ds = GetDataSetForTable(da, tableName);
                DataTable table = GetDataTable(ds, tableName);

                int i = 0;
                foreach (DataRow row in table.Rows)
                {
                    results.Add(new DatabaseRowInfo(row, 
i.ToString(CultureInfo.CurrentCulture)));
                    i++;
                } // foreach (DataRow...
            }
            catch (Exception e)
            {
                WriteError(new ErrorRecord(e, "CannotAccessSpecifiedRows",
                    ErrorCategory.InvalidOperation, tableName));
            }

            return results;

        } // GetRows

        /// <summary>
        /// Retrieve information about a single table.
        /// </summary>
        /// <param name="tableName">The table for which to retrieve 
        /// data.</param>
        /// <returns>Table information.</returns>
        private DatabaseTableInfo GetTable(string tableName)
        {
            foreach (DatabaseTableInfo table in GetTables())
            {
                if (String.Equals(tableName, table.Name, 
StringComparison.OrdinalIgnoreCase))
                {
                    return table;
                }
            }

            return null;
        } // GetTable

        /// <summary>
        /// Removes the specified table from the database
        /// </summary>
        /// <param name="tableName">Name of the table to remove</param>
        private void RemoveTable(string tableName)
        {



            // validate if tablename is valid and if table is present
            if (String.IsNullOrEmpty(tableName) || 
!TableNameIsValid(tableName) || !TableIsPresent(tableName))
            {
                return;
            }

            // Execute command using ODBC connection to remove a table
            try
            {
                // delete the table using an sql statement
                string sql = "drop table " + tableName;

                AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

                if (di == null)
                {
                    return;
                }
                OdbcConnection connection = di.Connection;

                OdbcCommand cmd = new OdbcCommand(sql, connection);
                cmd.ExecuteScalar();
            }
            catch (Exception ex)
            {
                WriteError(new ErrorRecord(ex, "CannotRemoveSpecifiedTable",
                          ErrorCategory.InvalidOperation, null)
                          );
            }

        } // RemoveTable

        /// <summary>
        /// Obtain a data adapter for the specified Table
        /// </summary>
        /// <param name="tableName">Name of the table to obtain the 
        /// adapter for</param>
        /// <returns>Adapter object for the specified table</returns>
        /// <remarks>An adapter serves as a bridge between a DataSet (in 
memory
        /// representation of table) and the data source</remarks>
        internal OdbcDataAdapter GetAdapterForTable(string tableName)
        {
            OdbcDataAdapter da = null;
            AccessDBPSDriveInfo di = this.PSDriveInfo as 
AccessDBPSDriveInfo;

            if (di == null || !TableNameIsValid(tableName) || 
!TableIsPresent(tableName))
            {
                return null;
            }



            OdbcConnection connection = di.Connection;

            try
            {
                // Create a odbc data adpater. This can be sued to update 
the
                // data source with the records that will be created here
                // using data sets
                string sql = "Select * from " + tableName;
                da = new OdbcDataAdapter(new OdbcCommand(sql, connection));

                // Create a odbc command builder object. This will create 
sql
                // commands automatically for a single table, thus
                // eliminating the need to create new sql statements for 
                // every operation to be done.
                OdbcCommandBuilder cmd = new OdbcCommandBuilder(da);

                // Set the delete cmd for the table here
                sql = "Delete from " + tableName + " where ID = ?";
                da.DeleteCommand = new OdbcCommand(sql, connection);

                // Specify a DeleteCommand parameter based on the "ID" 
                // column
                da.DeleteCommand.Parameters.Add(new OdbcParameter());
                da.DeleteCommand.Parameters[0].SourceColumn = "ID";

                // Create an InsertCommand based on the sql string
                // Insert into "tablename" values (?,?,?)" where
                // ? represents a column in the table. Note that 
                // the number of ? will be equal to the number of 
                // columnds
                DataSet ds = new DataSet();
                ds.Locale = CultureInfo.InvariantCulture;

                da.FillSchema(ds, SchemaType.Source);

                sql = "Insert into " + tableName + " values ( ";
                for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
                {
                    sql += "?, ";
                }
                sql = sql.Substring(0, sql.Length - 2);
                sql += ")";
                da.InsertCommand = new OdbcCommand(sql, connection);

                // Create parameters for the InsertCommand based on the
                // captions of each column
                for (int i = 0; i < ds.Tables["Table"].Columns.Count; i++)
                {
                    da.InsertCommand.Parameters.Add(new OdbcParameter());
                    da.InsertCommand.Parameters[i].SourceColumn =
                                     ds.Tables["Table"].Columns[i].Caption;

                }



                // Open the connection if its not already open                 
                if (connection.State != ConnectionState.Open)
                {
                    connection.Open();
                }
            }
            catch (Exception e)
            {
                WriteError(new ErrorRecord(e, "CannotAccessSpecifiedTable",
                  ErrorCategory.InvalidOperation, tableName));
            }

            return da;
        } // GetAdapterForTable

        /// <summary>
        /// Gets the DataSet (in memory representation) for the table
        /// for the specified adapter
        /// </summary>
        /// <param name="adapter">Adapter to be used for obtaining 
        /// the table</param>
        /// <param name="tableName">Name of the table for which a 
        /// DataSet is required</param>
        /// <returns>The DataSet with the filled in schema</returns>
        internal DataSet GetDataSetForTable(OdbcDataAdapter adapter, string 
tableName)
        {
            Debug.Assert(adapter != null);

            // Create a dataset object which will provide an in-memory
            // representation of the data being worked upon in the 
            // data source. 
            DataSet ds = new DataSet();

            // Create a table named "Table" which will contain the same
            // schema as in the data source.
            //adapter.FillSchema(ds, SchemaType.Source);
            adapter.Fill(ds, tableName);
            ds.Locale = CultureInfo.InvariantCulture;

            return ds;
        } //GetDataSetForTable

        /// <summary>
        /// Get the DataTable object which can be used to operate on
        /// for the specified table in the data source
        /// </summary>
        /// <param name="ds">DataSet object which contains the tables
        /// schema</param>
        /// <param name="tableName">Name of the table</param>
        /// <returns>Corresponding DataTable object representing 
        /// the table</returns>
        /// 
        internal DataTable GetDataTable(DataSet ds, string tableName)



        {
            Debug.Assert(ds != null);
            Debug.Assert(tableName != null);

            DataTable table = ds.Tables[tableName];
            table.Locale = CultureInfo.InvariantCulture;

            return table;
        } // GetDataTable

       /// <summary>
        /// Retrieves a single row from the named table.
        /// </summary>
        /// <param name="tableName">The table that contains the 
        /// numbered row.</param>
        /// <param name="row">The index of the row to return.</param>
        /// <returns>The specified table row.</returns>
        private DatabaseRowInfo GetRow(string tableName, int row)
        {
            Collection<DatabaseRowInfo> di = GetRows(tableName);

            // if the row is invalid write an appropriate error else return 
the 
            // corresponding row information
            if (row < di.Count && row >= 0)
            {
                return di[row];
            }
            else
            {
                WriteError(new ErrorRecord(
                   new ItemNotFoundException(),
                   "RowNotFound",
                   ErrorCategory.ObjectNotFound,
                   row.ToString(CultureInfo.CurrentCulture))
                );
            }

            return null;
        } // GetRow

       /// <summary>
        /// Method to safely convert a string representation of a row number 
        /// into its Int32 equivalent
        /// </summary>
        /// <param name="rowNumberAsStr">String representation of the row 
        /// number</param>
        /// <remarks>If there is an exception, -1 is returned</remarks>
       private int SafeConvertRowNumber(string rowNumberAsStr)
        {
            int rowNumber = -1;
            try
            {
                rowNumber = Convert.ToInt32(rowNumberAsStr, 
CultureInfo.CurrentCulture);



            }
            catch (FormatException fe)
            {
                WriteError(new ErrorRecord(fe, "RowStringFormatNotValid",
                    ErrorCategory.InvalidData, rowNumberAsStr));
            }
            catch (OverflowException oe)
            {
                WriteError(new ErrorRecord(oe, 
"RowStringConversionToNumberFailed",
                    ErrorCategory.InvalidData, rowNumberAsStr));
            }

            return rowNumber;
        } // 1

       /// <summary>
       /// Check if a table name is valid
       /// </summary>
       /// <param name="tableName">Table name to validate</param>
       /// <remarks>Helps to check for SQL injection attacks</remarks>
       private bool TableNameIsValid(string tableName)
       {
           Regex exp = new Regex(pattern, RegexOptions.Compiled | 
RegexOptions.IgnoreCase);

           if (exp.IsMatch(tableName))
           {
               return true;
           }
           WriteError(new ErrorRecord(
               new ArgumentException("Table name not valid"), 
"TableNameNotValid",
                   ErrorCategory.InvalidArgument, tableName));
           return false;
       } // TableNameIsValid

       /// <summary>
       /// Checks to see if the specified table is present in the
       /// database
       /// </summary>
       /// <param name="tableName">Name of the table to check</param>
       /// <returns>true, if table is present, false otherwise</returns>
       private bool TableIsPresent(string tableName)
       {
           // using ODBC connection to the database and get the schema of 
tables
           AccessDBPSDriveInfo di = this.PSDriveInfo as AccessDBPSDriveInfo;
           if (di == null)
           {
               return false;
           }

           OdbcConnection connection = di.Connection;



           DataTable dt = connection.GetSchema("Tables");

           // check if the specified tableName is available
           // in the list of tables present in the database
           foreach (DataRow dr in dt.Rows)
           {
               string name = dr["TABLE_NAME"] as string;
               if (name.Equals(tableName, 
StringComparison.OrdinalIgnoreCase))
               {
                   return true;
               }
           }

           WriteError(new ErrorRecord(
               new ArgumentException("Specified Table is not present in 
database"), "TableNotAvailable",
                    ErrorCategory.InvalidArgument, tableName));

           return false;
       }// TableIsPresent

       /// <summary>
       /// Gets the next available ID in the table
       /// </summary>
       /// <param name="table">DataTable object representing the table to 
       /// search for ID</param>
       /// <returns>next available id</returns>
       private int GetNextID(DataTable table)
       {
           int big = 0;

           for (int i = 0; i < table.Rows.Count; i++)
           {
               DataRow row = table.Rows[i];

               int id = (int)row["ID"];

               if (big < id)
               {
                   big = id;
               }
           }

           big++;
           return big;
       }
       #endregion Helper Methods

       #region Content Methods

       /// <summary>
       /// Clear the contents at the specified location. In this case, 
clearing
       /// the item amounts to clearing a row



       /// </summary>
       /// <param name="path">The path to the content to clear.</param>
       public void ClearContent(string path)
       {
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type != PathType.Table)
           {
               WriteError(new ErrorRecord(
                   new InvalidOperationException("Operation not supported. 
Content can be cleared only for table"),
                       "NotValidRow", ErrorCategory.InvalidArgument,
                           path));
               return;
           }

           OdbcDataAdapter da = GetAdapterForTable(tableName);

           if (da == null)
           {
               return;
           }

           DataSet ds = GetDataSetForTable(da, tableName);
           DataTable table = GetDataTable(ds, tableName);

           // Clear contents at the specified location
           for (int i = 0; i < table.Rows.Count; i++)
           {
               table.Rows[i].Delete();
           }

           if (ShouldProcess(path, "ClearContent"))
           {
               da.Update(ds, tableName);
           }

       } // ClearContent

       /// <summary>
       /// Not implemented.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       public object ClearContentDynamicParameters(string path)
       {
           return null;
       }

       /// <summary>
       /// Get a reader at the path specified.



       /// </summary>
       /// <param name="path">The path from which to read.</param>
       /// <returns>A content reader used to read the data.</returns>
       public IContentReader GetContentReader(string path)
       {
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }
           else if (type == PathType.Row)
           {
               throw new InvalidOperationException("contents can be obtained 
only for tables");
           }

           return new AccessDBContentReader(path, this);
       } // GetContentReader

       /// <summary>
       /// Not implemented.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       public object GetContentReaderDynamicParameters(string path)
       {
           return null;
       }

       /// <summary>
       /// Get an object used to write content.
       /// </summary>
       /// <param name="path">The root path at which to write.</param>
       /// <returns>A content writer for writing.</returns>
       public IContentWriter GetContentWriter(string path)
       {
           string tableName;
           int rowNumber;

           PathType type = GetNamesFromPath(path, out tableName, out 
rowNumber);

           if (type == PathType.Invalid)
           {
               ThrowTerminatingInvalidPathException(path);
           }
           else if (type == PathType.Row)
           {
               throw new InvalidOperationException("contents can be added 
only to tables");



           }

           return new AccessDBContentWriter(path, this);
       }

       /// <summary>
       /// Not implemented.
       /// </summary>
       /// <param name="path"></param>
       /// <returns></returns>
       public object GetContentWriterDynamicParameters(string path)
       {
           return null;
       }

       #endregion Content Methods

       #region Private Properties
      
       private string pathSeparator = "\\";
       private static string pattern = @"^[a-z]+[0-9]*_*$";

       #endregion Private Properties

   } // AccessDBProvider

   #endregion AccessDBProvider

    #region Helper Classes

   #region Public Enumerations

   /// <summary>
   /// Type of item represented by the path
   /// </summary>
   public enum PathType
   {
       /// <summary>
       /// Represents a database
       /// </summary>
       Database,
       /// <summary>
       /// Represents a table
       /// </summary>
       Table,
       /// <summary>
       /// Represents a row
       /// </summary>
       Row,
       /// <summary>
       /// Represents an invalid path
       /// </summary>
       Invalid
   };



   #endregion Public Enumerations

    #region AccessDBPSDriveInfo

    /// <summary>
    /// Any state associated with the drive should be held here.
    /// In this case, it's the connection to the database.
    /// </summary>
    internal class AccessDBPSDriveInfo : PSDriveInfo
    {
        private OdbcConnection connection;

        /// <summary>
        /// ODBC connection information.
        /// </summary>
        public OdbcConnection Connection
        {
            get { return connection; }
            set { connection = value; }
        }

        /// <summary>
        /// Constructor that takes one argument
        /// </summary>
        /// <param name="driveInfo">Drive provided by this provider</param>
        public AccessDBPSDriveInfo(PSDriveInfo driveInfo)
            : base(driveInfo)
        { }

    } // class AccessDBPSDriveInfo

    #endregion AccessDBPSDriveInfo

    #region DatabaseTableInfo

    /// <summary>
    /// Contains information specific to the database table.
    /// Similar to the DirectoryInfo class.
    /// </summary>
    public class DatabaseTableInfo
    {
        /// <summary>
        /// Row from the "tables" schema
        /// </summary>
        public DataRow Data
        {
            get
            {
                return data;
            }
            set
            {
                data = value;
            }
        }



        private DataRow data;

        /// <summary>
        /// The table name.
        /// </summary>
        public string Name
        {
            get
            {
                return name;
            }
            set
            {
                name = value;
            }
        }
        private String name;

        /// <summary>
        /// The number of rows in the table.
        /// </summary>
        public int RowCount
        {
            get
            {
                return rowCount;
            }
            set
            {
                rowCount = value;
            }
        }
        private int rowCount;

        /// <summary>
        /// The column definitions for the table.
        /// </summary>
        public DataColumnCollection Columns
        {
            get
            {
                return columns;
            }
            set
            {
                columns = value;
            }
        }
        private DataColumnCollection columns;

        /// <summary>
        /// Constructor.
        /// </summary>
        /// <param name="row">The row definition.</param>
        /// <param name="name">The table name.</param>



        /// <param name="rowCount">The number of rows in the table.</param>
        /// <param name="columns">Information on the column tables.</param>
        public DatabaseTableInfo(DataRow row, string name, int rowCount,
                       DataColumnCollection columns)
        {
            Name = name;
            Data = row;
            RowCount = rowCount;
            Columns = columns;
        } // DatabaseTableInfo
    } // class DatabaseTableInfo

    #endregion DatabaseTableInfo

    #region DatabaseRowInfo

    /// <summary>
    /// Contains information specific to an individual table row.
    /// Analogous to the FileInfo class.
    /// </summary>
    public class DatabaseRowInfo
    {
        /// <summary>
        /// Row data information.
        /// </summary>
        public DataRow Data
        {
            get
            {
                return data;
            }
            set
            {
                data = value;
            }
        }
        private DataRow data;

        /// <summary>
        /// The row index.
        /// </summary>
        public string RowNumber
        {
            get
            {
                return rowNumber;
            }
            set
            {
                rowNumber = value;
            }
        }
        private string rowNumber;

        /// <summary>



        /// Constructor.
        /// </summary>
        /// <param name="row">The row information.</param>
        /// <param name="name">The row index.</param>
        public DatabaseRowInfo(DataRow row, string name)
        {
            RowNumber = name;
            Data = row;
        } // DatabaseRowInfo
    } // class DatabaseRowInfo

    #endregion DatabaseRowInfo

    #region AccessDBContentReader

    /// <summary>
    /// Content reader used to retrieve data from this provider.
    /// </summary>
    public class AccessDBContentReader : IContentReader
    {
        // A provider instance is required so as to get "content"
        private AccessDBProvider provider;
        private string path;
        private long currentOffset;

        internal AccessDBContentReader(string path, AccessDBProvider 
provider)
        {
            this.path = path;
            this.provider = provider;
        }

        /// <summary>
        /// Read the specified number of rows from the source.
        /// </summary>
        /// <param name="readCount">The number of items to 
        /// return.</param>
        /// <returns>An array of elements read.</returns>
        public IList Read(long readCount)
        {
            // Read the number of rows specified by readCount and increment
            // offset
            string tableName;
            int rowNumber;
            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            Collection<DatabaseRowInfo> rows =
                provider.GetRows(tableName);
            Collection<DataRow> results = new Collection<DataRow>();

            if (currentOffset < 0 || currentOffset >= rows.Count)
            {
                return null;
            }



            int rowsRead = 0;

            while (rowsRead < readCount && currentOffset < rows.Count)
            {
                results.Add(rows[(int)currentOffset].Data);
                rowsRead++;
                currentOffset++;
            }

            return results;
        } // Read

        /// <summary>
        /// Moves the content reader specified number of rows from the 
        /// origin
        /// </summary>
        /// <param name="offset">Number of rows to offset</param>
        /// <param name="origin">Starting row from which to offset</param>
        public void Seek(long offset, System.IO.SeekOrigin origin)
        {
            // get the number of rows in the table which will help in
            // calculating current position
            string tableName;
            int rowNumber;

            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Invalid)
            {
                throw new ArgumentException("Path specified must represent a 
table or a row :" + path);
            }

            if (type == PathType.Table)
            {
                Collection<DatabaseRowInfo> rows = 
provider.GetRows(tableName);

                int numRows = rows.Count;

                if (offset > rows.Count)
                {
                    throw new
                           ArgumentException(
                               "Offset cannot be greater than the number of 
rows available"
                                            );
                }

                if (origin == System.IO.SeekOrigin.Begin)
                {
                    // starting from Beginning with an index 0, the current 
offset



                    // has to be advanced to offset - 1
                    currentOffset = offset - 1;
                }
                else if (origin == System.IO.SeekOrigin.End)
                {
                    // starting from the end which is numRows - 1, the 
current
                    // offset is so much less than numRows - 1
                    currentOffset = numRows - 1 - offset;
                }
                else
                {
                    // calculate from the previous value of current offset
                    // advancing forward always
                    currentOffset += offset;
                }
            } // if (type...
            else
            {
                // for row, the offset will always be set to 0
                currentOffset = 0;
            }

        } // Seek

        /// <summary>
        /// Closes the content reader, so all members are reset
        /// </summary>
        public void Close()
        {
            Dispose();
        } // Close

        /// <summary>
        /// Dispose any resources being used
        /// </summary>
        public void Dispose()
        {
            Seek(0, System.IO.SeekOrigin.Begin);
            
            GC.SuppressFinalize(this);
        } // Dispose
    } // AccessDBContentReader

    #endregion AccessDBContentReader

    #region AccessDBContentWriter

    /// <summary>
    /// Content writer used to write data in this provider.
    /// </summary>
    public class AccessDBContentWriter : IContentWriter
    {
        // A provider instance is required so as to get "content"
        private AccessDBProvider provider;



        private string path;
        private long currentOffset;

        internal AccessDBContentWriter(string path, AccessDBProvider 
provider)
        {
            this.path = path;
            this.provider = provider;
        }

        /// <summary>
        /// Write the specified row contents in the source
        /// </summary>
        /// <param name="content"> The contents to be written to the source.
        /// </param>
        /// <returns>An array of elements which were successfully written to 
        /// the source</returns>
        /// 
        public IList Write(IList content)
        {
            if (content == null)
            {
                return null;
            }

            // Get the total number of rows currently available it will 
            // determine how much to overwrite and how much to append at
            // the end
            string tableName;
            int rowNumber;
            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Table)
            {
                OdbcDataAdapter da = provider.GetAdapterForTable(tableName);
                if (da == null)
                {
                    return null;
                }

                DataSet ds = provider.GetDataSetForTable(da, tableName);
                DataTable table = provider.GetDataTable(ds, tableName);

                string[] colValues = (content[0] as string).Split(',');

                // set the specified row
                DataRow row = table.NewRow();

                for (int i = 0; i < colValues.Length; i++)
                {
                    if (!String.IsNullOrEmpty(colValues[i]))
                    {
                        row[i] = colValues[i];
                    }



                }

                //table.Rows.InsertAt(row, rowNumber);
                // Update the table
                table.Rows.Add(row);
                da.Update(ds, tableName);
                
            }
            else 
            {
                throw new InvalidOperationException("Operation not 
supported. Content can be added only for tables");
            }

            return null;
        } // Write

        /// <summary>
        /// Moves the content reader specified number of rows from the 
        /// origin
        /// </summary>
        /// <param name="offset">Number of rows to offset</param>
        /// <param name="origin">Starting row from which to offset</param>
        public void Seek(long offset, System.IO.SeekOrigin origin)
        {
            // get the number of rows in the table which will help in
            // calculating current position
            string tableName;
            int rowNumber;

            PathType type = provider.GetNamesFromPath(path, out tableName, 
out rowNumber);

            if (type == PathType.Invalid)
            {
                throw new ArgumentException("Path specified should represent 
either a table or a row : " + path);
            }

            Collection<DatabaseRowInfo> rows =
                   provider.GetRows(tableName);

            int numRows = rows.Count;

            if (offset > rows.Count)
            {
                throw new
                       ArgumentException(
                           "Offset cannot be greater than the number of rows 
available"
                                               );
            }

            if (origin == System.IO.SeekOrigin.Begin)
            {



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

                // starting from Beginning with an index 0, the current 
offset
                // has to be advanced to offset - 1
                currentOffset = offset - 1;
            }
            else if (origin == System.IO.SeekOrigin.End)
            {
                // starting from the end which is numRows - 1, the current
                // offset is so much less than numRows - 1
                currentOffset = numRows - 1 - offset;
            }
            else
            {
                // calculate from the previous value of current offset
                // advancing forward always
                currentOffset += offset;
            }

        } // Seek

        /// <summary>
        /// Closes the content reader, so all members are reset
        /// </summary>
        public void Close()
        {
            Dispose();
        } // Close

        /// <summary>
        /// Dispose any resources being used
        /// </summary>
        public void Dispose()
        {
            Seek(0, System.IO.SeekOrigin.Begin);

            GC.SuppressFinalize(this);
        } // Dispose
    } // AccessDBContentWriter

    #endregion AccessDBContentWriter

    #endregion Helper Classes
} // namespace Microsoft.Samples.PowerShell.Providers

See Also



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample06-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Faccessdbprovidersample06-code-sample.md&documentVersionIndependentId=4b63b648-b5e4-6a3d-c36b-952f9fbab0b9&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3d512d90-1fc0-f36c-d34a-60f112353763+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc01 Code Samples
Article • 09/17/2021

Here are the code samples for the GetProc01 sample cmdlet. This is the basic Get-
Process  cmdlet sample described in Creating Your First Cmdlet. A Get-Process  cmdlet is
designed to retrieve information about all the processes running on the local computer.

For complete sample code, see the following topics.

Language Topic

C# GetProc01 (C#) Sample Code

VB.NET GetProc01 (VB.NET) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc01-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc01-code-samples.md&documentVersionIndependentId=d3d4eeb7-6ef3-3e17-0b6b-26da6d6e0a36&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+5eb051d1-d0b4-f6a1-4bc3-a1a08f0c0041+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc01 (C#) Sample Code
Article • 09/17/2021

The following code shows the implementation of the GetProc01 sample cmdlet. Notice
that the cmdlet is simplified by leaving the actual work of process retrieval to the
System.Diagnostics.Process.Getprocesses* method.

C#

７ Note

You can download the C# source file (getproc01.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

using System;
using System.Diagnostics;
using System.Management.Automation;             //Windows PowerShell 
namespace

using System.ComponentModel;

// This sample shows how to create a simple cmdlet. To test this 
// cmdlet, the snapin must be registered.  First, run the command:
//     installutil GetProcessSample01.dll
// Then run:
//     Add-PSSnapin GetProcessSnapIn01
// After the snapin has been loaded, you can run:
//     get-proc

namespace Microsoft.Samples.PowerShell.Commands
{

   #region GetProcCommand

   /// <summary>
   /// This class implements the Get-Proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet   
   {
      #region Cmdlet Overrides

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.GetProcesses
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses 
      /// method to retrieve the processes of the local computer. 
      /// Then, the WriteObject method writes the associated processes 
      /// to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
         // Retrieve the current processes.
         Process[] processes = Process.GetProcesses();

         // Write the processes to the pipeline to make them available
         // to the next cmdlet. The second argument (true) tells Windows 
         // PowerShell to enumerate the array and to send one process 
         // object at a time to the pipeline.
         WriteObject(processes, true);
      }

      #endregion Overrides

   } //GetProcCommand

   #endregion GetProcCommand

   #region PowerShell snap-in

   /// <summary>
   /// Create this sample as an PowerShell snap-in
   /// </summary>
   [RunInstaller(true)]
   public class GetProcPSSnapIn01 : PSSnapIn
   {
       /// <summary>
       /// Create an instance of the GetProcPSSnapIn01
       /// </summary>
       public GetProcPSSnapIn01()
           : base()
       {
       }

       /// <summary>
       /// Get a name for this PowerShell snap-in. This name will be used in 
registering
       /// this PowerShell snap-in.
       /// </summary>
       public override string Name
       {
           get
           {
               return "GetProcPSSnapIn01";
           }
       }

       /// <summary>



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

       /// Vendor information for this PowerShell snap-in.
       /// </summary>
       public override string Vendor
       {
           get
           {
               return "Microsoft";
           }
       }

       /// <summary>
       /// Gets resource information for vendor. This is a string of format: 
       /// resourceBaseName,resourceName. 
       /// </summary>
       public override string VendorResource
       {
           get
           {
               return "GetProcPSSnapIn01,Microsoft";
           }
       }

       /// <summary>
       /// Description of this PowerShell snap-in.
       /// </summary>
       public override string Description
       {
           get
           {
               return "This is a PowerShell snap-in that includes the get-
proc cmdlet.";
           }
       }
   }

   #endregion PowerShell snap-in
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:



can also create and review
issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc01-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc01-csharp-sample-code.md&documentVersionIndependentId=5aefc20f-42f5-418e-7148-609cfa114436&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+13667c7c-988b-3334-ae03-e20672185bc9+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc01 (VB.NET) Sample Code
Article • 09/17/2021

The following code shows the implementation of the GetProc01 sample cmdlet. Notice
that the cmdlet is simplified by leaving the actual work of process retrieval to the
System.Diagnostics.Process.Getprocesses* method.

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (getproc01.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Diagnostics.Process.GetProcesses
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc01-vb-net-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc01-vb-net-sample-code.md&documentVersionIndependentId=068d1c1b-7c38-61ee-60fb-af35794ec5cc&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+6d473a4d-0dde-988e-fb95-7322f841973a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc02 Code Samples
Article • 09/17/2021

Here are the code samples for the GetProc02 sample cmdlet. This is the Get-Process
cmdlet sample described in Adding Parameters that Process Command-Line Input. This
Get-Process  cmdlet retrieves processes based on their name, and then displays
information about the processes at the command line.

For complete sample code, see the following topics.

Language Topic

C# GetProc02 (C#) Sample Code

VB.NET GetProc02 (VB.NET) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (getproc02.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc02-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc02-code-samples.md&documentVersionIndependentId=b18f3ff0-cbf3-b2a3-dc69-0dc72d095cac&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ee86f4fd-8918-5385-26fb-4375fcbfed05+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/powershell/powershell/issues/new


GetProc02 (C#) Sample Code
Article • 09/17/2021

The following code shows the implementation of a Get-Process  cmdlet that accepts
command-line input. Notice that this implementation defines a Name  parameter to allow
command-line input, and it uses the WriteObject(System.Object,System.Boolean)
method as the output mechanism for sending output objects to the pipeline.

C#

Code Sample

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Diagnostics;
    using System.Management.Automation;     // Windows PowerShell namespace.
   #region GetProcCommand

   /// <summary>
   /// This class implements the get-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet
   {
      #region Parameters

       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
      private string[] processNames;

      /// <summary>
      /// Gets or sets the list of process names on which 
      /// the Get-Proc cmdlet will work.
      /// </summary>
      [Parameter(Position = 0)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }

      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.cmdlet.writeobject#System_Management_Automation_Cmdlet_WriteObject_System_Object_System_Boolean_


Windows PowerShell SDK

      /// The ProcessRecord method calls the Process.GetProcesses 
      /// method to retrieve the processes specified by the Name 
      /// parameter. Then, the WriteObject method writes the 
      /// associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
          // If no process names are passed to the cmdlet, get all 
          // processes.
          if (this.processNames == null)
          {
              WriteObject(Process.GetProcesses(), true);
          }
          else
          {
              // If process names are passed to cmdlet, get and write 
              // the associated processes.
              foreach (string name in this.processNames)
              {
                  WriteObject(Process.GetProcessesByName(name), true);
              }
          } // if (processNames...
      } // ProcessRecord

      #endregion Cmdlet Overrides
   } // End GetProcCommand class.

   #endregion GetProcCommand
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc02-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc02-csharp-sample-code.md&documentVersionIndependentId=be40b0e8-a52d-30f9-3b4c-39372b99a8b0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+41c3ccc6-0671-c89f-4de4-83ebfa8f5228+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc02 (VB.NET) Sample Code
Article • 09/17/2021

The following code shows the implementation of a Get-Process  cmdlet that accepts
command-line input. Notice that this implementation defines a Name  parameter to allow
command-line input, and it uses the WriteObject(System.Object,System.Boolean)
method as the output mechanism for sending output objects to the pipeline.

Windows PowerShell SDK

Code Sample

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.cmdlet.writeobject#System_Management_Automation_Cmdlet_WriteObject_System_Object_System_Boolean_
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc02-vb-net-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc02-vb-net-sample-code.md&documentVersionIndependentId=1c16dc94-6c60-caac-c5aa-07683b92e85f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+ff6c0b01-2a64-d560-164c-f01b3c0c0ae4+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc03 Code Samples
Article • 09/17/2021

Here are the code samples for the GetProc03 sample cmdlet. This is the Get-Process
cmdlet sample described in Adding Parameters that Process Pipeline Input. This Get-
Process  cmdlet uses a Name  parameter that accepts input from a pipeline object,
retrieves process information from the local computer based on the supplied names,
and then displays information about the processes at the command line.

For complete sample code, see the following topics.

Language Topic

C# GetProc03 (C#) Sample Code

VB.NET GetProc03 (VB.NET) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (getprov03.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc03-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc03-code-samples.md&documentVersionIndependentId=e6cdc46e-b1c2-a925-6581-0e98092a0b25&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+bf24a8d3-ae18-c94f-f628-057980d01302+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc03 (C#) Sample Code
Article • 09/17/2021

The following code shows the implementation of a Get-Process  cmdlet that can accept
pipelined input. This implementation defines a Name  parameter that accepts pipeline
input, retrieves process information from the local computer based on the supplied
names, and then uses the WriteObject(System.Object,System.Boolean) method as the
output mechanism for sending objects to the pipeline.

C#

７ Note

You can download the C# source file (getprov03.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Diagnostics;
    using System.Management.Automation;       // Windows PowerShell 
namespace.
    #region GetProcCommand

   /// <summary>
   /// This class implements the get-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet
   {
      #region Parameters

       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
       private string[] processNames;

      /// <summary>
      /// Gets or setsthe list of process names on 
      /// which the Get-Proc cmdlet will work.

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.cmdlet.writeobject#System_Management_Automation_Cmdlet_WriteObject_System_Object_System_Boolean_
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


Windows PowerShell Programmer's Guide

Windows PowerShell SDK

      /// </summary>
      [Parameter(
         Position = 0,
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }
       
      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses 
      /// method to retrieve the processes specified by the Name 
      /// parameter. Then, the WriteObject method writes the 
      /// associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {        
          // If no process names are passed to the cmdlet, get all 
          // processes.
          if (this.processNames == null)
          {
              WriteObject(Process.GetProcesses(), true);
          }
          else
          {
              // If process names are passed to the cmdlet, get and write 
              // the associated processes.
              foreach (string name in this.processNames)
              {
                  WriteObject(Process.GetProcessesByName(name), true);
              }
          } // if (processNames ...
      } // ProcessRecord
      #endregion Overrides
   } // End GetProcCommand class.

    #endregion GetProcCommand
}

See Also



６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc03-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc03-csharp-sample-code.md&documentVersionIndependentId=b28a19d3-7ea1-f03f-cb17-2e37298ddfd0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+cb8cd1ec-7b29-28f6-d613-a06905c3666c+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc03 (VB.NET) Sample Code
Article • 09/17/2021

The following code shows the implementation of a Get-Process  cmdlet that can accept
pipelined input. This implementation defines a Name  parameter that accepts pipeline
input, retrieves process information from the local computer based on the supplied
names, and then uses the WriteObject(System.Object,System.Boolean) method as the
output mechanism for sending objects to the pipeline.

Code Sample

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/system.management.automation.cmdlet.writeobject#System_Management_Automation_Cmdlet_WriteObject_System_Object_System_Boolean_
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc03-vb-net-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc03-vb-net-sample-code.md&documentVersionIndependentId=e7b34662-1501-97fc-b6c3-454ae768755f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a9a75cd2-1b13-ad1e-fbdf-19f7729f3745+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc04 Code Samples
Article • 09/15/2023

Here are the code samples for the GetProc04 sample cmdlet. This is the Get-Process
cmdlet sample described in Adding Non-terminating Error Reporting to Your Cmdlet.
This Get-Process  cmdlet calls the System.Management.Automation.Cmdlet.WriteError
method whenever an invalid operation exception is thrown while retrieving process
information.

For complete sample code, see the following topics.

Language Topic

C# GetProc04 (C#) Sample Code

VB.NET GetProc04 (VB.NET) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (getprov04.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc04-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc04-code-samples.md&documentVersionIndependentId=5a8991e3-f062-8fc6-830e-58a9d76896db&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+a7a19bc8-e17a-5ca9-7876-7cc305461c88+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc04 (C#) Sample Code
Article • 09/15/2023

The following code shows the implementation of a Get-Process  cmdlet that reports
non-terminating errors. This implementation calls the
System.Management.Automation.Cmdlet.WriteError method to report non-terminating
errors.

C#

７ Note

You can download the C# source file (getprov04.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Diagnostics;
    using System.Management.Automation;      // Windows PowerShell 
namespace.
   #region GetProcCommand

   /// <summary>
   /// This class implements the get-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc")]
   public class GetProcCommand : Cmdlet
   {
      #region Parameters

       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
       private string[] processNames;

      /// <summary>
      /// Gets or sets the list of process names on 
      /// which the Get-Proc cmdlet will work.
      /// </summary>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


      [Parameter(
         Position = 0,
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }
      
      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses 
      /// method to retrieve the processes specified by the Name 
      /// parameter. Then, the WriteObject method writes the 
      /// associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {        
          // If no process names are passed to cmdlet, get all 
          // processes.
          if (this.processNames == null)
          {
              WriteObject(Process.GetProcesses(), true);
          }
          else
          {
              // If process names are passed to the cmdlet, get and write 
              // the associated processes.
              // If a nonterminating error occurs while retrieving 
processes, 
              // call the WriteError method to send an error record to the 
              // error stream.
              foreach (string name in this.processNames)
              {
                  Process[] processes;

                  try
                  {
                      processes = Process.GetProcessesByName(name);
                  }
                  catch (InvalidOperationException ex)
                  {
                      WriteError(new ErrorRecord(
                         ex,
                         "UnableToAccessProcessByName",
                         ErrorCategory.InvalidOperation,
                         name));
                      continue;
                  }



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

                  WriteObject(processes, true);
              } // foreach (string name...
          } // else
      } // ProcessRecord

      #endregion Overrides
    } // End GetProcCommand class.

   #endregion GetProcCommand
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc04-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc04-csharp-sample-code.md&documentVersionIndependentId=7fb41d41-ff75-7ad0-3272-a3b32aeb05db&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3c1a590d-74a4-8a98-8c1a-8b3f7a0b890e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc04 (VB.NET) Sample Code
Article • 09/15/2023

The following code shows the implementation of a Get-Process  cmdlet that reports
non-terminating errors. This implementation calls the
System.Management.Automation.Cmdlet.WriteError method to report non-terminating
errors.

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (getprov04.cs) for this Get-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Cmdlet.WriteError
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc04-vb-net-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc04-vb-net-sample-code.md&documentVersionIndependentId=379b025d-8c01-5513-f35d-78118977d8b5&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+74878627-ce7c-b6c9-f5d6-a618138d3187+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc05 Code Samples
Article • 09/15/2023

Here are the code samples for the GetProc05 sample cmdlet. This Get-Process  cmdlet is
similar to the cmdlet described in Adding Non-terminating Error Reporting to Your
Cmdlet.

Language Topic

C# GetProc05 (C#) Sample Code

VB.NET GetProc05 (VB.NET) Sample Code

Windows PowerShell SDK

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc05-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc05-code-samples.md&documentVersionIndependentId=def59255-92e2-3821-80c5-4c7e3fb13e1c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+8dab3325-938c-90c1-4dc9-3ba375400c14+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc05 (C#) Sample Code
Article • 09/17/2021

Here is the complete C# code for the GetProc05 sample cmdlet.

C#

namespace Microsoft.Samples.PowerShell.Commands
{
    using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Management.Automation;    // Windows PowerShell namespace.
    using System.Security.Permissions;
    using Win32Exception = System.ComponentModel.Win32Exception;
    #region GetProcCommand

    /// <summary>
   /// This class implements the get-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsCommon.Get, "Proc", 
      DefaultParameterSetName = "ProcessName")]
   public class GetProcCommand : PSCmdlet
   {
       #region Fields
       /// <summary>
       /// The names of the processes to act on.
       /// </summary>
       private string[] processNames;

       /// <summary>
       /// The identifiers of the processes to act on.
       /// </summary>
       private int[] processIds;

       /// <summary>
       /// The process objects to act on.
       /// </summary>
       private Process[] inputObjects;

       #endregion Fields
       
       #region Parameters

      /// <summary>
      /// Gets or sets the list of process names on 
      /// which the Get-Proc cmdlet will work.
      /// </summary>
      [Parameter(
         Position = 0,
         ParameterSetName = "ProcessName",
         ValueFromPipeline = true,



         ValueFromPipelineByPropertyName = true)]
      [ValidateNotNullOrEmpty]
      public string[] Name
      {
         get { return this.processNames; }
         set { this.processNames = value; }
      }

      /// <summary>
      /// Gets or sets the list of process identifiers on 
      /// which the Get-Proc cmdlet will work.
      /// </summary>
      [Parameter(
         ParameterSetName = "Id",
         Mandatory = true,
         ValueFromPipeline = true,
         ValueFromPipelineByPropertyName = true,
         HelpMessage = "The unique id of the process to get.")]
      public int[] Id
      {
         get { return this.processIds; }
         set { this.processIds = value; }
      }

      /// <summary>
      /// Gets or sets Process objects directly. If the input is a 
      /// stream of [collection of] Process objects, the cmdlet bypasses the 
      /// ProcessName and Id parameters and reads the Process objects 
      /// directly.  This allows the cmdlet to deal with processes that have 
      /// wildcard characters in their name.
      /// <value>Process objects</value>
      /// </summary>
      [Parameter(
         ParameterSetName = "InputObject",
         Mandatory = true,
         ValueFromPipeline = true)]
      public Process[] Input
      {
         get { return this.inputObjects; }
         set { this.inputObjects = value; }
      }

      #endregion Parameters

      #region Cmdlet Overrides

      /// <summary>
      /// The ProcessRecord method calls the Process.GetProcesses 
      /// method to retrieve the processes. Then, the WriteObject 
      /// method writes the associated processes to the pipeline.
      /// </summary>
      protected override void ProcessRecord()
      {
         List<Process> matchingProcesses;
         



         WriteDebug("Obtaining the list of matching process objects.");

         switch (ParameterSetName)
         {
            case "Id":
               matchingProcesses = this.GetMatchingProcessesById();
               break;
            case "ProcessName":
               matchingProcesses = this.GetMatchingProcessesByName();
               break;
            case "InputObject":
               matchingProcesses = this.GetProcessesByInput();
               break;
            default:
               ThrowTerminatingError(
                   new ErrorRecord(
                       new ArgumentException("Bad ParameterSetName"),
                       "UnableToAccessProcessList",
                       ErrorCategory.InvalidOperation,
                       null));
               return;
         } // switch (ParameterSetName)

         WriteDebug("Outputting the matching process objects.");

         matchingProcesses.Sort(ProcessComparison);

         foreach (Process process in matchingProcesses)
         {
            WriteObject(process);
         }
      } // ProcessRecord

      #endregion Overrides

      #region protected Methods and Data

      /// <summary>
      /// Retrieves the list of all processes matching the ProcessName
      /// parameter and generates a nonterminating error for each 
      /// specified process name which is not found even though the name
      /// contains no wildcards.
      /// </summary>
      /// <returns>The matching processes.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand, 
         Unrestricted = true)]
      private List<Process> GetMatchingProcessesByName()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();
         
         List<Process> allProcesses = 
            new List<Process>(Process.GetProcesses());



         // The keys dictionary is used for rapid lookup of 
         // processes that are already in the matchingProcesses list.
         Dictionary<int, byte> keys = new Dictionary<int, byte>();

         List<Process> matchingProcesses = new List<Process>();

         if (null == this.processNames)
         {
             matchingProcesses.AddRange(allProcesses);
         }
         else
         {
             foreach (string pattern in this.processNames)
             {
                 WriteVerbose("Finding matches for process name \""
                    + pattern + "\".");

                 // WildCard serach on the available processes
                 WildcardPattern wildcard =
                    new WildcardPattern(
                        pattern,
                        WildcardOptions.IgnoreCase);

                 bool found = false;

                 foreach (Process process in allProcesses)
                 {
                     if (!keys.ContainsKey(process.Id))
                     {
                         string processName = SafeGetProcessName(process);

                         // Remove the process from the allProcesses list 
                         // so that it is not tested again.
                         if (processName.Length == 0)
                         {
                             allProcesses.Remove(process);
                         }

                         // Perform a wildcard search on this particular 
                         // process name and check whether it matches the 
                         // pattern specified.
                         if (!wildcard.IsMatch(processName))
                         {
                             continue;
                         }

                         WriteDebug("Found matching process id "
                            + process.Id + ".");

                         // A match is found.
                         found = true;

                         // Store the process identifier so that the same 
process
                         // is not added twice.



                         keys.Add(process.Id, 0);

                         // Add the process to the processes list.
                         matchingProcesses.Add(process);
                     }
                 } // foreach (Process...

                 if (!found &&
                   !WildcardPattern.ContainsWildcardCharacters(pattern))
                 {
                     WriteError(new ErrorRecord(
                        new ArgumentException("Cannot find process name "
                           + "\"" + pattern + "\"."),
                        "ProcessNameNotFound",
                        ErrorCategory.ObjectNotFound,
                        pattern));
                 }
             } // foreach (string...
         } // if (null...
         
         return matchingProcesses;
      } // GetMatchingProcessesByName

      /// <summary>
      /// Returns the name of a process.  If an error occurs, a blank
      /// string is returned.
      /// </summary>
      /// <param name="process">The process whose name is 
      /// returned.</param>
      /// <returns>The name of the process.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand, Unrestricted = true)]
      protected static string SafeGetProcessName(Process process)
      {
         new EnvironmentPermission(PermissionState.Unrestricted).Assert();
         string name = String.Empty;

         if (process != null)
         {
            try 
            { 
                return process.ProcessName; 
            }
            catch (Win32Exception) 
            { 
            }
            catch (InvalidOperationException) 
            { 
            }
         }

         return name;
     } // SafeGetProcessName

      #endregion Cmdlet Overrides



      #region Private Methods

      /// <summary>
      /// Function to sort by process name first, and then by 
      /// the process identifier.
      /// </summary>
      /// <param name="x">First process object.</param>
      /// <param name="y">Second process object.</param>
      /// <returns>
      /// Returns less than zero if x is less than y,
      /// greater than 0 if x is greater than y, and 0 if x == y.
      /// </returns>
      private static int ProcessComparison(Process x, Process y)
      {
         int diff = String.Compare(
            SafeGetProcessName(x),
            SafeGetProcessName(y),
            StringComparison.CurrentCultureIgnoreCase);

         if (0 != diff)
         {
             return diff;
         }
         else
         {
             return x.Id.CompareTo(y.Id);
         }
      }

      /// <summary>
      /// Retrieves the list of all processes matching the Id
      /// parameter and generates a nonterminating error for 
      /// each specified process identofier which is not found.
      /// </summary>
      /// <returns>
      /// An array of processes that match the given identifier.
      /// </returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand,
         Unrestricted = true)]
      private List<Process> GetMatchingProcessesById()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();

         List<Process> matchingProcesses = new List<Process>();

         if (null != this.processIds)
         {
            // The keys dictionary is used for rapid lookup of the 
            // processes already in the matchingProcesses list.
            Dictionary<int, byte> keys = new Dictionary<int, byte>();

            foreach (int processId in this.processIds)



            {
               WriteVerbose("Finding match for process id "
                  + processId + ".");

               if (!keys.ContainsKey(processId))
               {
                  Process process;
                  try 
                  { 
                      process = Process.GetProcessById(processId); 
                  }
                  catch (ArgumentException ex)
                  {
                     WriteError(new ErrorRecord(
                        ex,
                        "ProcessIdNotFound",
                        ErrorCategory.ObjectNotFound,
                        processId));
                     continue;
                  }
                  
                  WriteDebug("Found matching process.");
                  
                  matchingProcesses.Add(process);
                  keys.Add(processId, 0);
               }
            }
         }
         
         return matchingProcesses;
      } // GetMatchingProcessesById

      /// <summary>
      /// Retrieves the list of all processes matching the InputObject
      /// parameter.
      /// </summary>
      /// <returns>The matching processes.</returns>
      [EnvironmentPermissionAttribute(
         SecurityAction.LinkDemand,
         Unrestricted = true)]
      private List<Process> GetProcessesByInput()
      {
         new EnvironmentPermission(
            PermissionState.Unrestricted).Assert();

         List<Process> matchingProcesses = new List<Process>();

         if (null != this.Input)
         {
            // The keys dictionary is used for rapid lookup of the
            // processes already in the matchingProcesses list.
            Dictionary<int, byte> keys = new Dictionary<int, byte>();

            foreach (Process process in this.Input)
            {



Windows PowerShell SDK

               WriteVerbose("Refreshing process object.");

               if (!keys.ContainsKey(process.Id))
               {
                  try 
                  { 
                      process.Refresh(); 
                  }
                  catch (Win32Exception) 
                  { 
                  }
                  catch (InvalidOperationException) 
                  { 
                  }

                  matchingProcesses.Add(process);
               }
            }
         }

         return matchingProcesses;
      } // GetProcessesByInput
      #endregion Private Methods
    } // End GetProcCommand class.

    #endregion GetProcCommand
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fgetproc05-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fgetproc05-csharp-sample-code.md&documentVersionIndependentId=13ee239c-f6b1-0e55-3d53-27f678d9a3b0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+1fa7de67-c50a-4538-a950-8034680dadc1+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


GetProc05 (VB.NET) Sample Code
Article • 12/18/2023

Here is the complete VB.NET code for the GetProc05 sample cmdlet.

VB

Imports System
Imports System.Collections.Generic
Imports Win32Exception = System.ComponentModel.Win32Exception
Imports System.Diagnostics
Imports System.Security.Permissions

'Windows PowerShell namespace
Imports System.Management.Automation
Imports System.ComponentModel

Namespace Microsoft.Samples.PowerShell.Commands

    ' This sample is a complete implementation of the Get-Proc Cmdlet.
#Region "GetProcCommand"

    ''' <summary>
    ''' This class implements the Get-Proc cmdlet
    ''' </summary>
    <Cmdlet(VerbsCommon.Get, "Proc", _
    DefaultParameterSetName:="ProcessName")> _
    Public Class GetProcCommand
        Inherits PSCmdlet
#Region "Parameters"

        ''' <summary>
        ''' The list of process names on which this cmdlet will work
        ''' </summary>
        <Parameter(Position:=0, ParameterSetName:="ProcessName", _
        ValueFromPipeline:=True, _
        ValueFromPipelineByPropertyName:=True), _
        ValidateNotNullOrEmpty()> _
        Public Property Name() As String()
            Get
                Return processNames
            End Get

            Set(ByVal value As String())
                processNames = value
            End Set

        End Property

        ''' <summary>
        ''' gets/sets an array of process IDs
        ''' </summary>



        <Parameter(ParameterSetName:="Id", _
        Mandatory:=True, ValueFromPipeline:=True, _
        ValueFromPipelineByPropertyName:=True, _
        HelpMessage:="The unique id of the process to get.")> _
        Public Property Id() As Integer()
            Get
                Return processIds
            End Get
            Set(ByVal value As Integer())
                processIds = value
            End Set
        End Property

        ''' <summary>
        ''' If the input is a stream of [collections of] Process
        ''' objects, we bypass the ProcessName and Id parameters and
        ''' read the Process objects directly.  This allows us to deal
        ''' with processes which have wildcard characters in their name.
        ''' <value>Process objects</value>
        ''' </summary>
        <Parameter(ParameterSetName:="InputObject", _
        Mandatory:=True, ValueFromPipeline:=True)> _
        Public Property Input() As Process()
            Get
                Return inputObjects
            End Get
            Set(ByVal value As Process())
                inputObjects = value
            End Set
        End Property

#End Region

#Region "Cmdlet Overrides"

        ''' <summary>
        ''' For each of the requested processnames, retrieve and write
        ''' the associated processes.
        ''' </summary>
        Protected Overrides Sub ProcessRecord()
            Dim matchingProcesses As List(Of Process)

            WriteDebug("Obtaining list of matching process objects.")

            Select Case ParameterSetName
                Case "Id"
                    matchingProcesses = GetMatchingProcessesById()
                Case "ProcessName"
                    matchingProcesses = GetMatchingProcessesByName()
                Case "InputObject"
                    matchingProcesses = GetProcessesByInput()
                Case Else
                    ThrowTerminatingError(New ErrorRecord( _
                        New ArgumentException("Bad ParameterSetName"), _
                            "UnableToAccessProcessList", _



                            ErrorCategory.InvalidOperation, Nothing))
                    Return
            End Select

            WriteDebug("Outputting matching process objects.")

            matchingProcesses.Sort(AddressOf ProcessComparison)

            Dim process As Process
            For Each process In matchingProcesses
                WriteObject(process)
            Next process

        End Sub 'ProcessRecord

#End Region

#Region "protected Methods and Data"
        ''' <summary>
        ''' Retrieves the list of all processes matching the ProcessName
        ''' parameter.
        ''' Generates a non-terminating error for each specified
        ''' process name which is not found even though it contains
        ''' no wildcards.
        ''' </summary>
        ''' <returns></returns>

        Private Function GetMatchingProcessesByName() As List(Of Process)

            Dim allProcesses As List(Of Process) = _
                New List(Of Process)(Process.GetProcesses())

            ' The keys dictionary will be used for rapid lookup of
            ' processes already in the matchingProcesses list.
            Dim keys As Dictionary(Of Integer, Byte) = _
                New Dictionary(Of Integer, Byte)()

            Dim matchingProcesses As List(Of Process) = New List(Of Process)
()

            If Nothing Is processNames Then
                matchingProcesses.AddRange(allProcesses)
            Else
                Dim pattern As String
                For Each pattern In processNames
                    WriteVerbose(("Finding matches for process name """ & _
                        pattern & """."))

                    ' WildCard search on the available processes
                    Dim wildcard As New WildcardPattern(pattern, _
                        WildcardOptions.IgnoreCase)

                    Dim found As Boolean = False

                    Dim process As Process



                    For Each process In allProcesses
                        If Not keys.ContainsKey(process.Id) Then
                            Dim processName As String = _
                                SafeGetProcessName(process)

                            ' Remove the process from the allProcesses list
                            ' so that it's not tested again.
                            If processName.Length = 0 Then
                                allProcesses.Remove(process)
                            End If

                            ' Perform a wildcard search on this particular
                            ' process and check whether this matches the
                            ' pattern specified.
                            If Not wildcard.IsMatch(processName) Then
                                GoTo ContinueForEach2
                            End If

                            WriteDebug(String.Format( _
                                "Found matching process id ""{0}"".", 
process.Id))

                            ' We have found a match.
                            found = True

                            ' Store the process ID so that we don't add the
                            ' same one twice.
                            keys.Add(process.Id, 0)

                            ' Add the process to the processes list.
                            matchingProcesses.Add(process)
                        End If
ContinueForEach2:
                    Next process ' foreach (Process...
                    If Not found AndAlso Not _
                       WildcardPattern.ContainsWildcardCharacters(pattern) _
                    Then
                        WriteError(New ErrorRecord( _
                            New ArgumentException("Cannot find process name 
" & _
                            " " & pattern & "."), "ProcessNameNotFound", _
                            ErrorCategory.ObjectNotFound, pattern))
                    End If
                Next pattern
            End If
            Return matchingProcesses

        End Function 'GetMatchingProcessesByName

        ''' <summary>
        ''' Returns the name of a process.  If an error occurs, a blank
        ''' string will be returned.
        ''' </summary>
        ''' <param name="process">The process whose name will be
        ''' returned.</param>



        ''' <returns>The name of the process.</returns>
        Protected Shared Function SafeGetProcessName(ByVal process As 
Process) _
            As String

            Dim name As String = ""

            If Not (process Is Nothing) Then
                Try
                    Return process.ProcessName
                Catch e1 As Win32Exception
                Catch e2 As InvalidOperationException
                End Try
            End If
            Return name

        End Function 'SafeGetProcessName

#End Region

#Region "Private Methods"

        ''' <summary>
        ''' Function to sort by ProcessName first, then by Id
        ''' </summary>
        ''' <param name="x">first Process object</param>
        ''' <param name="y">second Process object</param>
        ''' <returns>
        ''' returns less than zero if x less than y,
        ''' greater than 0 if x greater than y, 0 if x == y
        ''' </returns>
        Private Shared Function ProcessComparison(ByVal x As Process, _
                ByVal y As Process) As Integer
            Dim diff As Integer = String.Compare(SafeGetProcessName(x), _
            SafeGetProcessName(y), 
StringComparison.CurrentCultureIgnoreCase)

            If 0 <> diff Then
                Return diff
            End If
            Return x.Id - y.Id

        End Function 'ProcessComparison

        ''' <summary>
        ''' Retrieves the list of all processes matching the Id
        ''' parameter.
        ''' Generates a non-terminating error for each specified
        ''' process ID which is not found.
        ''' </summary>
        ''' <returns>An array of processes that match the given id.
        ''' </returns>
        Protected Function GetMatchingProcessesById() As List(Of Process)



            Dim matchingProcesses As List(Of Process) = New List(Of Process)

            If Not (processIds Is Nothing) Then

                ' The keys dictionary will be used for rapid lookup of
                ' processes already in the matchingProcesses list.
                Dim keys As Dictionary(Of Integer, Byte) = _
                    New Dictionary(Of Integer, Byte)()

                Dim processId As Integer
                For Each processId In processIds
                    WriteVerbose("Finding match for process id " & _
                        processId & ".")

                    If Not keys.ContainsKey(processId) Then
                        Dim process As Process
                        Try
                            process = _
                               System.Diagnostics.Process.GetProcessById( _
                                   processId)
                        Catch ex As ArgumentException
                            WriteError(New ErrorRecord(ex, _
                                "ProcessIdNotFound", _
                                ErrorCategory.ObjectNotFound, processId))
                            GoTo ContinueForEach1
                        End Try

                        WriteDebug("Found matching process.")

                        matchingProcesses.Add(process)
                        keys.Add(processId, 0)
                    End If
ContinueForEach1:
                Next processId
            End If

            Return matchingProcesses

        End Function 'GetMatchingProcessesById

        ''' <summary>
        ''' Retrieves the list of all processes matching the Input
        ''' parameter.
        ''' </summary>
        Private Function GetProcessesByInput() As List(Of Process)

            Dim matchingProcesses As List(Of Process) = New List(Of Process)
()

            If Not (Nothing Is Input) Then
                ' The keys dictionary will be used for rapid lookup of
                ' processes already in the matchingProcesses list.
                Dim keys As Dictionary(Of Integer, Byte) = _
                    New Dictionary(Of Integer, Byte)()



                Dim process As Process
                For Each process In Input
                    WriteVerbose("Refreshing process object.")

                    If Not keys.ContainsKey(process.Id) Then
                        Try
                            process.Refresh()
                        Catch e1 As Win32Exception
                        Catch e2 As InvalidOperationException
                        End Try
                        matchingProcesses.Add(process)
                    End If
                Next process
            End If
            Return matchingProcesses

        End Function 'GetProcessesByInput

#End Region

#Region "Private Data"

        Private processNames() As String
        Private processIds() As Integer
        Private inputObjects() As Process

#End Region

    End Class 'GetProcCommand

#End Region

#Region "PowerShell snap-in" '
    ''' <summary>
    ''' Create this sample as a PowerShell snap-in
    ''' </summary>
    <RunInstaller(True)> _
    Public Class GetProcPSSnapIn05
        Inherits PSSnapIn

        ''' <summary>
        ''' Create an instance of the GetProcPSSnapIn05
        ''' </summary>
        Public Sub New()

        End Sub 'New

        ''' <summary>
        ''' Get a name for this PowerShell snap-in. This name will
        ''' be used in registering
        ''' this PowerShell snap-in.
        ''' </summary>

        Public Overrides ReadOnly Property Name() As String



Windows PowerShell SDK

            Get
                Return "GetProcPSSnapIn05"
            End Get
        End Property

        ''' <summary>
        ''' Vendor information for this PowerShell snap-in.
        ''' </summary>

        Public Overrides ReadOnly Property Vendor() As String
            Get
                Return "Microsoft"
            End Get
        End Property

        ''' <summary>
        ''' Gets resource information for vendor. This is a string of 
format:
        ''' resourceBaseName,resourceName.
        ''' </summary>

        Public Overrides ReadOnly Property VendorResource() As String
            Get
                Return "GetProcPSSnapIn05,Microsoft"
            End Get
        End Property

        ''' <summary>
        ''' Description of this PowerShell snap-in.
        ''' </summary>

        Public Overrides ReadOnly Property Description() As String
            Get
                Return "This is a PowerShell snap-in that includes " & _
                    "the Get-Proc sample."
            End Get
        End Property
    End Class 'GetProcPSSnapIn05

#End Region

End Namespace

See Also



StopProc01 Code Samples
Article • 09/17/2021

Here is the code sample for the StopProc01 sample cmdlet. This is the Stop-Process
cmdlet sample described in Creating a Cmdlet that Modifies the System. The Stop-
Process  cmdlet is designed to stop processes that are retrieved using the Get-Proc
cmdlet (described in Creating Your First Cmdlet).

Language Topic

C# StopProc01 (C#) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# (stopproc01.cs) source file for the Stop-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fstopproc01-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fstopproc01-code-samples.md&documentVersionIndependentId=a5f161a2-aacb-c423-c650-a40496c686a3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+823ad3ab-9c14-7f13-efb8-e9103e54fa05+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


StopProc01 (C#) Sample Code
Article • 09/17/2021

Here is the complete C# code for the StopProc01 sample cmdlet.

C#

７ Note

You can download the C# (stopproc01.cs) source file for the Stop-Proc cmdlet using
the Microsoft Windows Software Development Kit for Windows Vista and .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;    // Windows PowerShell namespace
using System.Globalization;

// This sample shows how to implement a PassThru parameter that indicates 
that 
// the user wants the cmdlet to return an object, and how to request 
// user feedback by calls to the ShouldProcess and ShouldContinue methods.
//
// To test this cmdlet, create a module folder that has the same name as 
// this assembly (StopProcesssample01), save the assembly in the module 
folder, and then run the 
// following command:
// import-module stopprocesssample01

namespace Microsoft.Samples.PowerShell.Commands
{
   #region StopProcCommand

    /// <summary>
   /// This class implements the stop-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       SupportsShouldProcess = true)]
   public class StopProcCommand : Cmdlet
   {
       #region Parameters

      /// <summary>
      /// This parameter provides the list of process names on 

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(
          Position = 0,
          Mandatory = true,
          ValueFromPipeline = true,
          ValueFromPipelineByPropertyName = true
       )]
       public string[] Name
       {
           get { return processNames; }
           set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force 
       /// the cmdlet to stop its operation. This parameter should always 
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
           get { return force; }
           set { force = value; }
       }
       private bool force;
      
       /// <summary>
       /// This parameter indicates that the cmdlet should return 
       /// an object to the pipeline after the processing has been 
       /// completed.
       /// </summary>
       [Parameter]
       public SwitchParameter PassThru
       {
           get { return passThru; }
           set { passThru = value; }
       }
       private bool passThru;

       #endregion Parameters

       #region Cmdlet Overrides

       /// <summary>
       /// The ProcessRecord method does the following for each of the 
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.
       /// </summary>     
       protected override void ProcessRecord()
       {         
           foreach (string name in processNames)



           {
               // For every process name passed to the cmdlet, get the 
associated 
               // processes.  
               // Write a nonterminating error for failure to retrieve 
               // a process.
               Process[] processes;

               try 
               { 
                   processes = Process.GetProcessesByName(name); 
               }
               catch (InvalidOperationException ioe)
               {
                   WriteError(new 
ErrorRecord(ioe,"UnableToAccessProcessByName",
                       ErrorCategory.InvalidOperation, name));
   
                   continue;
               }

               // Try to stop the processes that have been retrieved.          
               foreach (Process process in processes)
               {
                   string processName;

                   try 
                   { 
                       processName = process.ProcessName; 
                   }
                   catch (Win32Exception e)
                   { 
                      WriteError(new ErrorRecord(e, "ProcessNameNotFound", 
                                           ErrorCategory.ReadError, 
process));
                      continue;
                   }

                   // Confirm the operation with the user first.
                   // This is always false if the WhatIf parameter is set.
                   if 
(!ShouldProcess(string.Format(CultureInfo.CurrentCulture,"{0} ({1})", 
processName,
                               process.Id)))
                   {
                       continue;
                   }

                   // Make sure that the user really wants to stop a 
critical
                   // process that could possibly stop the computer.
                   bool criticalProcess = 
                       
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));



                   if (criticalProcess &&!force)
                   {
                       string message = String.Format
                           (CultureInfo.CurrentCulture, 
                                "The process \"{0}\" is a critical process 
and should not be stopped. Are you sure you wish to stop the process?",
                                    processName);

                       // It is possible that the ProcessRecord method is 
called 
                       // multiple times when objects are received as inputs 
from 
                       // the pipeline. So to retain YesToAll and NoToAll 
input that 
                       // the user may enter across multiple calls to this 
function, 
                       // they are stored as private members of the cmdlet.
                       if (!ShouldContinue(message, "Warning!",
                                               ref yesToAll, ref noToAll))
                       {
                           continue;
                       }
                   } // if (criticalProcess...

                   // Stop the named process.
                   try 
                   { 
                       process.Kill(); 
                   }
                   catch (Exception e)
                   {
                       if ((e is Win32Exception) || (e is SystemException) 
||
                          (e is InvalidOperationException))
                       {
                           // This process could not be stopped so write
                           // a nonterminating error.
                           WriteError(new ErrorRecord(e, 
"CouldNotStopProcess", 
                                           ErrorCategory.CloseError, 
process));
                           continue;
                       } // if ((e is...
                       else throw;
                   } // catch

                   // If the PassThru parameter is
                   // specified, return the terminated process.
                   if (passThru)
                   {
                       WriteObject(process);
                   }
               } // foreach (Process...
           } // foreach (string...



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

       } // ProcessRecord

       #endregion Cmdlet Overrides

       #region Private Data      
      
       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of critical processes that should not be 
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fstopproc01-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fstopproc01-csharp-sample-code.md&documentVersionIndependentId=75d08a14-e280-165b-2d29-0cffa7eb6654&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+74ea25f0-c2f4-bcee-2a44-0408505a0e28+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


StopProcessSample04 Code Samples
Article • 09/17/2021

Here are the code samples for the StopProc00 sample cmdlet. This is the Stop-Process
cmdlet sample described in Adding Parameter Sets to a Cmdlet. The Stop-Process
cmdlet is designed to stop processes that are retrieved using the Get-Proc cmdlet
(described in Creating Your First Cmdlet).

For complete sample code, see the following topics.

Language Topic

C# StopProc04 (C#) Sample Code

VB.NET StopProc04 (VB.NET) Sample Code

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# (stopprocesssample04.cs) and VB.NET
(stopprocesssample04.vb) for this Stop-Proc cmdlet using the Microsoft Windows
Software Development Kit for Windows Vista and .NET Framework 3.0 Runtime
Components. For download instructions, see How to Install Windows PowerShell
and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


issues and pull requests. For
more information, see our
contributor guide.

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fstopprocesssample04-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fstopprocesssample04-code-samples.md&documentVersionIndependentId=4a391ab8-a33a-65a7-d9d2-9a84f2f76bdb&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+31516de7-13ae-b710-d3d3-54927cd8e9a7+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


StopProcessSample04 (C#) Sample Code
Article • 09/17/2021

Here is the complete C# sample code for the StopProc04 sample cmdlet. This is the
code for the Stop-Process  cmdlet described in Adding Parameter Sets to a Cmdlet. The

Stop-Process  cmdlet is designed to stop processes that are retrieved using the Get-Proc
cmdlet (described in Creating Your First Cmdlet).

C#

７ Note

You can download the C# (stopprocesssample04.cs) source file for this Stop-Proc
cmdlet using the Microsoft Windows Software Development Kit for Windows Vista
and .NET Framework 3.0 Runtime Components. For download instructions, see How
to Install Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

using System;
using System.Diagnostics;
using System.Collections;
using Win32Exception = System.ComponentModel.Win32Exception;
using System.Management.Automation;             //Windows PowerShell 
namespace
using System.Globalization;

// This sample shows how to declare parameter sets, the input object, and
// how to specify the default parameter set to use.
//
// To test this cmdlet, create a module folder that has the same name as 
// this assembly (StopProcesssample04), save the assembly in the module 
folder, and then run the 
// following command:
// import-module stopprocesssample04

namespace Microsoft.Samples.PowerShell.Commands
{
   #region StopProcCommand

   /// <summary>
   /// This class implements the stop-proc cmdlet.
   /// </summary>
   [Cmdlet(VerbsLifecycle.Stop, "Proc",
       DefaultParameterSetName = "ProcessId",
       SupportsShouldProcess = true)]
   public class StopProcCommand : PSCmdlet
   {

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


       #region Parameters

      /// <summary>
      /// This parameter provides the list of process names on 
      /// which the Stop-Proc cmdlet will work.
      /// </summary>
       [Parameter(
          Position = 0,
          ParameterSetName = "ProcessName",
          Mandatory = true,
          ValueFromPipeline = true,
          ValueFromPipelineByPropertyName = true,
          HelpMessage = "The name of one or more processes to stop. 
Wildcards are permitted."
       )]
       [Alias("ProcessName")]
       public string[] Name
       {
           get { return processNames; }
           set { processNames = value; }
       }
       private string[] processNames;

       /// <summary>
       /// This parameter overrides the ShouldContinue call to force 
       /// the cmdlet to stop its operation. This parameter should always 
       /// be used with caution.
       /// </summary>
       [Parameter]
       public SwitchParameter Force
       {
           get { return force; }
           set { force = value; }
       }
       private bool force;

       /// <summary>
       /// This parameter indicates that the cmdlet should return 
       /// an object to the pipeline after the processing has been 
       /// completed.
       /// </summary>
       [Parameter(
          HelpMessage = "If set the process(es) will be passed to the 
pipeline after stopped."
       )]
       public SwitchParameter PassThru
       {
           get { return passThru; }
           set { passThru = value; }
       }
       private bool passThru;

      /// This parameter provides the list of process identifiers on 
      /// which the Stop-Proc cmdlet will work.
       [Parameter(



          ParameterSetName = "ProcessId",
          Mandatory = true,
          ValueFromPipelineByPropertyName = true,
          ValueFromPipeline = true
       )]
       [Alias("ProcessId")]
       public int[] Id
       {
           get { return processIds; }
           set { processIds = value; }
       }
       private int[] processIds;

       /// <summary>
       /// This parameter accepts an array of Process objects from the 
       /// the pipeline. This object contains the processes to stop.
       /// </summary>
       /// <value>Process objects</value>
       [Parameter(
           ParameterSetName = "InputObject",
           Mandatory = true,
           ValueFromPipeline = true)]
       public Process[] InputObject
       {
           get { return inputObject; }
           set { inputObject = value; }
       }
       private Process[] inputObject;

       #endregion Parameters

       #region CmdletOverrides

       /// <summary>
       /// The ProcessRecord method does the following for each of the 
       /// requested process names:
       /// 1) Check that the process is not a critical process.
       /// 2) Attempt to stop that process.
       /// If no process is requested then nothing occurs.
       /// </summary>     
       protected override void ProcessRecord()
       {
           switch (ParameterSetName)
           {
               case "ProcessName":
                   ProcessByName();
               break;

               case "ProcessId":
                   ProcessById();
                   break;

               case "InputObject":
                   foreach (Process process in inputObject)
                   {



                       SafeStopProcess(process);
                   }
                   break;

               default:
                   throw new ArgumentException("Bad ParameterSet Name");
           } // switch (ParameterSetName...
       } // ProcessRecord

       #endregion Cmdlet Overrides

       #region Helper Methods

       /// <summary>
       /// Returns all processes with matching names.
       /// </summary>
       /// <param name="processName">
       /// The name of the processes to return.
       /// </param>
       /// <param name="allProcesses">An array of all 
       /// computer processes.</param>
       /// <returns>An array of matching processes.</returns>
       internal ArrayList SafeGetProcessesByName(string processName, 
                                ref ArrayList allProcesses)
       {
           // Create and array to store the matching processes.
           ArrayList matchingProcesses = new ArrayList();

           // Create the wildcard for pattern matching.
           WildcardOptions options = WildcardOptions.IgnoreCase |
                                     WildcardOptions.Compiled;
           WildcardPattern wildcard = new WildcardPattern(processName, 
options);           

           // Walk all of the machine processes.
           foreach(Process process in allProcesses)
           {
               string processNameToMatch = null;
               try
               {
                   processNameToMatch = process.ProcessName;
               }
               catch (Win32Exception e)
               {
                   // Remove the process from the list so that it is not 
                   // checked again.
                   allProcesses.Remove(process);

                   string message =
                         String.Format(CultureInfo.CurrentCulture, "The 
process \"{0}\" could not be found",
                                             processName);
                   WriteVerbose(message);
                   WriteError(new ErrorRecord(e, "ProcessNotFound",
                                    ErrorCategory.ObjectNotFound, 



processName));

                   continue;
               }

               if (!wildcard.IsMatch(processNameToMatch))
               {
                   continue;
               }

               matchingProcesses.Add(process); 
           } // foreach(Process...

           return matchingProcesses;
       } // SafeGetProcessesByName

       /// <summary>
       /// Safely stops a named process.  Used as standalone function
       /// to declutter the ProcessRecord method.
       /// </summary>
       /// <param name="process">The process to stop.</param>
       private void SafeStopProcess(Process process)
       {
           string processName = null;
           
           try
           {
               processName = process.ProcessName;
           }
           catch (Win32Exception e)
           {
               WriteError(new ErrorRecord(e, "ProcessNotFound",
                                ErrorCategory.OpenError, processName));

               return;
           }          

           // Confirm the operation first.
           // This is always false if the WhatIf parameter is specified.
           if (!ShouldProcess(string.Format(CultureInfo.CurrentCulture, 
                    "{0} ({1})", processName, process.Id)))
           {
               return;
           }

           // Make sure that the user really wants to stop a critical
           // process that can possibly stop the computer.
           bool criticalProcess = 
criticalProcessNames.Contains(processName.ToLower(CultureInfo.CurrentCulture
));

           string message = null;
           if (criticalProcess && !force)
           {
               message = String.Format(CultureInfo.CurrentCulture, 



                                            "The process \"{0}\" is a 
critical process and should not be stopped. Are you sure you wish to stop 
the process?",
                                                processName);
               // It is possible that the ProcessRecord method is called 
               // multiple times when objects are recieved as inputs from 
               // the pipeline. So to retain YesToAll and NoToAll input that 
               // the user may enter across mutilple calls to this function, 
               // they are stored as private members of the cmdlet.
               if (!ShouldContinue(message, "Warning!",
                            ref yesToAll, ref noToAll))
               {
                   return;
               }
           } // if (criticalProcess...

           // Display a warning message if stopping a critical 
           // process.
           if (criticalProcess)
           {
               message =
                 String.Format(CultureInfo.CurrentCulture,
                                "Stopping the critical process \"{0}\".",
                                    processName);
               WriteWarning(message);
           } // if (criticalProcess...

           try
           {
               // Stop the process.
               process.Kill();
           }
           catch (Exception e)
           {
               if ((e is Win32Exception) || (e is SystemException) ||
                   (e is InvalidOperationException))
               {
                   // This process could not be stopped so write
                   // a non-terminating error.
                   WriteError(new ErrorRecord(e, "CouldNotStopProcess",
                                    ErrorCategory.CloseError,
                                    process)
                              );

                   return;
               } // if ((e is...
               else throw;
           } // catch 

           // Write a user-level verbose message to the pipeline. These are 
           // intended to give the user detailed information on the 
           // operations performed by the cmdlet. These messages will
           // appear with the -Verbose option.
           message = String.Format(CultureInfo.CurrentCulture, 
                                        "Stopped process \"{0}\", pid {1}.",



                                            processName, process.Id);

           WriteVerbose(message);

           // If the PassThru prameter is specified, return the terminated 
           // process to the pipeline.
           if (passThru)
           {
               // Write a debug message to the host that can be used
               // when troubleshooting a problem. All debug messages
               // will appear with the -Debug option
               message =
                   String.Format(CultureInfo.CurrentCulture, 
                                    "Writing process \"{0}\" to pipeline",
                                        processName);
               WriteDebug(message);
               WriteObject(process);
           } // if (passThru..
       } // SafeStopProcess

       /// <summary>
       /// Stop processes based on their names (using the
       /// ParameterSetName as ProcessName)
       /// </summary>
       private void ProcessByName()
       {
           ArrayList allProcesses = null;

           // Get a list of all processes.
           try
           {
               allProcesses = new ArrayList(Process.GetProcesses());
           }
           catch (InvalidOperationException ioe)
           {
               base.ThrowTerminatingError(new ErrorRecord(
                    ioe, "UnableToAccessProcessList",
                    ErrorCategory.InvalidOperation, null));
           }

           // If a process name is passed to the cmdlet, get 
           // the associated processes. 
           // Write a nonterminating error for failure to
           // retrieve a process.
           foreach (string name in processNames)
           {
               // The allProcesses array list is passed as a reference 
because 
               // any process whose name cannot be obtained will be removed
               // from the list so that its not compared the next time.
               ArrayList processes =
                   SafeGetProcessesByName(name, ref allProcesses);

               // If no processes were found write a non-



               // terminating error.
               if (processes.Count == 0)
               {
                   WriteError(new ErrorRecord(
                       new Exception("Process not found."),
                       "ProcessNotFound",
                       ErrorCategory.ObjectNotFound,
                       name));
               } // if (processes...
               // Otherwise terminate all processes in the list.
               else
               {
                   foreach (Process process in processes)
                   {
                       SafeStopProcess(process);
                   } // foreach (Process...
               } // else
           } // foreach (string...
       } // ProcessByName

       /// <summary>
       /// Stop processes based on their identifiers (using the
       /// ParameterSetName as ProcessIds)
       /// </summary>
       internal void ProcessById()
       {
           foreach (int processId in processIds)
           {
               Process process = null;
               try
               {
                   process = Process.GetProcessById(processId);

                   // Write a debug message to the host that can be used
                   // when troubleshooting a problem. All debug messages
                   // will appear with the -Debug option
                   string message =
                       String.Format(CultureInfo.CurrentCulture, 
                                        "Acquired process for pid : {0}",
                                            process.Id);
                   WriteDebug(message);
               }
               catch (ArgumentException ae)
               {
                   string
                       message = String.Format(CultureInfo.CurrentCulture, 
                                            "The process id {0} could not be 
found",
                                                processId);
                   WriteVerbose(message);
                   WriteError(new ErrorRecord(ae, "ProcessIdNotFound",
                                    ErrorCategory.ObjectNotFound, 
processId));
                   continue;
               }



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

               SafeStopProcess(process);
           } // foreach (int...
       } // ProcessById

       #endregion Helper Methods

       #region Private Data

       private bool yesToAll, noToAll;

       /// <summary>
       /// Partial list of critical processes that should not be 
       /// stopped.  Lower case is used for case insensitive matching.
       /// </summary>
       private ArrayList criticalProcessNames = new ArrayList(
          new string[] { "system", "winlogon", "spoolsv", "calc" }
       );

       #endregion Private Data

   } // StopProcCommand

   #endregion StopProcCommand
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Fstopprocesssample04-csharp-sample-code%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Fstopprocesssample04-csharp-sample-code.md&documentVersionIndependentId=183e2a37-bf9d-0194-cbf5-5b8f50c60dca&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+345c1e7c-3407-11fc-f307-9e9d0fd71e1a+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


StopProcessSample04 (VB.NET) Sample
Code
Article • 12/18/2023

Here is the complete VB.NET sample code for the StopProc04 sample cmdlet. This is the
code for the Stop-Process  cmdlet described in Adding Parameter Sets to a Cmdlet. The

Stop-Process  cmdlet is designed to stop processes that are retrieved using the Get-Proc
cmdlet (described in Creating Your First Cmdlet).

VB

７ Note

You can download the VB.NET (stopprocesssample04.vb) source file for this Stop-
Proc cmdlet using the Microsoft Windows Software Development Kit for Windows
Vista and .NET Framework 3.0 Runtime Components. For download instructions,
see How to Install Windows PowerShell and Download the Windows PowerShell
SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

Imports System
Imports System.Diagnostics
Imports System.Collections
Imports Win32Exception = System.ComponentModel.Win32Exception
Imports System.Management.Automation 'Windows PowerShell namespace
Imports System.ComponentModel
Imports System.Globalization

Namespace Microsoft.Samples.PowerShell.Commands

    ' This sample introduces parameter sets, the input object and
    ' DefaultParameterSet.
#Region "StopProcCommand"

    ''' <summary>
    ''' Class that implements the Stop-Proc cmdlet.
    ''' </summary>
    <Cmdlet(VerbsLifecycle.Stop, "Proc", 
DefaultParameterSetName:="ProcessId", _
    SupportsShouldProcess:=True)> _
    Public Class StopProcCommand
        Inherits PSCmdlet
#Region "Parameters"

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


        ''' <summary>
        ''' The list of process names on which this cmdlet will work.
        ''' </summary>

        <Parameter(Position:=0, ParameterSetName:="ProcessName", _
        Mandatory:=True, _
        ValueFromPipeline:=True, ValueFromPipelineByPropertyName:=True, _
        HelpMessage:="The name of one or more processes to stop. " & _
            "Wildcards are permitted."), [Alias]("ProcessName")> _
        Public Property Name() As String()
            Get
                Return processNames
            End Get
            Set(ByVal value As String())
                processNames = value
            End Set
        End Property
        Private processNames() As String

        ''' <summary>
        ''' Overrides the ShouldContinue check to force stop operation.
        ''' This option should always be used with caution.
        ''' </summary>

        <Parameter()> _
        Public Property Force() As SwitchParameter
            Get
                Return myForce
            End Get
            Set(ByVal value As SwitchParameter)
                myForce = value
            End Set
        End Property
        Private myForce As Boolean

        ''' <summary>
        ''' Common parameter to determine if the process should pass the
        ''' object down the pipeline after the process has been stopped.
        ''' </summary>

        <Parameter( _
        HelpMessage:= _
           "If set the process(es) will be passed to the pipeline " & _
           "after stopping them.")> _
        Public Property PassThru() As SwitchParameter
            Get
                Return myPassThru
            End Get
            Set(ByVal value As SwitchParameter)
                myPassThru = value
            End Set
        End Property
        Private myPassThru As Boolean

        ''' <summary>



        ''' The list of process IDs on which this cmdlet will work.
        ''' </summary>

        <Parameter(ParameterSetName:="ProcessId", _
        Mandatory:=True, _
        ValueFromPipelineByPropertyName:=True, _
        ValueFromPipeline:=True), [Alias]("ProcessId")> _
        Public Property Id() As Integer()
            Get
                Return processIds
            End Get
            Set(ByVal value As Integer())
                processIds = value
            End Set
        End Property
        Private processIds() As Integer

        ''' <summary>
        ''' An array of Process objects from the stream to stop.
        ''' </summary>
        ''' <value>Process objects</value>
        <Parameter(ParameterSetName:="InputObject", _
        Mandatory:=True, ValueFromPipeline:=True)> _
        Public Property InputObject() As Process()
            Get
                Return myInputObject
            End Get
            Set(ByVal value As Process())
                myInputObject = value
            End Set
        End Property
        Private myInputObject() As Process

#End Region

#Region "CmdletOverrides"
        ''' <summary>
        ''' For each of the requested processnames:
        ''' 1) check it's not a special process
        ''' 2) attempt to stop that process.
        ''' If no process requested, then nothing occurs.
        ''' </summary>
        Protected Overrides Sub ProcessRecord()
            Select Case ParameterSetName
                Case "ProcessName"
                    ProcessByName()

                Case "ProcessId"
                    ProcessById()

                Case "InputObject"
                    Dim process As Process
                    For Each process In myInputObject
                        SafeStopProcess(process)
                    Next process



                Case Else
                    Throw New ArgumentException("Bad ParameterSet Name")
            End Select

        End Sub 'ProcessRecord ' ProcessRecord
#End Region

#Region "Helper Methods"
        ''' <summary>
        ''' Returns all processes with matching names.
        ''' </summary>
        ''' <param name="processName">
        ''' The name of the process(es) to return
        ''' </param>
        ''' <param name="allProcesses">An array of all
        ''' machine processes.</param>
        ''' <returns>An array of matching processes.</returns>
        Friend Function SafeGetProcessesByName(ByVal processName As String, 
_
            ByRef allProcesses As ArrayList) As ArrayList

            ' Create and array to store the matching processes.
            Dim matchingProcesses As New ArrayList()

            ' Create the wildcard for pattern matching.
            Dim options As WildcardOptions = WildcardOptions.IgnoreCase Or _
                WildcardOptions.Compiled
            Dim wildcard As New WildcardPattern(processName, options)

            ' Walk all of the machine processes.
            Dim process As Process
            For Each process In allProcesses
                Dim processNameToMatch As String = Nothing
                Try
                    processNameToMatch = process.ProcessName
                Catch e As Win32Exception
                    ' Remove the process from the list so that it is not
                    ' checked again.
                    allProcesses.Remove(process)

                    Dim message As String = _
                        String.Format(CultureInfo.CurrentCulture, _
                            "The process ""{0}"" could not be found", 
processName)
                    WriteVerbose(message)
                    WriteError(New ErrorRecord(e, _
                        "ProcessNotFound", ErrorCategory.ObjectNotFound, _
                        processName))

                    GoTo ContinueForEach1
                End Try

                If Not wildcard.IsMatch(processNameToMatch) Then
                    GoTo ContinueForEach1



                End If

                matchingProcesses.Add(process)
ContinueForEach1:
            Next process
            Return matchingProcesses

        End Function 'SafeGetProcessesByName

        ''' <summary>
        ''' Safely stops a named process.  Used as standalone function
        ''' to declutter ProcessRecord method.
        ''' </summary>
        ''' <param name="process">The process to stop.</param>
        Private Sub SafeStopProcess(ByVal process As Process)
            Dim processName As String = Nothing

            Try
                processName = process.ProcessName
            Catch e As Win32Exception
                WriteError(New ErrorRecord(e, "ProcessNotFound", _
                    ErrorCategory.OpenError, processName))

                Return
            End Try

            ' Confirm the operation first.
            ' This is always false if WhatIf is set.
            If Not ShouldProcess(String.Format(CultureInfo.CurrentCulture, _
                    "{0} ({1})", processName, process.Id)) Then
                Return
            End If

            ' Make sure the user really wants to stop a critical
            ' process and possibly stop the machine.
            Dim criticalProcess As Boolean = _
                criticalProcessNames.Contains( _
                processName.ToLower(CultureInfo.CurrentCulture))

            Dim message As String = Nothing
            If criticalProcess AndAlso Not myForce Then
                message = String.Format(CultureInfo.CurrentCulture, _
                    "The process ""{0}"" is a critical process and " & _
                    "should not be stopped. " & _
                    "Are you sure you wish to stop the process?", 
processName)

                ' It is possible that ProcessRecord is called multiple
                ' when objects are received as inputs from a pipeline.
                ' So, to retain YesToAll and NoToAll input that the
                ' user may enter across multiple calls to this
                ' function, they are stored as private members of the
                ' Cmdlet.
                If Not ShouldContinue(message, "Warning!", yesToAll, 
noToAll) Then



                    Return
                End If
            End If

            ' Display a warning information if stopping a critical
            ' process
            If criticalProcess Then
                message = String.Format(CultureInfo.CurrentCulture, _
                    "Stopping the critical process ""{0}"".", processName)
                WriteWarning(message)
            End If

            Try
                ' Stop the process.
                process.Kill()
            Catch e As Exception
                If TypeOf e Is Win32Exception OrElse TypeOf e Is 
SystemException _
                  OrElse TypeOf e Is InvalidOperationException Then
                    ' This process could not be stopped so write
                    ' a non-terminating error.
                    WriteError(New ErrorRecord(e, _
                        "CouldNotStopProcess", ErrorCategory.CloseError, 
process))
                    Return
                Else
                    Throw
                End If
            End Try

            ' Write a user-level message to the pipeline. These are
            ' intended to give the user detailed information on the
            ' operations performed by the Cmdlet. These messages will
            ' appear with the -Verbose option.
            message = String.Format(CultureInfo.CurrentCulture, _
                "Stopped process ""{0}"", pid {1}.", processName, 
process.Id)

            WriteVerbose(message)

            ' If the -PassThru command line argument is
            ' specified, pass the terminated process on.
            If myPassThru Then
                ' Write a debug message to the host which will be helpful
                ' in troubleshooting a problem. All debug messages
                ' will appear with the -Debug option
                message = String.Format(CultureInfo.CurrentCulture, _
                    "Writing process ""{0}"" to pipeline", processName)
                WriteDebug(message)
                WriteObject(process)
            End If

        End Sub 'SafeStopProcess



        ''' <summary>
        ''' Stop processes based on their names (using the
        ''' ParameterSetName as ProcessName)
        ''' </summary>
        Private Sub ProcessByName()
            Dim allProcesses As ArrayList = Nothing

            ' Get a list of all processes.
            Try
                allProcesses = New ArrayList(Process.GetProcesses())
            Catch ioe As InvalidOperationException
                MyBase.ThrowTerminatingError(New ErrorRecord(ioe, _
                    "UnableToAccessProcessList", _
                    ErrorCategory.InvalidOperation, Nothing))
            End Try

            ' If a name parameter is passed to cmdlet, get
            ' the associated process(es).
            ' Write a non-terminating error for failure to
            ' retrieve a process
            Dim name As String
            For Each name In processNames
                ' The allProcesses array list is passed as a reference 
because
                ' any process whose name cannot be obtained will be removed
                ' from the list so that its not compared the next time.
                Dim processes As ArrayList = SafeGetProcessesByName(name, _
                    allProcesses)

                ' If no processes were found write a non-terminating error.
                If processes.Count = 0 Then
                    WriteError(New ErrorRecord( _
                         New Exception("Process not found."), _
                         "ProcessNotFound", ErrorCategory.ObjectNotFound, 
name))
                Else
                    ' Otherwise terminate all processes in the list.
                    Dim process As Process
                    For Each process In processes
                        SafeStopProcess(process)
                    Next process
                End If

            Next name

        End Sub 'ProcessByName

        ''' <summary>
        ''' Stop processes based on their ids (using the
        ''' ParameterSetName as ProcessIds)
        ''' </summary>
        Friend Sub ProcessById()
            Dim processId As Integer
            For Each processId In processIds
                Dim process As Process = Nothing



                Try
                    process = 
System.Diagnostics.Process.GetProcessById(processId)

                    ' Write a debug message to the host which will be 
helpful
                    ' in troubleshooting a problem. All debug messages
                    ' will appear with the -Debug option
                    Dim message As String = String.Format( _
                        CultureInfo.CurrentCulture, _
                        "Acquired process for pid : {0}", process.Id)
                    WriteDebug(message)
                Catch ae As ArgumentException
                    Dim message As String = String.Format( _
                        CultureInfo.CurrentCulture, _
                        "The process id {0} could not be found", processId)
                    WriteVerbose(message)
                    WriteError(New ErrorRecord(ae, _
                        "ProcessIdNotFound", _
                         ErrorCategory.ObjectNotFound, processId))
                    GoTo ContinueForEach1
                End Try

                SafeStopProcess(process)
ContinueForEach1:
            Next processId

        End Sub 'ProcessById ' ProcessById
#End Region

#Region "Private Data"

        Private yesToAll, noToAll As Boolean

        ''' <summary>
        ''' Partial list of critical processes that should not be
        ''' stopped.  Lower case is used for case insensitive matching.
        ''' </summary>
        Private criticalProcessNames As New ArrayList( _
            New String() {"system", "winlogon", "spoolsv", "calc"})

#End Region

    End Class 'StopProcCommand

#End Region

#Region "PowerShell snap-in" '
    ''' <summary>
    ''' Create this sample as a PowerShell snap-in
    ''' </summary>
    <RunInstaller(True)> _
    Public Class StopProcPSSnapIn04
        Inherits PSSnapIn



        ''' <summary>
        ''' Create an instance of the StopProcPSSnapIn04
        ''' </summary>
        Public Sub New()

        End Sub 'New

        ''' <summary>
        ''' Get a name for this PowerShell snap-in. This name will
        ''' be used in registering this PowerShell snap-in.
        ''' </summary>
        Public Overrides ReadOnly Property Name() As String
            Get
                Return "StopProcPSSnapIn04"
            End Get
        End Property

        ''' <summary>
        ''' Vendor information for this PowerShell snap-in.
        ''' </summary>

        Public Overrides ReadOnly Property Vendor() As String
            Get
                Return "Microsoft"
            End Get
        End Property

        ''' <summary>
        ''' Gets resource information for vendor. This is a string of 
format:
        ''' resourceBaseName,resourceName.
        ''' </summary>
        Public Overrides ReadOnly Property VendorResource() As String
            Get
                Return "StopProcPSSnapIn04,Microsoft"
            End Get
        End Property

        ''' <summary>
        ''' Description of this PowerShell snap-in.
        ''' </summary>
        Public Overrides ReadOnly Property Description() As String
            Get
                Return "This is a PowerShell snap-in that includes " & _
                    "the Stop-Proc cmdlet."
            End Get
        End Property
    End Class 'StopProcPSSnapIn04

#End Region

End Namespace



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

See Also



Runspace01 Code Samples
Article • 09/17/2021

Here are the code samples for the runspace described in Creating a Console Application
That Runs a Specified Command. The command that is invoked in the runspace is the
Get-Process  cmdlet.

For complete sample code, see the following topics.

Language Topic

C# Runspace01 (C#) Code Sample

VB.NET Runspace01 (VB.NET) Code Sample

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace01-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace01-code-samples.md&documentVersionIndependentId=354d6b70-dbfb-cda9-8745-2495df4411a0&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+77c14785-d10f-977f-46b0-5792fc648825+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Runspace01 (C#) Code Sample
Article • 09/17/2021

Here are the code samples for the runspace described in Creating a Console Application
That Runs a Specified Command. To do this, the application invokes a runspace, and
then invokes a command. (Note that this application does not specify runspace
configuration information, nor does it explicitly create a pipeline). The command that is
invoked is the Get-Process  cmdlet.

C#

７ Note

You can download the C# source file (runspace01.cs) for this runspace using the
Microsoft Windows Software Development Kit for Windows Vista and Microsoft
.NET Framework 3.0 Runtime Components. For download instructions, see How to
Install Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Management.Automation;
  using PowerShell = System.Management.Automation.PowerShell;
  
  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace01
  {
    /// <summary>
    /// This sample uses the PowerShell class to execute
    /// the get-process cmdlet synchronously. The name and
    /// handlecount are then extracted from the PSObjects
    /// returned and displayed.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object to run a command.
    /// 2. Adding a command to the pipeline of the PowerShell object.
    /// 3. Running the command synchronously.
    /// 4. Using PSObject objects to extract properties from the objects

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


Windows PowerShell Programmer's Guide

Windows PowerShell SDK

    ///    returned by the command.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create a PowerShell object. Creating this object  takes care of 
      // building all of the other data structures needed to run the 
command.
      using (PowerShell powershell = PowerShell.Create().AddCommand("get-
process"))
      {
        Console.WriteLine("Process              HandleCount");
        Console.WriteLine("--------------------------------");
          
        // Invoke the command synchronously and display the  
        // ProcessName and HandleCount properties of the 
        // objects that are returned.
        foreach (PSObject result in powershell.Invoke())
        {
          Console.WriteLine(
                      "{0,-20} {1}",
                      result.Members["ProcessName"].Value,
                      result.Members["HandleCount"].Value);
        }
      }
      
      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace01-csharp-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace01-csharp-code-sample.md&documentVersionIndependentId=e3a7bd50-d864-3f28-0caa-01e05c5d60d3&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+824ae13b-38e8-157c-3373-e172b29e5ec3+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


Runspace01 (VB.NET) Code Sample
Article • 09/17/2021

Here are the code samples for the runspace described in Creating a Console Application
That Runs a Specified Command. To do this, the application invokes a runspace, and
then invokes a command. (Note that this application does not specify runspace
configuration information, nor does it explicitly create a pipeline.) The command that is
invoked is the Get-Process  cmdlet.

VB

Code Sample

Imports System
Imports System.Collections.Generic
Imports System.Text
Imports System.Management.Automation
Imports System.Management.Automation.Host
Imports System.Management.Automation.Runspaces

Namespace Microsoft.Samples.PowerShell.Runspaces

    Module Runspace01
        ' <summary>
        ' This sample uses the RunspaceInvoke class to execute
        ' the Get-Process cmdlet synchronously. The name and
        ' handlecount are then extracted from  the PSObjects
        ' returned and displayed.
        ' </summary>
        ' <param name="args">Unused</param>
        ' <remarks>
        ' This sample demonstrates the following:
        ' 1. Creating an instance of the RunspaceInvoke class.
        ' 2. Using this instance to invoke a PowerShell command.
        ' 3. Using PSObject to extract properties from the objects
        '    returned by this command.
        ' </remarks>
        Sub Main()
            ' Create an instance of the RunspaceInvoke class.
            ' This takes care of all building all of the other
            ' data structures needed...
            Dim invoker As RunspaceInvoke = New RunspaceInvoke()

            Console.WriteLine("Process              HandleCount")
            Console.WriteLine("--------------------------------")

            ' Now invoke the runspace and display the objects that are
            ' returned...
            For Each result As PSObject In invoker.Invoke("Get-Process")

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program


Windows PowerShell SDK

                Console.WriteLine("{0,-20} {1}", _
                    result.Members("ProcessName").Value, _
                    result.Members("HandleCount").Value)
            Next
            System.Console.WriteLine("Hit any key to exit...")
            System.Console.ReadKey()
        End Sub
    End Module
End Namespace

See Also



Runspace02 Code Samples
Article • 09/17/2021

Here is the source code for the Runspace02 sample. This sample uses the
System.Management.Automation.RunspaceInvoke class to execute the Get-Process
cmdlet synchronously. Windows Forms and data binding are then used to display the
results in a DataGridView control.

For complete sample code, see the following topics.

Language Topic

C# Runspace02 (C#) Code Sample

VB.NET Runspace02 (VB.NET) Code Sample

Windows PowerShell SDK

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke


Runspace02 (C#) Code Sample
Article • 09/17/2021

Here is the C# source code for the Runspace02 sample. This sample uses the
System.Management.Automation.RunspaceInvoke class to execute the Get-Process
cmdlet synchronously. Windows Forms and data binding are then used to display the
results in a DataGridView control

C#

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using System.Windows.Forms;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace02
  {
    /// <summary>
    /// This method creates the form where the output is displayed.
    /// </summary>
    private static void CreateForm()
    {
      Form form = new Form();
      DataGridView grid = new DataGridView();
      form.Controls.Add(grid);
      grid.Dock = DockStyle.Fill;

      // Create a PowerShell object. Creating this object takes care of 
      // building all of the other data structures needed to run the 
command.
      using (PowerShell powershell = PowerShell.Create())
      {
        powershell.AddCommand("get-process").AddCommand("sort-
object").AddArgument("ID");
        if (Runspace.DefaultRunspace == null)
        {
          Runspace.DefaultRunspace = powershell.Runspace;
        }
        

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke


Windows PowerShell SDK

        Collection<PSObject> results = powershell.Invoke();
        
        // The generic collection needs to be re-wrapped in an ArrayList
        // for data-binding to work.
        ArrayList objects = new ArrayList();
        objects.AddRange(results);
        
        // The DataGridView will use the PSObjectTypeDescriptor type
        // to retrieve the properties.
        grid.DataSource = objects;
      }
      
      form.ShowDialog();
    }
    
    /// <summary>
    /// This sample uses a PowerShell object to run the 
    /// Get-Process cmdlet synchronously. Windows Forms and 
    /// data binding are then used to display the results in a
    /// DataGridView control.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object.
    /// 2. Adding commands and arguments to the pipeline of 
    ///    the powershell object.
    /// 3. Running the commands synchronously.
    /// 4. Using a DataGridView control to display the output 
    ///    of the PowerShell object in a Windows Forms application. 
    /// </remarks>
    private static void Main(string[] args)
    {
      Runspace02.CreateForm();
    }
  }
}

See Also



Runspace02 (VB.NET) Code Sample
Article • 09/17/2021

Here is the VB.NET source code for the Runspace02 sample. This sample uses the
System.Management.Automation.RunspaceInvoke class to execute the Get-Process
cmdlet synchronously. Windows Forms and data binding are then used to display the
results in a DataGridView control.

VB

Code Sample

Imports System
Imports System.Collections
Imports System.Collections.ObjectModel
Imports System.Windows.Forms
Imports System.Management.Automation.Runspaces
Imports System.Management.Automation

Namespace Microsoft.Samples.PowerShell.Runspaces

    Class Runspace02

        Shared Sub CreateForm()
            Dim form As New Form()
            Dim grid As New DataGridView()
            form.Controls.Add(grid)
            grid.Dock = DockStyle.Fill

            ' Create an instance of the RunspaceInvoke class.
            ' This takes care of all building all of the other
            ' data structures needed...
            Dim invoker As New RunspaceInvoke()

            Dim results As Collection(Of PSObject) = _
                invoker.Invoke("Get-Process | Sort-Object ID")

            ' The generic collection needs to be re-wrapped in an ArrayList
            ' for data-binding to work...
            Dim objects As New ArrayList()
            objects.AddRange(results)

            ' The DataGridView will use the PSObjectTypeDescriptor type
            ' to retrieve the properties.
            grid.DataSource = objects

            form.ShowDialog()

        End Sub 'CreateForm

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke


Windows PowerShell SDK

        ''' <summary>
        ''' This sample uses the RunspaceInvoke class to execute
        ''' the Get-Process cmdlet synchronously. Windows Forms and data
        ''' binding are then used to display the results in a
        ''' DataGridView control.
        ''' </summary>
        ''' <param name="args">Unused</param>
        ''' <remarks>
        ''' This sample demonstrates the following:
        ''' 1. Creating an instance of the RunspaceInvoke class.
        ''' 2. Using this instance to invoke a PowerShell command.
        ''' 3. Using the output of RunspaceInvoke in a DataGridView
        '''    in a Windows Forms application
        ''' </remarks
        Shared Sub Main(ByVal args() As String)
            Runspace02.CreateForm()
        End Sub 'Main

    End Class 'Runspace02

End Namespace

See Also



RunSpace03 Code Samples
Article • 09/17/2021

Here are the code samples for the runspace described in "Creating a Console
Application That Runs a Specified Script".

For complete sample code, see the following topics.

Language Topic

C# RunSpace03 (C#) Code Sample

VB.NET RunSpace03 (VB.NET) Code Sample

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the C# source file (runspace03.cs) and the VB.NET source file
(runspace03.vb) for this sample using the Microsoft Windows Software
Development Kit for Windows Vista and Microsoft .NET Framework 3.0 Runtime
Components. For download instructions, see How to Install Windows PowerShell
and Download the Windows PowerShell SDK. The downloaded source files are
available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace03-code-samples%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace03-code-samples.md&documentVersionIndependentId=9c1fca71-618b-5bd4-a621-eb5483cd8964&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+974784dc-edf8-a49f-065f-1e50bcf461b0+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new
https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


more information, see our
contributor guide.

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide


RunSpace03 (C#) Code Sample
Article • 03/24/2025

Here is the C# source code for the console application described in "Creating a Console
Application That Runs a Specified Script". This sample uses the
System.Management.Automation.RunspaceInvoke class to execute a script that retrieves
process information by using the list of process names passed into the script. It shows
how to pass input objects to a script and how to retrieve error objects as well as the
output objects.

C#

７ Note

You can download the C# source file (runspace03.cs) for this sample using the
Microsoft Windows Software Development Kit for Windows Vista and Microsoft
.NET Framework 3.0 Runtime Components. For download instructions, see How to
Install Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
    using System;
    using System.Collections;
    using System.Management.Automation;
    using System.Management.Automation.Runspaces;
    using PowerShell = System.Management.Automation.PowerShell;

    /// <summary>
    /// This class contains the Main entry point for this host application.
    /// </summary>
    internal class Runspace03
    {
        /// <summary>
        /// This sample uses the PowerShell class to execute
        /// a script that retrieves process information for the
        /// list of process names passed into the script.
        /// It shows how to pass input objects to a script and
        /// how to retrieve error objects as well as the output objects.
        /// </summary>
        /// <param name="args">Parameter not used.</param>
        /// <remarks>
        /// This sample demonstrates the following:

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


        /// 1. Creating an instance of the PowerSHell class.
        /// 2. Using this instance to execute a string as a PowerShell 
script.
        /// 3. Passing input objects to the script from the calling program.
        /// 4. Using PSObject to extract and display properties from the 
objects
        ///    returned by this command.
        /// 5. Retrieving and displaying error records that were generated
        ///    during the execution of that script.
        /// </remarks>
        private static void Main(string[] args)
        {
            // Define a list of processes to look for
            string[] processNames = new string[] 
            {
              "lsass", "nosuchprocess", "services", "nosuchprocess2" 
            };

            // The script to run to get these processes. Input passed
            // to the script will be available in the $input variable.
            string script = "$input | get-process -name {$_}";

            // Create an instance of the PowerShell class.
            using (PowerShell powershell = PowerShell.Create())
            {
                powershell.AddScript(script);

                Console.WriteLine("Process              HandleCount");
                Console.WriteLine("--------------------------------");

                // Now invoke the PowerShell and display the objects that 
are
                // returned...
                foreach (PSObject result in powershell.Invoke(processNames))
                {
                    Console.WriteLine(
                        "{0,-20} {1}",
                        result.Members["ProcessName"].Value,
                        result.Members["HandleCount"].Value);
                }

                // Now process any error records that were generated while 
running the script.
                Console.WriteLine("\nThe following non-terminating errors 
occurred:\n");
                PSDataCollection<ErrorRecord> errors = 
powershell.Streams.Error;
                if (errors != null && errors.Count > 0)
                {
                    foreach (ErrorRecord err in errors)
                    {
                        System.Console.WriteLine("    error: {0}", 
err.ToString());
                    }
                }



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

            }

            System.Console.WriteLine("\nHit any key to exit...");
            System.Console.ReadKey();
        }
    }
}

See Also



RunSpace03 (VB.NET) Code Sample
Article • 09/17/2021

Here is the VB.NET source code for the console application described in "Creating a
Console Application That Runs a Specified Script". This sample uses the
System.Management.Automation.RunspaceInvoke class to execute a script that retrieves
process information for the list of process names passed into the script. It shows how to
pass input objects to a script and how to retrieve error objects as well as the output
objects.

VB

７ Note

You can download the VB.NET source file (runspace03.vb) for this sample by using
the Windows Software Development Kit for Windows Vista and Microsoft .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

Imports System
Imports System.Collections
Imports System.Collections.Generic
Imports System.Collections.ObjectModel
Imports System.Text
Imports Microsoft.VisualBasic
Imports System.Management.Automation
Imports System.Management.Automation.Host
Imports System.Management.Automation.Runspaces

Namespace Microsoft.Samples.PowerShell.Runspaces

    Class Runspace03

        ''' <summary>
        ''' This sample uses the RunspaceInvoke class to execute
        ''' a script that retrieves process information for the
        ''' list of process names passed into the script.
        ''' It shows how to pass input objects to a script and
        ''' how to retrieve error objects as well as the output objects.
        ''' </summary>
        ''' <param name="args">Unused</param>
        ''' <remarks>

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


        ''' This sample demonstrates the following:
        ''' 1. Creating an instance of the RunspaceInvoke class.
        ''' 2. Using this instance to execute a string as a PowerShell 
script.
        ''' 3. Passing input objects to the script from the calling program.
        ''' 4. Using PSObject to extract and display properties from the 
objects
        '''    returned by this command.
        ''' 5. Retrieving and displaying error records that were generated
        '''    during the execution of that script.
        ''' </remarks>
        Shared Sub Main(ByVal args() As String)
            ' Define a list of processes to look for
            Dim processNames() As String = {"lsass", "nosuchprocess", _
                "services", "nosuchprocess2"}

            ' The script to run to get these processes. Input passed
            ' to the script will be available in the $input variable.
            Dim script As String = "$input | Get-Process -Name {$_}"

            ' Create an instance of the RunspaceInvoke class.
            Dim invoker As New RunspaceInvoke()

            Console.WriteLine("Process              HandleCount")
            Console.WriteLine("--------------------------------")

            ' Now invoke the runspace and display the objects that are
            ' returned...
            Dim errors As System.Collections.IList = Nothing
            Dim result As PSObject
            For Each result In invoker.Invoke(script, processNames, errors)
                Console.WriteLine("{0,-20} {1}", _
                result.Members("ProcessName").Value, _
                result.Members("HandleCount").Value)
            Next result

            ' Now process any error records that were generated while
            ' running the script.
            Console.WriteLine(vbCrLf & _
                "The following non-terminating errors occurred:" & vbCrLf)
            If Not (errors Is Nothing) AndAlso errors.Count > 0 Then
                Dim err As PSObject
                For Each err In errors
                    System.Console.WriteLine("    error: {0}", 
err.ToString())
                Next err
            End If
            System.Console.WriteLine(vbCRLF & "Hit any key to exit...")
            System.Console.ReadKey()

        End Sub 'Main

    End Class 'Runspace03

End Namespace



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

See Also



RunSpace04 Code Samples
Article • 09/17/2021

Here is a code sample for a runspace that uses the
System.Management.Automation.RunspaceInvoke class to execute a script that
generates a terminating error. The host application is responsible for catching the error
and interpreting the error record.

For complete sample code, see the following topics.

Language Topic

VB.NET Runspace04 (VB.NET) Code Sample

Windows PowerShell Programmer's Guide

Windows PowerShell SDK

７ Note

You can download the VB.NET source file (Runspace04.vb) for this runspace using
the Windows Software Development Kit for Windows Vista and Microsoft .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

ﾉ Expand table

See Also

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


RunSpace04 (VB.NET) Code Sample
Article • 09/17/2021

Here is the VB.NET source code for the Runspace04 sample. This sample uses the
System.Management.Automation.RunspaceInvoke class to execute a script that
generates a terminating error. The host application is responsible for catching the error
and interpreting the error record.

VB

７ Note

You can download the VB.NET source file (runspace02.vb) for this sample by using
the Windows Software Development Kit for Windows Vista and Microsoft .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK.

The downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

Imports System
Imports System.Collections
Imports System.Collections.Generic
Imports System.Collections.ObjectModel
Imports System.Text
Imports Microsoft.VisualBasic
Imports System.Management.Automation
Imports System.Management.Automation.Host
Imports System.Management.Automation.Runspaces

Namespace Microsoft.Samples.PowerShell.Runspaces

    Class Runspace04

        ''' <summary>
        ''' This sample uses the RunspaceInvoke class to execute
        ''' a script. This script will generate a terminating
        ''' exception that the caller should catch and process.
        ''' </summary>
        ''' <param name="args">Unused</param>
        ''' <remarks>
        ''' This sample demonstrates the following:
        ''' 1. Creating an instance of the RunspaceInvoke class.
        ''' 2. Using this instance to execute a string as a PowerShell 
script.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.RunspaceInvoke
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


        ''' 3. Passing input objects to the script from the calling program.
        ''' 4. Using PSObject to extract and display properties from the 
objects
        '''    returned by this command.
        ''' 5. Retrieving and displaying error records that may be generated
        '''    during the execution of that script.
        ''' 6. Catching and displaying terminating exceptions generated
        '''    by the script being run.
        ''' </remarks>
        Shared Sub Main(ByVal args() As String)
            ' Define a list of patterns to use in matching
            ' Note that the fourth pattern is not a valid regular
            ' expression so it will cause a terminating exception to
            ' be thrown when used in Select-String.
            Dim patterns() As String = {"aa", "bc", "ab*c", "*", "abc"}

            ' The script to run to use the patterns. Input passed
            ' to the script will be available in the $input variable.
            Dim script As String = "$input | where {" & _
                " Select-String $_ -InputObject 'abc' }"

            ' Create an instance of the RunspaceInvoke class.
            Dim invoker As New RunspaceInvoke()

            ' Invoke the runspace. Because of the bad regular expression,
            ' no objects will be returned. Instead, an exception will be
            ' thrown.
            Try
                Dim errors As System.Collections.IList = Nothing
                Dim result As PSObject
                For Each result In invoker.Invoke(script, patterns, errors)
                    Console.WriteLine("'{0}'", result.ToString())
                Next result

                ' Now process any error records that were generated
                ' while running the script.
                Console.WriteLine(vbCrLf & _
                    "The following non-terminating errors occurred:" & 
vbCrLf)
                If Not (errors Is Nothing) AndAlso errors.Count > 0 Then
                    Dim err As PSObject
                    For Each err In errors
                        System.Console.WriteLine("    error: {0}", 
err.ToString())
                    Next err
                End If
            Catch runtimeException As RuntimeException
                ' Trap any exception generated by the script. These 
exceptions
                ' will all be derived from RuntimeException.
                System.Console.WriteLine("Runtime exception: {0}: {1}" & _
                   vbCrLf + "{2}", _
                   
runtimeException.ErrorRecord.InvocationInfo.InvocationName, _
                   runtimeException.Message, _



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

                   
runtimeException.ErrorRecord.InvocationInfo.PositionMessage)
            End Try

            System.Console.WriteLine(vbCrLf + "Hit any key to exit...")
            System.Console.ReadKey()

        End Sub 'Main
    End Class 'Runspace04

End Namespace

See Also



RunSpace05 Code Sample
Article • 09/17/2021

Here is the source code for the Runspace05 sample that is described in Configuring a
Runspace Using RunspaceConfiguration . This sample shows how to create the
runspace configuration information, create a runspace, create a pipeline with a single
command, and then execute the pipeline. The command that is executed is the Get-
Process  cmdlet.

C#

７ Note

You can download the C# source file (runspace05.cs) by using the Microsoft
Windows Software Development Kit for Windows Vista and Microsoft .NET
Framework 3.0 Runtime Components. For download instructions, see How to Install
Windows PowerShell and Download the Windows PowerShell SDK. The
downloaded source files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;
    
  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace05
  {
    /// <summary>
    /// This sample uses an initial session state to create a runspace. The 
sample
    /// invokes a command from a PowerShell snap-in present in the console 
file.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample assumes that user has the GetProcessSample01.dll that is 
produced 
    /// by the GetProcessSample01 sample copied to the current directory. 

https://msdn.microsoft.com/42681d19-2d05-4975-befd-afb1990e79b2
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


    /// This sample demonstrates the following:
    /// 1. Creating a default initial session state.
    /// 2. Creating a runspace using the default initial session state.
    /// 3. Creating a PowerShell object that uses the runspace.
    /// 4. Adding the get-proc cmdlet to the PowerShell object from a 
    ///    snap-in.
    /// 5. Using PSObject objects to extract and display properties from 
    ///    the objects returned by the cmdlet.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create the default initial session state. The default initial 
      // session state contains all the elements provided by Windows 
PowerShell.
      InitialSessionState iss = InitialSessionState.CreateDefault();
      PSSnapInException warning;
      iss.ImportPSSnapIn("GetProcPSSnapIn01", out warning);
           
      // Create a runspace. Notice that no PSHost object is supplied to the 
      // CreateRunspace method so the default host is used. See the Host 
      // samples for more information on creating your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();
         
        // Create a PowerShell object. 
        using (PowerShell powershell = PowerShell.Create())
        {
          // Add the Cmdlet and specify the runspace.
          powershell.AddCommand("GetProcPSSnapIn01\\get-proc");
          powershell.Runspace = myRunSpace;
         
          // Run the cmdlet synchronously.
          Collection<PSObject> results = powershell.Invoke();
           
          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");
          
          // Display the results.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                              "{0,-20} {1}",
                              result.Members["ProcessName"].Value,
                              result.Members["HandleCount"].Value);
          }
        }
        
        // Close the runspace to release any resources.
        myRunSpace.Close();
      }
      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

  }
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace05-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace05-code-sample.md&documentVersionIndependentId=08113228-5bb1-ce72-0a5c-aac9169c22ee&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+0e6a20aa-37fa-e465-f24e-5d0132b6ca98+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RunSpace06 Code Sample
Article • 09/17/2021

Here is the source code for the Runspace06 sample described in Configuring a
Runspace Using a Windows PowerShell Snap-in . This sample application creates a
runspace based on a Windows PowerShell snap-in, which is then used to run a pipeline
with a single command. To do this, the application creates the runspace configuration
information, creates a runspace, creates a pipeline with a single command, and then
executes the pipeline.

C#

７ Note

You can download the C# source file (runspace06.cs) by using the Windows
Software Development Kit for Windows Vista and Microsoft .NET Framework 3.0
Runtime Components. For download instructions, see How to Install Windows
PowerShell and Download the Windows PowerShell SDK. The downloaded source
files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;
  
  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace06
  {
    /// <summary>
    /// This sample uses an initial session state to create a runspace. 
    /// The sample invokes a command from binary module that is loaded by 
the 
    /// initial session state.
    /// </summary>
    /// <param name="args">Parameter not used.</param>
    /// <remarks>
    /// This sample assumes that user has the GetProcessSample02.dll that is 
    /// produced by the GetProcessSample02 sample copied to the current 

https://msdn.microsoft.com/a7289ee8-9732-49ee-91c7-d533e9538b83
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


directory. 
    /// This sample demonstrates the following:
    /// 1. Creating a default initial session state.
    /// 2. Creating a runspace using the initial session state.
    /// 3. Creating a PowerShell object that uses the runspace.
    /// 4. Adding the get-proc cmdlet to the PowerShell object from a 
    ///    module.
    /// 5. Using PSObject objects to extract and display properties from 
    ///    the objects returned by the cmdlet.
    /// </remarks>
    private static void Main(string[] args)
    {
      // Create an initial session state.
      InitialSessionState iss = InitialSessionState.CreateDefault();
      iss.ImportPSModule(new string[] { @".\GetProcessSample02.dll" });

      // Create a runspace. Notice that no PSHost object is supplied to the 
      // CreateRunspace method so the default host is used. See the Host 
      // samples for more information on creating your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();

        // Create a PowerShell object. 
        using (PowerShell powershell = PowerShell.Create())
        {
          // Add the cmdlet and specify the runspace.
          powershell.AddCommand(@"GetProcessSample02\get-proc");
          powershell.Runspace = myRunSpace;

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");

          // Display the results.
          foreach (PSObject result in results)
          {
            Console.WriteLine(
                              "{0,-20} {1}",
                              result.Members["ProcessName"].Value,
                              result.Members["HandleCount"].Value);
          }
        }
        
        // Close the runspace to release any resources.
        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace06-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace06-code-sample.md&documentVersionIndependentId=7a97ad34-95b7-1d20-8492-67860fc5ea26&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+26396603-556b-41bb-a797-3060070d90db+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RunSpace07 Code Sample
Article • 09/17/2021

Here is the source code for the Runspace07 sample described in Creating a Console
Application That Adds Commands to a Pipeline . This sample application creates a
runspace, creates a pipeline, adds two commands to the pipeline, and then executes the
pipeline. The commands added to the pipeline are the Get-Process  and Measure-Object
cmdlets.

C#

７ Note

You can download the C# source file (runspace07.cs) using the Microsoft Windows
Software Development Kit for Windows Vista and Microsoft .NET Framework 3.0
Runtime Components. For download instructions, see How to Install Windows
PowerShell and Download the Windows PowerShell SDK. The downloaded source
files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace07
  {
    /// <summary>
    /// This sample shows how to create a runspace and how to run 
    /// commands using a PowerShell object. It builds a pipeline 
    /// that runs the get-process cmdlet, which is piped to the measure-
object 
    /// cmdlet to count the number of processes running on the system.
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a runspace using the RunspaceFactory class.

https://msdn.microsoft.com/01eb7808-e97b-4905-80be-9e2fa38c262e
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


    /// 2. Creating a PowerShell object
    /// 3. Adding individual cmdlets to the PowerShell object.
    /// 4. Running the cmdlets synchronously.
    /// 5. Working with PSObject objects to extract properties 
    ///    from the objects returned by the cmdlets.
    /// </remarks>
    private static void Main(string[] args)
    {
      Collection<PSObject> result;     // Will hold the result
                                       // of running the cmdlets.

      // Create a runspace. We can not use the RunspaceInvoke class 
      // because we need to get at the underlying runspace to  
      // explicitly add the commands. Notice that no PSHost object is 
      // supplied to the CreateRunspace method so the default host is 
      // used. See the Host samples for more information on creating 
      // your own custom host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace())
      {
        myRunSpace.Open();

        // Create a PowerShell object and specify the runspace. 
        PowerShell powershell = PowerShell.Create();
        powershell.Runspace = myRunSpace;

        // Use the using statement so we dispose of the PowerShell object
        // when we're done.
        using (powershell)
        {
          // Add the get-process cmdlet to the PowerShell object. Notice 
          // we are specify the name of the cmdlet, not a script.
          powershell.AddCommand("get-process");

          // Add the measure-object cmdlet to count the number
          // of objects being returned. Commands are always added to the end 
          // of the pipeline.
          powershell.AddCommand("measure-object");

          // Run the cmdlets synchronously and save the objects returned.
          result = powershell.Invoke();
        }

        // Even after disposing of the pipeLine, we still need to set 
        // the powershell variable to null so that the garbage collector
        // can clean it up.
        powershell = null;

        // Display the results of running the commands (checking that
        // everything is ok first.
        if (result == null || result.Count != 1)
        {
          throw new InvalidOperationException(
                    "pipeline.Invoke() returned the wrong number of 
objects");
        }



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

        PSMemberInfo count = result[0].Properties["Count"];
        if (count == null)
        {
          throw new InvalidOperationException(
                    "The object returned doesn't have a 'count' property");
        }

        Console.WriteLine(
                   "Runspace07: The get-process cmdlet returned {0} 
objects",
                   count.Value);

        // Close the runspace to release any resources.
        myRunSpace.Close();
      }
      
      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace07-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace07-code-sample.md&documentVersionIndependentId=4cc5b742-a473-892b-4616-1f1afeddf9ac&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+9698bf11-5edb-6dac-a23b-4ffa1f92e27f+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RunSpace08 Code Sample
Article • 09/17/2021

Here is the source code for the Runspace08 sample described in Creating a Console
Application That Adds Parameters to a Command . This sample application creates a
runspace, creates a pipeline, adds two commands to the pipeline, adds two parameters
to the second command, and then executes the pipeline. The commands that are added
to the pipeline are the Get-Process  and Sort-Object  cmdlets.

C#

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;
    
  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace08
  {
    /// <summary>
    /// This sample shows how to use a PowerShell object to run commands. 
The  
    /// PowerShell object builds a pipeline that include the get-process 
cmdlet, 
    /// which is then piped to the sort-object cmdlet. Parameters are added 
to the 
    /// sort-object cmdlet to sort the HandleCount property in descending 
order. 
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates:
    /// 1. Creating a PowerShell object
    /// 2. Adding individual commands to the PowerShell object.
    /// 3. Adding parameters to the commands. 
    /// 4. Running the pipeline of the PowerShell object synchronously.
    /// 5. Working with PSObject objects to extract properties 
    ///    from the objects returned by the commands.
    /// </remarks>
    private static void Main(string[] args)

https://msdn.microsoft.com/848b2b46-60f1-4a86-b448-cfc7c0cccfba


    {
      Collection<PSObject> results; // Holds the result of the pipeline 
execution.
      
      // Create the PowerShell object. Notice that no runspace is specified 
so a 
      // new default runspace is used.
      PowerShell powershell = PowerShell.Create();

      // Use the using statement so that we can dispose of the PowerShell 
object
      // when we are done.
      using (powershell)
      {
        // Add the get-process cmdlet to the pipeline of the PowerShell 
object.
        powershell.AddCommand("get-process");

        // Add the sort-object cmdlet and its parameters to the pipeline of 
        // the PowerShell object so that we can sort the HandleCount 
property 
        //  in descending order.
        powershell.AddCommand("sort-
object").AddParameter("descending").AddParameter("property", "handlecount");

        // Run the pipeline of the Powerhell object synchronously.
        results = powershell.Invoke();
      }

      // Even after disposing of the PowerShell object, we still 
      // need to set the powershell variable to null so that the 
      // garbage collector can clean it up.
      powershell = null;

      Console.WriteLine("Process              HandleCount");
      Console.WriteLine("--------------------------------");

      // Display the results returned by the commands. 
      foreach (PSObject result in results)
      {
        Console.WriteLine(
                          "{0,-20} {1}",
                          result.Members["ProcessName"].Value,
                          result.Members["HandleCount"].Value);
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}



Windows PowerShell SDK

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace08-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace08-code-sample.md&documentVersionIndependentId=2d9f3da8-2fbe-4691-d5b6-acd056a52566&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+3a9493ed-9748-7d02-a58e-2181d4330f48+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RunSpace09 Code Sample
Article • 09/17/2021

This sample application creates and opens a runspace, creates and asynchronously
invokes a pipeline, and then uses pipeline events to process the script asynchronously.
The script that is run by this application creates the integers 1 through 10 in 0.5-second
intervals (500 ms).

C#

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Diagnostics;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;

  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace09
  {
    /// <summary>
    /// This sample shows how to use a PowerShell object to run a 
    /// script that generates the numbers from 1 to 10 with delays
    /// between each number. The pipeline of the PowerShell object 
    /// is run asynchronously and events are used to handle the output.
    /// </summary>
    /// <param name="args">This parameter is not used.</param>
    /// <remarks>
    /// This sample demonstrates the following:
    /// 1. Creating a PowerShell object.
    /// 2. Adding a script to the pipeline of the PowerShell object.
    /// 3. Using the BeginInvoke method to run the pipeline asynchronosly.
    /// 4. Using the events of the PowerShell object to process the 
    ///    output of the script.
    /// 5. Using the PowerShell.Stop() method to interrupt an executing 
pipeline.
    /// </remarks>
    private static void Main(string[] args)
    {
      Console.WriteLine("Print the numbers from 1 to 10. Hit any key to halt 
processing\n");



      using (PowerShell powershell = PowerShell.Create())
      {
        // Add a script to the PowerShell object. The script generates the 
        // numbers from 1 to 10 in half second intervals.
        powershell.AddScript("1..10 | foreach {$_ ; start-sleep -milli 
500}");
          
        // Add the event handlers.  If we did not care about hooking the 
DataAdded
        // event, we would let BeginInvoke create the output stream for us.
        PSDataCollection<PSObject> output = new PSDataCollection<PSObject>
();
        output.DataAdded += new EventHandler<DataAddedEventArgs>
(Output_DataAdded);
        powershell.InvocationStateChanged += new 
EventHandler<PSInvocationStateChangedEventArgs>
(Powershell_InvocationStateChanged);

        // Invoke the pipeline asynchronously.
        IAsyncResult asyncResult = powershell.BeginInvoke<PSObject, 
PSObject>(null, output);
          
        // Wait for things to happen. If the user hits a key before the
        // script has completed, then call the PowerShell Stop() method
        // to halt processing.
        Console.ReadKey();
        if (powershell.InvocationStateInfo.State != 
PSInvocationState.Completed)
        {
          // Stop the execution of the pipeline.
          Console.WriteLine("\nStopping the pipeline!\n");
          powershell.Stop();

          // Wait for the Windows PowerShell state change messages to be 
displayed.
          System.Threading.Thread.Sleep(500);
          Console.WriteLine("\nPress a key to exit");
          Console.ReadKey();
        }
      }
    }
      
    /// <summary>
    /// The output data added event handler. This event is called when
    /// data is added to the output pipe. It reads the data that is 
    /// available and displays it on the console.
    /// </summary>
    /// <param name="sender">The output pipe this event is associated with.
</param>
    /// <param name="e">Parameter is not used.</param>
    private static void Output_DataAdded(object sender, DataAddedEventArgs 
e)
    {
      PSDataCollection<PSObject> myp = (PSDataCollection<PSObject>)sender;
        



Windows PowerShell SDK

      Collection<PSObject> results = myp.ReadAll();
      foreach (PSObject result in results)
      {
        Console.WriteLine(result.ToString());
      }
    }

    /// <summary>
    /// This event handler is called when the pipeline state is changed.
    /// If the state change is to Completed, the handler issues a message
    /// asking the user to exit the program.
    /// </summary>
    /// <param name="sender">This parameter is not used.</param>
    /// <param name="e">The PowerShell state information.</param>
    private static void Powershell_InvocationStateChanged(object sender, 
PSInvocationStateChangedEventArgs e)
    {
      Console.WriteLine("PowerShell object state changed: state: {0}\n", 
e.InvocationStateInfo.State);
      if (e.InvocationStateInfo.State == PSInvocationState.Completed)
      {
        Console.WriteLine("Processing completed, press a key to exit!");
      }
    }
  }
}

See Also

６  Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

PowerShell feedback
PowerShell is an open source
project. Select a link to provide
feedback:

  Open a documentation issue

  Provide product feedback

https://learn.microsoft.com/powershell/scripting/community/contributing/powershell-style-guide
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=04-customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fpowershell%2Fscripting%2Fdeveloper%2Fprog-guide%2Frunspace09-code-sample%3Fview%3Dpowershell-7.5&pageQueryParams=%3Fview%3Dpowershell-7.5&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2FPowerShell-Docs%2Fblob%2Fmain%2Freference%2Fdocs-conceptual%2Fdeveloper%2Fprog-guide%2Frunspace09-code-sample.md&documentVersionIndependentId=032534d5-b1ee-93d7-c951-6b57e26a069f&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40sdwheeler&metadata=*+ID%3A+2ec47953-82d4-437a-1b93-27039eeac88e+%0A*+Service%3A+**powershell**%0A*+Sub-service%3A+**conceptual**&labels=needs-triage
https://github.com/powershell/powershell/issues/new


RunSpace10 Code Sample
Article • 09/17/2021

Here is the source code for the Runspace10 sample. This sample application adds a
cmdlet to System.Management.Automation.Runspaces.RunspaceConfiguration and then
uses the modified configuration information to create the runspace.

C#

７ Note

You can download the C# source file (runspace10.cs) by using the Windows
Software Development Kit for Windows Vista and Microsoft .NET Framework 3.0
Runtime Components. For download instructions, see How to Install Windows
PowerShell and Download the Windows PowerShell SDK. The downloaded source
files are available in the <PowerShell Samples> directory.

Code Sample

namespace Microsoft.Samples.PowerShell.Runspaces
{
  using System;
  using System.Collections.Generic;
  using System.Collections.ObjectModel;
  using System.Diagnostics;
  using System.Management.Automation;
  using System.Management.Automation.Runspaces;
  using PowerShell = System.Management.Automation.PowerShell;
    
  #region GetProcCommand

  /// <summary>
  /// Class that implements the GetProcCommand.
  /// </summary>
  [Cmdlet(VerbsCommon.Get, "Proc")]
  public class GetProcCommand : Cmdlet
  {
    #region Cmdlet Overrides

    /// <summary>
    /// For each of the requested process names, retrieve and write
    /// the associated processes.
    /// </summary>
    protected override void ProcessRecord()
    {
      // Get the current processes.

https://learn.microsoft.com/en-us/dotnet/api/System.Management.Automation.Runspaces.RunspaceConfiguration
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk
https://learn.microsoft.com/en-us/powershell/scripting/developer/installing-the-windows-powershell-sdk


      Process[] processes = Process.GetProcesses();

      // Write the processes to the pipeline making them available
      // to the next cmdlet. The second argument (true) tells the 
      // system to enumerate the array, and send one process object 
      // at a time to the pipeline.
      WriteObject(processes, true);
    }

    #endregion Overrides
  } // End GetProcCommand class.

  #endregion GetProcCommand
  
  /// <summary>
  /// This class contains the Main entry point for this host application.
  /// </summary>
  internal class Runspace10
  {
    /// <summary>
    /// This sample shows how to add a cmdlet to an InitialSessionState 
object and then 
    /// uses the modified InitialSessionState object when creating a 
Runspace object.
    /// </summary>
    /// <param name="args">Parameter is not used.</param>
    /// This sample demonstrates:
    /// 1. Creating an InitialSessionState object.
    /// 2. Adding a cmdlet to the InitialSessionState object.
    /// 3. Creating a runspace that uses the InitialSessionState object.
    /// 4. Craeting a PowerShell object tht uses the Runspace object.
    /// 5. Running the pipeline of the PowerShell object synchronously.
    /// 6. Working with PSObject objects to extract properties 
    ///    from the objects returned by the pipeline.
    private static void Main(string[] args)
    {
      // Create a default InitialSessionState object. The default 
      // InitialSessionState object contains all the elements provided 
      // by Windows PowerShell.
      InitialSessionState iss = InitialSessionState.CreateDefault();

      // Add the get-proc cmdlet to the InitialSessionState object.
      SessionStateCmdletEntry ssce = new SessionStateCmdletEntry("get-proc", 
typeof(GetProcCommand), null);
      iss.Commands.Add(ssce);
           
      // Create a Runspace object that uses the InitialSessionState object. 
      // Notice that no PSHost object is specified, so the default host is 
used. 
      // See the Hosting samples for information on creating your own custom 
host.
      using (Runspace myRunSpace = RunspaceFactory.CreateRunspace(iss))
      {
        myRunSpace.Open();



Windows PowerShell Programmer's Guide

Windows PowerShell SDK

        using (PowerShell powershell = PowerShell.Create())
        {
          powershell.Runspace = myRunSpace;

          // Add the get-proc cmdlet to the pipeline of the PowerShell 
object.
          powershell.AddCommand("get-proc");

          Collection<PSObject> results = powershell.Invoke();

          Console.WriteLine("Process              HandleCount");
          Console.WriteLine("--------------------------------");
 
          // Display the output of the pipeline.
          foreach (PSObject result in results)
          {
             Console.WriteLine(
                               "{0,-20} {1}",
                               result.Members["ProcessName"].Value,
                               result.Members["HandleCount"].Value);
          }
        }

        // Close the runspace to release resources.
        myRunSpace.Close();
      }

      System.Console.WriteLine("Hit any key to exit...");
      System.Console.ReadKey();
    }
  }
}

See Also



Contributing to PowerShell
documentation
Article • 03/30/2025

Thank you for your support of PowerShell!

The Contributor's Guide is a collection of articles that describe the tools and processes
we use to create documentation at Microsoft. Some of these guides cover information
common to any documentation set published to learn.microsoft.com . Other guides are
specific to how we write documentation for PowerShell.

The common articles are available in our centralized Contributor's Guide. The
PowerShell-specific guides are available here.

There are two ways to contribute. Both contributions are valuable to us.

Filing issues helps us identify problems and gaps in our documentation.
Sometimes the issues are difficult to resolve, requiring more investigation and
research. The issue process allows us to have a conversation about the problem
and develop a satisfactory resolution.

Submitting a pull request to add or change content is a more involved process.
The following information outlines the tools, processes, and standards for
submitting content to the documentation.

Contributing to the documentation requires a GitHub account. Use the following
checklist to install and configure the tools you need to make contributions.

1. Sign up for GitHub
2. Install Git and Markdown tools
3. Install the Docs Authoring Pack
4. Install Posh-Git  - not required but recommended
5. Set up a local Git repository
6. Review Git and GitHub fundamentals

Ways to contribute

Prepare to make a contribution

https://learn.microsoft.com/en-us/contribute/
https://learn.microsoft.com/en-us/contribute/get-started-setup-github
https://learn.microsoft.com/en-us/contribute/get-started-setup-tools
https://learn.microsoft.com/en-us/contribute/how-to-write-docs-auth-pack
https://www.powershellgallery.com/packages/posh-git
https://www.powershellgallery.com/packages/posh-git
https://learn.microsoft.com/en-us/contribute/get-started-setup-local
https://learn.microsoft.com/en-us/contribute/git-github-fundamentals


There are two ways to contribute changes to the documentation:

1. Quick edits to existing docs - Minor corrections, fixing typos, or small additions
2. Full GitHub workflow for docs - large changes, multiple versions, adding or

changing images, or contributing new articles

Also, read the Writing essentials section of the centralized Contributor's Guide. Another
excellent resource is the Microsoft Writing Style Guide.

Minor corrections or clarifications to documentation and code examples in public
repositories are covered by the learn.microsoft.com Terms of Use.

Use the full GitHub workflow when you're making significant changes. If you're not an
employee of Microsoft, our PR validation system adds a comment to the pull request
asking you to sign the online Contribution Licensing Agreement (CLA) . You must
complete this step before we can review or accept your pull request. Signing the CLA is
only required the first time you submit a PR in the repository. You might be asked to
sign the CLA for each time you contribute to a new repository.

All repositories that publish to Microsoft Learn adhere to the Microsoft Open Source
Code of Conduct  or the .NET Foundation Code of Conduct . For more information,
see the Code of Conduct FAQ .

The following articles cover information specific to PowerShell documentation. Where
there's overlap with the guidance in the centralized Contributor's Guide, we call out how
those rules differ for the PowerShell content.

Review the following documents:

Get started writing docs
Markdown best practices
PowerShell-Docs style guide
How to file an issue
Submitting a pull request

Additional resources

Get started writing docs

Code of conduct

Next steps

https://learn.microsoft.com/en-us/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/en-us/contribute/how-to-write-workflows-major
https://learn.microsoft.com/en-us/contribute/style-quick-start
https://learn.microsoft.com/en-us/style-guide/welcome/
https://learn.microsoft.com/en-us/legal/termsofuse
https://cla.microsoft.com/
https://cla.microsoft.com/
https://opensource.microsoft.com/codeofconduct/
https://opensource.microsoft.com/codeofconduct/
https://opensource.microsoft.com/codeofconduct/
https://dotnetfoundation.org/code-of-conduct
https://dotnetfoundation.org/code-of-conduct
https://opensource.microsoft.com/codeofconduct/faq/
https://opensource.microsoft.com/codeofconduct/faq/


Editorial checklist
How we manage issues
How we manage pull requests



Get started contributing to PowerShell
documentation
Article • 03/30/2025

This article is an overview of how to get started as a contributor to the PowerShell
documentation.

There are three categories of content in the PowerShell-Docs  repository:

reference content
conceptual content
metadata and configuration files

The reference content is the PowerShell cmdlet reference for the cmdlets that ship in
PowerShell. The cmdlet reference  is collected in versioned folders (like 5.1, 7.4, 7.5,
and 7.6), which contain the reference for the modules that ship with PowerShell. This
content is also used to create the help information displayed by the Get-Help  cmdlet.

The conceptual documentation  isn't organized by version. All articles are displayed for
every version of PowerShell.

This project contains several types of metadata files. The metadata files control the
behavior of our build tools and the publishing system. Only PowerShell-Docs
maintainers and approved contributors are allowed to change these files. If you think
that a meta file should be changed, open an issue to discuss the needed changes.

PowerShell-Docs structure

Reference content

Conceptual content

７ Note

Anytime a conceptual article is added, removed, or renamed, the TOC must be
updated and deleted or renamed files must be redirected.

Metadata files

https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs/tree/main/reference
https://github.com/MicrosoftDocs/PowerShell-Docs/tree/main/reference
https://github.com/MicrosoftDocs/PowerShell-Docs/tree/main/reference/docs-conceptual
https://github.com/MicrosoftDocs/PowerShell-Docs/tree/main/reference/docs-conceptual


Meta files in the root of the repository

.*  - configuration files in the root of the repository
*.md  - Project documentation in the root of the repository
*.yml  - Project documentation in the root of the repository
.devcontainer/*  - devcontainer configuration files

.github/**/*  - GitHub templates, actions, and other meta files

.vscode/**/*  - VS Code extension configurations
assets/*  - contains downloadable files linked in the documentation
redir/*  - contain redirection mapping files
tests/*  - test tools used by the build system

tools/*  - other tools used by the build system

Meta files in the documentation set

reference/**/*.json  - docset configuration files
reference/**/*.yml  - TOC and other structured content files
reference/bread/*  - breadcrumb navigation configuration

reference/includes/*  - markdown include files
reference/mapping/*  - version mapping configuration
reference/**/media/**  - image files used in documentation
reference/module/*  - Module Browser page configuration

A GitHub issue must be created for any new document you want to contribute. Check
for existing issues to make sure you're not duplicating efforts. Assigned issues are
considered to be in progress . If you wish to collaborate on an issue, contact the person
assigned to the issue.

Similar to the PowerShell RFC process , create an issue before you write the content.
The issue ensures you don't waste time and effort on work that gets rejected by the
PowerShell-Docs team. The issue allows us to consult with you on the scope of the
content and where it fits in the PowerShell documentation. All articles must be included
in the Table of Contents (TOC). The proposed TOC location should be included in the
issue discussion.

Creating new articles

７ Note

https://github.com/PowerShell/powershell-rfc/blob/master/RFC0000-RFC-Process.md
https://github.com/PowerShell/powershell-rfc/blob/master/RFC0000-RFC-Process.md


Where applicable, cmdlet reference articles are duplicated across all versions of
PowerShell maintained in this repository. When reporting an issue about a cmdlet
reference or an About_  article, list the versions of the article that have the problem.

Apply the appropriate change to each version of the file.

The PowerShell documentation is written in English and translated into 17 other
languages. The English content is stored in the GitHub repository named
MicrosoftDocs/PowerShell-Docs . Issues found in the translated content should be
submitted to this repository.

All translations start from the English content first. We use both human and machine
translation.

Translation method Languages

Human translation de-DE, es-ES, fr-FR, it-IT, ja-JP, ko-KR, pt-BR, ru-RU, zh-CN, zh-TW

Machine translation cs-CZ, hu-HU, nl-NL, pl-PL, pt-PT, sv-SE, tr-TR

The content translated by machine translation might not always result in correct word
choices and grammar. If you find an error in translation for any language, rather than in
the technical details of the article, open an issue explaining why you think the
translation is wrong.

Some translation issues can be fixed by changing the English source files. However,
some issues can require updates to our internal translation system. For those cases, we
must submit the issue to our internal localization team for review and response.

The publishing system autogenerates the TOC for reference content. You don't
have to update the TOC.

Updating existing articles

Localized content

ﾉ Expand table

Next steps



There are two common ways of submitting changes in GitHub. Both methods are
described in the central Contributor's Guide:

1. You can make quick edits to existing documents in the GitHub web interface.
2. Use the full GitHub workflow for adding new articles, updating multiple files, or

other large changes.

Before starting any changes, you should create a fork of the PowerShell-Docs repository.
The changes should be made in a working branch in you copy of the PowerShell-Docs. If
you're using the quick edit method in GitHub, these steps are handled for you. If you're
using the full GitHub workflow, you must be set up to work locally.

Both methods end with the creation of a Pull Request (PR). For more information and
best practices, see Submitting a pull request.

https://learn.microsoft.com/en-us/contribute/content/how-to-write-quick-edits
https://learn.microsoft.com/en-us/contribute/how-to-write-workflows-major#making-your-changes
https://learn.microsoft.com/en-us/contribute/get-started-setup-local#fork-the-repository


Contribute using GitHub Codespaces
Article • 03/30/2025

GitHub has a feature called Codespaces  that you can use to contribute to the
PowerShell documentation without having to install or configure any software locally.
When you use a codespace, you get the same authoring tools the team uses for writing
and editing.

You can use a codespace in your browser, making your contributions in VS Code hosted
over the internet. If you have VS Code installed locally, you can connect to the
codespace there too.

When you use a codespace to contribute to the PowerShell documentation, your editor
has these tools already available for you:

Markdownlint  for checking your Markdown syntax.
cSpell  for checking your spelling.
Vale  for checking your prose.
The Learn Authoring Pack  for inserting platform-specific syntax, previewing your
contribution, and more.
The Reflow Markdown  extension for wrapping your Markdown as needed,
making reading and editing easier.
The Table Formatter  extension for making your tables more readable without
having to manually align columns.
The change-case  extension for converting the casing of your headings and
prose.
The GitLens  extension for reviewing historical file changes.
The PowerShell  extension for interacting authoring PowerShell examples.
The Gremlins tracker for Visual Studio Code  for finding problematic characters in
your Markdown.

GitHub Codespaces can be used for free up to 120 core-hours per month. The monthly
usage is calculated across all your repositories, not just documentation.

For more information about pricing, see About billing for GitHub Codespaces .

Available tools

Cost

https://github.com/features/codespaces
https://github.com/features/codespaces
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://cspell.org/
https://cspell.org/
https://vale.sh/
https://vale.sh/
https://marketplace.visualstudio.com/items?itemName=docsmsft.docs-authoring-pack
https://marketplace.visualstudio.com/items?itemName=docsmsft.docs-authoring-pack
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=shuworks.vscode-table-formatter
https://marketplace.visualstudio.com/items?itemName=shuworks.vscode-table-formatter
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=ms-vscode.PowerShell
https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://docs.github.com/en/billing/managing-billing-for-github-codespaces/about-billing-for-github-codespaces
https://docs.github.com/en/billing/managing-billing-for-github-codespaces/about-billing-for-github-codespaces


To create your GitHub Codespace for contributing to PowerShell documentation, follow
these steps:

1. Open https://github.com/codespaces  in your browser.
2. Select the "New codespace" button in the top right of the page.
3. In the "Create a new codespace" page, select the "Select a repository" button and

type the name of the repository you want to contribute to, like
MicrosoftDocs/PowerShell-Docs .

4. Leave all other settings as their default.
5. Select the "Create codespace" button.

After following these steps, GitHub creates a new codespace for that repository and sets
it up for you. When the codespace is ready, the page refreshes and shows the web
editor UI for the codespace. The UI is based on VS Code and works the same way.

To open your GitHub Codespace in the browser, follow these steps:

1. Open https://github.com/codespaces  in your browser.
2. The page lists your Codespaces. Find the created codespace for the repository you

want to contribute to and select it.

After you select your codespace, GitHub opens it in the same window. From here, you're
ready to contribute.

To open your GitHub Codespace in VS Code, follow the steps in Using GitHub
Codespaces in Visual Studio Code .

 Tip

If you're comfortable using containers and Docker, you can get the same
experience by using the devcontainer defined for the PowerShell documentation
repositories. There's no cost associated with using devcontainers. For more
information, see the Dev Containers tutorial .

Creating your GitHub Codespace

Opening your GitHub Codespace

Authoring in your GitHub Codespace

https://github.com/codespaces
https://github.com/codespaces
https://github.com/codespaces
https://github.com/codespaces
https://docs.github.com/codespaces/developing-in-codespaces/using-github-codespaces-in-visual-studio-code
https://docs.github.com/codespaces/developing-in-codespaces/using-github-codespaces-in-visual-studio-code
https://docs.github.com/codespaces/developing-in-codespaces/using-github-codespaces-in-visual-studio-code
https://code.visualstudio.com/docs/devcontainers/tutorial
https://code.visualstudio.com/docs/devcontainers/tutorial


Once you have your GitHub Codespace open in your browser or VS Code, contributing
to the documentation follows the same process.

The rest of this article describes a selection of tasks you can do in your GitHub
Codespace while writing or editing your contribution.

When you want to turn an inline link, like [some text](destination.md) , into a reference
link like [some text][01] , select the link destination in the editor. Then you can either:

1. Right-click on the link destination and select "Refactor..." in the context menu.
2. Press Ctrl + Shift + R .

Either action raises the refactoring context menu. To replace the (destination.md)  in the
link with [def] , select Extract to link definition in the context menu. You can rename
the definition by typing a name in.

For the PowerShell documentation, we use two-digit numerical reference link definitions,
like [01]  or [31] . Only use reference link definitions in about articles and conceptual
documentation. Don't use reference link definitions in cmdlet reference documentation.

When you review an article in your codespace, Vale automatically checks the article
when you first open it and every time you save it. If Vale finds any style violations, it
highlights them in the document with colored squiggles.

Hover over a violation to see more information about it.

To open a web page that explains the rule, select the rule's name in the hover
information. To open the rule and review its implementation, select the rule's filename
(ending in .yml ).

If the rule supports a quick fix, you can select "Quick Fix..." in the hover information for
the violation and apply one of the suggested fixes by selecting it from the context
menu. You can also press Ctrl + .  when your cursor is on a highlighted problem to
apply a quick fix if the rule supports it.

If the rule doesn't support quick fixes, read the rule's message and fix it if you can. If
you're not sure how to fix it, the editors can make a suggestion when reviewing your PR.

Extract a reference link

Fix prose style violations

Fix syntax problems



When you review an article in your codespace, Markdownlint automatically checks the
article when you open it and as you type. If Markdownlint finds any syntax problems, it
highlights them in the document with colored squiggles.

Hover over a violation to see more information about it. To open a web page that
explains the rule, select the rule's ID in the hover information.

If the rule supports a quick fix, you can select "Quick Fix..." in the hover information for
the violation and apply one of the suggested fixes by selecting it from the context
menu. You can also press Ctrl + .  when your cursor is on a highlighted problem to
apply a quick fix if the rule supports it.

If the rule doesn't support quick fixes, read the rule's message and fix it if you can. If
you're not sure how to fix it, the editors can make a suggestion when reviewing your PR.

You can also apply fixes to all syntax violations in an article. To do so, open the
command palette and type Fix all supported markdownlint violations in the
document . As you type, the command palette filters the available commands. Select the
"Fix all supported markdownlint violations in the document" command. When you do,
Markdownlint updates the document to resolve any violations it has a quick fix for.

To format a Markdown table, place your cursor in or on the table in your Markdown.
Open the Command Palette and search for the Table: Format Current  command. When
you select that command, it updates the Markdown for your table to align and pad the
table for improved readability.

It converts a table defined like this:

markdown

Into this:

markdown

Format a table

| foo | bar | baz |
|:--:|:--|-:|
| a | b | c |

|  foo  | bar  | baz  |
| :---: | :--- | ---: |
|   a   | b    |    c |



The documentation uses alerts to make information more notable to a reader.

To insert an alert, you can, open the Command Palette and search for the Learn: Alert
command. When you select that command, it opens a context menu. Select the alert
type you want to add. When you do, the command inserts the alert's Markdown at your
cursor in the document.

To convert a heading's casing, highlight the heading's text except for the leading #
symbols, which set the heading level. When you have the text highlighted, open the
Command Palette and search for the Change case sentence  command. When you select
that command, it converts the casing of the highlighted text.

You can also use the casing commands for any text in the document.

You can use VS Code's Command Palette  to run many helpful commands.

To open the Command Palette in the UI, select "View" in the top menu bar. Then select
"Command Palette..." in the context menu.

To open the Command Palette with your keyboard, press the key combination for your
operating system:

Windows and Linux: Ctrl + Shift + P

macOS: Cmd + Shift + P

To preview your contribution, open the Command Palette and search for the Markdown:
Open Preview  command. When you select that command, VS Code opens a preview of
the active document. The preview's style matches the Learn platform.

Insert an alert

Make a heading use sentence casing

Open the Command Palette

Preview your contribution

７ Note

Site-relative and cross-reference links don't work in the preview.

https://learn.microsoft.com/en-us/contribute/markdown-reference#alerts-note-tip-important-caution-warning
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette
https://code.visualstudio.com/docs/getstarted/userinterface#_command-palette


To limit the line lengths for a paragraph in a document, place your cursor on the
paragraph. Then open the Command Palette and search for the Reflow Markdown
command. When you select the command, it updates the current paragraph's line
lengths to the configured length. For our repositories, that length is 99 characters.

When using this command for block quotes, make sure the paragraph in the block
quote you're reflowing is surrounded by blank lines. Otherwise, the command reflows
every paragraph together.

To review all syntax and style rule violations in a document, open the Problems View.

To open the Problems View in the UI, select "View" in the top menu bar. Then select
"Problems" in the context menu.

To open the Problems View with your keyboard, press the key combination for your
operating system:

Windows and Linux: Ctrl + Shift + M

macOS: Cmd + Shift + M

The Problems View displays all errors, warnings, and suggestions for the open
document. Select a problem to scroll to it in the document.

You can filter the problems by type or text matching.

To update the ms.date  metadata for an article, open the Command Palette and search
for the Learn: Update "ms.date" Metadata Value  command. When you select the
command, it updates the metadata to the current date.

Reflow your content

Ｕ Caution

Don't use this command when editing about articles. The lines in those documents
must not be longer than 80 characters. There's currently no way for a repository to
configure different line lengths by folder or filename, so reflow doesn't work for
about article documents.

Review all problems in a document

Updating the ms.date metadata



The tasks and commands described in this article don't cover everything you can do
with VS Code or the installed extensions.

For more information on using VS Code, see these articles:

Visual Studio Code Tips and Tricks
Basic Editing
Using Git source control in VS Code
Markdown and Visual Studio Code

For more information about the installed extensions, see their documentation:

change-case
GitLens
Gremlins tracker for Visual Studio Code
Learn Authoring Pack
markdownlint
Reflow Markdown
Table Formatter

Additional resources

https://code.visualstudio.com/docs/getstarted/tips-and-tricks
https://code.visualstudio.com/docs/getstarted/tips-and-tricks
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/sourcecontrol/overview
https://code.visualstudio.com/docs/sourcecontrol/overview
https://code.visualstudio.com/docs/languages/markdown
https://code.visualstudio.com/docs/languages/markdown
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=wmaurer.change-case
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://marketplace.visualstudio.com/items?itemName=nhoizey.gremlins
https://marketplace.visualstudio.com/items?itemName=docsmsft.docs-authoring-pack
https://marketplace.visualstudio.com/items?itemName=docsmsft.docs-authoring-pack
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=shuworks.vscode-table-formatter
https://marketplace.visualstudio.com/items?itemName=shuworks.vscode-table-formatter


Markdown best practices
Article • 03/30/2025

This article provides specific guidance for using Markdown in our documentation. It isn't
a tutorial for Markdown. If you need a tutorial for Markdown, see this Markdown
cheatsheet .

The Microsoft Open Publishing System (OPS) that builds our documentation uses
markdig  to process the Markdown documents. Markdig parses the documents based
on the rules of the latest CommonMark  specification. OPS follows the CommonMark
specification and adds some extensions for platform-specific features, such as tables
and alerts.

The CommonMark specification is stricter about the construction of some Markdown
elements. Pay close attention to the details provided in this document.

We use the markdownlint  extension in VS Code to enforce our style and formatting
rules. This extension is installed as part of the Learn Authoring Pack.

Blank lines also signal the end of a block in Markdown.

Put a single blank between Markdown blocks of different types; for example,
between a paragraph and a list or header.
Don't use more than one blank line. Multiple blank lines render as a single blank
line in HTML, therefore the extra blank lines are unnecessary.
Don't use put multiple consecutive blank lines in a code block, consecutive blank
lines break the code block.

Spacing is significant in Markdown.

Remove extra spaces at the end of lines. Trailing spaces can change how
Markdown renders.
Always use spaces instead of tabs (hard tabs).

Use ATX headings  only ( #  style, as opposed to =  or -  style headers).

Blank lines, spaces, and tabs

Titles and headings

https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/
https://github.com/lunet-io/markdig
https://github.com/lunet-io/markdig
https://spec.commonmark.org/
https://spec.commonmark.org/
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint
https://github.github.com/gfm/#atx-headings
https://github.github.com/gfm/#atx-headings


Use sentence case - only proper nouns and the first letter of a title or header
should be capitalized
Include a single space between the #  and the first letter of the heading
Surround headings with single blank line
Don't use more than one H1 per document

It should be the first header
It should match the title of the article

Increment header levels by one - don't skip levels
Limit depth to H3 or H4
Avoid using bold or other markup in headers

For conceptual articles and cmdlet reference, limit lines to 100 characters. For about_
articles, limit the line length to 79 characters. Limiting the line length improves the
readability of git  diffs and history. It also makes it easier for other writers to make
contributions.

Use the Reflow Markdown  extension in VS Code to reflow paragraphs to fit the
prescribed line length.

Some content types can't be easily reflowed. For example, the code inside of code
blocks can also be difficult to reflow, depending on the content and the code language.
You can't reflow a table. In these cases, use your best judgment to keep the content as
close to the 100-character limit as possible.

For emphasis, Markdown supports bold and italics. Markdown allows you to use either
*  or _  to mark the emphasis. However, to be consistent and show intent:

Use **  for bold
Use _  for italics

Following this pattern makes it easier for others to understand the intent of the markup
when there's a mix of bold and italics in a document.

If your list has multiple sentences or paragraphs, consider using a sublevel header rather
than a list.

Limit line length to 100 characters

Emphasis

Lists

https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown


Surround lists with a single blank line.

Don't end list items with a period unless they contain multiple sentences.
Use the hyphen character ( - ) for list item bullets to avoid confusion with emphasis
markup that uses the asterisk ( * ).
To include a paragraph or other elements under a bullet item, insert a line break
and align indentation with the first character after the bullet.

For example:

Markdown

This is a list that contains child elements under a bullet item.

First bullet item

Sentence explaining the first bullet.

Child bullet item

Sentence explaining the child bullet.

Second bullet item

Third bullet item

All items in a numbered list should use the number 1.  rather than incrementing
each item.

Markdown rendering increments the value automatically.

Unordered lists

This is a list that contains child elements under a bullet item.

- First bullet item

  Sentence explaining the first bullet.

  - Child bullet item

    Sentence explaining the child bullet.

- Second bullet item
- Third bullet item

Ordered lists



This makes reordering items easier and standardizes the indentation of
subordinate content.

To include a paragraph or other elements under a numbered item, align
indentation with the first character after the item number.

For example:

Markdown

The resulting Markdown is rendered as follows:

1. For the first element, insert a single space after the 1 . Long sentences should be
wrapped to the next line and must line up with the first character after the
numbered list marker.

To include a second element, insert a line break after the first and align
indentations. The indentation of the second element must line up with the first
character after the numbered list marker.

2. The next numbered item starts here.

The syntax to include an image is:

Markdown

1. For the first element, insert a single space after the `1`. Long 
sentences should be wrapped to
   the next line and must line up with the first character after the 
numbered list marker.

   To include a second element, insert a line break after the first and 
align indentations. The
   indentation of the second element must line up with the first character 
after the numbered list
   marker.

1. The next numbered item starts here.

Images

![[alt text]](<folderPath>)

Example:
![Introduction](./media/overview/Introduction.png)



Where alt text  is a brief description of the image and <folderPath>  is a relative path
to the image.

Alternate text is required to support screen readers for the visually impaired.
Images should be stored in a media/<article-name>  folder within the folder
containing the article.

Create a folder that matches the filename of your article under the media  folder.
Copy the images for that article to that new folder.

Don't share images between articles.
If an image is used by multiple articles, each folder must have a copy of that
image.
This prevents a change to an image in one article from affecting another article.

The following image file types are supported: *.png , *.gif , *.jpeg , *.jpg , *.svg

The Learn Authoring Pack contains tools that support features unique to our publishing
system. Alerts are a Markdown extension to create blockquotes that render with colors
and icons highlighting the significance of the content. The following alert types are
supported:

Markdown

These alerts look like this on Microsoft Learn:

Note block

Markdown extension - Alert boxes

> [!NOTE]
> Information the user should notice even if skimming.

> [!TIP]
> Optional information to help a user be more successful.

> [!IMPORTANT]
> Essential information required for user success.

> [!CAUTION]
> Negative potential consequences of an action.

> [!WARNING]
> Dangerous certain consequences of an action.

７ Note

https://learn.microsoft.com/en-us/contribute/content/how-to-write-docs-auth-pack


Tip block

Important block

Caution block

Warning block

A table is an arrangement of data with rows and columns consisting of:

A single header row
A delimiter row separating the header from the data
Zero or more data rows

Each row consists of cells containing arbitrary text separated by pipes ( | ). A leading and
trailing pipe is also recommended for clarity. Spaces between pipes and cell content are
trimmed. Block-level elements can't be inserted in a table. All content of a row must be
on a single line.

Information the user should notice even if skimming.

 Tip

Optional information to help a user be more successful.

） Important

Essential information required for user success.

Ｕ Caution

Negative potential consequences of an action.

２ Warning

Dangerous certain consequences of an action.

Markdown extension - Tables



The delimiter row consists of cells whose only content are hyphens ( - ), and optionally, a
leading or trailing colon ( : ), or both, to indicate left, right, or center alignment
respectively.

For small tables, consider using a list instead. Lists are:

Easier to maintain and read
Can be reflowed to fit within the 100-character line limit
More accessible for users that use screen readers for visual assistance

For more information, see Tables section of Markdown reference for Microsoft Learn.

Hyperlinks must use Markdown syntax [friendlyname](url-or-path) .

The publishing system supports three types of links:
URL links
File links
Cross-reference links

All URLs to external websites should use HTTPS unless that isn't valid for the target
site.

Links must have a friendly name, usually the title of the linked article

Avoid using backticks, bold, or other markup inside the brackets of a hyperlink.

Bare URLs can be used when you're documenting a specific URI but must be
enclosed in backticks. For example:

Markdown

Use link references  where allowed. Link references within paragraphs make the
paragraphs more readable.

Link references divide a Markdown link into two parts:
the link reference - [friendlyname][id]
the link definition - [id]: url-or-path

Hyperlinks

By default, if you don't specify this parameter, the DMTF standard 
resource URI
`http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/` is used and the 
class name is appended to it.

https://learn.microsoft.com/en-us/contribute/content/markdown-reference#tables
https://github.github.com/gfm/#reference-link
https://github.github.com/gfm/#reference-link


URL links to other articles on learn.microsoft.com  must use site-relative paths. The
simplest way to create a site-relative link is to copy the URL from your browser
then remove https://learn.microsoft.com/en-us  from the value you paste into
markdown.
Don't include locales in URLs on Microsoft properties (remove /en-us  from URL) or
Wikipedia links.
Remove any unnecessary query parameters from the URL. Examples that should be
removed:

?view=powershell-5.1  - used to link to a specific version of PowerShell
?redirectedfrom=MSDN  - added to the URL when you get redirected from an old
article to its new location

If you need to link to a specific version of a document, you must add the
&preserve-view=true  parameter to the query string. For example: ?
view=powershell-5.1&preserve-view=true

On Microsoft sites, URL links don't contain file extensions (for example, no .md )

A file link is used to link from one reference article to another, or from one
conceptual article to another in the same docset.

If you need to link from a conceptual article to a reference article you must use
a URL link.
If you need to link to an article in another docset or across repositories you
must use a URL link.

Use relative filepaths (for example: ../folder/file.md )
All file paths use forward-slash ( / ) characters
Include the file extension (for example, .md )

Cross-reference links are a special feature supported by the publishing system. You can
use cross-reference links in conceptual articles to link to .NET API or cmdlet reference.

For links to .NET API reference, see Use links in documentation in the central
Contributor Guide.

Links to cmdlet reference have the following format: xref:<module-name>.<cmdlet-
name> . For example, to link to the Get-Content  cmdlet in the

URL-type Links

File-type links

Cross-reference links

https://learn.microsoft.com/en-us/contribute/content/how-to-write-links#xref-cross-reference-links


Microsoft.PowerShell.Management module.

[Get-Content](xref:Microsoft.PowerShell.Management.Get-Content)

Deep linking is allowed on both URL and file links.

The anchor text must be lowercase
Add the anchor to the end of the target path. For example:

[about_Splatting](about_Splatting.md#splatting-with-arrays)

[custom key bindings]

(https://code.visualstudio.com/docs/getstarted/keybindings#_custom-

keybindings-for-refactorings)

For more information, see Use links in documentation.

Code spans are used for inline code snippets within a paragraph. Use single backticks to
indicate a code span. For example:

Markdown

This example renders as:

PowerShell cmdlet names use the Verb-Noun  naming convention.

Code blocks are used for command examples, multi-line code samples, query
languages, and outputs. There are two ways to indicate a section of text in an article file
is a code block: by fencing it in triple-backticks ( ``` ) or by indenting it.

Never use indentation because it's too easy to get wrong and it may be difficult for
another writer to understand your intent when they need to edit your article.

Fenced code blocks can include an optional tag that indicates the language syntax
contained in the block. The publishing platform supports a list of language tags. The
language tag is used to provide syntax highlighting when the article is rendered on the

Deep linking

Code spans

PowerShell cmdlet names use the `Verb-Noun` naming convention.

Code blocks

https://learn.microsoft.com/en-us/contribute/content/how-to-write-links
https://learn.microsoft.com/en-us/contribute/content/code-in-docs#supported-languages


webpage. The language tag is not case-sensitive, but you should use lowercase except
for a few special cases.

Code fences without tags can be used for syntax blocks or other types of content
where syntax highlighting is not required.
When showing output from a command, use a tagged code fence with the
language tag Output . The rendered box is labeled as Output and doesn't have
syntax highlighting.
If the output is in a specific supported language, use the appropriate language tag.
For example, many commands output JSON, so use the json  tag.
If you use an unsupported language tag, the code block will render without syntax
highlighting. The language tag becomes the label for the rendered code box on
the webpage. Capitalize the tag so that the label is capitalized on the webpage.

PowerShell style guide

Next steps



PowerShell-Docs style guide
Article • 03/27/2025

This article provides style guidance specific to the PowerShell-Docs content. It builds on
the information outlined in the Overview.

Use the following rules to format elements of the PowerShell language when the
elements are used in a sentence.

Always use the full name for cmdlets and parameters in the proper Pascal case

Only use an alias when you're specifically demonstrating the alias

PowerShell keywords and operators should be all lowercase

The following items should be formatted using bold text:

Type names

Class names

Property names

Parameter names
By default, use the parameter without the hyphen prefix.
Use parameter name with the hyphen if you're illustrating syntax. Wrap the
parameter in backticks.

For example:

markdown

The following items should be formatted using backticks ( ` ):

Property and parameter values

Type names that use the bracketed style - For example: [System.Io.FileInfo]

Formatting command syntax elements

The parameter's name is **Name**, but it's typed as `-Name` when 
used on the command
line as a parameter.



Referring to characters by name. For example: Use the asterisk character ( * ) to
as a wildcard.

Language keywords and operators

Cmdlet, function, and script names

Command and parameter aliases

Method names - For example: The ToString()  method returns a string
representation of the object

Variables

Native commands

File and directory paths

Inline command syntax examples - See Markdown for code samples

This example shows some backtick examples:

markdown

This example shows command syntax inline:

markdown

Including the file extension ensures that the correct command is executed
according to PowerShell's command precedence.

Markdown supports two different code styles:

The following code uses `Get-ChildItem` to list the contents of 
`C:\Windows` and assigns
the output to the `$files` variable.

```powershell
$files = Get-ChildItem C:\Windows
```

To start the spooler service on a remote computer named DC01, you 
type:
`sc.exe \\DC01 start spooler`.

Markdown for code samples



Code spans (inline) - marked by a single backtick ( ` ) character. Used within a
paragraph rather than as a standalone block.
Code blocks - a multi-line block surrounded by triple-backtick ( ``` ) strings. Code
blocks can also have a language label following the backticks. The language label
enables syntax highlighting for the contents of the code block.

All code blocks should be contained in a code fence. Never use indentation for code
blocks. Markdown allows this pattern but it can be problematic and should be avoided.

A code block is one or more lines of code surrounded by a triple-backtick ( ``` ) code
fence. The code fence markers must be on their own line before and after the code
sample. The opening marker can have an optional language label. The language label
enables syntax highlighting on the rendered webpage.

For a full list of supported language tags, see Fenced code blocks in the centralized
contributor guide.

Publishing also adds a Copy button that can copy the contents of the code block to the
clipboard. This allows you to paste the code into a script to test the code sample.
However, not all examples are intended to be run as written. Some code blocks are basic
illustrations of PowerShell concepts.

There are three types code blocks used in our documentation:

1. Syntax blocks
2. Illustrative examples
3. Executable examples

Syntax code blocks are used to describe the syntactic structure of a command. Don't use
a language tag on the code fence. This example illustrates all the possible parameters of
the Get-Command  cmdlet.

markdown

Syntax code blocks

```
Get-Command [-Verb <String[]>] [-Noun <String[]>] [-Module <String[]>]
  [-FullyQualifiedModule <ModuleSpecification[]>] [-TotalCount <Int32>] [-
Syntax]
  [-ShowCommandInfo] [[-ArgumentList] <Object[]>] [-All] [-ListImported]
  [-ParameterName <String[]>] [-ParameterType <PSTypeName[]>] 
[<CommonParameters>]
```

https://learn.microsoft.com/en-us/contribute/code-in-docs#inline-code-blocks


This example describes the for  statement in generalized terms:

markdown

Illustrative examples are used to explain a PowerShell concept. Yo`u should Avoid using
PowerShell prompts in examples whenever possible. However, illustrative examples
aren't meant to be copied and pasted for execution. They're most commonly used for
simple examples that are easy to understand. You may include the PowerShell prompt
and example output.

Here's a simple example illustrating the PowerShell comparison operators. In this case,
we don't intend the reader to copy and run this example. Notice that this example uses
PS>  as a simplified prompt string.

markdown

```
for (<init>; <condition>; <repeat>)
{<statement list>}
```

Illustrative examples

```powershell
PS> 2 -eq 2
True

PS> 2 -eq 3
False

PS> 1,2,3 -eq 2
2

PS> "abc" -eq "abc"
True

PS> "abc" -eq "abc", "def"
False

PS> "abc", "def" -eq "abc"
abc
```

Executable examples



Complex examples, or examples that are intended to be copied and executed, should
use the following block-style markup:

markdown

The output displayed by PowerShell commands should be enclosed in an Output code
block to prevent syntax highlighting. For example:

markdown

```powershell
<Your PowerShell code goes here>
```

```powershell
Get-Command -Module Microsoft.PowerShell.Security
```

```Output
CommandType  Name                        Version    Source
-----------  ----                        -------    ------
Cmdlet       ConvertFrom-SecureString    3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       ConvertTo-SecureString      3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-Acl                     3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-AuthenticodeSignature   3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-CmsMessage              3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-Credential              3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-ExecutionPolicy         3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Get-PfxCertificate          3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       New-FileCatalog             3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Protect-CmsMessage          3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Set-Acl                     3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Set-AuthenticodeSignature   3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Set-ExecutionPolicy         3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Test-FileCatalog            3.0.0.0    
Microsoft.PowerShell.Security
Cmdlet       Unprotect-CmsMessage        3.0.0.0    



The Output  code label isn't an official language supported by the syntax highlighting
system. However, this label is useful because our publishing system adds the Output
label to the code box frame on the web page. The Output code box has no syntax
highlighting.

Avoid using line continuation characters ( ` ) in PowerShell code examples. Backtick
characters are difficult to see and can cause problems if there are extra spaces at the
end of the line.

Use PowerShell splatting to reduce line length for cmdlets that have several
parameters.
Take advantage of PowerShell's natural line break opportunities, like after pipe ( | )
characters, opening braces ( { ), parentheses ( ( ), and brackets ( [ ).

Use of the prompt string is discouraged and should be limited to scenarios that are
meant to illustrate command-line usage. For most of these examples, the prompt string
should be PS> . This prompt is independent of OS-specific indicators.

Prompts are required in examples to illustrate commands that alter the prompt or when
the path displayed is significant to the scenario. The following example illustrates how
the prompt changes when using the Registry provider.

PowerShell

Microsoft.PowerShell.Security
```

Coding style rules

Avoid line continuation in code samples

Avoid using PowerShell prompts in examples

PS C:\> cd HKCU:\System\
PS HKCU:\System\> dir

    Hive: HKEY_CURRENT_USER\System

Name                   Property
----                   --------
CurrentControlSet
GameConfigStore        GameDVR_Enabled                       : 1
                       GameDVR_FSEBehaviorMode               : 2

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting


Use the full name of all cmdlets and parameters unless you're specifically documenting
the alias. Cmdlet and parameter names must use the proper Pascal-cased  names.

Avoid using positional parameters. To reduce the chance of confusion, you should
include the parameter name in an example, even if the parameter is positional.

Cmdlet reference articles have a specific structure. PlatyPS  defines this structure.
PlatyPS generates the cmdlet help for PowerShell modules in Markdown. After you edit
the Markdown files, PlatyPS can create the MAML help files used by the Get-Help
cmdlet.

PlatyPS has a schema that expects a specific structure for cmdlet reference. The PlatyPS
schema document  describes this structure. Schema violations cause build errors that
must be fixed before we can accept your contribution.

Don't remove any of the ATX header structures. PlatyPS expects a specific set of
headers in a specific order.
The H2 INPUTS and OUTPUTS headers must have an H3 type. If the cmdlet
doesn't take input or return a value, then use the value None  for the H3.
Inline code spans can be used in any paragraph.
Fenced code blocks are only allowed in the EXAMPLES section.

In the PlatyPS schema, EXAMPLES is an H2 header. Each example is an H3 header.
Within an example, the schema doesn't allow code blocks to be separated by
paragraphs. The schema only allows the following structure:

                       Win32_AutoGameModeDefaultProfile      : {2, 0, 1, 
0...}
                       Win32_GameModeRelatedProcesses        : {1, 0, 1, 
0...}
                       GameDVR_HonorUserFSEBehaviorMode      : 0
                       GameDVR_DXGIHonorFSEWindowsCompatible : 0

Don't use aliases in examples

Using parameters in examples

Formatting cmdlet reference articles

### Example X - Title sentence

https://en.wikipedia.org/wiki/PascalCase
https://en.wikipedia.org/wiki/PascalCase
https://github.com/powershell/platyps
https://github.com/powershell/platyps
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md
https://github.com/PowerShell/platyPS/blob/master/docs/developer/platyPS/platyPS.schema.md


Number each example and add a brief title.

For example:

markdown

About_*  files are written in Markdown but are shipped as plain text files. We use
Pandoc  to convert the Markdown to plain text. About_*  files are formatted for the
best compatibility across all versions of PowerShell and with the publishing tools.

Basic formatting guidelines:

Limit paragraph lines to 80 characters

Limit code blocks to 76 characters

Limit blockquotes and alerts to 78 characters

When using these special meta-characters \ , $ , and < :

Within a header, these characters must be escaped using a leading \  character
or enclosed in code spans using backticks ( ` )

Within a paragraph, these characters should be put into code spans. For
example:

0 or more paragraphs
1 or more code blocks
0 or more paragraphs.

### Example 1: Get cmdlets, functions, and aliases

This command gets the PowerShell cmdlets, functions, and aliases that are 
installed on the
computer.

```powershell
Get-Command
```

### Example 2: Get commands in the current session

```powershell
Get-Command -ListImported
```

Formatting About_ files

https://pandoc.org/
https://pandoc.org/


markdown

Markdown tables
For About_*  articles, tables must fit within 76 characters

If the content doesn't fit within 76 character limit, use bullet lists instead
Use opening and closing |  characters on each line

Editorial checklist

### The purpose of the \$foo variable

The `$foo` variable is used to store ...

Next steps



Editor's checklist
Article • 03/27/2025

This article contains a summarized list of rules for writing or editing PowerShell
documentation. See other articles in the Contributor's Guide for detailed explanations
and examples of these rules.

ms.date : must be in the format MM/DD/YYYY
Change the date when there's a significant or factual update

Reorganizing the article
Fixing factual errors
Adding new information

Don't change the date if the update is insignificant
Fixing typos and formatting

title : unique string of 43-59 characters long (including spaces)
Don't include site identifier (it's autogenerated)
Use sentence case - capitalize only the first word and any proper nouns

description : 115-145 characters including spaces - this abstract displays in the
search result

Backtick syntax elements that appear, inline, within a paragraph
Cmdlet names Verb-Noun
Variable $counter
Syntactic examples Verb-Noun -Parameter
File paths C:\Program Files\PowerShell , /usr/bin/pwsh
URLs that aren't meant to be clickable in the document
Property or parameter values

Use bold for property names, parameter names, class names, module names, entity
names, object, or type names

Bold is used for semantic markup, not emphasis
Bold - use asterisks **

Italic - use underscore _
Only used for emphasis, not for semantic markup

Line breaks at 100 columns (or at 80 for about_Topics)

Metadata

Formatting



No hard tabs - use spaces only
No trailing spaces on lines
PowerShell keywords and operators should be all lowercase
Use proper (Pascal) casing for cmdlet names and parameters

Start with H1 first - only one H1 per article
Use ATX Headers  only
Use sentence case for all headers
Don't skip levels - no H3 without an H2
Limit header depth to H3 or H4
Add blank lines before and after
Don't add or remove headers - PlatyPS enforces specific headers in its schema

Add blank lines before and after
Use tagged code fences - powershell, Output, or other appropriate language ID
Use untagged code fence for syntax blocks
Put output in separate code block except for basic examples where you don't
intend for the reader to use the Copy button
See list of supported languages

Indent properly
Add blank lines before first item and after last item
Use hyphen ( - ) for bullets not asterisk ( * ) to reduce confusion with emphasis
Use 1.  for all items in a numbered list

Use PowerShell vs. Windows PowerShell
See Product Terminology

Must have at least one example in cmdlet reference

Headers

Code blocks

Lists

Terminology

Cmdlet reference examples

https://github.github.com/gfm/#atx-headings
https://github.github.com/gfm/#atx-headings
https://learn.microsoft.com/en-us/contribute/code-in-docs#supported-languages


Examples should be only enough code to demonstrate the usage

PowerShell syntax
Use full names of cmdlets and parameters - no aliases
Use splatting for parameters when the command line gets too long
Avoid using line continuation backticks - only use when necessary

Remove or simplify the PowerShell prompt ( PS> ) except where required for the
example

Cmdlet reference example must follow the following PlatyPS schema

markdown

don't put paragraphs between the code blocks. All descriptive content must come
before or after the code blocks.

When linking outside the docset or between cmdlet reference and conceptual
Use site-relative URLs when linking to Microsoft Learn (remove
https://learn.microsoft.com/en-us )
don't include locales in URLs on Microsoft properties (remove /en-us  from URL)
All URLs to external websites should use HTTPS unless that's not valid for the
target site

When linking within the docset
Use the relative filepath ( ../folder/file.md )

All paths use forward-slash ( / ) characters

### Example 1 - Descriptive title

Zero or more short descriptive paragraphs explaining the context of the 
example followed by one or
more code blocks. Recommend at least one and no more than two.

```powershell
... one or more PowerShell code statements ...
```

```Output
Example output of the code above.
```

Zero or more optional follow up paragraphs that explain the details of 
the code and output.

Linking to other documents



Image links should have unique alt text



Product terminology and branding
guidelines
Article • 03/30/2025

When you write about any product, it's important to use the proper product names and
terminology. This guide defines product names and terminology related to PowerShell.
Note the capitalization of specific words or use cases.

Use PowerShell to describe the scripting language and an interactive shell.

The cross-platform version of PowerShell built on .NET (core), rather than the .NET
Framework. PowerShell can be installed on Windows, Linux, and macOS.

The name used for PowerShell v6, built on .NET Core. This name shouldn't be used.

The version of PowerShell that ships in Windows, which requires the full .NET
Framework.

Guidelines

First mention - use "Windows PowerShell"

Subsequent mentions - Use "PowerShell" unless the use case requires "Windows
PowerShell" to be more specific:

In PowerShell, the Invoke-WebRequest  cmdlet returns
BasicHtmlWebResponseObject

In Windows PowerShell, the Invoke-WebRequest  cmdlet returns
HtmlWebResponseObject

PowerShell (collective name)

PowerShell (product name)

PowerShell Core (product deprecated)

Windows PowerShell (product name)



PowerShell modules are add-ons that contain PowerShell cmdlets to manage specific
products or services.

For example:

Azure PowerShell
Az.Accounts module
Windows management module
Hyper-V module
Microsoft Graph PowerShell SDK
Exchange PowerShell

Guidelines

Always use the collective name or the more specific module name when referring
to a PowerShell module
Never refer to a module as "PowerShell"

The branded group of products containing PowerShell modules used to manage Azure.

There are several versions of Azure PowerShell products available. Each product contains
multiple named modules.

Guidelines

Use "Azure PowerShell" as the collective name for the product
Always use the collective name, never just "PowerShell"
Use the more specific product name when referring to a specific version

The currently supported collection of modules for managing Azure resources with
PowerShell.

The previous generation of modules that use the Azure Resource Manager (ARM) model
for managing Azure resources. This product is deprecated, no longer maintained or
supported, and not recommended.

PowerShell modules

Azure PowerShell (collective name)

Az PowerShell (product name)

AzureRM PowerShell (product name)



The earliest collection of modules for managing legacy Azure resources that use Azure
Service Manager (ASM) APIs. This legacy PowerShell module isn't recommended when
creating new resources since ASM is scheduled for retirement.

These products are used to manage Azure resources but aren't part of the Azure
PowerShell collective product. They should never be described using the "Azure
PowerShell" collective name.

Azure Information Protection PowerShell
Azure Deployment Manager PowerShell
Azure Elastic Database Jobs PowerShell
Azure Service Fabric PowerShell
Azure Stack PowerShell
Microsoft Graph PowerShell SDK
Microsoft Entra PowerShell

Guidelines

Always use the full proper name of the product or the specific PowerShell module
name

This is Microsoft's free, open source editor.

Guidelines

First mention - use the full name
Subsequent mentions - you can use "VS Code"
Never use "VSCode"

The extension turns VS Code into the preferred IDE for PowerShell.

Guidelines

Azure Service Management PowerShell (product name)

Azure-related PowerShell modules

Other PowerShell-related products

Visual Studio Code (VS Code)

PowerShell Extension for Visual Studio Code



First mention - use the full name
Subsequent mentions - you can use "PowerShell extension"



How to file a PowerShell-Docs issue
Article • 03/27/2025

There are two ways to create an issue:

1. Use the feedback controls at the bottom of the page.
2. File an issue in GitHub directly

For a full description of the feedback controls, see the Docs Team blog announcing this
feature.

At the bottom of most pages on learn.microsoft.com , there are two feedback buttons.
One is a link for product feedback and one is for documentation feedback. The
documentation feedback requires a GitHub account. Clicking the button takes you in
GitHub and presents an issue template. Enter your feedback and submit the form.

To file a GitHub issue directly, you can select the New issue  button in the PowerShell-
Docs repository. Select the Get started button for the issue you want to create. The
GitHub issue template helps you provide the information needed to address the
problem you're reporting.

To avoid duplication, search the existing issues to see if someone else has already
reported it. If you find an existing issue, you can add your comments, related questions,
or answers.

See Get started writing.

Using the feedback controls

７ Note

The feedback tool not a support channel. It's a way to ask questions to clarify
documentation or to report errors and omissions. If you need technical support, see
Community resources.

Filing issues on GitHub

Next steps

https://learn.microsoft.com/en-us/teamblog/a-new-feedback-system-is-coming-to-docs
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new/choose
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new/choose


How we manage issues

Additional resources



How to submit pull requests
Article • 03/27/2025

To make changes to content, submit a pull request (PR) from your fork. A pull request
must be reviewed before it can be merged. For best results, review the editorial checklist
before submitting your pull request.

The default branch for PowerShell-Docs is the main  branch. Changes made in working
branches are merged into the main  branch before then being published. The main
branch is merged into the live  branch every weekday at 3:00 PM (Pacific Time). The
live  branch contains the content that is published to learn.microsoft.com .

Before starting any changes, create a working branch in your local copy of the
PowerShell-Docs repository. When working locally, be sure to synchronize your local
repository before creating your working branch. The working branch should be created
from an up-to-date copy of the main  branch.

All pull requests should target the main  branch. Don't submit changes to the live
branch. Changes made in the main  branch get merged into live , overwriting any
changes made to live .

The simpler and more focused you can make your PR, the faster it can be reviewed and
merged.

Avoid creating PRs that contain unrelated changes. Separate minor updates to existing
articles from new articles or major rewrites. Work on these changes in separate working
branches.

Bulk changes create PRs with large numbers of changed files. Limit your PRs to a
maximum of 50 changed files. Large PRs are difficult to review and are more prone to
contain errors.

Using git branches

Make the pull request process work better for
everyone

Avoid pull requests that update large numbers of files or
contain unrelated changes



There must be an issue associated with the PR when you rename or delete files. That
issue must discuss the need to rename or delete the files.

Avoid mixing content additions or changes with file renames and deletes. Any file that
you rename or delete must be added to the appropriate redirection file. When possible,
update any files that link to the renamed or deleted content, including any TOC files.

Avoid modifying repository configuration files. Limit your changes where possible to the
Markdown content files and any supporting image files needed for the content.

Incorrect modifications to repository configuration files can break the build, introduce
vulnerabilities or accessibility issues, or violate organizational standards. Repository
configuration files are any files that match one or more of these patterns:

*.yml

.github/**

.localization-config

.openpublishing*

LICENSE*

reference/docfx.json

reference/mapping/**

tests/**

ThirdPartyNotices

tools/**

For safety and security, don't change these files. If you think one of these files should be
changed, file an issue . After the maintainers triage the issue, they'll make the
appropriate changes.

When you create a PR, a template is automatically inserted into the PR body for you. It
looks like this:

Markdown

Renaming or deleting files

Avoid editing repository configuration files

Use the PR template

# PR Summary

https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new/choose
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new/choose


In the "PR Summary" section, write a short summary of your changes and list any related
issues by their issue number, like #1234 . If your PR fixes or resolves the issue, use
GitHub's autoclose  feature so the issue is automatically closed when your PR is
merged.

Review the items in the "PR Checklist" section and check them off as you complete each
one. You must follow the directions and check each item for the team to approve your
PR.

If your PR is a work-in-progress, set it to draft mode  or prefix your PR title with WIP .

<!--
    Delete this comment block and summarize your changes and list
    related issues here. For example:

    This changes fixes problem X in the documentation for Y.

    - Fixes #1234
    - Resolves #1235
-->

## PR Checklist

<!--
    These items are mandatory. For your PR to be reviewed and merged,
    ensure you have followed these steps. As you complete the steps,
    check each box by replacing the space between the brackets with an
    x or by clicking on the box in the UI after your PR is submitted.
-->

- [ ] **Descriptive Title:** This PR's title is a synopsis of the changes it 
proposes.
- [ ] **Summary:** This PR's summary describes the scope and intent of the 
change.
- [ ] **Contributor's Guide:** I have read the [contributors guide]
[contrib].
- [ ] **Style:** This PR adheres to the [style guide][style].

<!--
    If your PR is a work in progress, please mark it as a draft or
    prefix it with "(WIP)" or "WIP:"

    This helps us understand whether or not your PR is ready to review.
-->

[contrib]: /powershell/scripting/community/contributing/overview
[style]: /powershell/scripting/community/contributing/powershell-style-guide

Expectations Comment

https://help.github.com/en/articles/closing-issues-using-keywords
https://help.github.com/en/articles/closing-issues-using-keywords
https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request


After you submit your PR, a bot will comment on your PR. The comment provides
resources and sets expectations for the rest of the process. We might update this
comment periodically, so always review the comment, even if this isn't your first
contribution.

The Docs PR validation service is a GitHub app that runs validation rules on your
changes. You must fix any errors or warnings reported by the validation service.

The following steps outline the validation behavior:

1. You submit a PR.

2. In the GitHub comment that indicates the status of the "checks" enabled on the
repository. In this example, there are two checks enabled, "Commit Validation" and
"OpenPublishing.Build":

Docs PR validation service



The build can pass even if commit validation fails.

3. Select Details for more information. The Details page shows all the validation
checks that failed and includes information about how to fix the issues.

4. When validation succeeds, the following comment is added to the PR:



When the PR is reviewed, you might be asked to make changes or fix validation warning
messages. The PowerShell-Docs team can help you understand validation errors and
editorial requirements.

Several different GitHub Actions run against your changes to validate and provide
context for you and the reviewers.

If your PR isn't in draft mode  and isn't prefixed with WIP , a GitHub Action inspects
your PR to verify that you selected every item in the PR template's checklist. The
maintainers won't review or merge your PR until you complete the checklist. The
checklist items are mandatory.

If your PR targets the live  branch or modifies any repository configuration files, a
GitHub Action checks your permissions to verify that you're authorized to submit those
changes.

Only repository administrators are authorized to target the live  branch or modify
repository configuration files.

If your PR adds, removes, or modifies any versioned content a GitHub Action analyzes
your changes and writes a report summarizing the types of changes made to versioned
content.

This report can show if there are other versions of the files that you need to update in
this PR.

To find the versioned content report for your PR:

７ Note

If you're an external contributor (not a Microsoft employee), you don't have access
to the detailed build reports or preview links.

GitHub Actions

Checklist verification

Authorization verification

Versioned content change reporting

https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request


1. Selecting the "Checks" tab on your PR page.
2. Select the "Reporting" job from the list of jobs.
3. Select the "..." button in the top right.
4. Select "View job summary."

PowerShell-Docs style guide

How we manage pull requests

Next steps

Additional resources



Contributing quality improvements
Article • 03/27/2025

For Hacktoberfest 2022 , we piloted a process  for contributing quality improvements
to the PowerShell content. This guide generalizes that process to define a low-friction
way for community members to improve to the quality of the documentation.

We're focusing on these quality areas:

Formatting code samples
Formatting command syntax
Link References
Markdown linting
Spelling

We're tracking contributions with the PowerShell Docs Quality Contributions  GitHub
Project.

The project page has several views for the issues and PRs related to this effort:

The Open issues  view shows all open issues.
The Completed  view shows merged PRs.
The PowerShell  view shows open issues for documentation in the PowerShell-
Docs , PowerShell-Docs-DSC , and PowerShell-Docs-Modules  repositories.
The Windows PowerShell  view shows open issues for documentation in the
windows-powershell-docs repository .
The Azure PowerShell  view shows open issues for documentation in the azure-
docs-powershell repository .
The Open PRs  view shows all open PRs.

All code samples should follow the style guidelines for PowerShell content. Those rules
are repeated in abbreviated form here for convenience:

All code blocks should be contained in a triple-backtick code fence ( ``` ).
Line length for code blocks is limited to 90  characters for cmdlet reference articles.
Line length for code blocks is limited to 76  characters for about_*  articles.

Project Tracking

Formatting code samples

https://www.powershellgallery.com/packages
https://www.powershellgallery.com/packages
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/9257
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/9257
https://github.com/orgs/MicrosoftDocs/projects/15
https://github.com/orgs/MicrosoftDocs/projects/15
https://github.com/orgs/MicrosoftDocs/projects/15/views/1
https://github.com/orgs/MicrosoftDocs/projects/15/views/1
https://github.com/orgs/MicrosoftDocs/projects/15/views/2
https://github.com/orgs/MicrosoftDocs/projects/15/views/2
https://github.com/orgs/MicrosoftDocs/projects/15/views/3
https://github.com/orgs/MicrosoftDocs/projects/15/views/3
https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs
https://github.com/MicrosoftDocs/PowerShell-Docs-Dsc
https://github.com/MicrosoftDocs/PowerShell-Docs-Dsc
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules
https://github.com/orgs/MicrosoftDocs/projects/15/views/4
https://github.com/orgs/MicrosoftDocs/projects/15/views/4
https://github.com/MicrosoftDocs/windows-powershell-docs
https://github.com/MicrosoftDocs/windows-powershell-docs
https://github.com/orgs/MicrosoftDocs/projects/15/views/5
https://github.com/orgs/MicrosoftDocs/projects/15/views/5
https://github.com/MicrosoftDocs/azure-docs-powershell
https://github.com/MicrosoftDocs/azure-docs-powershell
https://github.com/MicrosoftDocs/azure-docs-powershell
https://github.com/orgs/MicrosoftDocs/projects/15/views/6
https://github.com/orgs/MicrosoftDocs/projects/15/views/6
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/powershell-style-guide#markdown-for-code-samples


Avoid using line continuation characters ( ` ) in PowerShell code examples.
Use splatting or natural line break opportunities, like after pipe ( | ) characters,
opening braces ( } ), parentheses ( ( ), and brackets ( [ ) to limit line length.

Only include the PowerShell prompt for illustrative examples where the code isn't
intended for copy-pasting.
Don't use aliases in examples unless you're specifically documenting the alias.
Avoid using positional parameters. Use the parameter name, even if the parameter
is positional.

All prose should follow the style guidelines for PowerShell content. Those rules are
repeated here for convenience:

Always use the full name for cmdlets and parameters. Avoid using aliases unless
you're specifically demonstrating the alias.
Property, parameter, object, type names, class names, class methods should be
bold.

Property and parameter values should be wrapped in backticks ( ` ).
When referring to types using the bracketed style, use backticks. For example:
[System.Io.FileInfo]

PowerShell module names should be bold.
PowerShell keywords and operators should be all lowercase.
Use proper (Pascal) casing for cmdlet names and parameters.
When you refer to a parameter by name, the name should be bold.
Use parameter name with the hyphen if you're illustrating syntax. Wrap the
parameter in backticks.
When you show example usage of an external command, the example should be
wrapped in backticks. Always include the file extension of the external command.

For maintainability and readability of the markdown source for our documentation,
we're converting our conceptual documentation to use link references instead of inline
links.

For example, instead of:

Markdown

Formatting command syntax

Link references

https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/powershell-style-guide#formatting-command-syntax-elements


It should be:

Markdown

At the bottom of the file, add a markdown comment before the definition of the links.

Markdown

Make sure that:

1. The links are defined in the order they appear in the document.
2. Every link points to the correct location.
3. The link reference definitions are at the bottom of the file after the markdown

comment and are in the correct order.

For any article in one of the participating repositories, opening the article in VS Code
displays linting warnings. Address any of these warnings you find, except:

MD022/blanks-around-headings/blanks-around-headers  for the Synopsis
header in cmdlet reference documents. For those items, the rule violation is
intentional to ensure the documentation builds correctly with PlatyPS.

Make sure of the line lengths and use the Reflow Markdown  extension to fix any long
lines.

The [Packages tab][31] displays all available
packages in the PowerShell Gallery.

The [Packages tab][31] displays all available packages in the PowerShell 
Gallery.

７ Note

When you replace an inline link, reflow the content to wrap at 100 characters. You
can use the reflow-markdown  VS Code extension to quickly reflow the
paragraph.

<!-- Link references -->
[01]: https://www.powershellgallery.com/packages

Markdown linting

https://github.com/DavidAnson/markdownlint/blob/main/doc/Rules.md#md022
https://github.com/DavidAnson/markdownlint/blob/main/doc/Rules.md#md022
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown
https://marketplace.visualstudio.com/items?itemName=marvhen.reflow-markdown


Despite our best efforts, typos and misspellings get through and end up in the
documentation. These mistakes make documentation harder to follow and localize.
Fixing these mistakes makes the documentation more readable, especially for non-
English speakers who rely on accurate translations.

We encourage you to choose one or more of the quality areas and an article (or group
of articles) to improve. Use the following steps to guide your work:

1. Check the project  for issues filed for this effort to avoid duplicating efforts.

2. Open a new issue in the appropriate repository:

Open an issue in MicrosoftDocs/PowerShell-Docs  for PowerShell reference
and conceptual content.
Open an issue in MicrosoftDocs/PowerShell-Docs-Dsc  for DSC content
Open an issue in MicrosoftDocs/PowerShell-Docs-Modules  for Crescendo,
PlatyPS, PSScriptAnalyzer, SecretManagement, and SecretStore content.
Open an issue in MicrosoftDocs/azure-docs-powershell  for Azure
PowerShell content.
Open an issue in MicrosoftDocs/windows-powershell-docs  for Windows
PowerShell module content.

3. Follow our contributor's guide to get setup for making your changes.

4. Submit your pull request. Ensure:

a. Your PR title has the Quality:  prefix.

b. Your PR body references the issue it resolves as an unordered list item and uses
one of the linking keywords .

For example, if you're working on issue 123 , the body of your PR should include
the following Markdown:

Markdown

Spelling

Process

- resolves #123

https://github.com/orgs/MicrosoftDocs/projects/15
https://github.com/orgs/MicrosoftDocs/projects/15
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Dsc/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Dsc/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/azure-docs-powershell/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/azure-docs-powershell/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/windows-powershell-docs/issues/new?template=02-quality.yml&title=Quality%3A+
https://github.com/MicrosoftDocs/windows-powershell-docs/issues/new?template=02-quality.yml&title=Quality%3A+
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/overview#prepare-to-make-a-contribution
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword


After you submit the PR, the maintainers will review your work and work with you
to get it merged.



Hacktoberfest and other hack-a-thon
events
Article • 03/27/2025

Hacktoberfest is an annual worldwide event held during October. The event encourages
open source developers to contribute to repositories through pull requests (PR). GitHub
hosts many open source repositories that contribute to Microsoft Learn content. Several
repositories actively participate in Hacktoberfest.

Before you can contribute to an open source repo, you must first configure your
account to contribute to Microsoft Learn. If you're new to this process, start by signing
up for a GitHub account. Be sure to install Git and the Markdown tools.

To get credit for participation, register with Hacktoberfest  and read their participation
guide .

The PowerShell-Docs team is supporting Hacktoberfest contributions for several
PowerShell documentation repositories. We defined a set of cleanup tasks designed to
be simple for first time contributors. Full information can be found in the Hacktoberfest
meta-issue .

To be successful with these tasks, you should:

Have a general understanding of PowerShell syntax
Have an understanding of splatting
Be able to read and follow the PowerShell-Docs style guide and Editorial checklist
Have basic familiarity with Markdown

Before contributing should read the meta-issue. When you're ready to start, open a new
issue using the Hacktoberfest issue template by using one of the following links:

MicrosoftDocs/PowerShell-Docs
MicrosoftDocs/PowerShell-Docs-DSC
MicrosoftDocs/PowerShell-Docs-Modules
MicrosoftDocs/windows-powershell-docs
MicrosoftDocs/azure-docs-powershell

How to contribute

Find a repo that needs your help

https://learn.microsoft.com/en-us/contribute/get-started-setup-github
https://learn.microsoft.com/en-us/contribute/get-started-setup-tools
https://hacktoberfest.com/auth/
https://hacktoberfest.com/auth/
https://hacktoberfest.com/participation/
https://hacktoberfest.com/participation/
https://hacktoberfest.com/participation/
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/9257
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/9257
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/9257
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/powershell-style-guide
https://learn.microsoft.com/en-us/powershell/scripting/community/contributing/editorial-checklist
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-DSC/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-DSC/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/PowerShell-Docs-Modules/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/windows-powershell-docs/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/windows-powershell-docs/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/azure-docs-powershell/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+
https://github.com/MicrosoftDocs/azure-docs-powershell/issues/new?assignees=&labels=&template=00-hacktoberfest.yml&title=%F0%9F%8E%83+2022%3A+


To have a successful contribution to an open source Microsoft Learn repository, create a
meaningful and impactful PR. The following examples from the official Hacktoberfest
site are considered low-quality contributions:

PRs containing bulk automated changes
Example: scripted PRs to remove whitespace, fix common spelling, or optimize
images
Submit an issue first describing the automated changes you want to make

PRs deemed disruptive (for example, taking someone else's branch or commits and
making a PR)
PRs deemed a hindrance vs. helping
PRs that are clearly an attempt to increment your PR count for October

For more information, see Hacktoberfest: Values .

A PR provides a convenient way for a contributor to propose a set of changes.
Successful PRs have these common characteristics:

The PR adds value.
The contributor is receptive to feedback.
The intended changes are well articulated.
The changes are related to an existing issue.

If you're proposing a PR without a corresponding issue, create an issue first. For more
information, see GitHub: About pull requests .

Git and GitHub essentials for Microsoft Learn documentation
Official Hacktoberfest site

Quality expectations

Open a PR

See also

https://hacktoberfest.com/participation/#values
https://hacktoberfest.com/participation/#values
https://docs.github.com/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/github/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://learn.microsoft.com/en-us/contribute/git-github-fundamentals
https://hacktoberfest.com/
https://hacktoberfest.com/


How we manage issues
Article • 03/27/2025

This article documents how we manage issues in the PowerShell-Docs repository. This
article is designed to be a job aid for members of the PowerShell-Docs team. We publish
this information here to provide process transparency for our public contributors.

Community contributors
Internal contributors
Transcriptions of comments from social media channels
Feedback via the Docs feedback form

80% of new issues are closed within 3 business days.

Triaged - 1 business day
Fix or change - 10 business days

Area - Identifies the part of PowerShell or the docs that the issue is discussing
Issue - The type of issue: like bug, feedback, or idea
Priority - The priority of the issue; value range 0-3 (high-low)
Quality - The quality improvement effort the issue commits to resolving
Status - The status of the work item or why it was closed
Tag - Used to for additional classification like availability or doc-a-thons
Waiting - Shows that we're waiting on some external person or event

For more information on specific labels, see Labeling.

Issues and PRs should be tagged with the appropriate milestone. If the issue doesn't
apply to a specific version, then no milestone is used. PRs and related issues for changes

Sources of issues

Response time targets

Labeling & Milestones

Label Types

Milestones



that have yet to be merged into the PowerShell code base should be assigned to the
Future milestone. After you merge the change, update the milestone to the appropriate
version.

Milestone Description

7.0.0 Work items related to PowerShell 7.0

7.2.0 Work items related to PowerShell 7.2

7.3.0 Work items related to PowerShell 7.3

Future Work items a future version of PowerShell

PowerShell docs team members review the issues daily and triage new issues as they
arrive. The team meets weekly to discuss difficult issues need triage and prioritize the
work.

Enter a comment redirecting the customer to the correct feedback channel.

Optional: Copy the issue to the appropriate product feedback location, add a link
to the copied item, and close the issue.

The default location for PowerShell issues is
https://github.com/PowerShell/PowerShell/issues/new/choose .

If the support question is simple, answer it politely and close the issue.

If the question is more complicated, or the submitter replies with more questions,
redirect them to forums and support channels. Suggested text for redirecting to
forums:

Markdown

ﾉ Expand table

Triage process

Misplaced product feedback

Support requests

> This is not the right forum for these kinds of questions. Try posting 
your question in a

https://github.com/PowerShell/PowerShell/issues/new/choose
https://github.com/PowerShell/PowerShell/issues/new/choose


Edit the issue to remove any offensive content, if necessary
Enter a comment indicating the issue is spam, close the issue, and then lock it to
prevent further comments
Discuss each violation in the regular triage meeting to determine the need for
further action

> community support forum. For a list of community forums see:
> https://learn.microsoft.com/powershell/scripting/community/community-
support

Code of conduct violations



Managing pull requests
Article • 03/27/2025

This article documents how we manage pull requests in the PowerShell-Docs repository.
This article is designed to be a job aid for members of the PowerShell-Docs team. We
publish this information here to provide process transparency for our public
contributors.

Request a review. The person submitting the PR shouldn't merge the PR without a
peer review.
Assign the peer reviewer when the PR is submitted. Early assignment allows the
reviewer to respond sooner with editorial remarks.
Use comments to describe the nature of the change being submitted. For example,
if the change is minor, explain the change and that you don't need a full technical
review. Be sure to @mention the reviewer.
Use the comment suggestion feature to make it easier for the author to accept the
suggested change. For more information, see Reviewing proposed changes in a
pull request .

1. Writer: Create PR

Fill out the PR template
Link any issues resolved by the PR
Use GitHub's autoclose  feature to close the issue
Work through and check off each item in the checklist

2. Writer: Assign peer reviewer
3. Reviewer: proofreads and comments (as necessary)
4. Writer: Incorporate review feedback
5. Both: Review preview rendering
6. Both: Review validation report - fix warnings and errors
7. Reviewer: Mark review "Approved"
8. Repo Maintainer: Merge PR

Best practices

PR Process steps

Content Reviewer Checklist

https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://docs.github.com/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://help.github.com/en/articles/closing-issues-using-keywords
https://help.github.com/en/articles/closing-issues-using-keywords


See the editorial checklist for a more comprehensive list.

Proofread for grammar, style, concision, technical accuracy
Ensure examples still apply for the target version
Check Preview rendering
Check metadata - ms.date, remove ms.assetid, ensure required fields
Validate markdown correctness

See style guide for content-specific formatting rules
Reorganize examples as follows:

Intro paragraph
Code and output
Detailed explanation of code (as necessary)

Check hyperlinks for accuracy
Replace or remove TechNet/MSDN links
Ensure minimum number of redirects to target
Ensure HTTPS
Correct link type

File links for local files
URL links for files outside of the docset

Remove locales from URLs
Simplify URLs pointing to learn.microsoft.com

Verify versioned content is correct across all versions
Review the versioned content change report

The main  branch is the only branch that should be merged into live . Merges from
short-lived (working) branches should be squashed before merging into main .

Merge from/to release-branch main live

working-branch squash and merge squash and merge Not allowed

release-branch — merge Not allowed

main rebase — merge

Content review complete

Branch Merge Process

ﾉ Expand table

PR Merger checklist



Correct target branch for the change
No merge conflicts
All validation and build step pass

Warnings and suggestions should be fixed (see Notes for exceptions)
No broken links
The Checklist action ran and passed
If an Authorization check was triggered, it passed

Merge according to table

The following warnings can be ignored:

When a PR is merged, the HEAD of the target branch is changed. Any open PRs that
were based on the previous HEAD are now outdated. A Maintainer has the right
required to override the merge warnings and merge the outdated PR in GitHub.
Merging an outdated PR is safe if the previously merged PRs didn't touch the same files.

To update the PR, select the Update Branch button. Choose Update with rebase option.
For more information, see Updating your pull request branch .

Periodically, the changes accumulated in the main  branch need to be published to the
live website.

The main  branch is merged to live  each weekday at 3pm PST.
The main  branch should be merged to live  after any significant change.

Changes to 50 or more files

Notes

Can't find service name for `<version>/<modulepath>/About/About.md`

Metadata with following name(s) are not allowed to be set in YAML header, or 
as file level
metadata in docfx.json, or as global metadata in docfx.json: `locale`. They 
are generated by
Docs platform, so the values set in these 3 places will be ignored. Please 
remove them from all
3 places to resolve the warning.

Publishing to Live

https://docs.github.com/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/keeping-your-pull-request-in-sync-with-the-base-branch#updating-your-pull-request-branch
https://docs.github.com/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/keeping-your-pull-request-in-sync-with-the-base-branch#updating-your-pull-request-branch


After merging a release branch
Changes to repo or docset configurations (docfx.json, OPS configs, build scripts,
etc.)
Changes to the redirection file
Changes to the TOC
After merging a "project" branch (content reorg, bulk update, etc.)



Labeling in GitHub
Article • 03/30/2025

This article documents how we label issues and pull requests in the PowerShell-Docs
repository. This article is designed to be a job aid for members of the PowerShell-Docs
team. We publish this information here to provide process transparency for our public
contributors.

Labels always have a name and a description that is prefixed with their type.

Area labels identify the parts of PowerShell or the documentation that the issue relates
to.

Label Related Content

area-about The about_*  articles.

area-archive The Microsoft.PowerShell.Archive module.

area-cim The CimCmdlets module.

area-community Community-facing projects, including the contributor's guide and
monthly updates.

area-conceptual Conceptual articles (not cmdlet reference).

area-console The console host

area-core The Microsoft.PowerShell.Core module.

area-crescendo The Crescendo module.

area-debugging Debugging PowerShell.

area-diagnostics The Microsoft.PowerShell.Diagnostics module.

area-dsc PowerShell Desired State Configuration.

area-editorsvcs The PowerShell editor services.

area-engine The PowerShell engine.

area-error-handling Error handling in PowerShell

Area labels

ﾉ Expand table

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.archive
https://learn.microsoft.com/en-us/powershell/module/cimcmdlets
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.crescendo
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics


Label Related Content

area-experimental PowerShell's experimental features

area-gallery The PowerShell Gallery.

area-helpsystem The Help services, including the pipeline and *-Help  cmdlets.

area-host The Microsoft.PowerShell.Host module.

area-ise The PowerShell ISE.

area-jea The Just Enough Administration feature.

area-language The PowerShell syntax and keywords.

area-learn The structured training content for PowerShell.

area-localaccounts The Microsoft.PowerShell.LocalAccounts module.

area-localization Localization problems or opportunities for the content.

area-management The Microsoft.PowerShell.Management module.

area-native-cmds Using native commands in PowerShell.

area-omi Open Management Infrastructure & CDXML.

area-ops-issue Building and rendering the content on the site.

area-other Miscellaneous modules.

area-overview The overview section in the conceptual content.

area-

packagemanagement

The PackageManagement module.

area-parallelism Content covering parallel processing, such as using ForEach-Object  or
PowerShell Jobs.

area-platyps The PlatyPS module.

area-portability Cross-platform compatibility.

area-powershellget The PowerShellGet module.

area-providers PowerShell providers.

area-psreadline The PSReadLine module.

area-release-notes The PowerShell release notes.

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.host
https://learn.microsoft.com/en-us/training
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.localaccounts
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.management
https://learn.microsoft.com/en-us/powershell/module/packagemanagement
https://learn.microsoft.com/en-us/powershell/module/platyps
https://learn.microsoft.com/en-us/powershell/module/powershellget
https://learn.microsoft.com/en-us/powershell/module/psreadline


Label Related Content

area-remoting The PowerShell remoting feature and cmdlets.

area-scriptanalyzer The PSScriptAnalyzer module.

area-sdk-docs The conceptual documentation for the PowerShell SDK.

area-sdk-ref The .NET API reference documentation for the PowerShell SDK.

area-security The Microsoft.PowerShell.Security module and security concepts in
general.

area-setup Installing and configuring PowerShell.

area-threadjob The ThreadJob module.

area-utility The Microsoft.PowerShell.Utility module.

area-versions Issues with the versioning of the documentation.

area-vscode The VS Code PowerShell extension.

area-wincompat The Windows Compatibility feature.

area-wmf The Windows Management Framework.

area-workflow The Windows PowerShell Workflow feature.

Issue labels distinguish issues by purpose.

Label Issue Category

issue-doc-bug Errors or ambiguities in the content

issue-doc-idea Requests for new content

issue-kudos Praise, positive feedback, or thanks rather than work items

issue-product-feedback Feedback or problems with the product itself

issue-question Support questions

Issue labels

ﾉ Expand table

Priority labels

https://learn.microsoft.com/en-us/powershell/module/psscriptanalyzer
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security
https://learn.microsoft.com/en-us/powershell/module/threadjob
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility


Priority labels rank which work items need to be worked on before others. These labels
are only used when needed to manage large sets of work items.

Label Priority Level

Pri0 Highest

Pri1 High

Pri2 Medium

Pri3 Low

Project labels indicate what ongoing GitHub Project a work item is related to. These
labels are used for automatically adding work items to a project on creation.

Label Project

project-quality The quality improvement project

Quality labels categorize work items for the quality improvement effort.

Label Improvement

quality-aliases Ensure cmdlet aliases are documented

quality-format-code-samples Ensure proper casing, line length, and other formatting in code
samples

quality-format-command-

syntax

Ensure proper casing and formatting for command syntax

quality-link-references Ensure links in conceptual docs are defined as numbered
references

ﾉ Expand table

Project Labels

ﾉ Expand table

Quality labels

ﾉ Expand table



Label Improvement

quality-markdownlint Ensure content follows markdownlint rules

quality-spelling Ensure proper casing and spelling for words

Status labels indicate why a work item was closed or shouldn't be merged. Issues are
only given status labels when they're closed without a related PR.

Label Status

resolution-answered Closed by existing documentation

resolution-duplicate Closed as duplicate issue

resolution-external Closed by customer or outside resource

resolution-no-repro Unable to reproduce the reported issue

resolution-refer-to-support Closed and referred to community or product support

resolution-wont-fix Closed as won't fix

Tag labels add independent context for work items.

Label Purpose

in-progress Someone is actively working on the item

go-live The work item is related to a specific release

doc-a-thon The work item is related to a doc-a-thon

up-for-grabs Any contributor can volunteer to resolve the work item

hacktoberfest-accepted The PR is accepted for inclusion in #hacktoberfest

hacktoberfest-candidate The PR is a candidate for inclusion in #hacktoberfest

Status labels

ﾉ Expand table

Tag labels

ﾉ Expand table



Label Purpose

needs-triage The issue must be triaged by the team before it's ready to be worked

code-of-conduct Closed for spam, trolling, or code of conduct violations

do-not-merge The PR isn't meant to be merged

Waiting labels indicate that a work item can't be resolved until an external condition is
met.

Label Waiting For

hold-for-pr Upstream PR to be merged

hold-for-release Upstream product to release

needs-investigation Waiting for team member to verify or research

needs-more-info Additional details or clarification from work item author

needs-response Response from work item author

review-shiproom Shiproom discussion with the PowerShell team

Waiting labels

ﾉ Expand table



PowerShell Support Lifecycle
Article • 02/25/2025

PowerShell follows the Microsoft Modern Lifecycle Policy. Support dates follow the .NET
Support Policy . In this servicing approach, customers can choose Long Term Support
(LTS) releases or current releases.

An LTS release of PowerShell is built on an LTS release of .NET. Updates to an LTS
release only contain critical security updates and servicing fixes that are designed to
minimize impact on existing workloads.

A current release is a release that occurs between LTS releases. Current releases can
contain critical fixes, innovations, and new features. Microsoft supports a current release
for six months after the next LTS release.

Both LTS and current versions of PowerShell receive security updates and bug fixes.
Microsoft only supports the latest update version of a release.

Microsoft provides support for PowerShell on a best-effort basis. Support for Windows
PowerShell 5.1 is provided through Windows support channels. You can use the
standard paid support channels to get support for PowerShell.

Support for business
Contact support

There are many free support options available from the PowerShell community. The
most active community support channels are available through Discord or Slack. The
discussion channels are mirrored on both platforms, so you can choose the platform
that you prefer. These channels can help you troubleshoot issues, answer questions, and
provide guidance on how to use PowerShell.

If you think that you found a bug, you can file an issue on GitHub . The PowerShell
team can't provide support through GitHub, but they welcome bug reports. The

７ Note

This document is about support for PowerShell. Windows PowerShell (1.0 - 5.1) is a
component of the Windows operating system. For more information, see Product
and Services Lifecycle Information.

Getting support

https://learn.microsoft.com/en-us/lifecycle/policies/modern
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://support.serviceshub.microsoft.com/
https://support.serviceshub.microsoft.com/
https://support.microsoft.com/contactus
https://support.microsoft.com/contactus
https://github.com/PowerShell/PowerShell/issues/new/choose
https://github.com/PowerShell/PowerShell/issues/new/choose
https://learn.microsoft.com/en-us/lifecycle/products/
https://learn.microsoft.com/en-us/lifecycle/products/


community support page provides links to the most popular community support
channels.

PowerShell runs on multiple operating systems (OS) and processor architecture
platforms. The platform must meet the following criteria:

The target platform (OS version and processor architecture) is supported by .NET.
Microsoft has tested and approved PowerShell on the target platform.
The OS version is supported by the distributor for at least one year.
The OS version isn't an interim release or equivalent.
The OS version is currently supported by the distributor.

Support for PowerShell ends when either of the following conditions are met:

The target platform reaches end-of-life as defined by the platform owner
The specific version of PowerShell reaches end-of-life

After a version of PowerShell reaches end-of-life, no further updates, including security
updates, are provided. Microsoft encourages customers to upgrade to a supported
version of PowerShell to continue receiving updates and support.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Windows reaches end-of-support.

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 for
Windows Server 2022, Windows Server Core 2022, and Windows Server Nano build
1809 are available from the Microsoft Artifact Registry .
PowerShell 7.4 and higher can be installed on Windows 10 build 1607 and higher,
Windows 11, Windows Server 2016 and higher.

Supported platforms

Windows

７ Note

Support for a specific version of Windows is determined by the Microsoft Support
Lifecycle policies. For more information, see:

Windows client lifecycle FAQ

Modern Lifecycle Policy FAQ

https://learn.microsoft.com/en-us/powershell/scripting/community/community-support
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://learn.microsoft.com/en-us/lifecycle/products/?terms=Windows%20Server&products=windows
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags
https://learn.microsoft.com/en-us/lifecycle/faq/windows
https://learn.microsoft.com/en-us/lifecycle/policies/modern


Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
macOS reaches end-of-support.

macOS 15 (Sequoia) x64 and Arm64
macOS 14 (Sonoma) x64 and Arm64
macOS 13 (Ventura) x64 and Arm64

Apple determines the support lifecycle of macOS. For more information, see the
following:

macOS release notes
Apple Security Updates

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Alpine reaches end-of-life .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of Alpine:

Alpine 3.20 - OS support ends on 2026-04-01

Docker images of PowerShell aren't available for Alpine 3.21.

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Debian reaches end-of-life .

Install package files ( .deb ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of Debian:

macOS

Alpine Linux

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Debian Linux

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://developer.apple.com/documentation/macos-release-notes
https://developer.apple.com/documentation/macos-release-notes
https://support.apple.com/HT201222
https://support.apple.com/HT201222
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://alpinelinux.org/releases/
https://alpinelinux.org/releases/
https://mcr.microsoft.com/en-us/product/powershell/tags
https://mcr.microsoft.com/en-us/product/powershell/tags
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://wiki.debian.org/DebianReleases
https://wiki.debian.org/DebianReleases
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags


Debian 12 (Bookworm) - OS support ends on 2026-06-10

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
RHEL reaches end-of-support .

Install package files ( .rpm ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 are
available from the Microsoft Artifact Registry  for the following versions of RHEL:

RHEL 9 - OS support ends on 2032-05-31
RHEL 8 - OS support ends on 2029-05-31

PowerShell is tested on Red Hat Universal Base Images (UBI). For more information, see
the UBI information page .

Microsoft supports PowerShell until PowerShell reaches end-of-support or the version of
Ubuntu reaches end-of-support .

Install package files ( .deb ) are also available from https://packages.microsoft.com/ .

Docker images containing PowerShell 7.4 and PowerShell 7.5-preview for x64 and
Arm32 are available from the Microsoft Artifact Registry  for the following versions of

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Red Hat Enterprise Linux (RHEL)

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Ubuntu Linux

https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://access.redhat.com/support/policy/updates/errata/
https://access.redhat.com/support/policy/updates/errata/
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags
https://developers.redhat.com/products/rhel/ubi
https://developers.redhat.com/products/rhel/ubi
https://learn.microsoft.com/en-us/powershell/scripting/install/powershell-support-lifecycle
https://endoflife.date/ubuntu
https://endoflife.date/ubuntu
https://packages.microsoft.com/
https://packages.microsoft.com/
https://mcr.microsoft.com/product/powershell/tags
https://mcr.microsoft.com/product/powershell/tags


Ubuntu:

Ubuntu 24.04 (Noble Numbat) - OS support ends on 2029-04-01
Ubuntu 22.04 (Jammy Jellyfish) - OS support ends on 2027-04-01
Ubuntu 20.04 (Focal Fossa) - OS support ends on 2025-04-02

Ubuntu 24.10 (Oracular Oriole) is an interim release. Microsoft doesn't support interim
releases  of Ubuntu. For more information, see Community supported distributions.

The support lifecycle for PowerShell doesn't cover modules that ship outside of the
PowerShell release package. For example, using the ActiveDirectory  module that ships
as part of Windows Server is supported under the Windows Support Lifecycle.

Experimental features aren't intended to be used in production environments. We
appreciate feedback on experimental features and we provide best-effort support for
them.

PowerShell is released under the MIT license . Under this license, and without a paid
support agreement, users are limited to community support. With community support,
Microsoft makes no guarantees of responsiveness or fixes.

The PowerShell support lifecycle follows the support lifecycle of .NET . The following
table lists the end-of-support dates for the current versions of PowerShell:

） Important

The Docker images are built from official operating system (OS) images provide by
the OS distributor. These images may not have the latest security updates.
Microsoft recommends that you update the OS packages to the latest version to
ensure the latest security updates are applied.

Support for PowerShell modules

Support for experimental features

Notes on licensing

PowerShell end-of-support dates

https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://learn.microsoft.com/en-us/powershell/scripting/install/community-support
https://learn.microsoft.com/en-us/lifecycle/faq/windows
https://learn.microsoft.com/en-us/powershell/scripting/learn/experimental-features
https://github.com/PowerShell/PowerShell/blob/master/LICENSE.txt
https://github.com/PowerShell/PowerShell/blob/master/LICENSE.txt
https://learn.microsoft.com/en-us/powershell/scripting/community/community-support
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core


Version Release Date End-of-support .NET Version

PowerShell 7.6 (preview) Future date Future date Built on .NET 9.0.0

PowerShell 7.5 23-Jan-2025 12-May-2026 Built on .NET 9.0.0

PowerShell 7.4 (LTS) 16-Nov-2023 10-Nov-2026 Built on .NET 8.0.0

The following table lists the end-of-support dates for retired versions of PowerShell:

Version Release Date End-of-support .NET Version

PowerShell 7.3 09-Nov-2022 08-May-2024 Built on .NET 7.0

PowerShell 7.2 (LTS) 08-Nov-2021 08-Nov-2024 Built on .NET 6.0

PowerShell 7.1 11-Nov-2020 08-May-2022 Built on .NET 5.0

PowerShell 7.0 (LTS) 04-Mar-2020 03-Dec-2022 Built on .NET Core 3.1

PowerShell 6.2 29-Mar-2019 04-Sep-2020 Built on .NET Core 2.1

PowerShell 6.1 13-Sep-2018 28-Sep-2019 Built on .NET Core 2.1

PowerShell 6.0 20-Jan-2018 13-Feb-2019 Built on .NET Core 2.0

The following table contains a historical timeline of the major releases of Windows
PowerShell. Microsoft no longer supports Windows PowerShell versions lower than 5.1.

Version Release
Date

Note

Windows
PowerShell 5.1

Aug-2016 Released in Windows 10 Anniversary Update and Windows
Server 2016, WMF 5.1

Windows
PowerShell 5.0

Feb-2016 Released in Windows Management Framework (WMF) 5.0

Windows
PowerShell 4.0

Oct-2013 Released in Windows 8.1 and with Windows Server 2012 R2,
WMF 4.0

ﾉ Expand table

ﾉ Expand table

Windows PowerShell release history

ﾉ Expand table

https://github.com/dotnet/core/blob/main/release-notes/9.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/9.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/9.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/9.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/8.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/8.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/7.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/5.0/5.0-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/5.0/5.0-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/3.1/3.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/3.1/3.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/2.0/2.0-supported-os.md


Version Release
Date

Note

Windows
PowerShell 3.0

Oct-2012 Released in Windows 8 and with Windows Server 2012 WMF
3.0

Windows
PowerShell 2.0

Jul-2009 Released in Windows 7 and Windows Server 2008 R2, WMF
2.0

Windows
PowerShell 1.0

Nov-2006 Released as optional component of Windows Server 2008

Run the following command to see the full version number of .NET used by the version
of PowerShell you're running:

PowerShell

[System.Runtime.InteropServices.RuntimeInformation]::FrameworkDescription


	How to use this documentation
	Overview
	What is PowerShell?
	What is Windows PowerShell?
	What is a command shell?
	What is a PowerShell command?
	Discover PowerShell

	Install
	Overview
	Installing PowerShell on Windows
	Installing PowerShell on Linux
	Overview
	Installing on Alpine
	Installing on Debian
	Installing on RHEL
	Installing on Ubuntu
	Community support for Linux
	Alternate ways to install on Linux

	Installing PowerShell on macOS
	Installing PowerShell on Arm
	Using PowerShell in Docker
	Microsoft Update FAQ for PowerShell

	Learning PowerShell
	PowerShell 101
	Introduction
	Getting started with PowerShell
	The Help system
	Discovering objects, properties, and methods
	One-liners and the pipeline
	Formatting, aliases, providers, comparison
	Flow control
	Working with WMI
	PowerShell remoting
	Functions
	Script modules

	Optimizing your shell experience
	Overview of the Shell
	Running commands in the Shell
	Using tab completion
	Using command predictors
	Getting dynamic help
	Using aliases
	Customizing your shell environment
	Using PSReadLine key handlers
	Configuring a light colored theme
	Improve the accessibility of output in PowerShell

	Deep dives
	Overview
	Everything you want to know about ...
	Everything you want to know about arrays
	Everything you want to know about hashtables
	Everything you want to know about PSCustomObject
	Everything you want to know about string substitution
	Everything you want to know about if/then/else
	Everything you want to know about switch
	Everything you want to know about exceptions
	Everything you want to know about $null
	Everything you want to know about ShouldProcess
	Visualize parameter binding

	Write-Progress while multithreading
	Add Credential support to PowerShell functions
	Avoid assigning variables in expressions
	Avoid using Invoke-Expression
	Limitations of PowerShell transcripts

	Sample scripts
	Sample scripts for administration
	Working with objects
	Viewing object structure
	Selecting parts of objects
	Removing objects from the pipeline
	Sorting objects
	Creating .NET and COM objects
	Using static classes and methods
	Getting WMI objects
	Manipulating items directly

	Managing computers
	Changing computer state
	Collecting information about computers
	Creating Get-WinEvent queries with FilterHashtable

	Managing processes & services
	Managing processes with process cmdlets
	Managing services
	Working with printers
	Performing networking tasks
	Working with software installations
	Decode a PowerShell command from a running process

	Working with output
	Redirecting data with Out-* cmdlets
	Using Format commands to change output view

	Manage drives & files
	Managing current location
	Managing PowerShell drives
	Working with files and folders
	Working with files, folders, and registry keys
	Working with registry entries
	Working with registry keys

	Creating UI elements
	Creating a custom input box
	Creating a graphical date picker
	Multiple selection list boxes
	Selecting items from a list box


	Using Experimental Features
	Compatibility aliases
	Additional resources
	Glossary

	What's New in PowerShell
	Overview
	What's new in PowerShell 7.6
	What's new in PowerShell 7.5
	What's new in PowerShell 7.4
	What's new in PowerShell 7.3
	What's new in PowerShell 7.2
	Migrating from Windows PowerShell 5.1 to PowerShell 7
	Differences between Windows PowerShell 5.1 and PowerShell 7.x
	PowerShell differences on non-Windows platforms
	Module and cmdlet release history
	Module compatibility

	Windows PowerShell
	ISE
	Introducing the Windows PowerShell ISE
	Using the Windows PowerShell ISE
	Exploring the Windows PowerShell ISE
	How to Create a PowerShell Tab in Windows PowerShell ISE
	How to debug scripts in Windows PowerShell ISE
	How to use profiles in Windows PowerShell ISE
	How to use tab completion in the script and console panes
	How to use the console pane in the Windows PowerShell ISE
	How to write and run scripts in the Windows PowerShell ISE
	Keyboard shortcuts for the Windows PowerShell ISE
	Accessibility in Windows PowerShell ISE

	The ISE scripting object model
	Purpose of the Windows PowerShell ISE Scripting Object Model
	The ISE object model hierarchy
	The ObjectModelRoot object
	The ISEAddOnToolCollection object
	The ISEAddOnTool object
	The ISEEditor object
	The ISEFileCollection object
	The ISEFile object
	The ISEMenuItemCollection Object
	The ISEMenuItem object
	The ISEOptions object
	The ISESnippetCollection object
	The ISESnippetObject
	The PowerShellTabCollection object
	The PowerShellTab object
	Other useful scripting objects


	Starting Windows PowerShell
	Windows Management Framework (WMF)

	Security
	Overview
	PowerShell security features
	Secure PowerShell with WDAC
	Using Application Control
	How WDAC works with PowerShell
	How to use WDAC to secure PowerShell

	Preventing script injection attacks
	PowerShell remoting
	Just Enough Administration (JEA)
	Overview
	Prerequisites
	Role Capabilities
	Session Configurations
	Registering JEA
	Using JEA
	Security Considerations
	Audit and Report on JEA

	Running remote commands
	PowerShell remoting over SSH
	WS-Management (WSMan) remoting in PowerShell
	WinRM Security
	Making the second hop in PowerShell Remoting
	Securing a restricted PowerShell remoting session
	PowerShell Remoting FAQ


	Desired State Configuration (DSC)
	PowerShell Gallery
	Community
	Community update
	Community support
	Contributor Hall of Fame
	What's new in Docs
	2025 Updates
	2024 Updates
	2023 Updates
	2022 Updates
	2021 Updates
	2020 Updates

	Digital art

	Scripting and development
	Visual Studio Code
	Using Visual Studio Code
	How to replicate the ISE experience in VS Code
	Using VS Code for remote editing and debugging
	Understanding file encoding in VS Code and PowerShell
	Using VS Code to debug compiled cmdlets

	Performance considerations
	Scripting performance considerations
	Module performance considerations

	Developing modern modules
	Writing portable modules
	How to create a Standard Library binary module
	Choosing the right NuGet package for your .NET project
	Resolving module assembly dependency conflicts
	Creating a command-line predictor
	Creating a feedback provider
	Creating module help using PlatyPS

	PowerShell Language Specification 3.0
	1. Introduction
	2. Lexical Structure
	3. Basic concepts
	4. Types
	5. Variables
	6. Conversions
	7. Expressions
	8. Statements
	9. Arrays
	10. Hashtables
	11. Modules
	12. Attributes
	13. Cmdlets
	A. Comment-Based Help
	B. Grammar
	C. References

	Legacy PowerShell SDK
	Overview
	Installing the Windows PowerShell SDK
	Windows PowerShell Reference
	What's New
	Writing a PowerShell Cmdlet
	Cmdlet Overview
	PowerShell Cmdlet Concepts
	Cmdlet Development Guidelines
	Required Development Guidelines
	Strongly Encouraged Development Guidelines
	Advisory Development Guidelines

	Cmdlet Class Declaration
	Approved Verbs for PowerShell Commands
	Cmdlet Input Processing Methods
	Cmdlet Parameters
	Declaring Properties as Parameters
	Types of Cmdlet Parameters
	Standard Cmdlet Parameter Names and Types
	Activity Parameters
	Date and Time Parameters
	Format Parameters
	Property Parameters
	Quantity Parameters
	Resource Parameters
	Security Parameters

	Parameter Aliases
	Common Parameter Names
	Cmdlet Parameter Sets
	Cmdlet Dynamic Parameters
	Supporting Wildcard Characters in Cmdlet Parameters
	Validating Parameter Input
	Input Filter Parameters

	Cmdlet Attributes
	Attributes in Cmdlet Code
	Attribute Types
	Alias Attribute Declaration
	Cmdlet Attribute Declaration
	Credential Attribute Declaration
	OutputType Attribute Declaration
	Parameter Attribute Declaration
	ValidateCount Attribute Declaration
	ValidateLength Attribute Declaration
	ValidatePattern Attribute Declaration
	ValidateRange Attribute Declaration
	ValidateScript Attribute Declaration
	ValidateSet Attribute Declaration

	Cmdlet Aliases
	Cmdlet Output
	Types of Cmdlet Output
	Cmdlet Error Reporting
	Extending Output Objects
	Extending Properties for Objects
	Defining Default Methods for Objects
	Defining Default Member Sets for Objects

	Custom Formatting Files

	Requesting Confirmation
	Requesting Confirmation from Cmdlets
	Users Requesting Confirmation
	Confirmation Messages

	PowerShell Error Reporting
	Error Reporting Concepts
	Terminating Errors
	Non-Terminating Errors
	Displaying Error Information
	PowerShell Error Records
	Interpreting ErrorRecord Objects

	Background Jobs
	Invoking Cmdlets and Scripts Within a Cmdlet
	Cmdlet Sets
	PowerShell Session State

	Examples of Cmdlet Code
	How to Write a Simple Cmdlet
	How to Declare Cmdlet Parameters
	How to Declare Parameter Sets
	How to Validate Parameter Input
	How to Validate an Argument using a script
	How to Validate an Argument Set
	How to Validate an Argument Range
	How to Validate an Argument Pattern
	How to Validate the Argument Length
	How to Validate an Argument Count

	How to Declare Dynamic Parameters
	How to Invoke Scripts Within a Cmdlet
	How to Override Input Processing Methods
	How to Request Confirmations
	How to Support Transactions
	How to Support Jobs
	How to invoke a Cmdlet from within a Cmdlet
	How to invoke a PSCmdlet from within a PSCmdlet

	Tutorials for Writing Cmdlets
	GetProc Tutorial
	Creating a Cmdlet without Parameters
	Adding Parameters That Process Command-Line Input
	Adding Parameters that Process Pipeline Input
	Adding Non-Terminating Error Reporting to Your Cmdlet

	StopProc Tutorial
	Creating a Cmdlet that Modifies the System
	Adding User Messages to Your Cmdlet
	Adding Aliases, Wildcard Expansion, and Help to Cmdlet Parameters
	Adding Parameter Sets to a Cmdlet

	SelectStr Tutorial
	Creating a Cmdlet to Access a Data Store


	Cmdlet Samples
	GetProcessSample01 Sample
	GetProcessSample02 Sample
	GetProcessSample03 Sample
	GetProcessSample04 Sample
	GetProcessSample05 Sample
	StopProcessSample01 Sample
	StopProcessSample02 Sample
	StopProcessSample03 Sample
	StopProcessSample04 Sample
	Events01 Sample


	Writing a PowerShell Module
	Overview
	Understanding a PowerShell Module
	How to Write a PowerShell Script Module
	How to Write a PowerShell Binary Module
	How to Write a PowerShell Module Manifest
	Installing a PowerShell Module
	Registering Cmdlets
	Overview
	Modules and Snap-ins
	How to Import Cmdlets Using Modules
	How to Create a Windows PowerShell Snap-in
	Overview
	Writing a PowerShell Snap-in
	Writing a Custom PowerShell Snap-in


	Importing a PowerShell Module

	Writing a PowerShell Provider
	PowerShell Provider Quickstart
	PowerShell Provider Overview
	Provider types
	Provider cmdlets
	Provider cmdlet parameters
	Provider cmdlet dynamic parameters

	Writing an item provider
	Writing a container provider
	Writing a navigation provider
	Provider Samples
	AccessDBProviderSample01
	AccessDBProviderSample02
	AccessDBProviderSample03
	AccessDBProviderSample04
	AccessDBProviderSample05
	AccessDBProviderSample06


	Writing a PowerShell Host Application
	PowerShell Host Quickstart
	Creating Runspaces
	Creating an InitialSessionState
	Creating a constrained runspace
	Creating multiple runspaces

	Adding and invoking commands
	Creating remote runspaces
	Creating a custom user interface
	Host Application Samples
	PowerShell API Samples
	PowerShell01 Sample
	PowerShell02 Sample

	Custom Host Samples
	Host01 Sample
	Host02 Sample
	Host03 Sample
	Host04 Sample
	Host05 Sample
	Host06 Sample

	Runspace Samples
	Runspace01 Sample
	Runspace02 Sample
	Runspace03 Sample
	Runspace04 Sample
	Runspace05 Sample
	Runspace06 Sample
	Runspace07 Sample
	Runspace08 Sample
	Runspace09 Sample
	Runspace10 Sample
	Runspace11 Sample

	Remote Runspace Samples
	RemoteRunspace01 Sample
	RemoteRunspacePool01 Sample



	Writing a PowerShell Formatting File
	Formatting File Overview
	Formatting File Concepts
	Overview
	Creating a Table View
	Creating a List View
	Creating a Wide View
	Creating Custom Controls
	Loading and Exporting Formatting Data
	Defining Selection Sets
	Defining Conditions for Displaying Data
	Formatting Displayed Data

	PowerShell Formatting Files
	Overview
	How to Create a Formatting File (.format.ps1xml)

	Examples of Formatting Files
	Wide View (Basic)
	Wide View (GroupBy)
	List View (Basic)
	List View (Labels)
	List View (GroupBy)

	Format Schema XML Reference
	Configuration Element
	Controls Element for Configuration
	Control Element for Controls for Configuration
	CustomControl Element for Control for Controls for Configuration
	CustomEntries Element for CustomControl for Controls for Configuration
	CustomEntry Element for CustomControl for Controls for Configuration
	CustomItem Element for CustomEntry for Controls for Configuration
	ExpressionBinding Element for CustomItem for Controls for Configuration
	CustomControlName Element for ExpressionBinding for Controls for Configuration
	EnumerateCollection Element for ExpressionBinding for Controls for Configuration
	ItemSelectionCondition Element for ExpressionBinding for Controls for Configuration
	PropertyName Element for ItemSelectionCondition for Controls for Configuration
	ScriptBlock Element for ItemSelectionCondition for Controls for Configuration

	PropertyName Element for ExpressionBinding for Controls for Configuration
	ScriptBlock Element for ExpressionBinding for Controls for Configuration

	Frame Element for CustomItem for Controls for Configuration
	FirstLineHanging Element for Frame for Controls for Configuration
	FirstLineIndent Element for Frame for Controls for Configuration
	LeftIndent Element for Frame for Controls for Configuration
	RightIndent Element for Frame for Controls for Configuration

	NewLine Element for CustomItem for Controls for Configuration
	Text Element for CustomItem for Controls for Configuration

	EntrySelectedBy Element for CustomEntry for Controls for Configuration
	SelectionCondition Element for EntrySelectedBy for Controls for Configuration
	PropertyName Element for SelectionCondition for Controls for Configuration
	ScriptBlock Element for SelectionCondition for Controls for Configuration
	SelectionSetName Element for SelectionCondition for Controls for Configuration
	TypeName Element for SelectionCondition for Controls for Configuration

	SelectionSetName Element for EntrySelectedBy for Controls for Configuration
	TypeName Element for EntrySelectedBy for Controls for Configuration



	Name Element for Control for Controls for Configuration

	DefaultSettings Element
	DisplayError Element
	EnumerableExpansions Element
	EnumerableExpansion Element
	EntrySelectedBy Element for EnumerableExpansion
	SelectionCondition Element for EntrySelectedBy for EnumerableExpansion
	PropertyName Element for SelectionCondition for Controls for View
	ScriptBlock Element for SelectionCondition for Controls for View
	SelectionSetName Element for SelectionCondition for EntrySelectedBy for EnumerableExpansion
	TypeName Element for SelectionCondition for EntrySelectedBy for EnumerableExpansion

	SelectionSetName Element for EntrySelectedBy for EnumerableExpansion
	TypeName Element for EntrySelectedBy for EnumerableExpansion

	Expand Element for EnumerableExpansion

	PropertyCountForTable Element
	ShowError Element
	WrapTables Element

	SelectionSets Element
	SelectionSet Element
	Name Element for SelectionSet
	Types Element for SelectionSet
	TypeName Element for Types


	ViewDefinitions Element
	View Element
	Controls Element for View
	Control Element for Controls for View
	CustomControl Element for Control for Controls for View
	CustomEntries Element for CustomControl for Controls for View
	CustomEntry Element for CustomEntries for Controls for View
	CustomItem Element for CustomEntry for Controls for View
	ExpressionBinding Element for CustomItem for Controls for View
	CustomControlName Element for ExpressionBinding for Controls for View
	EnumerateCollection Element for ExpressionBinding for Controls for View
	ItemSelectionCondition Element for ExpressionBinding for Controls for View
	PropertyName Element for ItemSelectionCondition for Controls for View
	ScriptBlock Element for ItemSelectionCondition for Controls for View

	PropertyName Element for ExpressionBinding for Controls for View
	ScriptBlock Element for ExpressionBinding for Controls for View

	Frame Element for CustomItem for Controls for View
	FirstLineHanging Element for Frame for Controls for View
	FirstLineIndent Element for Frame for Controls for View
	LeftIndent Element for Frame for Controls for View
	RightIndent Element for Frame for Controls for View

	NewLine Element for CustomItem for Controls for View
	Text Element for CustomItem for Controls for View

	EntrySelectedBy Element for CustomEntry for Controls for View
	SelectionCondition Element for EntrySelectedBy for Controls for View
	PropertyName Element for SelectionCondition for CustomControl for View
	ScriptBlock Element for SelectionCondition for CustomControl for View
	SelectionSetName Element for SelectionCondition for Controls for View
	TypeName Element for SelectionCondition for Controls for View

	SelectionSetName Element for EntrySelectedBy for Controls for View
	TypeName Element for EntrySelectedBy for Controls for View



	Name Element for Control for Controls for View

	CustomControl Element for View
	CustomEntries Element for CustomControl for View
	CustomEntry Element for CustomEntries for CustomControl for View
	CustomItem Element for CustomEntry for CustomControl for View
	ExpressionBinding Element for CustomItem for CustomControl for View
	CustomControlName Element for ExpressionBinding for CustomControl for View
	EnumerateCollection Element for ExpressionBinding for CustomControl for View
	ItemSelectionCondition Element for ExpressionBinding for CustomControl
	PropertyName Element for ItemSelectionCondition for CustomControl for View
	ScriptBlock Element for ItemSelectionCondition for CustomControl for View

	PropertyName Element for ExpressionBinding for CustomControl for View
	ScriptBlock Element for ExpressionBinding for CustomControl for View

	Frame Element for CustomItem for CustomControl for View
	FirstLineHanging Element for Frame for CustomControl for View
	FirstLineIndent Element for Frame for CustomControl for View
	LeftIndent Element for Frame for CustomControl for View
	RightIndent Element for Frame for CustomControl for View

	NewLine Element for CustomItem for CustomControl for View
	Text Element for CustomItem for CustomView for View

	EntrySelectedBy Element for CustomEntry for CustomControl for View
	SelectionCondition Element for EntrySelectedBy for CustomControl
	PropertyName Element for SelectionCondition for EntrySelectedBy for EnumerableExpansion
	ScriptBlock Element for SelectionCondition for EntrySelectedBy for EnumerableExpansion
	SelectionSetName Element for SelectionCondition for CustomControl for View
	TypeName Element for SelectionCondition for CustomControl for View

	SelectionSetName Element for EntrySelectedBy for CustomControl for View
	TypeName Element for EntrySelectedBy for CustomEntry for View



	GroupBy Element for View
	CustomControl Element for GroupBy
	CustomEntries Element for CustomControl for GroupBy
	CustomEntry Element for CustomControl for GroupBy
	CustomItem Element for CustomEntry for GroupBy
	ExpressionBinding Element for CustomItem for GroupBy
	CustomControlName Element for ExpressionBinding for GroupBy
	EnumerateCollection Element for ExpressionBinding for GroupBy
	ItemSelectionCondition Element for ExpressionBinding for GroupBy
	PropertyName Element for ItemSelectionCondition for GroupBy
	ScriptBlock Element for ItemSelectionCondition for GroupBy

	PropertyName Element for ExpressionBinding for GroupBy
	ScriptBlock Element for ExpressionBinding for GroupBy

	Frame Element for CustomItem for GroupBy
	FirstLineHanging Element for Frame for GroupBy
	FirstLineIndent Element for Frame for GroupBy
	LeftIndent Element for Frame for GroupBy
	RightIndent Element for Frame for GroupBy

	NewLine Element for CustomItem for GroupBy
	Text Element for CustomItem for GroupBy

	EntrySelectedBy Element for CustomEntry for GroupBy
	SelectionCondition Element for EntrySelectedBy for GroupBy
	PropertyName Element for SelectionCondition for GroupBy
	ScriptBlock Element for SelectionCondition for EntrySelectedBy for GroupBy
	SelectionSetName Element for SelectionCondition for GroupBy
	TypeName Element for SelectionCondition for GroupBy

	SelectionSetName Element for EntrySelectedBy for GroupBy
	TypeName Element for EntrySelectedBy for GroupBy



	CustomControlName Element for GroupBy
	Label Element for GroupBy
	PropertyName Element for GroupBy
	ScriptBlock Element for GroupBy

	ListControl Element
	ListEntries Element for ListControl
	ListEntry Element for ListControl
	EntrySelectedBy Element for ListEntry for ListControl
	SelectionCondition Element for EntrySelectedBy for ListControl
	PropertyName Element for SelectionCondition for EntrySelectedBy for ListControl
	ScriptBlock Element for SelectionCondition for EntrySelectedBy for ListControl
	SelectionSetName Element for SelectionCondition for EntrySelectedBy for ListEntry
	TypeName Element for SelectionCondition for EntrySelectedBy for ListControl

	SelectionSetName Element for EntrySelectedBy for ListControl
	TypeName Element for EntrySelectedBy for ListControl

	ListItems Element for ListEntry for ListControl
	FormatString Element for ListItem for ListControl
	ItemSelectionCondition Element for ListItem for ListControl
	PropertyName Element for ItemSelectionCondition for ListControl
	ScriptBlock Element for ItemSelectionCondition for ListControl

	Label Element for ListItem for ListControl
	ListItem Element for ListItems for ListControl
	PropertyName Element for ListItem for ListControl
	ScriptBlock Element for ListItem for ListControl




	Name Element for View
	OutOfBand Element for View
	TableControl Element
	AutoSize Element for TableControl
	HideTableHeaders Element
	TableHeaders Element
	TableColumnHeader Element
	Alignment Element for TableColumnHeader for TableControl
	Label Element for TableColumnHeader for TableControl
	Width Element for TableColumnHeader for TableControl

	TableRowEntries Element for TableControl
	TableColumnItems Element for TableRowEntry for TableControl
	TableColumnItem Element for TableColumnItems for TableControl
	Alignment Element for TableColumnItem for TableControl
	FormatString Element for TableColumnItem for TableControl
	PropertyName Element for TableColumnItem for TableControl
	ScriptBlock Element for TableColumnItem for TableControl

	TableRowEntry Element for TableRowEntries for TableControl
	EntrySelectedBy Element for TableRowEntry for TableControl
	SelectionCondition Element for EntrySelectedBy for TableControl
	PropertyName Element for SelectionCondition for EntrySelectedBy for TableRowEntry
	ScriptBlock Element for SelectionCondition for EntrySelectedBy for TableControl
	SelectionSetName Element for SelectionCondition for EntrySelectedBy for TableControl
	TypeName Element for SelectionCondition for EntrySelectedBy for TableControl

	SelectionSetName Element for EntrySelectedBy for TableControl
	TypeName Element for EntrySelectedBy for TableControl

	Wrap Element for TableRowEntry for TableControl


	ViewSelectedBy Element
	SelectionSetName Element for ViewSelectedBy
	TypeName Element for ViewSelectedBy

	WideControl Element
	AutoSize Element for WideControl
	ColumnNumber Element for WideControl
	WideEntries Element for WideControl
	WideEntry Element for WideControl
	EntrySelectedBy Element for WideEntry
	SelectionCondition Element for EntrySelectedBy for WideControl
	PropertyName Element for SelectionCondition for EntrySelectedBy for WideEntry
	ScriptBlock Element for SelectionCondition for EntrySelectedBy for WideControl
	SelectionSetName Element for SelectionCondition for EntrySelectedBy for WideEntry
	TypeName Element for SelectionCondition for EntrySelectedBy for WideControl

	TypeName Element for EntrySelectedBy for WideEntry
	SelectionSetName Element for EntrySelectedBy for WideControl

	WideItem Element for WideControl
	FormatString Element for WideItem for WideControl
	PropertyName Element for WideItem for WideControl
	ScriptBlock Element for WideItem for WideControl






	Writing Help for PowerShell
	Overview
	Writing Comment-Based Help Topics
	Overview
	Syntax of Comment-Based Help
	Comment-Based Help Keywords
	Placing Comment-Based Help in Functions
	Placing Comment-Based Help in Scripts
	Autogenerated Elements of Comment-Based Help
	Examples of Comment-Based Help

	Writing XML-Based Help Topics for Commands
	Writing Help for PowerShell Cmdlets
	Overview
	How to Create the Cmdlet Help File
	How to Add the Cmdlet Name and Synopsis to a Cmdlet Help Topic
	How to Add a Cmdlet Description
	How to Add Syntax to a Cmdlet Help Topic
	How to Add Parameter Information
	How to Add Input Types to a Cmdlet Help Topic
	How to Add Return Values to a Cmdlet Help Topic
	How to Add Notes to a Cmdlet Help Topic
	How to Add Examples to a Cmdlet Help Topic
	How to Add Related Links to a Cmdlet Help Topic

	Writing Help for PowerShell Modules
	Overview
	Naming Help Files
	Supporting Updatable Help
	Updatable Help Overview
	Updatable Help Authoring: Step-by-Step
	How Updatable Help Works
	How to Create a HelpInfo XML File
	HelpInfo XML Schema
	HelpInfo XML Sample File
	How to Name a HelpInfo XML File
	How to Set HelpInfo XML Version Numbers

	How to Prepare Updatable Help CAB Files
	How to Create and Upload CAB Files
	How to Name an Updatable Help CAB File
	File Types Permitted in an Updatable Help CAB File
	How to Update Help Files
	How to Test Updatable Help

	Supporting Online Help


	Writing Help for PowerShell Providers
	How to Add Dynamic Parameters to a Provider Help Topic
	How to Add a See Also Section to a Provider Help Topic



	Extended Type System (ETS)
	ETS Overview
	ETS members
	ETS member sets
	ETS properties
	ETS methods
	ETS type converters
	Errors and exceptions in ETS

	Windows PowerShell Programmer's Guide
	How to Create a PowerShell Provider
	Designing Your PowerShell Provider
	Creating a Basic PowerShell Provider
	Creating a PowerShell Drive Provider
	Creating a PowerShell Item Provider
	Creating a PowerShell Container Provider
	Creating a PowerShell Navigation Provider
	Creating a PowerShell Content Provider
	Creating a PowerShell Property Provider

	How to Create a Console Shell
	PowerShell Concepts
	PowerShell Sample Code
	AccessDbProviderSample01 Code Sample
	AccessDbProviderSample02 Code Sample
	AccessDbProviderSample03 Code Sample
	AccessDbProviderSample04 Code Sample
	AccessDbProviderSample05 Code Sample
	AccessDbProviderSample06 Code Sample
	GetProc01 Code Samples
	GetProc01 (C#) Sample Code
	GetProc01 (VB.NET) Sample Code

	GetProc02 Code Samples
	GetProc02 (C#) Sample Code
	GetProc02 (VB.NET) Sample Code

	GetProc03 Code Samples
	GetProc03 (C#) Sample Code
	GetProc03 (VB.NET) Sample Code

	GetProc04 Code Samples
	GetProc04 (C#) Sample Code
	GetProc04 (VB.NET) Sample Code

	GetProc05 Code Samples
	GetProc05 (C#) Sample Code
	GetProc05 (VB.NET) Sample Code

	StopProc01 Code Samples
	StopProc01 (C#) Sample Code

	StopProcessSample04 Code Samples
	StopProcessSample04 (C#) Sample Code
	StopProcessSample04 (VB.NET) Sample Code

	Runspace01 Code Samples
	Runspace01 (C#) Code Sample
	Runspace01 (VB.NET) Code Sample

	Runspace02 Code Samples
	Runspace02 (C#) Code Sample
	Runspace02 (VB.NET) Code Sample

	RunSpace03 Code Samples
	RunSpace03 (C#) Code Sample
	RunSpace03 (VB.NET) Code Sample

	RunSpace04 Code Samples
	RunSpace04  (VB.NET) Code Sample

	RunSpace05 Code Sample
	RunSpace06 Code Sample
	RunSpace07 Code Sample
	RunSpace08 Code Sample
	RunSpace09 Code Sample
	RunSpace10 Code Sample




	Docs Contributor's Guide
	Overview
	Get started writing docs
	Contribute using GitHub Codespaces
	Markdown best practices
	PowerShell-Docs style guide
	Editorial checklist
	Product terminology and branding guidelines
	How to file a Docs issue
	Submitting a pull request
	Contributing quality improvements
	Hacktoberfest and other hack-a-thon events
	How we manage issues
	How we manage pull requests
	Labelling in GitHub

	PowerShell support lifecycle

